
Least Squares Cubic Spline Approximation I —
Fixed Knots

Carl de Boor and John R. Rice

April 1968

Department of Computer Sciences
Purdue University

CSD TR 20

Versions of the spline programs of de Boor and Rice are available in the program library
of IMSL as ICSFKU and ICSVKU. Contact

International Mathematical & Statistical Libraries
GNB Building
7500 Bellaire
Houston, Texas 77036

Retyped March 1994

Least Squares Cubic Spline Approximation I — Fixed Knots
Carl de Boor1 and John R. Rice2

1 Introduction

Spline functions, and more generally, piecewise polynomial functions are the most successful
approximating functions in use today. They combine ease of handling in a computer with
great flexibility, and are therefore particularly suited for the approximation of experimental
data or design curve measurements.

For a rather complete list of the recent literature on splines, the reader is referred to the
bibliography of [8].

This paper presents an algorithm for the computation of the least-squares approximation
to a given function u by cubic splines with a given fixed set of knots. But since the suc-
cessful use of splines for purposes of “smoothly” approximating a given set of data depends
strongly on the proper placement of the knots, the algorithm is written so as to facilitate
experimentation with various knot sets in as economical fashion as possible. In [2], use is
made of this in a program which attempts to compute the least-squares-approximation to a
given function u by cubic splines with a fixed number of knots.

As a consequence, the algorithm is somewhat more complex than seems warranted for
the mere calculation of the L2-approximation to u by a linear family of functions.

2 Mathematical Background

2.1 Definition of splines

Let π : a = ξ0 < ξ1 < · · · < ξk+1 = b be a partition of the interval [a, b]. A (polynomial)
spline function of degree n on π is, by definition, any function s(x) ∈ C(n−2)[a, b] which on
each of the intervals (ξi, ξi+1), i = 0, . . . k, reduces to a polynomial of degree ≤ n. The points
ξi are called knots (or, joints). We denote by Sn

π the linear space of all such functions. Define

(2.1) (x− ξ)n
+ =

{
(x− ξ)n , x ≥ ξ,

0 , x < ξ.

1This work was initiated at the General Motors Research Laboratories. The final stages were partially
supported by NSF grant GP-7163. We wish to thank John Hoff for assistance in preparing preliminary
versions of this algorithm.

2This author was also partially supported by NSF grant GP-4052.

1

Then it is easily shown that each s ∈ Sn
π is uniquely represented by two sets of parameters,

Ξ = {ξ1, . . . , ξk} and A = {a1, . . . , ak+n+1}, where

(2.2) s(x) = S(A,Ξ, x) =
k∑

i=1

ai(x− ξi)
n
+ +

n∑
j=0

ak+j+1x
j.

Apparently, the boundary “knots” ξ0, ξk+1, play no role in this representation. In fact,
the right-hand side of (2.2) is well-defined on the entire line. Hence, we may and will consider
each s ∈ Sk

π to be defined by (2.2) on the entire line. Nevertheless, we retain the boundary
“knots” for use in other representations.

2.2 Representation of splines

The representation (2.2) is useful for mathematical analysis, but is very ill-conditioned and
cumbersome to evaluate. In computations, the following representations are to be preferred.

For purposes of evaluation, the following seems best:

Repr. I. The set {ξ0, . . . , ξk} and the set of polynomial coefficients {cij|i = 0, . . . , k;
j = 0, . . . , n}, where

(2.3) S(A,Ξ, x) =
n∑

j=0

cij(x− ξi)
j, for ξi ≤ x ≤ ξi+1, i = 0, . . . , k.

It is clear that this representation is highly redundant, requiring (n + 1)(k + 1) linear
parameters. In particular, if n is odd, and

r = (n + 1)/2,

then cij, j = r, . . . , n, may be computed from cij, ci+1,j, j = 0, . . . , r − 1, by

(2.4)
cij(∆ξi)

j =
r−1∑
s=0

γj−r,s[ci+1,s(∆ξi)
s −

r−1∑
t=s

(
t

s

)
cit(∆ξi)

t],

j = r, . . . , n; i = 0, . . . , k,

where

∆ξm = ξm+1 − ξm, and γij = (−1)i+j
r−1∑
t=0

(
t

i

)(
r − 1 + t− j

t− j

)
.

2

This gives

Repr. II. The set {ξ0, . . . , ξk+1} and the set {cij|i = 0, . . . , k+1; j = 0, . . . , r−1}, where

(2.5) cij =
1

j!

djS(A,Ξ, x)

dxj

∣∣∣∣∣
x=ξi

.

This representation is redundant, too, requiring (k + 2)(n + 1)/2 linear parameters.
In reducing Repr. I to Repr. II, we only used the continuity of S(A,Ξ, x) and its derivatives

up to the (r−1)st. But since S(A,Ξ, x) is in C(n−2)[a, b], a small subset of the cij is sufficient.

Repr. III. The set {ξ0, . . . , ξk+1} and the set {cij|(j = 0 and i = 0, . . . , k + 1) or
(j = 1, . . . , r − 1, and i = 0, k + 1)}.

To pass from Repr. III (and thence to other representations) is the spline interpolation
problem. Its solution consists in solving a system of k × (r − 1) equations in the unknowns
cij, i = 1, . . . , k; j = 1, . . . , r − 1, whose coefficient matrix is block tridiagonal of block size
r − 1. The pertinent equations are:

(2.6)

r−1∑
s=0

γjs[ci−1,s(−∆ξi−1)
s−r−j +

r−1∑
t=s

(
t

s

)
cit{(∆ξi)

t−r−j − (∆ξi−1)
t−r−j}

−ci+1,s(∆ξi)
s−r−j] = 0, i = 1, . . . , k; j = 0, . . . , r − 2.

It is clear that this representation requires n + k + 1 linear parameters, hence is not
redundant. In particular, it makes sense to define the spline of degree n interpolating f ∈
C(r−1)[a, b] on π as the unique element s ∈ Sn

π satisfying

(2.7)
s(ξi) = f(ξi), i = 0, . . . , k + 1,

s(j)(ξi) = f (j)(ξi), i = 0, k + 1; j = 1, . . . , r − 1.

The algorithm under discussion employs each of these representations and the following.

Repr. IV. The set {S(A,Ξ, xi)|i = 1, . . . , N}, where X = {xi|i = 1, . . . , N} is a given
(increasing) set of points (cf. below).

It should be pointed out [5], [9] that the set {S(A,Ξ, xi)|i = 1, . . . , N} represents
S(A,Ξ, x) if and only if for some subset X̂ of X with x̂1 < x̂2 < . . . < x̂n+k+1 one has

(2.8) x̂i < ξi < x̂i+n+1, i = 1, . . . k.

3

For completeness, we mention a further non-redundant representation valid for arbitrary
n, which makes use of the so-called B-splines and brings out the “local” character of splines:

Repr. V. The set {ξ−n, . . . , ξk+n+1} and the set {b−n, . . . , bk}, where

(2.9) S(A,Ξ, x) =
k∑

i=−n

biBi(x),

and

Bi(x) = (ξi+n+1 − ξi)gn(ξi, . . . , ξi+n+1; x), i = −n, . . . , k,

gn(s;x) = (s− x)n
+,

with
ξ−n ≤ · · · ≤ ξ−1 ≤ a, b ≤ ξk+2 ≤ . . . ≤ ξk+n+1.

Here, f(ξi, . . . , ξi+n+1) denotes the (n + 1)st divided difference of the function f(s) on
the points ξi, . . . , ξi+n+1.

It is not difficult to see that

Bi(x) ≥ 0 with equality iff x 6∈ (ξi, ξi+n+1),

k∑
i=−n

Bi(x) = 1, all x ∈ [ξ0, ξk+1].

This representation is particularly useful for the study and computational handling of splines
with repeated knots as the limit of splines with pairwise distinct knots defined above.

2.3 Least-squares approximation

Let M be a linear space with inner product 〈f, g〉 and associated norm

‖f‖ = (〈f, f〉) 1
2 .

Let S be a finite-dimensional subspace of M . Given u ∈M , the error

E(w) = ‖u− w‖

4

of approximating u by w is uniquely minimized over all w ∈ S by the orthogonal projection
PSu of u, i.e., u∗ = PSu is determined by

u∗ ∈ S, and, for all w ∈ S, 〈u∗, w〉 = 〈u,w〉.

u∗ is most advantageously computed with the aid of an orthonormal basis {Ψi}mi=1 of S,
i.e., a generating set for S which satisfies

〈Ψi,Ψj〉 = δij , i, j = 1, . . . ,m.

For then,

(2.10) PSu =
m∑

i=1

〈u,Ψi〉Ψi.

Given a basis {φi}m1 for S, an orthonormal basis {Ψi} for S may be constructed from it by
a variety of techniques (e.g., [3], [6]). The best-known of these is the Gram-Schmidt (G.-S.)
orthonormalization procedure, in which each Ψi is computed as the normalized error of the
best approximation to φi by elements in the span of {φj}i−1

j=1, i.e., by successfully solving a
least-squares approximation problem m− 1 times. In formulae,

(2.11)
Ψ̂i = φi −

i−1∑
j=1

〈φi,Ψj〉Ψj,

Ψi = Ψ̂i/‖Ψ̂i‖,




i = 1, . . . m.

A slight reordering of the computations, resulting in the so-called modified Gram-Schmidt-
process, has proven to be more stable in practice:

(2.12)

φ
(1)
i = φi

φ
(j+1)
i = φ

(j)
i − 〈φ(j)

i , Ψj〉Ψj, j = 1, . . . , i− 1

Ψi = φ
(i)
i /‖φ(i)

i ‖




i = 1, . . . ,m.

The reader should refer to [7] and [4] for some experimental results, and to [1] for a rigorous
comparative analysis a la Wilkinson of the two computational processes.

5

The algorithm under discussion uses the trapezoidal sum approximation to∫ xN

x1

f(x)g(x)w(x)dx

as inner product, i.e.,

(2.13)
〈f, g〉 =

N∑
i=1

[f(xi−1)g(xi−1) + f(xi)g(xi)]Wi,

with Wi = (w(xi−1) + w(xi))(xi − xi−1)/4,

where X = {xi|i = 1, . . . , N} is a given finite point set and w(x) is a non-negative function,
both to be supplied by the user. Hence M may be taken as the set of all real functions on
X. The set S consists of all functions of the form

t(x)s(x), s(x) ∈ S3
π,

where π : ξ0 < ξ1 < · · · < ξk+1 is a fixed knot set and t(x) a trend function to be supplied
by the user. We will ignore the presence of t(x) in the subsequent discussion.

It has been our experience that a careful choice of the initial basis {φi} for S can greatly
increase the reliability of the subsequent calculation of the L2-approximation to u via the
modified G.-S. process. A straightforward but costly approach would consist in reinforce-
ment, i.e., in the repeated application of the modified G.-S. process until Repr. II or Repr.
III of the basis elements becomes stationary. The algorithm under discussion permits this
approach if desired (cf. below the case MODE = 2 in the algorithm NUBAS). Less costly would
be the construction of a “nearly” orthogonal basis. Vague as this term is, the following
process is based on this notion, and has proven quite successful: construct each φi so as to
have at least one more extremum than Ψi−1.

It is also mandatory that computation of the inner products be made somewhat more
accurately than the other computations. This may be accomplished by “double precision
accumulation” of the products, or, as in this algorithm, complete double precision arithmetic
in the inner product calculation.

3 The Algorithm

3.1 General remarks

As stated earlier, the success of approximation by splines depends heavily on the correct
choice of the knot set Ξ. The algorithm FXDKNT is, therefore, designed to permit the exper-

6

imentation with various choices Ξ in as economical a fashion as possible. This is done by
using four modes of operation.

An initial call to FXDKNT, which must be in MODE = 0, produces the L.-S. approximation
to the given u using a specification knot set Ξ. Subsequent calls may be used to modify
repeatedly the current knot set. Thus more knots may be added while retaining all or at
least the first KNOT knots in Ξ (MODE = 1,2). MODE = 3 permits the efficient evaluation of the
least-squares (L.-S.) error as a function of one additional knot to be inserted between two
neighboring knots, thus making it possible to minimize the L.-S. error with respect to one
knot with relatively little work.

3.2 Input

The input to FXDKNT consists of:

(i) The integer MODE which is assumed to be one of 0,1,2,3: A call with MODE = 0 will change
MODE to 1; a call with MODE = 2 may change MODE to 1.

(ii) LX abscissae and ordinates, XX(L), U(L), L = 1, . . . ,LX, of the function u(x) to be
approximated.

The numbers XX(L) are assumed to be increasing with L, and should normally be
strictly increasing. A quick look at the inner product (2.13) shows that repeated
points

XX(L-1) < X(L) = X(L+1) = · · · = X(M) < X(M+1)

are effectively ignored unless U(L) 6= U(M) in which case u is treated as if it had a jump
discontinuity at XX(L) of size U(M) − U(L).

(iii) (in MODE = 0,1,2) the sets of (additional) knots ADDXI(i), i = 1, . . . , JADD:

If MODE = 0, then ADDXI(1) and ADDXI(2) are taken as the left and right boundary
knot, respectively. The only restriction on the remaining entries, if any, (or on the
entries in any subsequent call) is that each should fall within this interval and not be
coincident with any knot already in use (an error message will result in the contrary
case). In particular, the entries of ADDXI need not be ordered in any way. JADD may
be zero (or even negative) to signify “no additional knot”.

(iv) (in MODE = 1,2) the integer KNOT.

7

This number is part of the information returned by FXDKNT; but if it is decreased
between two calls to FXDKNT by an amount M , the M knots introduced last in prior
calls will be removed from the current knot set.

(v) The number CHANGE:

In MODE = 3, CHANGE gives the current value of the one knot being varied. If MODE
6= 3, the integer IPRINT=IFIX(CHANGE) is expected to be between 0 and 3, specifying
various output options.

3.3 Output

The output of (information returned from) FXDKNT consists of:

(i) The number FXDKNT = ‖u−u∗‖2/(XX(LX)−XX(1)), giving the L.-S. error of the current
best approximation to u:

(ii) The current knot set XIL(i), i = 1, . . . ,KNOT. The entries of XIL are increasing with i,
XIL contains the boundary knots.

(iii) (MODE 6= 3) the values UERROR(L) of u− u∗ at XX(L), L = 1, . . . ,LX, u∗ being the best
approximation to u by cubic splines on the current set.

(iv) (MODE 6= 3 and CHANGE = 1) Repr. II, I, IV of u∗ in VORDL, COEFL, and FCTL, respectively;
and the integer LMAX, indicating that (u− u∗)w attains its maximum at XX(LMAX).

(v) In addition, FXDKNT has some printed output in case CHANGE ≥ 1 and MODE 6= 3.

3.4 The algorithm NUBAS

The heart of the FXDKNT algorithm is the repeated solution of the following problem:
Given an orthonormal basis {Ψi} for the linear space S of all cubic splines on

π: XIL(1) < · · · < XIL(KNOT)

and the L.-S. approximation u∗ to u by elements in S, find the L.-S. approximation û∗ to u
by elements in Ŝ, where Ŝ ⊃ S is the linear space of all cubic splines on

π̂: XIL(1) < · · · < XIL(INSERT-1) < XKNOT < XIL(INSERT) < · · · < XIL(KNOT) .

8

This problem is solved in NUBAS.
Thus, initially one has present for each Ψi, Repr. II in VORD(i, ·, ·), Repr. I in XI(·),

COEF(·, ·), and Repr. IV in FCT(·, i); further one has u− u∗ in UERROR, and 〈u,Ψi〉 in BC(i).
KNOT is increased by one, and the current knot set XIL is enlarged by the insertion of the

additional knot XKNOT so that XIL contains the knots again in increasing order. Repr. II for
the Ψi’s is updated to include Ψi (XKNOT) and Ψ′

i (XKNOT), while the other two representations
remain unchanged.

Next, with ILAST = KNOT + 2, an element φILAST of Ŝ but not in S is constructed as

that element of Ŝ which interpolates a certain function f on the current knot set. The choice
of f depends on MODE.

If MODE = 1, then with ILM1 = ILAST− 1,

f(x) =




ΨILM1(x) , x ≤ XKNOT,

−ΨILM1(x) , x > XKNOT,

thus making it quite likely that φILAST has one more local extremum than ΨILM1.
If the reinforcing mode MODE = 2 is used,

f(x) = ΨILAST

is chosen provided that such a function was in fact constructed during an earlier call to
FXDKNT. Otherwise, MODE is set to 1, and the algorithm proceeds in that mode.

Repr. III for φILAST is computed from f and stored in VORDL and is then augmented
to Repr. II in the subroutine INTERP, using equations (2.6). Subroutine EVAL then supplies
Repr. I using (2.4), storing it in COEFL, and, from it, Repr. IV, storing it in FCTL.

The modified Gram-Schmidt-process is then applied. Specifically, the components
TEMP(i) = 〈φILAST,Ψi〉 of φILAST with respect to the orthonormal basis {Ψi|i = 1, . . . , ILM1}
of S are computed by

TEMP(i)← 〈FCTL, FCT(i)〉

FCTL← FCTL− TEMP(i) ∗ FCT(i)




i = 1, . . . , ILM1,

the inner product 〈φ(i)

ILAST,Ψi〉 being computed in subroutine DOT using Repr. IV of the
functions involved.

9

Hence, after the calculation

VORDL ← VORDL −
ILM1∑

i=1

TEMP(i) ∗ VORD(i),

VORDL contains Repr. II of a cubic spline in Ŝ orthogonal to S.
Another call to EVAL derives from this Repr.s I and IV. Finally, Repr. I, II, IV of the

ΨILAST are stored via

C←
√
〈FCTL,FCTL〉

COEF ← COEFL/C

VORD(ILAST) ← VORDL/C

FCT(ILAST) ← FCTL/C

Also, the component BC(ILAST) of u with respect to ΨILAST is computed as

BC(ILAST) ← 〈UERROR, FCTL〉/C.
Except in MODE = 3, a call to NUBAS is followed by

UERROR ← UERROR – BC(ILAST) ∗ FCT(ILAST),
so that UERROR contains u− û∗.

For MODE = 0 and MODE = 3, there are minor modifications in NUBAS. In case MODE = 0,
one of the first four Ψi is computed so that in the above, “with one additional knot” has to
be replaced by “of one degree higher”. Explicitly, for i = 1, 2, 3, 4, φi, and hence Ψi, is a
polynomial of degree i− 1.

If MODE = 3, XKNOT is not taken as an additional knot, but rather as a new value for the
knot introduced last. Accordingly, the current knot set is changed (at that knot) but not
increased, and φILAST is then defined as in MODE = 2.

10

3.5 The algorithm FXDKNT

FXDKNT uses NUBAS in the following way.
MODE = 0. U is put into UERROR, trend and weight are evaluated at the XX’s, the quantities

Wi (see (2.13)) are computed and stored in TRPZWT. The initial knot set is set up to consist of
just the two boundary knots which are taken to be ADDXI(1), ADDI(2). Four calls to NUBAS

produce the orthonormal basis Ψ1, . . . ,Ψ4 for the set of cubic polynomials as described
above, their various representations and the L.-S. approximation to u by cubic polynomials.
UERROR is saved in CUBERR for possible use later on in a MODE = 1,2 call. MODE is set to 1. If
JADD− 2 > 0, the program proceeds, after

JADD ← JADD− 2, ADDXI(i)← ADDXI(i + 2), i = 1, . . . , JADD,

as for MODE = 1. Otherwise, the L.-S. error of the current L.-S. approximation to u is
computed as

FXDKNT ← 〈UERROR, UERROR〉/(XX(LX)− XX(1))

and FXDKNT is terminated.

MODE = 1,2. If KNOT ≥ KNOTSV, KNOT is set equal to KNOTSV, and JADD successive calls
to NUBAS produce the L.-S. approximation to u by cubic splines having the knots introduced
earlier and additional knots ADDXI(i), i = 1, . . . ,JADD.

If KNOT < KNOTSV, this action is preceded by the following: The (KNOTSV–KNOT) knots
introduced last into the current knot set by a preceding call or calls are removed from it.
The various arrays such as UERROR are restored to the stage where we had just computed
the L.-S. approximation to u using just the first KNOT knots.

In either case, the program returns the square of the L.-S. error, FXDKNT, of the current
best approximation to u computed as in MODE = 0.

MODE = 3. If the previous call to FXDKNT was in a mode other than 3 (MODE3 = FALSE),
CHANGE is taken as the value of an additional knot. The most recent value of FXDKNT was
earlier saved in ERBUT1, and a call to NUBAS in MODE = 2 with XKNOT ← CHANGE pro-
duces, as described earlier, an increased knot set, an additional ΨILAST, and BC(ILAST)

← 〈UERROR,ΨILAST〉.
But the component BC(ILAST)∗ΨILAST of u (or, UERROR), with respect to ΨILAST is not

taken out of UERROR. Rather, FXDKNT is computed as

FXDKNT ← ERBUT1 – (BC(ILAST)∗∗2)/(XX(LX)–XX(1)),

11

using the well-known fact that if u∗ =
ILAST∑

i=1

BC(i)Ψi, then

‖u− u∗‖2 = ‖u‖2 −
ILAST∑

i=1

(BC(i))2 = ERBUT1− (BC(ILAST))2.

If the previous call to FXDKNT was in MODE = 3 (MODE3=.TRUE.), CHANGE is taken as a
new value for the additional knot introduced in the first in a sequence of such calls. Hence,
a call to NUBAS in MODE = 3 produces, as described earlier, a changed ΨILAST.

12

4 Variables in this Program

Global with calling program:

ADDXI(26) LX

COEFL(27,4) MODE

FCTL(100) U(100)

INTERV UERROR(100)

JADD VORDL(28,2)

KNOT XIL(28)

LMAX XX(100)

Global in FXDKNT

BC(30) TREND(100)

FCT(100,30) TRPZWT(100)

ILAST VORD(30,28,2)

INSIRT(30) XKNOT

IORDER(28)

Local in FXDKNT

IPRINT = IFIX(CHANGE) KNOTSV

CUBERR(100) MODE3

ERBUT1 PRINT(100)

ERRL1 WEIGHT(100)

ERRL2 XSCALE

ERRL99

Local in NUBAS

C ILM1 = ILAST–1
COEF(381,4) INSERT

ICLAST XI(381)

13

5 Example

The set of data used here has three distinct features: (i) It is actual data, expressing a
thermal property of titanium; (ii) It is difficult to approximate by classical approximating
functions; (iii) There is a significant amount of noise in the data.

TITANIUM HEAT DATA

x u(x) u∗(x) (u− u∗)× 102 x u(x) u∗(x) (u− u∗)× 102

595 .644 .624 2.03 845 .812 .965 –15.28
605 .622 .636 –1.37 855 .907 1.103 –19.64
615 .638 .643 – .47 865 1.044 1.248 –20.44
625 .649 .646 .29 875 1.336 1.386 – 5.00
635 .652 .647 .52 885 1.881 1.502 37.89
645 .639 .646 – .71 895 2.169 1.583 58.60
655 .646 .645 .08 905 2.075 1.615 46.03
665 .657 .645 1.17 915 1.598 1.583 1.46
675 .652 .647 .46 925 1.211 1.481 –27.01
685 .655 .652 .26 935 .916 1.323 –40.67
695 .664 .659 .45 945 .746 1.129 –38.33
705 .663 .667 – .44 955 .672 .922 –24.98
715 .663 .675 –1.21 965 .627 .721 – 9.41
725 .668 .681 –1.33 975 .615 .548 6.70
735 .676 .685 – .89 985 .607 .424 18.34
745 .676 .685 – .87 995 .606 .369 23.73
755 .686 .679 .66 1005 .609 .395 21.37
765 .679 .669 1.00 1015 .603 .480 12.33
775 .678 .658 2.05 1025 .601 .589 1.17
785 .683 .650 3.31 1035 .603 .691 – 8.84
795 .694 .651 4.29 1045 .601 .753 –15.24
805 .699 .666 3.26 1055 .611 .743 –13.16
815 .710 .701 .93 1065 .601 .626 – 2.54
825 .730 .759 –2.90 1075 .608 .372 23.58
835 .763 .846 –8.34

14

The (rounded) values of the least-squares approximation u∗ to u and the error are given
along side the given data. For this approximation, the knot set π was chosen to be uniformly
spaced, with 5 interior knots. Apparently, this is a poor choice for the location of the knots,
as may be seen by comparing u∗ with the approximation to u listed in [2].

Other output, as produced by a run of a FORTRAN version of the algorithm on an IBM

7094, includes Repr. I for u∗, and the L1, L2, and L∞ norm of the error, is as follows:

Knots Coefficients Knots Coefficients
595 .623718 835 .846403

.147983× 10−2 .103636× 10−1

−.303437× 10−4 .170647× 10−3

.194334× 10−6 −.231291× 10−5

675 .647403 915 .158343× 101

.356044× 10−3 −.674063× 10−2

.162946× 10−4 −.384450× 10−3

−.196743× 10−6 .348626× 10−5

755 .679440 995 .368658
−.814283× 10−3 −.131654× 10−2

−.309237× 10−4 .452251× 10−3

.839879× 10−6 −.544051× 10−5

835 1075

Average error = .108380, Least-Squares error = .177236, Maximum error = .586038

6 References

1. A. Björk, Solving linear least-squares problems by Gram-Schmidt orthogonalization,
Bit 7 (1967), 1–21.

2. C. de Boor and J.R. Rice, Least-squares cubic spline approximation II – Variable
Knots. Technical Report CSD-TR 21, Computer Sciences, Purdue University, April
1968.

3. G. Golub, Numerical methods for solving linear least-squares problems, Numer. Math.
7 (1965), 206–216.

15

4. T.L. Jordan, Experiments on error growth associated with some linear least-squares
procedures, Los Alamos Scientific Laboratory Report LA-3717 (1967).

5. S.J. Karlin and W.J. Studden, Tchebycheff Systems: With Applications in Analysis
and Statistics, Interscience (1966).

6. M.O. Peach, Simplified technique for constructing orthonormal functions, Bull. Amer.
Math. Soc. 50 (1944), 556–641.

7. J.R. Rice, Experiments on Gram-Schmidt orthogonalization, Math. Comp. 20 (1966),
325–328.

8. J.R. Rice, The Approximation of Functions, Vol II, Chapter 10, Addison-Wesley (1968).

9. I.J. Schoenberg and A. Whitney, On Pólya frequency functions III, Transactions Amer.
Math. Soc. 74 (1953), 246–259.

16

