
Least Squares Cubic Spline Approximation II —
Variable Knots

Carl de Boor and John R. Rice

April 1968

Department of Computer Sciences
Purdue University

CSD TR 21

Versions of the spline programs of de Boor and Rice are available in the program library
of IMSL as ICSFKU and ICSVKU. Contact

International Mathematical & Statistical Libraries
GNB Building
7500 Bellaire
Houston, Texas 77036

Retyped March 1994

Least Squares Cubic Spline Approximation II — Variable Knots
Carl de Boor1 and John R. Rice2

1 Introduction

This paper presents an extension and application of the algorithm in [2]. We refer to this al-
gorithm as FIXEDKNOT. FIXEDKNOT is for the computation of least-squares approximations on
finite point sets by cubic polynomial splines with fixed knots. The algorithm presented here
incorporates FIXEDKNOT and treats the knots as variables. The spline depends nonlinearly
on the knots and thus we have a nonlinear least-squares approximation problem to solve.

FIXEDKNOT has several features specifically designed to facilitate its incorporation into an
algorithm which treats the knots as variables. The algorithm presented here is only one of
several approaches to varying the knots and some of these other approaches are discussed in
general terms at the end of this paper.

An algorithm which varies the knots is desirable because it greatly increases the flexi-
bility of the spline approximants. This flexibility can also be achieved by simply increasing
the number of knots. This, of course, increases the complexity of the approximant obtained.
There are situations where this increase is an efficient approach since it is difficult and time
consuming to solve the nonlinear approximation problem. However, this increase in com-
plexity is very undesirable in an application which involves smoothing or the representation
of physical data or shapes. In such an application one must minimize the number of param-
eters involved in order to obtain the best results. Thus this algorithm is primarily useful
for obtaining low to medium accuracy (2 to 5 significant digits) approximations of functions
of a more or less arbitrary nature. It has, for example, been used to obtain 3 significant
digit approximations to curves with 8 or 10 local extrema and which have a completely
unsystematic nature.

Note that this algorithm should not be used for high accuracy approximations to mathe-
matically defined functions (e.g., for computer system function subroutines). The degree of
convergence for spline approximation is such that this is very unlikely to be efficient unless
the polynomial degree is rather high. See [1] and [5] for further results and compare these
with polynomial and rational approximations [3].

1This work was initiated at the General Motors Research Laboratories. The final stages were partially
supported by NSF grant GP-7163. We wish to thank John Hoff for assistance in preparing preliminary
versions of this algorithm.

2This author was also partially supported by NSF grant GP-4052.

1

2 Mathematical Background

We assume that the reader is familiar with FIXEDKNOT and we use the notation of that paper.
We recall that a spline of degree n with k knots Ξ = {ξi|a = ξ0 < · · · < ξk+1 = b} may be
defined by

S(A,Ξ, x) =
k∑

i=1

ai(x − ξi)
n
+ +

n∑
j=0

ak+j+1x
j

where A = (a1, a2, . . . , ak+n+1).
We consider a function f(x) defined on a finite set

X = {xi|a ≤ xi < xi+1 ≤ b, i = 1, 2, . . . ,m}.
Given a value n for the degree and a number h of knots we have the

Approximation Problem. Determine the spline S(A∗,Ξ∗, x) so that

(2.1) [
∫

[f(x) − S(A,Ξ, x)]2]
1
2

is minimized among all splines of degree n with k knots.
Since f(x) is only defined on the finite set X, one must use a quadrature formula for the

integral in this problem. We assume this is to be done (our algorithm uses the trapezoidal
rule), but retain the integral sign for simpler notation.

There are three basic mathematical questions associated with this problem, namely those
of the existence, uniqueness and characterization of S(A∗,Ξ∗, x). We discuss these briefly.

The Existence Question. Simple examples show that this least-squares approximation
problem does not always have a solution, e.g., take f(x) = |x| on [–1,+1] and approximate
by a cubic spline with three knots. One may generalize the concept of spline by allowing
the knots to coalesce with the possibility of a resultant loss of smoothness where the knots
coalesce. These are called extended splines and are presented in [6], see also [4]. In this
broader set of approximating functions there always exists a least-squares approximation.
In order to avoid technical difficulties, the algorithm presented in this paper does not allow
the knots to coalesce.

The Uniqueness Question. It is known from general theoretical results [6], from specific
theoretical results [C. de Boor, 1963, unpublished] and from examples that the solution
of the least-squares nonlinear approximation problem need not be unique. Consider the
approximation to x3 on [–1,+1] by a broken line with one break. If the break occurs for x = 0,
then by symmetry there is no break. But no least-squares nonlinear spline approximation

2

can have an inactive knot (see the next section). Thus the best approximation does not have
a knot at x = 0 and, again by symmetry, there are at least two best approximations. This
line of reasoning can be applied in general.

Furthermore, there may be approximations which are local minima of (2.1), but which are
not best approximations. The algorithm presented here attempts to obtain a local minimum
of (2.1) and hence even if it converges there is no guarantee that a best approximation has
been obtained.

Characterization. There are no known necessary and sufficient conditions for S(A∗,Ξ∗, x)
to be a best approximation. The algorithm here is based on the usual necessary conditions
that one derives for a local minimum.

Strict Monotonicity of the Error. It is known [de Boor, 1963, unpublished] for any specific
f(x) and fixed degree n that if the error

E2
k =

∫
[f(x) − S(A∗,Ξ∗, x)]2

of the best approximation with k + 1 knots is not zero, then the error Ek+1 of the best
approximation with k + 1 knots is strictly less than Ek, i.e., Ek+1 < Ek. See [4] for details
and extensions.

Inherent Limitations of the Algorithm. The problem which this algorithm attempts to
solve cannot be solved by an algorithm. Thus this algorithm is limited. This theoretical
limitation is manifested in several different ways. First, there is the problem of ascertaining
when “convergence” has taken place. This is required on two different levels, namely, for the
whole algorithm and for the adjustment of knots within this latter problem. The decision
that “convergence” has taken place is made on the basis of certain ad hoc numerical tests
which are not infallible.

These decisions are delicate in view of the need to achieve some efficiency. Thus these
tests have been developed on the basis of experience with a certain class of problems. It is
hoped that this class is representative of those met in general. However, these tests may be
completely inadequate in new situations. If it is intended to use this algorithm extensively
for a certain class of problems, it may well pay to experiment with adjustments in these tests
in order to achieve better efficiency with minimum risk.

The initial guess for the knots chosen might be extremely poor and result in reaching a
local minimum far from the best approximation. The simple scheme of equal spacing used
here to obtain an initial guess might well be modified and improved for certain classes of
approximation problems.

3

3 The Algorithm and Numerical Procedures

The basic idea of the algorithm is to vary the knots one by one so as to decrease the L2-
error. This is done systematically from right to left by two procedures, SWEEP and OPT. The
procedure SWEEP controls the overall scheme and OPT does the variation of the individual
knots. The basic scheme used in OPT is a discrete Newton’s method.

There are two delicate points in an implementation of such a scheme. The first is a
suitable choice of termination criteria for the various iterations in the algorithm. One desires
to achieve the required accuracy without doing an excessive amount of wasteful computation.

The second point is to make the computation of the L2-error as efficient as possible. It
is unavoidable that this number be evaluated frequently and it is a nontrivial computation.
Furthermore, it is easily seen that it is very inefficient to compute the L2-error each time by
a standard L2-approximation procedure. Note that if only one knot is changed and if only
one of the orthogonal functions involves this knot, then the L2-approximation problem can
be solved on the basis of previous information with an order of magnitude less computation
than one can solve such problems in general. It is always arranged so this is the case and
the procedure FIXEDKNOT has a number of features to allow this. More detailed study shows
that it is also possible to make use of some previous information when changing from one
knot to another. These points are discussed in more detail in [2].

Choice of the Initial Knots. There are two single alternatives. If NOKNOT is negative,
then –NOKNOT knots are chosen equally spaced in the interval (XX(1), XX(LX)). If NOKNOT is
positive, then this number of knots is to be read as data. If the function is very unsystematic,
it is often profitable to use an initial set of knots concentrated in the regions of rapid change
in the function.

Optimization of the Knots – SWEEP and OPT. Given an initial set of knots, their optimiza-
tion is guided by the procedure SWEEP. Each knot is, in turn, varied so as to minimize the
L2-error as a function of this knot. This is started with the last (i.e., the rightmost) interior
knot and done sequentially to the left. A cycle refers to one complete pass from right to left.
This process is repeated until a termination is encountered.

The variation of the I-th knot XI(I) is carried out in OPT using what may be termed the
“discrete Newton’s” method. Let e(t) denote the L2-error as a function of the position t of
XI(I). Given three points, ALEFT<A<ARIGHT, a new guess ABEST for the location of XI(I)
is determined as the location of the minimum of the parabola p(t) satisfying

p(ALEFT) = e(ALEFT), p(A) = e(A), p(ARIGHT) = e(ARIGHT).

The parabola must have a minimum in order for this to make sense. Also, as to avoid getting
wild guesses through extrapolation, ABEST should be between ARIGHT and ALEFT. For this it

4

is sufficient to have

(3.1) e(ARIGHT), e(ALEFT) ≥ e(A).

Thus the first part of OPT consists of a search algorithm for such a set of three points ARIGHT,
ALEFT and A. The basic step size for this search is based on the value of CHANGE = average
change in the knots in the preceding cycle. The initial value of CHANGE is .4 and it is measured
relative to the length of the interval (XI(I-1), XI(I+1)).

Once such a set is found the parabolic interpolation commences. The newly found guess
ABEST replaces one of ARIGHT, ALEFT or A in such a way that the inequalities (3.1) remain
valid while making the new value of ARIGHT–ALEFT as small as possible.

Termination Criteria. There are two termination criteria for SWEEP. The first is a simple
bound on the number of complete cycles or sweeps of varying all the knots, i.e.,

(3.2) No more than ITER cycles throught SWEEP

For normal use we recommend that one set ITER=4. In more difficult cases, especially when
a larger number of knots is used, one might need to increase ITER. The second criterion is
to terminate if

(3.3)
∣∣∣∣PREVER-ERRORERROR

∣∣∣∣ ≤ .4 ∗ ACC

where ACC = desired accuracy in L2-error (not the L2-error itself), ERROR = current value
of the L2-error and PREVER = value of the L2-error at the start of the current cycle of knot
variation. This criterion is based on the assumption that the algorithm is converging linearly
(or faster) and the error is reduced at each cycle by a factor of .6 or less. If one notes that
the algorithm is converging somewhat slower than this, one should replace the coefficient .4
by a somewhat smaller number.

Note that this is rarely worthwhile to compute an approximation which gives the best
L2-error with more than one or two significant digits. We recommend setting ACC = .1 for
general applications.

There are four termination criterion for OPT. The first is a simple bound on the number
of guesses at the best position of XI(I), i.e.,

(3.4) No more than INDLP guesses for XI(I).

We recommend INDLP = 10, a bound which is large enough so that termination rarely occurs
from this criterion.

5

The second criterion is a form of buffering to prevent the knots from coalescing. Set
H = XI(I+1)− XI(I-1), then constrain XI(I) by

(3.5) XI(I-1)+ .0625 H ≤ XI(I) ≤ XI(I+1)− .0625 H

This form of constraint allows a group of knots to become very closely spaced which is
sometimes essential. However, it keeps them separated enough to (almost always) avoid
failure due to numerical instabilities.

The third criterion is for the search of a triplet of points to initialize the parabolic
interpolation phase. The search for such a triplet is terminated if (in the case of search to
the right)

(3.6)
e(A) − e(ARIGHT)

ERROR
≤ ACC

LXI

where LXI = number of interior knots and ERROR is the L2-error at the end of the previous
cycle. In case of search to the left we terminate if

(3.7)
e(A) − e(ALEFT)

ERROR
≤ ACC

LXI
.

These criteria are relatively stringent because we feel it is very desirable to be able to enter
the parabolic interpolation phase for at least one time. Thus this criterion might not cause
termination in OPT even when the decrease in the L2-error is insignificant for the later stages
of the algorithm in a reasonable number of cases.

The criterion can be visualized as based on the assumption that the search is converging
linearly (or faster) with an error reduction of 1–1/LXI or smaller. However, the situation
here is somewhat different than in SWEEP as we do not necessarily desire to expend effort for
an accurate placement of XI(I). That is to say, in the initial stages of the algorithm the set
of knots is far enough from optimum that it is wasteful to accurately optimize one of them
with the others inaccurately located. It is unusual for this termination criterion to be active
in the terminal phases of the algorithm.

The fourth criterion is for the termination of the parabolic interpolation process. We
locate ABEST as noted above and compute the value EPRED of the parabola at its lowest
point, i.e., EPRED = p(ABEST). The optimization is terminated if

(3.8)

∣∣∣∣∣
EPRED− e(ABEST)

ERROR

∣∣∣∣∣ ≤ 5 ∗ ACC

This criterion assumes convergence which is somewhat faster than linear. This is plausible
since a discrete Newton method is used. The particular factor 5 was chosen on the basis

6

of some experiments and reflects a balance between global efficiency and local accuracy as
discussed in the preceding paragraph.

The most common cause for termination is that CHANGE become small. This implies that
little movement of the knots takes place in OPT which in turn causes the criterion (3.3) in
SWEEP to terminate the algorithm.

4 Variables in the Program

Global with FIXEDKNOT

ADDXI(26) LX

COEFL(27,4) MODE

FCTL(100) U(100)

INTERV UERROR(100)

JADD VORDL(28,2)

KNOT XIL(28)

LMAX XX(100)

debug

Global in VARYKNOT

ACC LXI

CHANGE Q
ERROR XI(28)

Other Important Variables
A INFO(20)

ABEST INTER

ALEFT KVARY

ARIGHT NOKNOT

EPRED PREVER

EPSERR K
Other Variables
AA ELEFT

AHIGH ERIGHT

ALOW ETRY

DEL II

DELX ITRR

DUMB K

DXLEFT LPCNT

DXRGHT LXI1 = LXI+1
DYLEFT LXI2 = LXI+2
DYRGHT SGN

E BD

5 Example

We consider a set of data which has three distinct features: (i) It is actual data (expressing
a thermal property of titanium); (ii) It is difficult to approximate using classical techniques;

7

(iii) There is a significant amount of noise in the data.

Titanium Heat Data XX(I), U(I) with approximation U∗(I)
and error UERROR(I)

XX U U∗ UERROR×103 XX U U∗ UERROR×103

595 .644 .619 25.35 845 .812 .796 15.86
605 .622 .629 –7.22 855 .907 .876 31.27
615 .638 .638 .24 865 1.044 1.051 –7.38
625 .649 .644 4.50 875 1.336 1.370 –34.31
635 .652 .650 2.35 885 1.881 1.838 42.64
645 .639 .653 –14.46 895 2.169 2.195 –25.98
655 .646 .656 –10.13 905 2.075 2.078 –3.19
665 .657 .658 –.89 915 1.598 1.582 15.62
675 .652 .659 –6.96 925 1.211 1.197 14.15
685 .655 .660 –4.57 935 .916 .931 –14.63
695 .664 .660 4.05 945 .746 .761 –15.36
705 .663 .660 2.69 955 .672 .667 5.31
715 .663 .661 2.13 965 .627 .624 2.71
725 .668 .662 6.12 975 .615 .612 3.20
735 .676 .664 12.47 985 .607 .608 –1.24
745 .676 .666 9.93 995 .606 .606 .15
755 .686 .670 16.29 1005 .609 .604 4.62
765 .679 .675 4.32 1015 .603 .604 –.65
775 .678 .681 –3.20 1025 .601 .603 –2.49
785 .683 .689 –6.49 1035 .603 .604 –.74
795 .694 .700 –5.78 1045 .601 .604 –3.22
805 .699 .712 –13.29 1055 .611 .605 6.24
815 .710 .727 –17.25 1065 .601 .605 –4.19
825 .730 .745 –14.87 1075 .608 .605 2.66
835 .763 .765 –2.39

We present two approximations to this data. The first is computed with an initial set
of 7 equally spaced knots in the interval (595, 1075). The second is computed with another
initial set of knots. This is the approximation shown in the above table.

8

Initial Knots

Case 1: 595 675 755 835 915 995 1075

Case 2: 595 725 850 910 975 1040 1075

The point of these two cases is that the algorithm converges to two distinct local minima
of the nonlinear least-squares approximation problem. Note that the data have a very
pronounced peak near 900, and in Case 1 we have three interior knots to the left of this
peak, while in Case 2 we have only two to the left of this peak.

The final approximations obtained are presented for both cases. The final knots are given
along with the coefficients C(I), I = 0, 1, 2, 3 of the cubic polynomial pieces of the spline.
These are the coefficients COEFL(I,J), J = 1, 2, 3, 4 defined in [2] for the interval [ξI, ξI+1].
The origin for each polynomial piece is the knot ξI, immediately to the left.

Case 1 Case 2
Least Square Error = 03489 Least Square Error = .01305
Average Error = .02296 Average Error = .00933
Maximum Error = .11716 Maximum Error = .04264

9

KNOTS Cubic Coefficients KNOTS Cubic Coefficients

595. C(0) = .63371 595. C(0) = .61865
C(1) = .16475−3 C(1) = .11658−2

C(2) = .19591−5 C(2) = –.11255−4

C(3) = –.81758−8 C(3) = .37272−7

755.28 C(0) = .67678 835.32 C(0) = .76609
C(1) = .16269−3 C(1) = .22139−2

C(2) = –.19723−5 C(2) = .15616−4

C(3) = .17472−6 C(3) = .78696−5

839.60 C(0) = .78122 876.56 C(0) = .14362+1

C(1) = .35567−2 C(1) = .43668−1

C(2) = .42224−4 C(2) = .98940−3

C(3) = .92733−5 C(3) = –.61055−4

877.06 C(0) = .14612+1 902.46 C(0) = .21703+1

C(1) = .45759−1 C(1) = –.27909−1

C(2) = .10844−2 C(2) = –.37536−2

C(3) = –.78416−4 C(3) = .18772−3

896.20 C(0) = .21844+1 910.47 C(0) = .18022+1

C(1) = .10478−2 C(1) = –.51906−1

C(2) = –.34197−2 C(2) = .75881−3

C(3) = .91502−4 C(3) = –.37241−5

910.22 C(0) = .17793+1 977.85 C(0) = .61061
C(1) = –.40887−1 C(1) = –.37235−3

C(2) = .42760−3 C(2) = .60407−5

C(3) = –.13771−5 C(3) = –.28471−7

1075. 1075.

The algorithm required six cycles through SWEEP for Case 1. The L2-error decreased as
follows:

cycle 1 2 3 4 5 6
L2-error .09176 .05927 .03944 .03588 .03509 .03489

The algorithm required seven cycles through SWEEP for Case 2. The L2-error decreased as
follows:

10

cycle 1 2 3 4 5 6 7
L2-error .04595 .03848 .02761 .02177 .01432 .01321 .01305

These two cases required about 17 and 23 seconds, respectively, of execution time on a IBM

7094 for a FORTRAN IV version of this algorithm. They required about xxx and yyy seconds,
respectively, of execution time on a CDC 6500 in Algol.

6 Other Nonlinear Algorithms Based on FIXEDKNOT

The procedure FIXEDKNOT is designed to be readily adaptable to form a basis for a variety
of nonlinear spline approximation algorithms. We briefly outline four such algorithms. We
have used one of these (the last one) extensively and another (the second one) in some
experimentations.

6.1 Non-systematic knot optimization

We have observed that there is frequently a significant amount of wasted computation in
problems involving a larger number of knots, say more than 5 or 6. It occurs that a few,
perhaps most, of the knots become correctly placed, while the remaining ones (somewhat
more delicate) requires several additional cycles to locate accurately. The systematic nature
of the algorithm VARYKNOT requires one nevertheless to adjust the position of all knots in
each cycle. It is clear to us that one can devise workable criteria for determining reasonably
well which knots are more critical. One could use these criteria to optimize the knots in an
unsystematic manner to increase the efficiency of the computation. We have not formalized
such criteria and believe their use would significantly increase the logical complexity of the
algorithm.

6.2 Systematic insertion of additional knots – L∞ criterion

A plausible scheme is to start out with no knots at all, find the best linear cubic approxi-
mation, then insert a knot near (or at) the location of the maximum error. One then could
compute a linear spline approximation with one knot, and insert a second knot near the
location of the maximum error. This process is then repeated until the error is reduced to
some desired level.

We have experimented with this scheme and it does in fact work. Special provisions must
be made if the data contain wild points or pronounced peaks. The maximum error will then

11

occur several times at one point. The new knots should be placed on alternating sides of this
point and prevented from converging to this point. It usually happens that enough knots
are placed in the neighborhood of a wild point so that the data are actually interpolated
nearby. This is normally undesirable and this scheme is not recommended for such data.

This scheme is not as attractive as we had expected. In addition to the problem of
wild points and peaks, it consistently leads to more knots than really required, sometimes
excessively so. However, it usually requires less computation time than schemes (e.g., see 6.4)
which optimize the locations of knots. Thus when this process was applied to the data of the
example, it took 15 interior knots to produce an approximation of the same accuracy as had
been obtained in Case 2 above with an optimal placing of 5 interior knots. Execution time,
on the other hand, on an IBM 7094, was merely 4 seconds. We conclude that the location
of the maximum error is not a completely reliable guide for the place to insert additional
knots.

6.3 Systematic insertion of additional knots – L2 criterion

Consider a process like 6.2 where we locate that interval between adjacent knots which has
the most error in the L2 sense. We suspect that it is better to insert additional knots into
this interval than near the location of the maximum error. We have not tested this suspicion,
however.

6.4 Systematic insertion of knots with optimization

We have used extensively an algorithm which systematically increases the number of knots
and optimizes all knots after each insertion. This algorithm only requires the user to specify
the desired accuracy of approximation and the algorithm determines the number as well as
the location of the knots. In order to achieve efficiency, the convergence criteria during the
algorithm must depend on how close one is to the requested accuracy. Once this matter is
satisfactorily settled, we find that it requires only slightly longer to obtain suitable approx-
imations with this scheme than it does with VARYKNOT starting with the correct number of
knots roughly placed.

Note that the algorithm is essentially different from that of 6.2. Even though the initial
guess at the new knot locations is made similarly, the optimization process eliminates the
difficulties with wild points. In fact, it is highly recommended for data smoothing, the
identification of wild points and other types of data analysis.

12

7 References

1. G. Birkhoff and C. de Boor, Error bounds for cubic spline interpolation, J. Math.
Mech. 13 (1964), 827–835.

2. C. de Boor and J.R. Rice, Least squares cubic spline approximation I-Fixed knots.
Technical Report CSD-TR 20, Computer Sciences, Purdue University (1968).

3. J.F. Hart et. al., Computer Approximations, John Wiley, New York (1986).

4. C.R. Hobby and J.R. Rice, Approximation from a curve of functions, Arch. Rat. Mech.
24 (1967), 91–106.

5. A. Meir and A. Sharma, Degree of approximation of spline interpolation, J. Math.
Mech. 15 (1966), 759–767.

6. J.R. Rice, The approximation of functions, Vol II, Chapter 10, Addison Wesley (1969).

13

C PROGRAM SPLINE(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT)

C NONLINEAR SPLINE APPROXIMATION

C PROGRAM WRITTEN BY CARL DE BOOR AND JOHN RICE

C PURDUE UNIVERSITY

C SUPPORTED BY THE NATIONAL SCIENCE FOUNDATION GP-4052,GP-7163

C

C PLEASE REPORT ANY CASES OF INOPERATION TO THE AUTHORS.

C THANKS

C **** NUMERICAL ANALYSIS CONTROL ****

C CONTROL PARAMETERS FUNCTION

C ITER NO. OF SWEEPS THRU OPT

C BD (IN OPT) IMPROVEMENT NEEDED TO REPEAT

C EPSERR(IN SWEEP) IMPROVEMENT NEEDED TO REPEAT

C DIST (IN OPT NEAR 30,80) KEEPS KNOTS SEPARATED

C INDLP NO. OF PASSES THRU OPT

C THE FOLLOWING IS THE MAIN PROGRAM FOR VARYKNOT

C

IMPLICIT NONE

CHARACTER *4 INFO(20)

LOGICAL debug

real ACC,ADDXI(26),CHANGE,COEFL(27,4),DEL,DUMB,ERROR,

1 FCTL(100),

2 FXDKNT,

3 U(100),UERROR(100),VORDL(28,2),Q,

4 XI(28),XIL(28),XX(100)

integer I,IABS,IERROR,INTERV,ITER,

1 J,JADD,KNOT,L,LMAX,LX,LXI,LXI1,LXI2,MODE,NOKNOT

C

c COMMON INPUT SERVES AS INPUT TO FXDKNT

C SEE FXDKNT FOR DEFINITIONS OF VARIABLES

COMMON/INPUT/LX,XX,U,JADD,ADDXI,MODE,debug

C COMMON OUTPUT SERVES AS OUTPUT FROM FXDKNT

C SEE FXDKNT FOR DEFINITIONS OF VARIABLES

COMMON/ OUTPUT /UERROR,FCTL,XIL,COEFL,VORDL,KNOT,LMAX,INTERV

C

C COMMON OTHER SERVES AS COMMUNICATION BETWEEN OPT,SWEEP AND HERE

C LXI = NUMBER OF INTERIOR KNOTS, LXI1 = LXI+1, LXI2 = LXI+2

14

C Q = NUMERICAL CONTROL VARIABLE USED BETWEEN OPT AND SWEEP

C CHANGE = DITTO

C ERROR = CURRENT VALUE OF THE L-2 ERROR - SQUARED

C ACC = DESIRED ACCURACY OF L-2 ERROR

C XI(28)= ARRAY FOR KNOTS

COMMON/ OTHER / LXI,LXI1,LXI2,Q ,CHANGE,ERROR ,ACC, XI

debug = .false.

C

C ACC = .1 AND ITER = 4 TO 8 SEEM TO BE GOOD VALUES FOR TYPICAL USES

ACC = .1

ITER = 8

ITER = 2 ! temporary

C

C ***INFO IS SIMPLY AN IDENTIFICATION OF THE DATA***

1 READ(5,550, END = 40), (INFO(I), I=1,20)

550 FORMAT(20A4)

WRITE(6,551), (INFO(I), I=1,20)

551 FORMAT(20A4)

C

C READ IN NO. OF POINTS=LX AND THE DATA XX AND U

C *** IF NOKNOT.GE.2, THEN READ IN LXI2=NOKNOT KNOTS***

C *** OTHERWISE PROGRAM CHOOSES LXI2 =-NOKNOT EQUISPACED KNOTS ***

READ *, NOKNOT, LX, (XX(I), U(I), I=1,LX)

LXI2 = IABS(NOKNOT)

C IF *NOKNOT* IS .GT. 0, READ IN NOKNOT KNOTS (INCL.BOUNDARY POINTS.)

IF (NOKNOT .GT. 0) READ *, (XI(J),J=1,LXI2)

C

C **CHECK ON GIVEN DATA

C THESE CHECKS PREVENT USER FROM EXCEEDING BOUNDS ON STORAGE

C AND FROM PRESENTING UNORDERED XX ARRAY

IERROR = 0

IF (LX .GE. LXI2+2 .AND. LX .LE. 100) GO TO 3

WRITE(6,662) LX

662 FORMAT(’ NO. OF DATA POINTS, LX = ’,I4,

1 ’,NOT WITHIN THE BOUNDS ABS(NOKNOT)+2 AND 100’)

IERROR = 1

GO TO 7

15

3 IF (LXI2 .GE. 3 .AND. LXI2 .LE. 28) GO TO 4

WRITE(6,660) NOKNOT

660 FORMAT(’1KNOT CONTROL PARAMETER NOKNOT =’,I3,

1 ’ NOT WITHIN BOUNDS.’)

IERROR = 1

4 DO 6 L=2,LX

IF (XX(L) .GT. XX(L-1)) GO TO 6

WRITE(6,664) L,XX(L),U(L)

664 FORMAT(’ DATA POINT ’,I4,2F14.8,’ NOT IN ASCENDING ORDER.’)

IERROR = IERROR + 1

6 CONTINUE

IF (IERROR .LT. 1) GO TO 14

7 WRITE(6,666) IERROR

666 FORMAT(’ *** CORRECT INDICATED ’,I3,

1 ’ INPUT ERROR(S) AND RESTART.’)

GO TO 1

C

C **INITIALIZE

14 IF (NOKNOT .GT. 0) GO TO 30

C

C WHEN NOKNOT IS NEG., INTRODUCE -NOKNOT EQUISPACED KNOTS

XI(1) = XX(1)

XI(LXI2) = XX(LX)

DEL = (XX(LX) - XX(1))/FLOAT(LXI2-1)

DO 26 J = 3,LXI2

XI(J-1) = XI(J-2) + DEL

26 continue

C

C SET UP INITIAL APPROXIMATION

30 ADDXI(1) = XI(1)

ADDXI(2) = XI(LXI2)

LXI1 = LXI2-1

LXI = LXI1-1

MODE = 0

JADD = LXI2

DO 35 J = 3,LXI2

ADDXI(J) = XI(J-1)

16

35 continue

ERROR = FXDKNT(0.)

C ***NOTE. MODE HAS BEEN SET EQUAL TO 1

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

WRITE(6,611) (L,XX(L),U(L),UERROR(L), L=1,LX)

611 FORMAT(’ GIVEN DATA AND ERROR IN FIRST APPROXIMATION’//

1 (I4,3F14.8))

WRITE(6,612) NOKNOT,ITER

612 FORMAT(’ ’/’ NO. OF INITIAL KNOTS =’,I3/

1 ’ ITER =’,I3)

WRITE(6,900) (XI(I), I=1,LXI2)

900 FORMAT(’ KNOTS PRIOR TO OPTIMIZATION’/(9F12.6))

C

C OPTIMIZE KNOTS

CALL SWEEP(ITER)

C

WRITE(6,640)

640 FORMAT(49X,’*** FINAL OUTPUT ***’///)

MODE = 1

JADD = 0

DUMB = FXDKNT(1.)

GO TO 1

40 STOP

C

END

C

C***

C

SUBROUTINE SWEEP(ITRR)

C

C KVARY+1 = INDEX OF KNOT BEING VARIED

C SUBROUTINE OPT(I) OPTIMIZES ITH INTERIOR KNOT

C

IMPLICIT NONE

LOGICAL debug

real ACC,ADDXI(26),CHANGE,COEFL(27,4),DUMB,EPSERR,ERROR,

1 FCTL(100),

17

2 FXDKNT,PREVER,Q,

3 U(100),UERROR(100),VORDL(28,2),

4 XI(28),XIL(28),XX(100)

integer I,INTERV,ITER,ITRR,

1 JADD,K,KNOT,KVARY,LMAX,LX,LXI,LXI1,LXI2,MODE

COMMON/INPUT/LX,XX,U,JADD,ADDXI,MODE,debug

COMMON/ OUTPUT /UERROR,FCTL,XIL,COEFL,VORDL,KNOT,LMAX,INTERV

COMMON/ OTHER / LXI,LXI1,LXI2,Q ,CHANGE,ERROR ,ACC, XI

C AT ALL TIMES, ERROR CONTAINS (L2 ERROR)**2 OF CURRENT B.A.

C

ITER = ITRR

C **NEXT CARDS SET NUMERICAL ANALYSIS CONTROLS

EPSERR = ACC/2.5

CHANGE = .4*FLOAT(LXI)

C

10 KVARY = LXI

Q = CHANGE/FLOAT(LXI)

if (.not. debug) go to 11

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

WRITE (6,902) ITER,Q

902 FORMAT (’ ITER, Q ’,I5,E20.8)

11 CHANGE = 0.

PREVER = ERROR

MODE = 2

JADD = 0

KNOT = KNOT - 1

DUMB = FXDKNT(0.)

20 CONTINUE

if (.not. debug) go to 21

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

WRITE(6,900) KVARY

900 FORMAT(’ ’///’ VARYING’,I4,’TH INTERIOR KNOT’)

WRITE(6,901) ERROR

901 FORMAT(’ SQ. OF L2-ERROR ’,E16.6)

C

21 CALL OPT(KVARY)

KVARY = KVARY -1

18

JADD = JADD + 1

IF(JADD .LE. 1) GO TO 25

K= JADD

DO 22 I = 2,JADD

K= K-1

22 ADDXI(K+1) = ADDXI(K)

25 ADDXI(1) = XI(KVARY + 2)

KNOT = LXI1 - JADD

MODE = 2

DUMB = FXDKNT(0.)

IF(KVARY .NE. 0) GO TO 20

C THE LAST CALL TO FXDKNT PRODUCES THE B.A. USING ALL KNOTS,

C SINCE THEN ADDXI CONTAINS ALL KNOTS

ERROR = DUMB

C *** THE FOLLOWING TWO CARDS PRODUCE PRINTED OUTPUT OF L1,L2,L-INF

C * JADD = 0

C * DUMM = FXDKNT(2.)

C

C **IF CHANGE IN ERROR IS BIG ENOUGH MAKE ANOTHER SWEEP, ELSE QUIT

IF (PREVER-ERROR .LE. EPSERR*PREVER) GO TO 60

ITER = ITER-1

C

C **CHECK NUMBER OF PASSES THROUGH SWEEP

IF(ITER.GT.0) GO TO 10

40 CONTINUE

C

C IN FINAL VERSION GO TO 40, GO TO 60 ARE REPLACED BY RETURN

if (.not. debug) return

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

WRITE(6,620)

620 FORMAT (’ *** NO. OF ALLOWABLE SWEEPS USED UP’)

RETURN

60 CONTINUE

if (.not. debug) return

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

WRITE(6,610)

RETURN

19

610 FORMAT(’ *** SWEEP DISCONTINUED - INSUFFICIENT CHANGE IN ERROR’)

END

C

C***

C

SUBROUTINE OPT(II)

C

C I REFERS TO THE ITH INTERIOR KNOT

C OPT FINDS THE OPTIMAL ITH KNOT BETWEEN THE I-1ST AND I+1ST KNOTS

C THE REMAINING KNOTS ARE HELD FIXED.

C INDLP = A BOUND ON THE NUMBER OF TRIES ALLOWED

C FOR IMPROVEMENT OF THE ITH KNOT

C Q = MULTIPLICATION FACTOR WHICH SHOULD DECREASE AS A

C FUNCTION OF THE NO. OF SWEEPS THRU SWEEP

C Q IS ALTERED IN SWEEP

C

IMPLICIT NONE

LOGICAL debug

real A,AA,ABEST,ACC,ADDXI(26),AHIGH,ALEFT,ALOW,ARIGHT,BD,

1 CHANGE,COEFL(27,4),DEL,DIFF,DIST,DXLEFT,DXRGHT,DYLEFT,

2 DYRGHT,E,EBEST,ELEFT,EPRED,ERIGHT,ERROR,ETRY,FCTL(100),

3 FXDKNT,H,Q,SGN,U(100),UERROR(100),VORDL(28,2),

4 XI(28),XIL(28),XX(100)

integer I,II,INDLP,INTERV,

1 JADD,KNOT,LMAX,LPCNT,LX,LXI,LXI1,LXI2,MODE

COMMON/INPUT/LX,XX,U,JADD,ADDXI,MODE,debug

COMMON/ OUTPUT /UERROR,FCTL,XIL,COEFL,VORDL,KNOT,LMAX,INTERV

COMMON/ OTHER / LXI,LXI1,LXI2,Q ,CHANGE,ERROR ,ACC,XI

C

I = II

C **NUMERICAL ANALYSIS PARAMETERS SET HERE

INDLP=9

BD = ACC*ERROR/FLOAT(LXI)

DIST = .0625

H = XI(I+2)-XI(I)

ALOW = XI(I) + DIST*H

AHIGH = XI(I+2) - DIST*H

20

LPCNT= 0

MODE = 3

C

C **BEGIN SEARCH - FIND THREE VALUES FOR THE ITH KNOT

C SUCH THAT L2-ERROR AT MIDDLE VALUE, A , IS LESS THAN

C ERROR AT LEFT VALUE, ALEFT, AND AT RIGHT VALUE, ARIGHT

A = XI(I+1)

E = FXDKNT(A)

ALEFT = A + Q*(XI(I)-A)

ELEFT = FXDKNT(ALEFT)

if (.not. debug) go to 5

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

ARIGHT = 0.

ERIGHT = 0.

WRITE (6,900) ELEFT,E,ERIGHT,ALEFT,A,ARIGHT

5 SGN = SIGN(1.,ELEFT-E)

IF (SGN.GE.0.) GO TO 20

GO TO 60

C

C **SEARCHING FOR NEW KNOT TO THE RIGHT

10 ALEFT = A

ELEFT = E

A = ARIGHT

E = ERIGHT

20 ARIGHT = A + Q*(XI(I+2)-A)

C

C **BUFFER TO PREVENT COALESCING OF KNOTS

30 IF (AHIGH.GE.ARIGHT) GO TO 40

AA = AHIGH

if (.not. debug) go to 199

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

WRITE(6,610) I

GO TO 199

C

40 ERIGHT = FXDKNT(ARIGHT)

if (.not. debug) go to 41

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

21

WRITE (6,900) ELEFT,E,ERIGHT,ALEFT,A,ARIGHT

41 IF (E.LE.ERIGHT) GO TO 100

C

C **CHECK TO STOP OPT

IF(E -ERIGHT.LE.BD .OR. LPCNT .GT. INDLP) GO TO 240

50 LPCNT = LPCNT+1

IF(SGN.GT.0.) GO TO 10

C

C **SEARCHING FOR NEW KNOT TO THE LEFT

60 ARIGHT = A

ERIGHT = E

A = ALEFT

E = ELEFT

70 ALEFT = A + Q*(XI(I)-A)

C

C

C **BUFFER TO PREVENT COALESCING OF KNOTS

80 IF (ALEFT.GE.ALOW) GO TO 90

AA = ALOW

if (.not. debug) go to 199

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

WRITE(6,620) I

GO TO 199

C

90 ELEFT = FXDKNT(ALEFT)

if (.not. debug) go to 91

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

WRITE (6,900) ELEFT,E,ERIGHT,ALEFT,A,ARIGHT

91 IF (E.LE.ELEFT) GO TO 100

C

C **CHECK TO STOP OPT

IF(E - ELEFT.LE.BD .OR. LPCNT .GT. INDLP) GO TO 230

GO TO 50

C

C **REQUIRED 3 VALUES HAVE BEEN FOUND

C FOLLOWING CODE FINDS PT. AT WHICH MIN OF PARABOLA CURVE PASSIN

C THRU THE ERROR VALUES AT THE PTS ALEFT, A, ARIGHT OCCURS

22

100 DXLEFT = ALEFT - A

DXRGHT = ARIGHT - A

DYLEFT = (ELEFT-E)/DXLEFT

DYRGHT = (ERIGHT-E)/DXRGHT

DIFF = DYLEFT - DYRGHT

IF (DIFF .EQ. 0.) GO TO 200

DEL = .5/DIFF*(DXRGHT*DYLEFT-DXLEFT*DYRGHT)

EPRED = E+DEL*(DYRGHT+(DXRGHT-DEL)/(ARIGHT-ALEFT)*DIFF)

ABEST = A + DEL

EBEST = FXDKNT(ABEST)

if (.not. debug) go to 109

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

WRITE (6,900) ELEFT,EBEST,ERIGHT,ALEFT,ABEST,ARIGHT

C

C **DETERMINE WHETHER ABEST GIVES BEST APPRX AND MAKE APPROPRIATE

C SWITCHING OF THE AI’S DEPENDING ON SIGN OF DEL

109 IF (EBEST.LE.E) GO TO 130

IF(DEL)110,200,120

110 ALEFT = ABEST

ELEFT = EBEST

GO TO 170

120 ARIGHT = ABEST

ERIGHT = EBEST

GO TO 170

130 IF(DEL)140,200,150

140 ARIGHT = A

ERIGHT = E

GO TO 160

150 ALEFT = A

ELEFT = E

160 A = ABEST

E = EBEST

C

C **FOLLOWING TESTS DETERMINE WHETHER OR NOT TO

C REITERATE PARABOLA MINIMIZATION PHASE

170 IF (ABS(EPRED-EBEST).LT.5.*BD) GO TO 210

IF(LPCNT.GT.INDLP) GO TO 200

23

LPCNT = LPCNT+1

GO TO 100

C

199 ETRY = FXDKNT(AA)

IF (E.LT.ETRY) GO TO 200

A = AA

E = ETRY

200 CHANGE = CHANGE + ABS(A -XI(I+1))/H

XI(I+1) = A

ERROR = E

if (.not. debug) RETURN

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

WRITE (6,900) ELEFT,E,ERIGHT,ALEFT,A,ARIGHT

RETURN

C

C IN FINAL VERSION GO TO 210, IS REPLACED BY GO TO 200

210 CONTINUE

if (.not. debug) go to 200

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

WRITE(6,640) LPCNT

GO TO 200

230 A = ALEFT

E = ELEFT

if (.not. debug) go to 200

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

WRITE(6,640) LPCNT

GO TO 200

240 A = ARIGHT

E = ERIGHT

if (.not. debug) go to 200

C *** THIS IS TEMPORARY DEBUGGING AND TESTING OUTPUT ***

WRITE(6,640) LPCNT

GO TO 200

610 FORMAT(’ *** OPT DISCONTINUED - KNOT BEING OPTIMIZED (’,I2,

1’) MOVED TOO CLOSE TO RIGHT NEIGHBOR’)

620 FORMAT(’ *** OPT DISCONTINUED - KNOT BEING OPTIMIZED (’,I2,

1’) MOVED TOO CLOSE TO LEFT NEIGHBOR’)

24

640 FORMAT(’ *** OPT DISCONTINUED AT’,I4,

1’ - INSUFFICIENT CHANGE IN ERROR’)

900 FORMAT(’ PARABOLA - ERROR VALUES ’,3E20.6/

112X,’AI VALUES ’,3E20.6)

END

25

C

C***

C***

C***

C

FUNCTION FXDKNT (CHANGE)

C THE FUNCTION RETURNS THE SQUARE OF THE L2-ERROR

IMPLICIT NONE

LOGICAL MODE3

C** IT MAY BE NECESSARY ON SOME SYSTEMS TO MENTION ALL COMMON BLOCKS

C LISTED HERE IN THE PROGRAM CALLING *FXDKNT*, TOO, TO INSURE THAT

C THE INFO IN THESE BLOCKS DOES NOT DIE BETWEEN CALLS TO *FXDKNT*.

real ADDXI(26),BC(30),CHANGE,COEFL(27,4),CUBERR(100),DIF,

1 DOT,ERBUT1,ERRL1,ERRL2,ERRL99,FCT(100,30),FCTL(100),

2 FXDKNT,SCALE,SERROR(100),T,TREND(100),

3 U(100),UERROR(100),VORD(30,28,2),VORDL(28,2),W,

4 WEIGHT(100),XIL(28),XKNOT,XSCALE,XX(100)

integer I,IDUM,IE,IO,ILAST,ILM3,ILOC,INSERT,INSIRT(30),INTERV,

1 IORDER(28),IPRINT,J,JADD,K,KNOT,KNOTSV,L,LMAX,LX,MODE

DOUBLE PRECISION TRPZWT(100),SUM

COMMON / WANDT / TREND,TRPZWT

COMMON/ INPUT /LX,XX,U,JADD,ADDXI,MODE

C U(L) = FCT TO BE APPR AT XX(L), L=1,LX.

C XX(L) IS ASSUMED TO BE NONDECREASING WITH L

C ADDXI(I) = I-TH KNOT TO BE INTRODUCED, I=1,JADD

C MODE = 0,1,2,3 . SEE COMMENTS BELOW (AND IN NUBAS)

COMMON/ OUTPUT /UERROR,FCTL,XIL,COEFL,VORDL,KNOT,LMAX,INTERV

C UERROR(L) = ERROR OF B.L2 A. TO U, L=1,LX

C KNOT = CURRENT NO. OF KNOTS (INCL BDRY KNOTS)

C INTERV = KNOT - 1 = CURRENT NO. OF INTERVALS (POL.PIECES)

C XIL(K),K=1,KNOT, CURRENT (ORDERED) SET OF KNOTS

C THE MAXIMUM ERROR OCCURS AT XX(LMAX)

C IF ARG=1, FCTL(L) CONTAINS THE CURRENT B.A TO U AT XX(L)

C COEFL(I,.) CONTAINS THE POL.COEF. ON I-TH INTERVAL FOR B.A.

C VORDL(I,.) CONTAINS VALUE AND DERIV. OF B.A. AT XIL(I)

COMMON/ BASIS /FCT,VORD,BC,ILAST

C** A CHANGE IN THE COLUMN LENGTH OF *FCT* FORCES CHANGE IN ST.NO.69

26

C IN *NUBAS* .

C FCT (L,M) = BASIS FCT M AT XX(L)

C VORD(M,K,L) CONTAINS THE ORDS (L=1) AND SLOPES (L=2) OF FCT M

C AT THE KNOT INTRODUCED AS K-TH. CORRELATION TO ORDERING OF

C KNOTS BY SIZE IS DONE VIA IORDER, I.E., ORD AND SLOPE AT

C XIL(K) ARE IN VORD(M,IORDER(K),.).

C BC(I) = COORDINATE OF U (AND OF B.A. TO U) WRTO I-TH O.N.FCT

C ILAST = CURRENT NO. OF BASIS FCTNS

COMMON/ LASTB /IORDER,INSIRT,XKNOT

C THE FCT ILAST (TO BE) INTRODUCED LAST HAS ADDITIONAL KNOT

C XKNOT, THE KNOT JUST INTRO-

C DUCED HAS INDEX INSERT IN XIL,INSERT IS SAVED IN INSIRT(ILAS

C FOR POSSIBLE REPLACEMENT OF KNOTS LATER ON (SEE MODE=2,3).

C ***LOCAL VARIABLES

COMMON /LOCAL/ XSCALE,KNOTSV,ERBUT1,CUBERR,WEIGHT,MODE3

C XSCALE = XX(LX) - XX(1), USED TO NORMALIZE INNER PRODUCT

C = LENGTH OF THE INTERVAL OF INTEGRATION

C KNOTSV = NO. OF KNOTS USED IN MOST RECENT CALL TO FXDKNT

C ERBUT1 = SQ. OF L2-ERROR OF APPR USING ALL BUT THE ONE

C KNOT BEING VARIED (USED IN MODE = 3)

C CUBERR = UERROR OF B.A. BY CUBIC POL-S (NEEDED FOR MODE = 2)

C MODE3 = TRUE OR FALSE DEP. ON WHETHER PREV. CALL WAS IN

C MODE=3 OR NOT

C CHANGE = THE NEW VALUE OF THE KNOT BEING VARIED IF MODE=3;

C IT IS USED TO CONTROL PRINTED OUTPUT OTHERWISE.

IPRINT = IFIX(CHANGE)

IF (MODE.GT.0) GO TO 29

C-----------

C *** MODE=0* COMPUTE BASIS FCTNS 1 THROUGH 4 AND B.A. TO U WRTO

C THESE, THEN SET MODE = 1 AND PUT UERROR INTO U.

XSCALE = XX(LX) - XX(1)

DO 10 I=5,30

INSIRT(I) = 0

10 continue

DO 11 L=1,LX

UERROR(L) = U(L)

TREND(L) = T(XX(L))

27

WEIGHT(L) = W(XX(L))

11 continue

DO 12 L=3,LX

TRPZWT(L-1) = (XX(L)-XX(L-2))/2.*WEIGHT(L-1)

12 continue

TRPZWT(1) = (XX(2)-XX(1))/2.*WEIGHT(1)

TRPZWT(LX) = (XX(LX)-XX(LX-1))/2.*WEIGHT(LX)

C

XIL(1) = ADDXI(1)

XIL(2) = ADDXI(2)

IORDER(1) = 1

IORDER(2) = 2

KNOT = 2

INTERV = 1

DO 19 I=1,4

ILAST = I

CALL NUBAS

DO 19 L=1,LX

UERROR(L) = UERROR(L) - BC(I)*FCT(L,I)

19 continue

C

MODE = 1

DO 20 L = 1,LX

CUBERR(L) = UERROR(L)

20 continue

C IF (JADD.LE.2), ONLY B.A. BY CUBICS IS COMPUTED

C OTHERWISE, ADDXI(I), I.GT.2, CONTAINS ADDITIONAL KNOTS

JADD = JADD - 2

IF (JADD.LE.0) GO TO 60

DO 21 I=1,JADD

ADDXI(I) = ADDXI(I+2)

21 continue

GO TO 51

C-----------

29 GO TO (40,40,30),MODE

C-----------

C *** MODE=3 *** MERELY CHANGE THE LAST KNOT INTRODUCED TO

28

C CHANGE (THE INPUT ARGUMENT TO FIXDKNT) AND

C RECOMPUTE L2 ERROR.

C THIS MODE SHOULD BE USED FOR MINIMIZING THE

C L2-ERROR WRTO THE KNOT

C INTRODUCED LAST AS IT MINIMIZES THE COMP WORK

C IF MODE3 = TRUE (I.E., THE PRECEDING CALL TO FXDKNT

C WAS IN MODE=3),THE PROGR WILL ASSUME THAT CHANGE

C HAS THE SAME ORDER REL TO THE OTHER KNOTS AS THE

C PREV.INTRODUCED VALUE FOR KNOT. OTHERWISE

C IF MODE3 = FALSE, I.E., THE PRECEDING CALL WAS IN

C SOME OTHER MODE), A FCT IS ADDED WITH CHANGE AS

C THE ADDITIONAL KNOT.

C UERROR IS ASSUMED TO CONTAIN ERROR OF B.A. TO U

C ALL PREV FCTNS, AND ERBUT1 the SQ. OF ITS L2NORM

C **NOTE** IF THE NEXT CALL TO FXDKNT

C IS IN A MODE OTHER THAN 3, THE CHANGE PROPOSED

C NOW WILL BE MADE PERMANENT.

30 XKNOT = CHANGE

IF (MODE3) GO TO 35

MODE3 = .TRUE.

MODE = 2

CALL NUBAS

KNOTSV = KNOT

MODE = 3

GO TO 36

35 CALL NUBAS

36 FXDKNT = ABS(ERBUT1 - BC(ILAST)/XSCALE*BC(ILAST))

RETURN

C-----------

C ***MODE=1,2*** RETAIN THE FIRST KNOT KNOTS INTRODUCED EARLIER

C (HENCE THEIR CORRESP FCTNS) BUT REPLACE FURTHER

C FCTNS (IF ANY) BY FCTNS HAVING ADDITIONAL

C KNOTS ADDXI(I),I=1,JADD) HENCE

C IF KNOT.LT.KNOTSV(=NO.OF KNOTS USED IN PREV CALL

C THEN 40 THROUGH 49 RESTORES ARRAYS IORDER,XIL,

C UERROR TO THE STATE OF ILAST = KNOT + 2 ,

C INVERTING THE ACTION OF DO 11 ... TO 14 IN NUBAS

29

40 IF (KNOT.LT.KNOTSV) GO TO 42

KNOT = KNOTSV

IF (.NOT.MODE3) GO TO 50

DO 41 L=1,LX

UERROR(L) = UERROR(L) - BC(ILAST)*FCT(L,ILAST)

41 continue

GO TO 49

42 DO 43 L=1,LX

UERROR(L) = CUBERR(L)

43 continue

IF (KNOT.LE.2) GO TO 48

IDUM = KNOT + 1

DO 45 IO=IDUM,KNOTSV

INSERT = INSIRT(ILAST)

ILM3 = ILAST - 3

DO 44 K=INSERT,ILM3

IORDER(K) = IORDER(K+1)

XIL(K) = XIL(K+1)

44 continue

ILAST = ILAST-1

45 continue

DO 47 I=5,ILAST

DO 47 L=1,LX

UERROR(L) = UERROR(L) - BC(I)*FCT(L,I)

47 continue

GO TO 49

48 XIL(2) = XIL(ILAST-2)

IORDER(2) = 2

KNOT = 2

49 IF (JADD.GT.0) GO TO 51

ILAST = KNOT + 2

INTERV = KNOT - 1

GO TO 60

C

C ***MODE=1,2*** ADD JADD BASIS FCTNS, I.E., FOR IO=1,JADD,

C CONSTRUCT FCT ILAST WITH ONE MORE KNOT, VIZ.

C XKNOT=ADDXI(IO), THAN THE PREVIOUS LAST FCT,

30

C ORTHONORMALIZE IT OVER ALL PREVIOUS FCTNS, THEN

C COMPUTE THE COORDINATE BC(ILAST) OF U WRTO IT,

C SUBTRACT OUT ITS COMPONENT FROM UERROR.

50 IF (JADD.LE.0) GO TO 61

51 DO 52 IO=1,JADD

XKNOT = ADDXI(IO)

CALL NUBAS

DO 52 L=1,LX

UERROR(L) = UERROR(L) - BC(ILAST)*FCT(L,ILAST)

52 continue

C

60 FXDKNT= DOT(31,2)/XSCALE

ERBUT1 = FXDKNT

KNOTSV = KNOT

61 MODE3 = .FALSE.

IF (IPRINT.EQ.0) RETURN

C VARIOUS PRINTING IS DONE DEP ON THE IPRINT = IFIX(CHANGE)

GO TO (70,80,90),IPRINT

C

C COMPUTE COEFFICIENTS OF B.A. AND PRINT

C **** BEST APPROXIMATION PRINTOUT ****

C FORMAT IS

C KNOTS XI(J) CUBIC COEFFICIENTS P(I,J) IN

C INTERVAL (XI(J), XI(J+1))

C ERROR CURVE (SCALED)

C

C THE FOLLOWING FORTRAN CODE FINDS VALUES AT X OF THE

C APPROXIMATION FROM THIS OUTPUT----

C I=LXI

C 1 A=X-XI(I)

C IF(A .ge. 0.) goto 4

C I=I-1

C IF(I .gt. 0) goto 1

C I=1

C 4 V=P(1,I)+A*(P(2,I)+A*(P(3,I)+A*P(4,I)))

C

70 WRITE(6,610)

31

DO 72 I=1,KNOT

ILOC = IORDER(I)

DO 72 L=1,2

SUM = 0.D0

DO 71 J=1,ILAST

SUM = SUM + BC(J)*VORD(J,ILOC,L)

71 continue

VORDL(I,L) = SUM

72 continue

CALL EVAL

DO 73 I=1,INTERV

WRITE(6,620) I,XIL(I)

WRITE (6,630) (J,COEFL(I ,J),J=1,4)

73 continue

WRITE (6,620) KNOT,XIL(KNOT)

610 FORMAT(12X,’KNOTS’,22X,’CUBIC COEFFICIENTS’//)

620 FORMAT(5X, ’XI(’,I2,’) =’, F12.6)

630 FORMAT(37X,’C(’,I1,’) =’,E16.6)

C

C **COMPUTE L2, L1, MAX ERRORS AND PRINT

80 ERRL2 = SQRT(FXDKNT)

ERRL1 = 0.

ERRL99= 0.

DO 82 L=1,LX

DIF = ABS(UERROR(L)*WEIGHT(L))

IF(ERRL99.GT.DIF) GO TO 81

LMAX = L

ERRL99 = DIF

81 ERRL1 = ERRL1+ DIF

82 CONTINUE

ERRL1 = ERRL1/FLOAT(LX)

WRITE(6,623) ERRL2, ERRL1, ERRL99,XX(LMAX)

C *** THE FOLLOWING CARD IS TEMPORARY

GO TO (90,96,96),IPRINT

C

C ** SCALE ERROR CURVE AND PRINT

90 IE = 0

32

SCALE = 1.

IF (ERRL99.GE.10.) GO TO 92

DO 91 IE=1,9

SCALE = SCALE*10.

IF (ERRL99*SCALE.GE.10.) GO TO 92

91 CONTINUE

92 DO 93 L=1,LX

SERROR(L) = UERROR(L)*SCALE

93 continue

GO TO (94,95,95),IPRINT

94 WRITE (6,621) IE,(L,XX(L),FCTL(L),SERROR(L),L=1,LX)

GO TO 96

95 WRITE (6,622) IE,(L,XX(L),SERROR(L),L=1,LX)

96 RETURN

621 FORMAT(’ ’//15X,’APPROXIMATION AND SCALED ERROR CURVE’/8X,

*’DATA POINT’,7X,’APPROXIMATION’,3X,’DEVIATION X 10E+’,I1/

*(1X,I4,F16.8,F16.8,F17.6))

622 FORMAT(’ ’//’ ERROR CURVE’/ 8X, ’DATA POINT’, 23X,

1’DEVIATION X 10E+’,I1/(1X,I4,F16.8,16X,F17.6))

623 FORMAT(’ ’///10X,’LEAST SQUARE ERROR =’,E20.6/

1 10X,’AVERAGE ERROR =’,E20.6/

2 10X,’MAXIMUM ERROR =’,E20.6,’ AT’,F12.6///)

END

C

C***

C

SUBROUTINE INTERP

C

C COMPUTE THE SLOPES VORDL(I,2), I=2,KNOT-1 AT INTERIOR

C KNOTS OF CUBIC SPLINE FOR GIVEN VALUES VORDL(I,1),I=1,KNOT,

C AT ALL THE KNOTS AND GIVEN BOUNDARY DERIVATIVES

IMPLICIT NONE

real COEFL(27,4),D(28),DIAG(28),FCTL(100),G,UERROR(100),

1 VORDL(28,2),XIL(28)

integer INTERV,KNOT,LMAX,M,NJ

COMMON/ OUTPUT /UERROR,FCTL,XIL,COEFL,VORDL,KNOT,LMAX,INTERV

DATA DIAG(1),D(1)/1.,0./

33

DO 10 M=2,KNOT

D(M) = XIL(M) - XIL(M-1)

DIAG(M) = (VORDL(M,1)-VORDL(M-1,1))/D(M)

10 continue

DO 20 M=2,INTERV

VORDL(M,2) = 3.*(D(M)*DIAG(M+1) + D(M+1)*DIAG(M))

DIAG(M) = 2.*(D(M)+D(M+1))

20 continue

DO 30 M=2,INTERV

G = -D(M+1)/DIAG(M-1)

DIAG(M) = DIAG(M) + G*D(M-1)

VORDL(M,2) = VORDL(M,2) + G*VORDL(M-1,2)

30 continue

NJ = KNOT

DO 40 M=2,INTERV

NJ = NJ - 1

VORDL(NJ,2) = (VORDL(NJ,2) - D(NJ)*VORDL(NJ+1,2))/DIAG(NJ)

40 continue

RETURN

END

C

C***

C

FUNCTION DOT (M,INDEX)

C COMPUTE INNER PRODUCT OF FCT M WITH FCT ILAST (INDEX=1) OR

C UERROR (INDEX=2)

IMPLICIT NONE

real ADDXI(26),BC(30),COEFL(27,4),DOT,

1 FCT(100,30),FCTL(100),

2 TREND(100),

3 U(100),UERROR(100),VORD(30,28,2),VORDL(28,2),

4 XIL(28),XX(100)

integer ILAST,INDEX,INTERV,

1 JADD,KNOT,L,LMAX,LX,M,MODE

DOUBLE PRECISION TRPZWT(100),G(100), SUM

COMMON / WANDT / TREND,TRPZWT

COMMON/ INPUT /LX,XX,U,JADD,ADDXI,MODE

34

COMMON/ OUTPUT /UERROR,FCTL,XIL,COEFL,VORDL,KNOT,LMAX,INTERV

COMMON/ BASIS /FCT,VORD,BC,ILAST

GO TO (10,30),INDEX

10 IF (M.EQ.ILAST) GO TO 20

DO 11 L=1,LX

G(L) = FCT(L,M)*FCTL(L)

11 continue

GO TO 80

20 DO 21 L=1,LX

G(L) = FCTL(L)*FCTL(L)

21 continue

GO TO 80

30 IF (M.EQ.31) GO TO 40

DO 31 L=1,LX

G(L) = FCTL(L)*UERROR(L)

31 continue

GO TO 80

40 DO 41 L=1,LX

G(L) = UERROR(L)*UERROR(L)

41 continue

C

C EFFICIENTLY PROGRAMMED DOUBE PRECISION ACCUMULATION OF SCALAR

C PRODUCTS IS CALLED FOR HERE. AT PURDUE, WE USE

C D = ARITH1(C,N,A,IA,B,IB)

C WHICH RETURNS THE VALUE OF

C D = C - SUM(A(1+J*IA) * B(1+J*IB), J=0,...,N-1)

C

80 SUM = 0.D0

DO 81, L=1,LX

SUM = SUM + G(L)*TRPZWT(L)

81 continue

DOT = SUM

RETURN

END

C

C***

C

35

SUBROUTINE EVAL

C COMPUTE POL. COEFF COEFL(I,K) OF FCT ILAST FROM VORDL,

C THEN COMPUTE FCTL(L) = (FCT ILAST)*TREND AT XX(L),L=1,LX

C

IMPLICIT NONE

real ADDXI(26),COEFL(27,4),DUM1,DUM2,DX,

1 FCTL(100),

2 TREND(100),TRPZWT(100),

3 U(100),UERROR(100),VORDL(28,2),

4 XIL(28),XX(100)

integer I,INTERV,ISWTCH,

1 J,JADD,KNOT,L,LMAX,LX,MODE

COMMON / WANDT / TREND,TRPZWT

COMMON/ INPUT /LX,XX,U,JADD,ADDXI,MODE

COMMON/ OUTPUT /UERROR,FCTL,XIL,COEFL,VORDL,KNOT,LMAX,INTERV

DO 10 I=1,INTERV

COEFL(I,1) = VORDL(I,1)

COEFL(I,2) = VORDL(I,2)

DX = XIL(I+1) - XIL(I)

DUM1 = (VORDL(I+1,1)-VORDL(I,1))/DX

DUM2 = VORDL(I,2)+VORDL(I+1,2)-2.*DUM1

COEFL(I,3) = (DUM1-DUM2-VORDL(I,2))/DX

COEFL(I,4) = DUM2/DX/DX

10 continue

C

J = 1

ISWTCH = 1

DO 20 L=1,LX

GO TO (11,13),ISWTCH

11 IF (J.EQ.INTERV) GO TO 12

IF (XX(L).LT.XIL(J+1)) GO TO 13

J = J + 1

GO TO 11

12 ISWTCH = 2

13 DX = XX(L) - XIL(J)

FCTL(L) = (COEFL(J,1)+DX*(COEFL(J,2)+DX*(COEFL(J,3)

* +DX*COEFL(J,4))))*TREND(L)

36

20 continue

RETURN

END

C

C***

C

SUBROUTINE NUBAS

IMPLICIT NONE

real ADDXI(26),BC(30),C,COEF(381,4),COEFL(27,4),

1 DOT,DX,FCT(100,30),FCTL(100),

2 ONEOVC,TEMP(30),

3 U(100),UERROR(100),VORD(30,28,2),VORDL(28,2),

4 XI(381),XIL(28),XKNOT,XX(100)

integer I,IBOUND,ICLAST,ID,ILAST,ILM1,ILOC,INSERT,INSIRT(30),

1 INTERV,IO,IORDER(28),JADD,K,KNOT,L,LMAX,LX,MODE

COMMON/ INPUT /LX,XX,U,JADD,ADDXI,MODE

COMMON/ OUTPUT /UERROR,FCTL,XIL,COEFL,VORDL,KNOT,LMAX,INTERV

COMMON/ BASIS /FCT,VORD,BC,ILAST

COMMON/ LASTB /IORDER,INSIRT,XKNOT

C COEF(IC,.) CONTAINS THE POL COEFFICIENTS OF FCT M FOR INTER-

C VAL TO THE RIGHT OF XI(IC), IC=ICM,ICM+M-3,

C WITH ICM = M*(M-7)/2 + 10 (WITH OBVIOUS MODS FOR M.LE.4)

C THE FCT ILAST (TO BE) INTRODUCED LAST, HAS ITS VALUES AT THE

C THE POINTS XX(L) IN FCTL(L), HAS FIRST INDEX ICLAS

C IN COEF AND XI, HAS ADDITIONAL KNOT XKNOT, THE KNOT KNOTS

C FOR IT ARE CONTAINED, IN INCREASING ORDER, IN XIL,ITS COR-

C RESPONDING ORDS AND SLOPES ARE IN VORDL, THE KNOT JUST INTRO

C DUCED HAS INDEX INSERT IN XIL,INSERT IS SAVED IN INSIRT(ILAS

C FOR POSSIBLE REPLACEMENT OF KNOTS LATER ON (SEE MODE=2,3).

logical REPEAT

REPEAT = .FALSE.

IF (MODE.GT.0) GO TO 8

C--------***CONSTRUCT FCT ILAST FOR ILAST.LE.4

XI(ILAST) = XIL(1)

ICLAST = ILAST

ILM1 = ILAST-1

IF (ILAST.GT.2) GO TO 7

37

IF (ILAST.EQ.2) GO TO 6

C FIRST BASIS FCT IS A CONSTANT

VORDL(1,1) = 1.

VORDL(2,1) = 1.

VORDL(1,2) = 0.

VORDL(2,2) = 0.

GO TO 67

C SECOND BASIS FCT IS A STRAIGHT LINE

6 VORDL(2,2) = VORDL(1,1)/(XIL(2) - XIL(1))*2.

VORDL(1,2) =-VORDL(2,2)

C

7 VORDL(2,1) = - VORDL(2,1)

VORDL(2,2) = - VORDL(2,2)

GO TO 59

C--------

8 GO TO (10,10,140),MODE

C--------***SET UP CONSTANTS DEP.ON ILAST. INSERT NEW KNOT INTO XIL

C AND UPDATE VORD FOR FCT M,M=1,ILAST-1

10 KNOT = KNOT + 1

ILAST = KNOT + 2

ICLAST = ILAST*(ILAST-7)/2 + 10

ILM1 = ILAST-1

INTERV = KNOT - 1

DO 11 INSERT=2,INTERV

IF (XKNOT.LT.XIL(INSERT)) GO TO 12

11 CONTINUE

GO TO 95

12 IF (XKNOT.LE.XIL(INSERT-1)) GO TO 95

IO = KNOT

DO 13 L=INSERT,INTERV

IO = IO - 1

XIL(IO+1) = XIL(IO)

13 IORDER(IO+1) = IORDER(IO)

IORDER(INSERT) = KNOT

go to 14

140 insert = insirt(ilast)

14 XIL(INSERT) = XKNOT

38

DX = XKNOT - XIL(1)

DO 15 I=1,4

VORD(I,KNOT,1)=COEF(I,1)+DX*(COEF(I,2)+DX*(COEF(I,3)

* +DX*COEF(I,4)))

15 VORD(I,KNOT,2)=COEF(I,2)+DX*(2.*COEF(I,3)+DX*3.*COEF(I,4))

IF(ILM1.LT.5) GO TO 20

ID = 4

IBOUND = 4

DO 19 I=5,ILM1

ID = ID + I - 4

IBOUND = IBOUND + I - 3

17 IF (ID.EQ.IBOUND) GO TO 18

IF (XKNOT.LT.XI(ID+1)) GO TO 18

ID = ID + 1

GO TO 17

18 DX = XKNOT - XI(ID)

VORD(I,KNOT,1)=COEF(ID,1)+DX*(COEF(ID,2)+DX*(COEF(ID,3)

* +DX*COEF(ID,4)))

19 VORD(I,KNOT,2)=COEF(ID,2)+DX*(COEF(ID,3)*2.+DX*3.*COEF(ID,4))

C--------

C--------DEFINE LAST BASIS FUNCTION

20 CONTINUE

GO TO (30,40,50),MODE

C *** MODE=1 *** ADD ILAST-TH BASIS FUNCTION. CONSTRUCT FROM FCT

C ILAST-1 BY REFLECTING THE PART OF THE LATTER TO

C THE RIGHT OF XKNOT ACROSS THE X-AXIS, THEN INTER

C POLATING. THIS SHOULD INDUCE ONE MORE OSCILLATIO

C N IN FCT ILAST THAN IN FCT ILAST-1

C

29 MODE = 1

30 VORDL(1,2) = 0.

DO 31 K=1,KNOT

31 VORDL(K,1) = MAX(0.,XIL(K)-XKNOT)**3

VORDL(KNOT,2) = 3.*(XIL(KNOT)-XKNOT)**2

GO TO 55

C

C *** MODE=2 *** REPLACE FCT ILAST BY INTERPOLATING IT AT THE

39

C CURRENT SET OF KNOTS. IF FCT ILAST HAS NOT BEEN

C PREVIOUSLY DEF (INSIRT(ILAST)=0)(SEE 9 ABOVE,

C ALSO MAIN AT 10)) SET MODE=1,PROCEED IN THAT MOD

C

40 IF (INSIRT(ILAST).EQ.0) GO TO 29

VORDL(1,1)=VORD(ILAST,1,1)

VORDL(1,2)=VORD(ILAST,1,2)

ID = ICLAST

IBOUND = ICLAST + ILAST - 4

DO 43 K=2,INTERV

41 IF (ID.EQ.IBOUND) GO TO 42

IF (XIL(K).LT.XI(ID+1)) GO TO 42

ID = ID +1

GO TO 41

42 DX = XIL(K)- XI(ID)

43 VORDL(K,1) = COEF(ID,1)+DX*(COEF(ID,2)+DX*(COEF(ID,3)

* +DX*COEF(ID,4)))

VORDL(KNOT,1)=VORD(ILAST,2,1)

VORDL(KNOT,2)=VORD(ILAST,2,2)

GO TO 55

C

C *** MODE=3 *** CHANGE FCT ILAST BY CHANGING JUST THE KNOT INTRO

C DUCED LAST

C

50 ID = ICLAST + INSERT - 1

DX = XKNOT - XI(ID)

XI(ID) = XKNOT

IF (DX.GE.0.) GO TO 51

ID = ID - 1

DX = XKNOT - XI(ID)

51 VORDL(INSERT,1) = COEF(ID,1) +DX*(COEF(ID,2)+DX*(COEF(ID,3)

* +DX*COEF(ID,4)))

C

C *** INTERPOLATE

55 CALL INTERP

GO TO (57,57,59),MODE

57 ID = ICLAST - 1

40

DO 56 IO=1,INTERV

ID = ID + 1

56 XI(ID) = XIL(IO)

INSIRT(ILAST) = INSERT

C--------

C--------*** ORTHONORMALIZE FCT ILAST OVER PREVIOUS (ORTHONORMAL) SET

C THEN COMPUTE THE COMPONENT BC(ILAST) OF UERROR WRTO IT

C FINALLY,STORE THE VARIOUS REPRESENTATIONS OF FCT ILAST

C

59 CALL EVAL

TEMP(ILAST) = SQRT(DOT(ILAST,1))

IF (REPEAT .AND. ABS(1.-TEMP(ILAST)) .GT. .5) GO TO 65

DO 60 I=1,ILM1

TEMP(I) = DOT(I,1)

DO 69 L=1,LX

69 FCTL(L) = FCTL(L) - TEMP(I)*FCT(L,I)

DO 61 K=1,KNOT

ILOC = IORDER(K)

DO 61 L=1,2

61 VORDL(K,L) = VORDL(K,L) - TEMP(I)*VORD(I,ILOC,L)

60 CONTINUE

67 CALL EVAL

C = SQRT(DOT(ILAST,1))

WRITE (6,667)ILAST,(TEMP(I),I=1,ILAST),C

667 FORMAT(I3,7E11.3/(7X,7E11.3))

IF(ILAST .GT. 1 .AND. REPEAT .AND. ABS(1.-C) .GT. .5) GO TO 65

IF (C+TEMP(ILAST) .LE. TEMP(ILAST)) GO TO 65

ONEOVC = 1./C

GO TO 68

65 ONEOVC = 0.

68 BC(ILAST) = DOT(ILAST,2)*ONEOVC

DO 62 K=1,KNOT

ILOC = IORDER(K)

DO 62 L=1,2

VORDL(K,L) = VORDL(K,L)*ONEOVC

62 VORD(ILAST,ILOC,L) = VORDL(K,L)

IF (ONEOVC .EQ. 0. .OR. ILAST .EQ. 1

41

* .OR. C .GE. 1.E-2*TEMP(ILAST)) GO TO 152

REPEAT = .TRUE.

CALL INTERP

GO TO 59

152 CONTINUE

ID = ICLAST - 1

DO 63 IO=1,INTERV

ID = ID + 1

DO 63 L=1,4

63 COEF(ID,L) = COEFL(IO,L)*ONEOVC

DO 64 L=1,LX

64 FCT(L,ILAST) = FCTL(L)*ONEOVC

C--------

RETURN

C

C *** THIS OUTPUT INDICATES A FAILURE CONDITION ***

95 WRITE (6,950) XKNOT,ILAST

950 FORMAT (15H *** NEW KNOT,E20.8,13H FOR FUNCTION,I3,50H OUT OF BO

*UNDS OR COINCIDENT WITH A PREVIOUS KNOT./36H *** EXECUTION CANNO

*T BE CONTINUED)

STOP

C

END

C

C***********TREND AND WEIGHT FUNCTIONS**********************************

C

FUNCTION T(Z)

real T,Z

T = 1.

RETURN

END

C

FUNCTION W(Z)

W = 1.

RETURN

C

END

42

