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ABSTRACT

We study Weyl-Heisenberg (=Gabor) expansions for either L2(IR
d) or a subspace of it. These

are expansions in terms of the spanning set

X = (EkM lϕ : k ∈ K, l ∈ L,ϕ ∈ Φ),

where K and L are some discrete lattices in IRd, Φ ⊂ L2(IR
d) is finite, E is the translation operator,

and M is the modulation operator. Such sets X are known as WH systems. The analysis of the

“basis” properties of WH systems (e.g. being a frame or a Riesz basis) is our central topic, with

the fiberization-decomposition techniques of shift-invariant systems, developed in a previous paper

of us, being the main tool.

Of particular interest is the notion of the adjoint of a WH set, and the duality principle which

characterizes a WH (tight) frame in term of the stability (orthonormality) of its adjoint. The

actions of passing to the adjoint and passing to the dual system commute, hence the dual WH

frame can be computed via the dual basis of the adjoint.

Estimates for the underlying frame/basis bounds are obtained by two different methods. The

Gramian analysis applies to all WH systems, albeit provides estimates that might be quite crude.

This approach is invoked to show how, under only mild conditions on X, a frame can be obtained by

oversampling a Bessel set. Finally, finer estimates of the frame bounds, based on the Zak transform,

are obtained for a large collection of WH systems.
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Weyl-Heisenberg frames and Riesz bases in L2(IR
d)

Amos Ron and Zuowei Shen

1. Introduction

1.1. Frames, Riesz bases, and their dual systems

The present paper is the second in a series of three, all devoted to the study of shift-invariant

frames and shift-invariant stable (=Riesz) bases for H := L2(IR
d), d ≥ 1, or a subspace of it. In

the first paper, [RS1], we studied such bases under the mere assumption that the basis set can be

written as a collection of shifts (namely, integer translates) of a set of generators Φ. The present

paper analyses Weyl-Heisenberg (=:WH, known also as Gaborian) frames and stable bases. Aside

from specializing the general methods and results of [RS1] to this important case, we exploit here

the special structure of the WH set, and in particular the duality between the shift operator and

the modulation operator, the latter being absent in the context of general shift-invariant sets. In

the third paper, [RS3], we present applications of the results of [RS1] to wavelet (or affine) frames.

The flavour of the results there is quite different: wavelet sets are not shift-invariant, and the main

effort of [RS3] is to show that, nevertheless, the basic analysis of [RS1] does apply to that case as

well.

Let X ⊂ L2(IR
d). We consider X as a possible “basis” set for L2(IR

d), or for some closed

subspace of it. The various notions of a “basis set” are conveniently defined with the aid of the

so-called synthesis operator or reconstruction operator T := TX defined by

TX : `0(X) → L2(IR
d) : c 7→

∑

x∈X

c(x)x.

Here, `0(X) is the collection of all finitely supported sequences in `2(X). If T is bounded, it is

extended by continuity to all of `2(X). We use the notation T for this extension, as well.

Definition 1.1. X is a basis whenever T is 1-1 on its domain. X is fundamental if ranT is

dense in L2(IR
d). If T is bounded, X is a Bessel set. If T is bounded and ranT is closed, X is a

frame. Finally, a frame which is also a basis is known as a Riesz (or stable) basis.

Remark. Some of the articles that deal with frames for L2(IR), reserve the notions of “frame” and

“Riesz basis” only to the case that we refer to here as a “fundamental frame” and “fundamental

Riesz basis”.

Note that, if X is a Riesz basis, T has a bounded inverse which acts from ranT onto `2(X).

We denote that inverse by T−1. If X is not a Riesz basis, but is still a frame, a bounded inverse

still exists but acts from ranT onto (kerT )⊥. This pseudo-inverse is denoted hereafter by T|
−1,

and is referred to as the partial inverse of T .
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Another way to define the above “basis” notions, is with the aid of the analysis operator or

the decomposition operator, which is the formal adjoint T ∗ := T ∗
X of T , and is defined by

T ∗ : L2(IR
d) → `2(X) : f 7→ (〈f, x〉)x∈X .

The equivalent definitions via the adjoint map are entirely analogous: the definitions of frames and

Bessel sets remain unchanged (just replace T by T ∗). The fundamentality of X amounts to the

injectivity of T ∗, and a Riesz basis is a frame whose corresponding T ∗ is surjective.

Since usually the injectivity of a map is easier to check than its surjectivity, fundamental frames

are usually studied via T ∗, while Riesz bases are usually analyzed via T . That tradition, however,

will not be followed in the present paper, since our techniques are critically based on a simultaneous

analysis of both the decomposition and reconstruction operators.

In order to decompose and reconstruct functions in L2(IR
d), one needs to complement the

given frame X by another one, the so-called dual frame which is defined as

RX,

with

R := RX := T ∗
|
−1T|

−1.

The map

f 7→ TXT
∗
RXf =

∑

x∈X

〈f,Rx〉x

is then an orthogonal projector onto ranTX , hence is the identity on L2(IR
d) in case the frame

X is fundamental. In this regard, computing T ∗
RXf is the decomposition of f , and computing

TXT
∗
RXf (from the given sequence T ∗

RXf) is the reconstruction of f . The operator norms ‖TX‖2

and ‖TX|
−1‖−2 are known as the frame bounds of X. A frame whose two frame bounds coincide

is a tight frame, and it is well-known that the dual frame of a tight frame is (up to a multiplicative

constant) the original frame X (i.e., R = c Id on ranT ).

Frames were introduced in [DS] in the context of non-harmonic Fourier series. Frames for

L2(IR) were quite extensively studied in the literature, with the focus being on two special choices:

wavelet (or affine) frames, and Weyl-Heisenberg (or short-windowed Fourier transform) frames. We

refer to the surveys [BW], [HW] and [D1], the books [C] and [D2], and to the references therein

for discussions of frames, and in particular wavelet and Weyl-Heisenberg frames.

1.2. Weyl-Heisenberg systems defined

A Weyl-Heisenberg (WH) system is defined here with respect to a pair of lattices. Here, a

lattice (or, more precisely, a d-dimensional lattice) K is the image AKZZd of a linear invertible

map AK : IRd → IRd. The column vectors of AK generate K. The volume of the lattice

|K| := |detAK |

measures the sparsity of it, and depends only on K. The dual lattice K̃ of K is the lattice defined

by

K̃ := {l ∈ IRd : l · k ∈ 2πZZ, ∀k ∈ K}.
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Note that we always have

(1.2) |K| |K̃| = (2π)d.

Given a d-dimensional lattice K, we let

ΩK

stand for any fundamental domain for K, i.e., a set for which ∪k∈K(k + ΩK) is an (essential)

partition of IRd. A standard choice for ΩK is the parallelepiped AK [0, 1]d.

We now turn to the definition of a WH system. First, for t ∈ IRd, let Et denote the translation

operator and M t the modulation operator, i.e.,

Et : f 7→ f(· + t), M t : f 7→ etf, t ∈ IRd, f ∈ L2(IR
d),

with et the exponential function

et : w 7→ eit·w.

Further, let Φ ⊂ L2(IR
d) be finite (though our analysis applies to infinite Φ as well, it suffices for

all practical purposes to assume that Φ is finite). Finally, let K,L be two lattices in IRd. Then, we

call the set

X = (K,L)Φ := {EkM lϕ : ϕ ∈ Φ, k ∈ K, l ∈ L}

a Weyl-Heisenberg system generated by Φ. The WH system is normalized whenever ‖ϕ‖ = 1,

for all ϕ ∈ Φ. Also, whenever Φ is a singleton, we refer to X as a principal Weyl-Heisenberg

system (PWH system, for short). The number

(2π)d

|K||L|

is the density parameter den(K,L) of (K,L), and is also referred to as the density

denX

of a PWH system X. We call a PWH system X a high-density system if denX ≥ 1 and a low

density system if denX < 1.

1.3. Layout of the paper

Since the theory introduced in this paper is fairly elaborated, we had made a special effort

to present it in several “layers of difficulty”, allowing the interested reader to adjust his/her level

of reading to the level of interest in this topic. Specifically, we present in §2 relatively concise

account of the development of the paper, including an array of selected results, while detailing

more elaborated findings in §3 and §4.

Firstly, we introduce, in §2.1, the notion of the adjoint X∗ of a PWH system X. Our duality

principle of WH sets (Theorems 2.2 and 2.3) deals with the basic relations between a system, its

adjoint, and their dual systems. In general terms, the duality principle exhibits an intimate relation

between TX∗ and T ∗
X (hence also between TX and T ∗

X∗ , since X∗∗ = X), which “almost” says that

TX∗ = cU1T
∗
XU2, U1, U2 unitary, and is almost as useful as such connection. We present in §2.1

few applications of the duality principle, and a variety of other applications is collected in §3.1.

Some of these applications generalize known univariate observations, and others are new even for

univariate systems. As an example for the former, a fairly trivial argument is invoked to show

(Corollary 2.7) that low-density frames are never fundamental.
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The duality principle is a straightforward consequence of the fiberization of the WH system.

In §2.2 we describe the three Gramian matrices that underly our fiberization techniques and recall

the main results of [RS1]. That already allows us to provide a simple and complete proof of the

duality principle. Furthermore, it shows how the Wexler-Raz identity, [DLL], can be equivalently

formulated (thereby proved) as a matrix identity. A more elaborated discussion of the duality

principle, including direct relations between the operators of a system and the operators of its

adjoint, are given in §3.2.

In §2.4 and §3.4 we present our “Gramian analysis”: analysis of the system that is based on

inspection of the relevant Gramian matrices. In §2.4, the notion of oversampling is discussed, i.e.,

the possibility of converting a Bessel system into a frame by increasing the density of either the

shifts or the modulations. In §3.4 we use Gramian analysis in estimating the frame bounds of a

given system.

For a large family of WH systems, the Gramian matrices can be observed to be convolution

operators, or, more generally, matrix-valued convolution operators. In such cases, a more subtle

analysis, based on the symbols of the underlying convolution operators, is feasible. These symbols

turn out to be multivariate analogs of the Zak transform, hence we refer to that course of study

as “Zak transform analysis”. In §2.4, we present the relatively simple case of a sup-adjoint system

(which amounts in one dimension to a system whose density in an integer number). In this case

the Gramian matrices are realized as a vector of convolution operators. In §4 we discuss the more

general case of compressible systems (which, in one dimension, are systems whose density is a

rational number). For these systems, the Gramian matrices are realized as arrays (of finite order)

of convolution operators.

It should be understood that the goal of this paper is the application of the fiberization

techniques of [RS1] to WH systems. This means that we consistently strive to explain the various

phenomena of the WH systems via the Gramian matrices, even when a direct course is available

as well (such as in the case of Zak transform analysis).

1.4. Acknowledgments and general remarks

Our original interest in shift-invariant bases stems from the role of such systems in Approx-

imation Theory (e.g., Box Splines). There, non-fundamental bases are the rule rather than the

exception, and this explains our genuine interest in and emphasis on non-fundamental sets. On the

other hand, frames have hardly been considered in Approximation Theory as an object of interest,

and, in fact, our initial development of the frame material in [RS1-3] was done “from scratch”.

While this somewhat cavalier approach might have had its own advantages, it also, inevitably,

resulted in the re-invention of known and even classical results (the Zak transform and the [DGM]

painless construction of WH frames were among our early “innovations”). Communications we had

in late 1992 with Chris Heil had helped us in drawing connections between our work and the rich

frame literature.

Our first presentation of the duality principle (in Oberwolfach, Summer 1993) had led to

several very useful discussions with Hans Feichtinger and with some of his Vienna group people.

In particular, numerical experiments conducted by Sigang Qiu had helped us in correcting the

constant that appears in Theorem 2.3.
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Selected results from §2 (such as Theorems 2.2 and 2.3) and §4 are announced in [RS2]. After

receiving a copy of [RS2], Meir Zibulski from the Technion, Israel, had brought to our attention the

articles [TO1,2] and [ZZ]. The former establishes the univariate equivalent of part (f) of Theorem

2.2, while the latter derives the univariate equivalents of part (a,b) of Theorem 4.5, as well as of

some other results from §4.

About the time we were essentially done with the present endeavour, Ingrid Daubechies had

brought to our attention Janssen’s paper [J] and her joint paper with the Landaus [DLL]. Both

papers deal with the same phenomenon that we describe in §2 here. Specifically, both contain

statements equivalent to our Theorem 2.3, but under the additional assumptions that the underlying

frame is univariate and fundamental. Both also contain results equivalent to the univariate case of

parts (a,e) of our Theorem 2.2, including the connections between the frame bounds asserted in that

theorem. It is probably correct to consider the three articles [J], [DLL], and ours as “simultaneous

and independent”, and it is worth mentioning that the techniques employed in these papers are

quite different: [J] amplifies the approach of Tolimieri and Orr, [DLL] invokes what they call

“the Wexler-Raz identity”, while our development follows the fiberization techniques of [RS1]. We

decided to abstain from expanding our paper in directions that may be suggested from the reading

of [J] and [DLL], with the following single exception: in §3.3, we show how the Wexler-Raz identity

can be observed by using our decomposition-fiberization techniques.

We would like to extend our thanks to all the people whose contributions are detailed above.

A final remark: our results are always derived in a multivariate setup, and deal with systems

which are not necessarily fundamental in L2(IR
d). It is probably true that no significant simplifica-

tion of arguments would have occurred, had we chosen to restrict attention to univariate systems.

In contrast, the treatment of non-fundamental systems seems to be harder than their fundamental

counterparts, at least from the standpoint of the tools we borrowed from [RS1] for either case.

2. Fiberization of WH systems and selected applications

2.1. The duality principle

We start our discussion here with the introduction of the (new) notion of the adjoint of the

PWH system (K,L)ϕ.

Given ϕ ∈ L2(IR
d), we associate each X = (K,L)ϕ with another PWH system, denoted by

X∗, referred to hereafter as the adjoint system of X, and defined by

X∗ := (L̃, K̃)ϕ.

We also refer to (L̃, K̃) as the adjoint (K,L)∗ of (K,L). Note that the density parameter of X∗ is

reciprocal to that of X:

(2.1) den(X)den(X∗) = 1.

The system X is said to be self-adjoint if X = X∗ (i.e., if K = L̃). Note that all self-adjoint

systems are of density 1 (as follows at once from (2.1)), but not vice-versa, unless d = 1, as shown

by the following example.
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Example. Assume that X is a univariate PWH system. Then, (K,L) = (pZZ, 2πqZZ) for some

parameters p, q > 0. Here, den(X) = (pq)−1. The adjoint system is (L̃, K̃) = (ZZ/q, 2πZZ/p),

and its density is, indeed, pq. If pq = 1, the adjoint system coincides with the original system.

Consequently, a univariate PWH system is self-adjoint if and only if its density is 1.

We prove in §2.2 the following result concerning the connection between a PWH system X

and its adjoint X∗.

Theorem 2.2. Let X be a normalized PWH system. Then:

(a) X is a Bessel system if and only if X∗ is one. In that case, ‖TX∗‖2 = den(X∗)‖TX‖2.

(b) Suppose that X is a Bessel system. Then X∗ is a basis if and only if X is fundamental.

(c) X∗ is a frame if and only if X is a frame. In that case, ‖TX∗|
−1‖−2 = den(X∗)‖TX|

−1‖−2.

(d) X∗ is a tight frame if and only if X is a tight frame.

(e) X∗ is a Riesz basis if and only if X is a fundamental frame.

(f) X∗ is an orthonormal basis if and only if X is a fundamental tight frame.

We note that the core claims in the above theorem are (a-c), with the rest being simple

corollaries. Specifically, (d) follows directly from (a)+(c), (e) follows from (b)+(c), and (f) follows

from (d)+(e). The statement in (b) is actually valid even when X is not Bessel, if one defines then

appropriately the notion of a “basis”. Finally, note that the roles of X and X∗ in the theorem can

certainly be interchanged (since X∗∗ = X).

Remark. The paper [TO2] precedes us in observing the connection (in the univariate setup)

between a set (pZZ, 2πqZZ)ϕ and (ZZ/q, 2πZZ/p)ϕ. The univariate case of part (f) of Theorem 2.2

can already be found in that reference.

Theorem 2.2 is complemented by the following theorem concerning the relation between the

dual systems of X and X∗. Roughly speaking, it shows that the actions of taking adjoint and

taking dual commute. In phrasing this result, we already took advantage of the well-known (and

simple) fact that the dual system of a PWH frame (K,L)ϕ is of the form (K,L)ψ (cf. Theorem 3.2

of [BW]), i.e., is also a PWH system. This means that the notion of “the adjoint (RXX)∗ of the

dual system RXX of X” is well-defined for every PWH system X.

Theorem 2.3. Let X be a PWH frame generated by ϕ, X∗ its adjoint frame. Then the dual of

the adjoint is the adjoint of its dual; more precisely,

RX∗X∗ = (denX)(RXX)∗.

In particular,

RX∗ϕ = (denX)RXϕ.

In words, the generator of the dual frame of X∗, is the same as the generator of the dual frame of

X, up to the (important) multiplicative constant denX.

Remark 2.4. Our argument in proving the above theorem (in fact, its first half) supports a

broader claim: if Y = (K,L)ψ is any dual system of X (i.e., if TXT
∗
Y is the identity on the closed

span of X), then (denX)Y ∗ is a dual system for X∗.
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Though, for computing the dual frame of X, one merely needs to find its generator ψ, this

task is rather difficult in general, since no bi-orthogonality relations exist between X and its dual

frame. On the other hand, if X is a fundamental frame, its adjoint is a Riesz basis, hence the dual

of this adjoint is characterized by the standard bi-orthogonality relations. Theorem 2.3 asserts that

the generator of the dual frame of X∗ is, up to the multiplicative constant denX, the same as the

generator of the dual frame of X, and thus suggests a simpler avenue for computing the generator

of the dual frame of the fundamental X.

We refer to the relations between X and X∗ that are expressed in Theorems 2.2 and 2.3 (as

well as to (2.10), which is the technical ground for all these connections) as the duality principle

of WH systems.

Remark. In [RS2], Theorem 2.3 is announced with a (-n incorrect) multiplicative constant

(denX)1/2. The fact that our constant was flawed was revealed in numerical experiments conducted

by Hans Feichtinger and Sigang Qiu (from Vienna), and we are grateful to them for pointing out

this fact to us.

Three immediate, essentially well-known, corollaries are derived below as an illustration of the

efficacy of the duality principle. Further corollaries and applications of the duality principle are

collected in §3.1. These other ones include (a) review and extensions of the “painless construction of

WH tight frames” from [DGM], (b) results on frames generated by functions that are non-negative

or that their Fourier transform is such, (c) partial orthogonality relations that a tight WH frame

of a special structure, dubbed “sup-adjoint” herein, must satisfy, and more.

Corollary 2.5. A self-adjoint X is a fundamental frame if and only if it is a Riesz basis.

This property follows directly from (e) of Theorem 2.2. The “only if” implication is well-known

(cf. Theorem 3.7 of [BW] which contains a proof of that implication for cartesian lattices).

Another conclusion, whose univariate case can be found in p. 81 of [D2], is as follows.

Corollary 2.6. Let X be a normalized fundamental PWH frame. Then the frame bounds A,B

of X satisfy

A ≤ denX ≤ B.

In particular, the frame bound(s) of a normalized fundamental PWH tight frame is denX.

Proof: By (e) of Theorem 2.2, the adjoint X∗ of X is a Riesz basis. Denoting by A0, B0

the Riesz bounds of X∗, it is clear that A0 ≤ 1 ≤ B0 (since TX∗ maps a sequence of norm 1, viz.

the δ-sequence, to the function ϕ, whose norm is 1 by assumption). An application of Theorem

2.2, parts (a,c), then yields the desired results on the frame bounds of X.

The third illustrating corollary is the following:

Corollary 2.7. Let X be a PWH system. Then, X can never be a fundamental frame for L2(IR
d)

unless denX ≥ 1.

The (strikingly simple) proof of that fact is based on the following
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Lemma 2.8. Let ϕ be the generator of a PWH fundamental frame X. Let ψ be the generator of

the frame dual to X, i.e. ψ = RXϕ. Then

〈ϕ,ψ〉 = (denX)−1.

Proof: By (e) of Theorem 2.2, X∗ is a Riesz basis, whose dual system is generated (Theo-

rem 2.3) by (denX)ψ. The bi-orthogonality relations between a Riesz basis and its dual basis then

imply that 〈ϕ, (denX)ψ〉 = 1.

Proof of Corollary 2.7. Let RX be the frame dual to X. We recall that, for every f ∈ L2, T
∗
RXf

is the (unique) minimal-norm sequence in the pre-image T−1
X f . Choosing f := ϕ, and taking into

account the fact that T−1
X ϕ contains one sequence of norm 1 (viz. the sequence that is 1 at ϕ and

zero elsewhere), we conclude that ‖T ∗
RXϕ‖ ≤ 1. In particular, with ψ the generator of the dual

frame, |〈ϕ,ψ〉| ≤ 1 (since this number is one of the values of the sequence T ∗
RXϕ). Combining the

above with Lemma 2.8, we conclude that

(denX)−1 = 〈ϕ,ψ〉 ≤ 1.

Hence, indeed, X is a high-density system.

It is known that the univariate analog of Corollary 2.7 does not require X to be a frame, only

a fundamental set. However, the simple argument for the univariate case (that appears in p. 978 of

[D1]) applies only to the case when denX is rational (which is the univariate counterpart of what we

call here compressible PWH systems, see §4, particularly Corollary 4.7). The original proof of this

result for a general low-density invoked involved results from [R]. Since the completion of the present

paper, several, relatively elementary proofs of this phenomenon were brought to our attention (cf.

[RaS], [J], [DLL]). In particular, [RaS] establishes a general low-density result, without assuming

X to be a frame and without assuming the modulation-shift lattice to be disconjugate (i.e., of the

form K × L).

The argument that was used to prove Corollary 2.7 easily implies the following further estimate.

Proposition 2.9. Let Y be the frame dual to the PWH fundamental frame X. Let ϕ be the

generator of the frame X, and ψ the generator of Y . Then,

∑

y∈Y \ψ

|〈ϕ, y〉|2 ≤ 1 − (denX)−2.

2.2. Fiberization and the Gramian matrices

Let X = (K,L)Φ be a WH system (Φ, say, finite). Then, X is K-shift-invariant, in the sense

that each of the shift operators

Ek : f 7→ f(· + k), k ∈ K
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maps X 1-1 onto itself. The reference [RS1] suggests, for a general K-shift-invariantX, the study of

TX and T ∗
X via a decomposition process of these two operators into a collection of “fiber” operators

that are simpler for analysis. For that purpose, we consider the set X as the collection of all

K-shifts of the set

LΦ := {elϕ : ϕ ∈ Φ, l ∈ L}.

The basic object in the approach of [RS1] was the pre-Gramian matrix J := JX . In the

present case (i.e., of the WH system X), the pre-Gramian is an infinite matrix with L2-valued

entries, whose rows are indexed by K̃, whose columns are indexed by LΦ, and whose (k, (ϕ, l)) ∈

(K̃ × LΦ)-entry is

|K|−1/2ϕ̂(· + k + l).

We let J(w) be the evaluation of J at any w ∈ IRd. Taking a standard matrix conjugation of J , we

obtain the formal adjoint J∗. We use the collection (J(w))w∈IRd for the representation of TX , and

the collection (J∗(w))w∈IRd for the representation of T ∗
X .

Already at this initial stage, we are ready to present the most crucial observation concerning

the duality principle. With X the PWH set (K,L)ϕ, let us compute the w-value of the pre-Gramian

JX∗(w) of the adjoint X∗ = (L̃, K̃)ϕ: the entries of the pre-Gramian of this adjoint are

|L̃|−1/2ϕ̂(w + l + k), (l, k) ∈ (L, K̃), w ∈ IRd.

It follows, thus, that, for every w ∈ IRd,

(2.10) JX∗(w) =
|K|1/2

|L̃|1/2
J∗
X(w) = (denX)−1/2J∗

X(w).

Thus, roughly speaking (that is, ignoring the unitary transformation of taking complex conjugation,

and ignoring the multiplicative constant (denX)−1/2), the pre-Gramian of X∗ equals pointwise to

the adjoint pre-Gramian of X; this is the essence of the duality principle.

At this point, the discussion can be advanced in two different complementary ways. The first,

which we present here, fully invokes the fiberization results of [RS1]. Roughly speaking, these

results imply that the basic norm bounds of TX can be computed via a separate inspection of each

fiber JX(w) of JX . This, when combined with (2.10), will provide an immediate proof for almost

all statements in Theorem 2.2. The other approach aims at direct connections between the two

operators TX∗ and T ∗
X , and is presented in §3.2.

Though the entire study of the decomposition idea can be performed by the pre-Gramian

and its adjoint, we found it more convenient to express the various results in terms of Hermitian

matrices. That is, the matrix

G(w) := GX(w) := J∗(w)J(w) = |K|−1(
∑

k∈K̃

ϕ̂(w + k + l)ϕ̂′(w + k + l′))(ϕ,l),(ϕ′,l′)∈LΦ
,

and

G̃(w) := G̃X(w) := J(w)J∗(w) = |K|−1(
∑

l∈L,ϕ∈Φ

ϕ̂(w + k + l)ϕ̂(w + k′ + l))
k,k′∈K̃

.
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We refer to G as the Gramian of X and to G̃ as the dual Gramian of X. The entries of both

matrices can be easily shown to be locally integrable, hence, in particular, are well-defined a.e..

In what sense do the Gramian matrices represent the operators T ∗
X and TX? The

detailed discussion of this point is provided in §3.2. An example of that representation is as follows:

let X = (K,L)ϕ and Y = (K,L)ψ be two PWH systems. Let Uw be the map that assigns to

f ∈ L2(IR
d) the K̃-valued sequence f̂(w + K̃). Then, for every f ∈ L2(IR

d) and a.e. w ∈ IRd,

(2.11) Uw(TY T
∗
Xf) = (JY J

∗
X)(w)(Uwf).

In words, the value of the Fourier transform of TY T
∗
Xf at w is the 0th entry of (JY J

∗
X)(w)f̂(w+K̃).

Discussion: observing the Wexler-Raz identity via fiberization. The Wexler-Raz identity

from [WR] is a key ingredient in the approach taken in [DLL]. A complete proof of that identity

via our fiberization techniques is given in §3.3. The essence of that analysis can already presented

now: let X,Y,Z be three PWH systems generated by ϕ,ψ, g respectively and sharing the same

shift lattice K and modulation lattice L. Then, the WR identity says that

TψT
∗
g ϕ = (denZ)Tϕ∗T ∗

g∗ψ,

where we have denoted each lattice by its generator; i.e., Tψ is the synthesis operator of Y , Tϕ∗ is

the synthesis operator of X∗, etc.

In order to provide a taste of this identity, we transform it to the Fourier domain, and employ

(2.11). Ignoring all normalization constants as well as possible complex conjugations, we obtain

(since, up to multiplicative constants, Jϕ∗ = J∗
ϕ and J∗

g∗ = Jg)

Jψ(w)J∗
g (w)Uwϕ = J∗

ϕ(w)Jg(w)Uwψ.

That last identity follows from the obvious relation

Jψ(w)J∗
g (w)Jϕ(w) = J∗

ϕ(w)Jg(w)Jψ(w),

since Uwf is the 0th column in the matrix Jf (w).

We turn now to a brief discussion of the core of the [RS1] observations. For that, we consider

each (more precisely, almost each) G(w) as a densely defined operator from `2(LΦ) into itself, and,

similarly, each G̃(w) as a densely defined operator from `2(K̃) into itself. Whenever the relevant

operator is well-defined and bounded, it is extended by continuity to the entire `2(LΦ) (`2(K̃)). The

inverse operators G(w)−1, G̃(w)−1, and the pseudo-inverse operators G(w)−1
| , G̃(w)−1

| are defined

in the same way described in the introduction.

The pertinent result here, which is stated below, follows from Corollary 3.2.2, Theorem 3.3.5

and Theorem 3.4.1 of [RS1].
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Theorem 2.12. Let X be a WH system as above, associated with a Gramian G and a dual

Gramian G̃. Consider the following functions (if G(w) is the 0-operator, we define its partial

inverse to be 0, too. Also, if the underlying operator is not well-defined or is unbounded, its norm

equals ∞, by definition):

G := GX : IRd → IR+ : w 7→ ‖G(w)‖ ,

G∗ := G∗
X : IRd → IR+ : w 7→ ‖G̃(w)‖ ,

G− := G−
X : IRd → IR+ : w 7→ ‖G(w)−1‖ ,

G∗− := G∗−
X : IRd → IR+ : w 7→ ‖G̃(w)−1‖ ,

G−
| := G−

|X : IRd → IR+ : w 7→ ‖G(w)−1
| ‖ ,

G∗−
| := G∗−

|X : IRd → IR+ : w 7→ ‖G̃(w)−1
| ‖ .

Then, the following is true.

(a) The following conditions are equivalent:

(i) X is a Bessel system.

(ii) G ∈ L∞.

(iii) G∗ ∈ L∞.

Furthermore, ‖T‖2 = ‖T ∗‖2 = ‖G‖L∞
= ‖G∗‖L∞

.

(b) Assume X is a Bessel system. Then the following conditions are equivalent.

(i) X is a frame.

(ii) G−
| ∈ L∞.

(iii) G∗−
| ∈ L∞.

Furthermore, ‖T−1
| ‖2 = ‖T ∗

|
−1‖2 = ‖G−

| ‖L∞
= ‖G∗−

| ‖L∞
.

(c) Assume X is a Bessel system. Then the following conditions are equivalent:

(i) X is a Riesz basis.

(ii) G− ∈ L∞.

Furthermore, ‖T−1‖2 = ‖G−‖L∞
.

(d) Assume X is a Bessel system. Then the following conditions are equivalent:

(i) X is a fundamental frame.

(ii) G∗− ∈ L∞.

Furthermore, ‖T ∗−1‖2 = ‖G∗−‖L∞
.

(e) Assume X is a frame. Then the following conditions are equivalent:

(i) X is a tight frame.

(ii) G∗ = G∗−
| a.e.

(iii) G = G−
| , a.e.

If X is fundamental, the last three conditions are also equivalent to:

(iv) G∗ = G∗− a.e.

(f) Assume X is a Riesz basis. Then the following conditions are equivalent:

(i) X is orthogonal.

(ii) G = G− a.e.

Since taking complex conjugation is certainly a unitary operation, we conclude from (2.10)

that

G∗
X = (denX)GX∗ ,
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G∗
X

− = (denX)G−
X∗ ,

etc. Parts (a,c,e) of Theorem 2.2 then follow from these relations when combined with the various

assertions of Theorem 2.12. As mentioned before, parts (d,f) of Theorem 2.2 follow from (a,c,e),

and, finally, a direct proof of (b) is given in §3.2.

We now prove Theorem 2.3. The basic idea behind the proof is relatively simple, and supports

a broader claim. To begin with, if Y = (K,L)ψ is the dual frame of X = (K,L)ϕ, then the

two operators TXT
∗
Y and T ∗

Y TX are orthogonal projectors, implying that the corresponding pre-

Gramian products JXJ
∗
Y and J∗

Y JX are orthogonal projectors, too. At this point our decomposition

techniques are employed: the analysis part of Lemma 4.1 of [RS1] asserts that almost each of

the corresponding fiber operators is an orthogonal projector, (2.10) then converts that property

to the fibers of the corresponding adjoint systems, and the synthesis part of that Lemma 4.1 is

then invoked to conclude that (up to the right multiplicative constant) T ∗
X∗TY ∗ and TY ∗T ∗

X∗ are

orthogonal projectors. However, that, in general, does not imply that Y ∗ is the dual frame of X∗,

until one verifies that X∗ and Y ∗ span the same subspace of L2(IR
d) (cf. Corollary 1.3.9 of [RS1]).

The fact that X∗ and Y ∗, indeed, span the same space follows from the fact that the kernels of the

synthesis operators of two dual systems (viz. X and Y ) are identical (Proposition 1.3.7 of [RS1]).

However, the entire argument sketched above, including all missing details, had already been

detailed in Corollary 4.4 of [RS1], which, as a matter of fact, was tailored there for the proof of

Theorem 2.3. All we need here is to carefully compute the constants that arise when converting

the shift-invariant setup of that corollary from the lattice ZZd to general lattices.

Proof of Theorem 2.3. With ψ = RXϕ the generator of the frame dual to X, set ψ0 := (denX)ψ,

and Y := (L̃, K̃)ψ0 . Our objective is to show that Y is the dual frame of X∗.

The basis of the duality principle is the identification of JX∗ as (denX)−1/2J∗
X . With RX the

dual frame of X, our definition of ψ0 and Y imply also that

JY = (denX)1/2J∗
RX .

This establishes the relation we need for the application of Corollary 4.4 of [RS1], with the following

additional remark: the corollary assumes the underlying systems to be ZZd-shift-invariant, hence

requires relations such as JXJ
∗
RX = J∗

X∗JY . Though our systems are K- or L̃-shift invariant, the

same relation should still be required (i.e., without any normalization factors; this is due to the fact

that we use throughout normalized pre-Gramians). We had normalized ψ0 exactly for that purpose,

and consequently obtain the relations “just right” (save an extra harmless complex-conjugation).

With these clarification in hand, we invoke the above-mentioned Corollary 4.4 to obtain that,

indeed, Y is the dual frame of X∗.

Remark. Here is, for a fundamental X, the argument that proves Remark 2.4: Y is a dual system

for the fundamental X if and only if TXT
∗
Y = id if and only if JX(w)J∗

Y (w) = id for a.e. w. A

similar chain for the adjoint systems, together with (2.10) then completes the proof.
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2.3. Gramian analysis: oversampling

By Gramian analysis we mean any method that studies the WH system X := (K,L)Φ via its

Gramian and dual Gramian fibers without transforming these fibers any more.

For example, one may attempt to estimate the frame bounds of a fundamental X by computing

the norm and inverse norm of each fiber G̃(w) of the dual Gramian. That, however, may appear to

be impractical: after all G̃(w) is still a matrix of infinite order, hence represents an operator that,

albeit much simpler than T , is not that transparent for analysis.

However, if one aims at estimating (rather then computing exactly) the frame bounds of X,

then the Gramian matrices provide a convenient venue for it. For example, one may compute the

`1-norm of a typical row of G̃(w), and then takes the maximum over all possible rows and all fibers

G̃(w). The result, in view of Theorem 2.12, bounds the upper frame bound from above. In fact, it

is easy to perform this computation to obtain that, with X = (K,L)ϕ,

|K| ‖T ∗
X‖2 ≤ ‖

∑

k∈K̃

|
∑

l∈L

Ek+lϕ̂ Elϕ̂|‖L∞(IRd).

The detailed derivation of the various estimates on the frame bounds is found in §3.4 (in

particular, Theorem 3.21 and Theorem 3.27). Since results analogous to some of those statements

can be found in [D1] and in [TO2], it is worth mentioning here a difference between the results in the

aforementioned references and the estimates provided by Gramian analysis. That difference may

be easily understood by the following illustration: suppose that (fi)i∈I is a collection of functions

defined on some common domain A. Then, in general, the condition

B1 :=
∑

i∈I

sup |fi| <∞,

is stronger than the condition

B2 := sup
∑

i∈I

|fi| <∞.

Furthermore, one usually has B2 < B1. The results and estimates of [D1] and [TO2] are based on

the finiteness and “smallness” of quantities defined as B1 above, while our results below are based

on quantities defined similarly to the number B2 above, and thus are finer than their univariate

counterparts in the literature.

An interesting application of Gramian analysis, that is fully detailed here, is connected to the

idea of oversampling, when one increases the density of X in order to stabilize the system. This

idea appears, for example, in [FG] and [D1] (see also [D2]), and its particular implementation here

is as follows: let X = (K,L)ϕ be a WH-system. Suppose that we fix L and ϕ, but vary the volume

of K. As K becomes denser, X is more likely to become a frame. This prediction is nicely reflected

in the dual Gramian: as K becomes denser, K̃ become sparser; thus, while the diagonal entry

of any row of |K|G̃(w), is independent of the choice of K, the 1-norm of the off-diagonal entries

of this row is sensitive to the sparsity of K̃. Specifically, if ϕ̂ decays reasonably fast (i.e., if ϕ is

smooth enough), we expect this `1-norm to decay to zero, (uniformly so over all rows and fibers).

Analogously, if ϕ is nicely localized, we may switch from (K,L)ϕ to (L,K)
ϕ̂

(hence will oversample
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the modulations rather than the shifts). So, roughly speaking, under some basic conditions on

the smoothness (decay) of ϕ, we should be able to obtain a frame from the Bessel system X by

increasing the density of K (L, respectively). A special result in this direction follows (we present

only the PWH-version of this result; the extension to general WH systems is notational). In this

result, as well as in other results of this section, we use the notation

β̂(s) := β̂L(s) := ‖
∑

l∈L

El(ϕ̂ Esϕ̂)‖L∞(IRd).

Theorem 2.13. Let X := (K,L)ϕ be a Bessel system. Assume that

(a) The sequence {β̂(s)}
s∈K̃

is summable (i.e., lies in `1(K̃)).

(b) The shifts {ϕ(· − l)}
l∈L̃

form a Riesz basis (respectively, a frame) with Riesz (frame) bounds

A and B.

Then, for all sufficiently large integer n, the PWH system Xn := (K/n,L)ϕ is a fundamental frame

(frame, respectively). Furthermore,

limn→∞
‖TXn

‖2

n
= denX B, limn→∞

‖TXn|
−1‖−2

n
= denX A.

Proof: We prove only the case when F := {ϕ(· − l)}
l∈L̃

is a Riesz basis. For that, set

A(s, ·) :=
∑

l∈L

El(ϕ̂ Esϕ̂).

It is well-known (cf. e.g. [RS1], [BW]), that F being a Riesz basis (or frame) is equivalent here

to the following two conditions: (i): β̂(0) < ∞ (which is equivalent to F being a Bessel system),

and (ii): α̂(0) := ess infIRd A(0, ·) > 0. (for frame: α̂(0) := ess infσ(F ) A(0, ·) > 0, where σ(F ) is

the spectrum of F ; cf. [RS1] for details). It is furthermore known that the frame bounds of F are

B = ‖TF ‖
2 = β̂(0)/|L̃| and A = ‖TF

−1‖−2 = α̂(0)/|L̃|.

DefineKn := K/n. Then, K̃n = nK̃, and hence, since β̂|
K̃

, is summable, cn := ‖β̂‖
`1(K̃n\0)

→ 0

as n→ ∞. By Theorem 3.21,

‖TXn
‖2

n
≤

(β̂(0) + cn)

n|Kn|
= |L̃||K|−1(‖TF ‖

2 + |L̃|−1cn) → (denX)‖TF ‖
2 = (denX)B.

Further, the same theorem provides the simpler estimate

‖TXn
‖2

n
≥

β̂(0)

n|Kn|
= (denX)B,

and the first claim is thus established.

We now prove the other claim. Choosing n large enough, we can guarantee that (α̂(0)−cn) > 0.

Theorem 3.27 then implies that Xn is a fundamental frame and that

‖TXn

−1‖−2

n
≥

(α̂(0) − cn)

n|Kn|
→ |L̃||K|−1A = (denX)A.
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Again, the converse inequality is straightforward. By the definition of α̂(0) we can find, for any

ε > 0, a set of positive measure Ωε such that A(0, w) < α̂(0) + ε for every w ∈ Ωε. Since

|Kn|
−1A(0, w) is a diagonal element of G̃Xn

(w), (regardless of the value of n), we conclude that

G∗−
Xn

≥ |Kn|(α̂(0) + ε)−1 on Ωε. By letting ε→ 0, we obtain

n‖TXn|
−1‖2 = n‖G∗−

Xn
‖
L∞

≥ |K|/α̂(0) = ((denX)A)−1.

The theorem suggests the construction of “snug frames” (Daubechies’ terminology, meaning

that the frame is “almost” tight) by “going to the limit” with a smooth orthonormal system: one

starts with an orthonormal system F := {ϕ(· − j)}j∈ZZd . If ϕ̂ decays fast enough, one expects

the function β̂ZZd to be summable. This means that for almost every lattice K, {β̂ZZd(k)}
k∈K̃

is

summable. By taking X := (K/n,ZZd)ϕ for sufficiently large n, one obtains an “almost tight” frame

for L2(IR
d). If F is “merely” tight frame, the same procedure applies, only that the fundamentality

of X is lost.

As alluded to before, an alternative construction applies to functions which decay nicely, but,

say, are not very smooth. In that case, one requires {ϕ̂(· −α)}α∈ZZd to be orthonormal, defines the

function β with respect to ϕ instead of ϕ̂, and proceeds by oversampling the modulations rather

than the translations. Again, the construction in [D1] can be viewed as a particular instance of

that strategy. Indeed, in case d = 1, the following result is intimately related to Theorems 2.5 and

2.6 of [D1].

Theorem 2.14. Let X := (K,L)ϕ be a Bessel system. Define

β(s) := βK(s) := ‖
∑

k∈K

Ek(ϕEsϕ)‖L∞(IRd).

Assume that

(a) The sequence {β(s)}
s∈L̃

is summable (i.e., lies in `1(L̃)).

(b) The K̃-modulations of ϕ form a Riesz basis (a frame), with Riesz (frame) bounds A and B.

Then, for all sufficiently large integer n, the PWH system Xn := (K,L/n)ϕ is a frame (which is

fundamental in the Riesz case). Furthermore,

limn→∞
‖TXn

‖2

n
= denX B, limn→∞

‖TXn|
−1‖−2

n
= denX A.

We also remark that some improvements are available in case β̂L (respectively, βK) satisfies

slightly better decay conditions than the mere assumption β̂L ∈ `1(K̃) (respectively, βK ∈ `1(L̃)).

For example, if β̂L (respectively, βK) is majorized by a radially symmetric non-increasing summable

function β̂′ (respectively, β′), then it is easy to see that for any lattice K, (respectively, L) and for

sufficiently large positive (not necessarily integer) n, the system (K/n,L)ϕ (respectively, (K,L/n)ϕ)

is a frame.
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2.4. Zak transform analysis

The Gramian analysis is crude in the sense that, generally speaking, it fails to take into

account possible cancellations in the application of the operators G(w) and G̃(w). However, there

are cases when the Gramian G(w) and the dual Gramian G̃(w) are intimately connected with a

finite collection of convolution operators, and, in such cases, the Gramian matrix norms can be

more accurately computed via the symbols of the underlying convolution operators. In this section

we overview this approach, and provide the complete details in §4. The Zak transform enters the

discussion naturally, as the symbol of the relevant convolution operator. As already mentioned in

the introduction, the reference [ZZ] contains, in the univariate setup, results which are equivalent

to some of the results obtained here in this direction.

In the context of the duality principle, we discussed various types of WH systems that admit

special properties, for example, a self-adjoint system. Zak transform analysis leads to a further,

more systematic, classification of WH systems as follows:

(a) A PWH self-adjoint system, X = X∗. In this case, the Gramian/dual Gramian fiber operator

is a convolution operator. A single function, the symbol of that convolution operator, can then

be used to analyse completely the “basis” properties of X.

(b) A WH system X = (K,L)Φ that is self-adjoint in the sense that K̃ = L. The Gramian fibers

are now shown to be a vector of convolution operators: a row vector in the dual Gramian case,

and a column vector in the Gramian case. “Frame properties” of X can still be analysed here

with the aid of a single function (viz., the sum of squares of symbols).

(c) A sup-adjoint PWH system X. By definition, this means that X∗ ⊂ X (i.e., K̃ ⊂ L; in

one dimension, this is the case of integral density). This system can be observed to be a

special case of the systems discussed in (b). In fact, the same applies to sup-adjoint system

generated by several functions: in all these cases the dual Gramian can be compressed into a

single function, a function which, in a univariate setup, was already put into good use in [D1]

(being the way Daubechies derives her “exact bounds”, cf. p. 982 of [D1]). Due to the duality

principle, the analysis of PWH sup-adjoint systems extends to their adjoint systems, termed

here as sub-adjoint.

(d) Compressible WH systems. This is the most general case our Zak transform analysis

applies to. It is defined as the case when the lattice K̃ ∩ L has a finite index in L; in one

dimension this is equivalent to rational density. In this case, the Gramian and dual Gramian

fibers are shown to be matrix-valued convolution operators. The order of the relevant matrix

is the index of K̃ ∩ L in L (respectively, in K̃) for the Gramian operator (respectively, for the

dual Gramian operator).

In the rest of this subsection, we outline the analysis of sup-adjoint systems. The extension

of these observations to compressible WH systems is discussed in §4. Note that the sup-adjoint

assumption L̃ ⊂ K implies, in the PWH case, that K̃ ⊂ L, implying thereby that X∗ = (L̃, K̃)ϕ ⊂

(K,L)ϕ. Thus, indeed, the condition X∗ ⊂ X is equivalent to L̃ ⊂ K. Note that denX here is the

index of L̃ in K, hence is an integral number. In fact, in one dimension sup-adjoint systems are

characterized by their integral density.
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Example. Assume K = ZZd. Then the condition L̃ ⊂ ZZd is equivalent to the condition that L

is a superset of 2πZZd. Therefore, (ZZd, L)ϕ is sup-adjoint if and only if L is superlattice of 2πZZd.

Thus, all PWH systems of the form (ZZd, 2πZZd/n)ϕ, n integer, are sup-adjoint.

Given a sup-adjoint X = (K,L)Φ, we have that K̃ is a subgroup of L. We set

Γ

for (any representer set of) the finite quotient group L/K̃. Introducing the set

ΓΦ := {Mγϕ : ϕ ∈ Φ, γ ∈ Γ},

we see that

(2.15) (K,L)Φ = (K, K̃)ΓΦ .

This means that every sup-adjoint system X can be viewed as a WH system (K, K̃)Ψ. Hence we

assume without loss that X = (K, K̃)Φ.

Let us inspect the pre-Gramian J∗
X of such X. Here, the rows of J∗

X are indexed by Φ × K̃.

We organize J∗
X in row-blocks (ϕ, K̃), ϕ ∈ Φ, and denote the corresponding block by J∗

ϕ. Then, we

observe that, for any fixed w ∈ IRd, the rows of J∗
ϕ(w) comprise the set of all K̃-shifts of sequence

aϕ,w : K̃ → C : k̃ 7→ |K|−1/2ϕ̂(w + k̃).

Consequently (with possible some minor re-indexing), the map

J∗
ϕ(w) : `2(K̃) → `2(K̃) : c 7→ J∗

ϕ(w)c

is the convolution

c 7→ aϕ,w ∗ c.

This implies that the entire map J∗
X(w) is a vector-valued convolution operator:

(2.16) J∗
X(w) : `2(K̃) → `2(Φ × K̃) : c 7→ (aϕ,w ∗ c)ϕ∈Φ.

It easily follows from that that the operator JX(w) can be identified with the convolution operator

JX(w) : `2(Φ × K̃) → `2(K̃) : (cϕ)ϕ∈Φ 7→
∑

ϕ∈Φ

a∗ϕ,w ∗ cϕ,

where a∗ϕ,w is the sequence t 7→ aϕ,w(−t). Altogether, we obtain the following.

Proposition 2.17. Let X be the self-adjoint WH system (K, K̃)Φ, and Φ ⊂ L2(IR
d) be finite.

Then, for each w ∈ IRd the dual Gramian operator G̃(w) is a convolution operator of the form

G̃(w) : `2(K̃) → `2(K̃) : c 7→
∑

ϕ∈Φ

aϕ,w ∗ a∗ϕ,w ∗ c.
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Theorem 2.12 reduces the study of various properties of X to a corresponding study of the

fiber operators (G̃(w))w. In the present case, G̃(w) is a convolution operator, and therefore all

properties and quantities in question may be studied via the symbol of the convolution, i.e., its

Fourier series. In the present case, we need to compute the symbol of

(2.18)
∑

ϕ∈Φ

aϕ,w ∗ a∗ϕ,w.

The relevant symbol is a multivariate variant of the Zak transform, a notion that we now

define. First, let L be some lattice in IRd. Let I be any linear isomorphism between L and its dual

L̃ (e.g., choose a basis for L, map it to its dual basis in L̃ and extend the map by linearity). Then

ZLf(w, t) :=
∑

k∈L

f(w + k)eIk(t), f ∈ L2(IR
d).

When considering ZLf as defined on ΩL×ΩL, ZL is an isometry from a dense subspace of L2(IR
d)

into a dense subspace of L2(ΩL × ΩL) (with the latter being normalized appropriately), hence

extends to an isometry between these two spaces. This fact is well-known in the univariate case

(cf. p. 976 of [D1]) and extends to the multivariate case with no difficulty. The details of the map

I will be insignificant, and we will suppress it and write

ZLf(w, t) =
∑

k∈L

f(w + k)e
k̃
(t).

As one now easily computes, the symbol of (2.18) is the function

|K|−1
∑

ϕ∈Φ

|
∑

k∈K

ϕ̂(w + k̃)ek|
2 = |K|−1

∑

ϕ∈Φ

|ZK̃ϕ̂(w, ·)|2.

Before summarizing, we convert the above expression from the self-adjoint case to the sup-adjoint

case. In the latter situation, the set Φ is replaced by the set ΓΦ, Γ := L/K̃ (cf. (2.15)) and therefore

the symbol becomes

|K|−1
∑

ϕ∈Φ

∑

γ∈L/K̃

|ZK̃ϕ̂(w + γ, ·)|2 =: Z̃X(w, ·).

Corollary 2.19. LetX be a sup-adjoint system (K,L)Φ. Then, for a.e. w ∈ IRd, the dual Gramian

fiber G̃(w) is a convolution operator with symbol

Z̃X(w, ·) := |K|−1
∑

ϕ∈Φ

∑

γ∈L/K̃

|ZK̃ ϕ̂(w + γ, ·)|2.

Standard properties of convolution operators can now be combined with with Theorem 2.12,

to obtain the following result concerning sup-adjoint X. The univariate counterpart of (a) and (b)

of this result is known and can be found e.g., in [D1].
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Theorem 2.20. Let X = (K,L)Φ, Φ ⊂ L2 finite, K̃ ⊂ L. Set Γ := L/K̃, and denote

Z̃X := |K|−1
∑

ϕ∈Φ

∑

γ∈Γ

|ZK̃(Eγ ϕ̂)|2.

Then the following is true:

(a) X is a Bessel system if and only if Z̃X ∈ L∞(IRd × IRd). Furthermore, ‖TX‖2 = ‖T ∗
X‖2 =

‖Z̃X‖L∞
.

(b) Assume X is Bessel. Then X is a fundamental frame if and only if Z̃X is bounded below (away

from zero). Furthermore, ‖T ∗
X

−1‖−2 = ‖1/Z̃X‖L∞
.

(c) Assume that X is Bessel. Then X is a frame if and only if Z̃X is bounded below on its support.

Furthermore, ‖TX|
−1‖−2 = ‖T ∗

X|
−1‖−2 = ‖1/Z̃X‖L∞(σ), with σ the relevant support.

The above analysis also implies that, for a sup-adjoint X = (K,L)Φ, the operator TXT
∗
X is

realized on the “Zak transform domain” as the multiplication

(2.21) L2 3 f 7→ Z̃XZ
K̃f.

To make sure, deriving the last theorem directly from that observation is quite straightforward,

in stark contrast with the amount of work required for proving Theorem 2.12 (which we invoked

in our approach here). However, having already Theorem 2.12 at our disposition, our argument

contributes further to the understanding of the connection between the Gramian analysis and the

Zak transform analysis.

Since, in our Gramian analysis, we did not state results concerning the fundamentality of X,

we had no result of this kind to transport into the Zak transform analysis. Nevertheless, it is easy

to observe from (2.21) that X is fundamental if and only if Z̃X vanishes almost nowhere; further,

the L2-functions whose Zak transform is supported on the complement of supp Z̃X comprise the

orthogonal complement of X. Also, since the frame operator TXT
∗
X is realized on the Zak transform

domain as multiplication by Z̃X , the dual frame operator is, necessarily, division by the same

function, implying that the Zak transform of the generating functions of the dual frame is given by

ZK̃ ϕ̂/Z̃X ,

a well-known phenomenon for univariate fundamental frames. Here, 0/0 := 0. More discussion

along these lines is given near the end of this section, when we compare sub-adjoint systems to PSI

spaces (in this regard, compare, also, (b) in the corollary below to Theorem 2.2.16 of [RS1]).

Corollary 2.22. Let X be the sup-adjoint WH system (K,L)Φ, with dual Zak function Z̃X , whose

support is σ(X). Then:

(a) The closed span of X consists of all L2-functions whose Zak transform ZK̃ is supported in

σ(X).

(b) Assuming X to be a frame, its dual frame is of the form (K,L)Ψ, where, for each ψ ∈ Ψ, ZK̃ψ

is supported on σ(X) and defined there by

ZK̃ψ := (ZK̃ϕ)/Z̃X .
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In case Φ is a singleton, the duality principle (i.e. Theorem 2.2) allows us to obtain several

useful results with respect to sub-adjoint systems, i.e., systems of the form (K,L)ϕ where L ⊂ K̃

(or, equivalently, PWH systems X that satisfy X ⊂ X∗). Here, X∗ is sup-adjoint, and the function

Z̃X∗ , written directly in terms of X (rather than in terms of X∗) is

|L̃|−1
∑

δ∈∆

|ZL(Eδϕ̂)|2,

with

∆ := K̃/L.

The duality principle can then be used to convert Theorem 2.20 to the language of sub-adjoint

systems, with the relevant function being

ZX := (denX)Z̃X∗ = |K|−1
∑

δ∈∆

|(ZLϕ̂)(· + δ, ·)|2.

We omit this restated result.

Discussion: Sub-adjoint systems as the WH analogue of PSI spaces. A PSI (=principal

shift-invariant) space S(ϕ) is, by definition, the L2-closure of the shifts of the L2-function ϕ. The

study of F := (Eαϕ)α∈ZZd as a potential basis for S(ϕ) is the simplest among all studies of shift-

invariant bases (cf. [RS1], [BW] and the references therein). Up to some technicalities, a function

f ∈ S(ϕ) is identified by the restriction of its Fourier transform to [0, 2π]d, hence the rest of its

Fourier transform values are somewhat “redundant” information. Closely related to that is the fact

that each of the “fiber spaces” (obtained by restricting the Fourier transform of S(ϕ) to a lattice of

the form w+2πZZd) is either one- or zero-dimensional. The Gramian matrix here is of order 1, and

its single entry is the function [ϕ̂, ϕ̂] :=
∑

α∈2πZZd |ϕ̂(·+ α)|2, which simply computes the square of

the norm of all fibers of ϕ. It follows that, on the frequency domain, the relevant operator T ∗
FTF

is realized as the multiplication operator

`2(TT
d) 3 τ 7→ [ϕ̂, ϕ̂]τ ∈ L2(IR

d).

The support of [ϕ̂, ϕ̂] is the spectrum of S(ϕ) (i.e., it is the set of all one-dimensional fibers) and

is useful for finding kerTX and its orthogonal complement.

Analogously, in the case of a sub-adjoint WH X := (K,L)ϕ, a function f in the closed span

of X is essentially identified by the restriction of its Fourier transform to Ω
K̃

+ L. The fibers here

are indexed by Ω
K̃

× Ω
L
, and each fiber space is an one- or zero-dimensional subspace of `2(∆)

(spanned by the evaluation of the pre-Zak vector at the corresponding (w, t)). The operator T ∗
XTX

is realized, on “the Zak transform domain” as multiplication by ZX . We define the WH spectrum

of X to be the support σ(X) ⊂ Ω
K̃

× Ω
L

of ZX . The generator ψ of the dual frame of X can be

found exactly as in the PSI case (cf. (2.2.13) in [RS1]), that is, it can be computed fiber by fiber:

ZLψ̂ := ZLϕ̂/ZX ,
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with the division carried out only on the WH spectrum of X (more precisely, on the L-periodization

of that spectrum; one should be somewhat careful here, since ZLϕ̂ has ΩL×ΩL as its fundamental

domain, while ZX has Ω
K̃

× Ω
L

as its fundamental domain. Thus, these expressions should be

extended to an L-periodic expression in the first argument before the division can take place). The

analogy goes on and on. For example, a suitable unitary transformation which maps `2(X) onto

L2(ΩK̃ × Ω
L
) maps kerTX onto L2(ΩK̃\σ(X),ΩL) (compare with (2.2.8) and its previous display

in [RS1]).

Our final discussion in this section concerns with oversampling and undersampling of WH

systems: Each sup-adjoint system can be realized as the result of oversampling a self-adjoint one,

and each sub-adjoint system can be realized as the result of undersampling a self-adjoint system.

Let X = (K, K̃)ϕ be the self-adjoint system, Y = (K,L)ϕ its sup-adjoint counterpart (that is

K̃ ⊂ L), and Y ∗ the corresponding sub-adjoint. If X is a fundamental frame, then it is trivial

to see that Y is such, too, and hence (by the duality principle, say) that Y ∗ is a Riesz basis. It

is much less obvious to see that if X is a frame (not necessary fundamental), then both Y and

Y ∗ are frames, too; it follows, however, from the analysis of the present subsection. In contrast,

the converse does not follow: thus, while X can be viewed as an oversampled version of Y ∗, the

possible frame property of Y ∗ may be lost during that process. In summary, the “oversampling”

of a sub-adjoint frame does not preserve in general the frame property.

3. Detailed Gramian analysis

3.1. More applications of the duality principle

We first discuss the construction of WH systems generated by compactly supported functions.

We then discuss partial orthogonality relations that are satisfied by tight sup-adjoint systems, and

conclude the section with various miscellaneous observations concerning the connection between a

frame and its dual system.

The duality principle yields a new proof (and in several dimensions) for the “painless construc-

tion of tight WH frames” that was done in [DGM]. For that, suppose that we want to construct

a fundamental frame for L2(IR
d) of the form (K,L)ϕ, ϕ compactly supported. By the duality

principle, this is equivalent to constructing a Riesz basis (L̃, K̃)ϕ. Since ϕ is compactly supported,

we can choose L̃ sufficiently sparse to guarantee that the sets

l + suppϕ, l ∈ L̃

are disjoint. In such case, the task of ensuring that (L̃, K̃)ϕ is a Riesz basis is reduced to ensuring

that Y := (ekϕ)
k∈K̃

is a Riesz basis. Furthermore, if Y is only a frame, then X∗ is a frame, too,

with the same frame bounds, hence X is a frame, though not a fundamental one.

Corollary 3.1. Let X = (K,L)ϕ be a normalized PWH system generated by a compactly sup-

ported function ϕ, and assume that the L̃-shifts of ϕ have pairwise disjoint supports. Then (K,L)ϕ

is a frame if and only if the set Y := (ekϕ)
k∈K̃

is a frame. The frame bounds of X are denX times

the frame bounds of Y . Furthermore, X is fundamental if and only if Y is a Riesz basis, and X is

fundamental and tight if and only if Y is orthonormal.
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As is well-known (and not hard to prove), Y above is a Riesz basis if and only if the function

ϕ̃K := (
∑

k∈K

|ϕ(· + k)|2)1/2

is bounded above and below (i.e., away from 0). Also, (by Theorem 2.2.7 of [RS1]; see also §7 of

[BW]) Y is a frame if and only if ϕ̃K is bounded above and below on its support σY , and the frame

bounds are

(3.2) |K| ‖ϕ̃K‖2
L∞(σY ), and |K| ‖1/ϕ̃K‖−2

L∞(σY ).

This yields, in view of Corollary 3.1, that the frame bounds of X are

(3.3) |L̃|‖ϕ̃K‖2
L∞(σY ), and |L̃|‖1/ϕ̃K‖−2

L∞(σY ).

The computation of the dual frame is straightforward here. Indeed, the orthogonality between

the L̃-shifts of ϕ implies that the function ψ that generates the dual frame of Y generates also the

entire dual frame of X∗. The simplification is then due to the fact that computing the dual frame

of Y is relatively easy (cf. [RS1]. The special case of a Riesz basis is well-known). The generator

ψ of the dual frame of Y is the function

ψ :=
ϕ

|K|ϕ̃2
K

,

with the understanding that 0/0 := 0. This function generates the dual frame of Y , hence the dual

frame of X∗. In view of Theorem 2.3, we obtain that the frame dual to X is generated by

ψ := |L̃|−1 ϕ

ϕ̃2
K

.

We summarize these observations as follows:

Corollary 3.4. Let X = (K,L)ϕ be a normalized PWH (fundamental) system, and assume that

the L̃-shifts of ϕ have pairwise disjoint supports. Then:

(a) X is a frame if and only if the function ϕ̃K is bounded above and away from 0 on its support

σY (with σY = IRd in the fundamental case). Furthermore, the frame bounds of X are

|L̃|‖ϕ̃K‖2
L∞(σY ), and |L̃|‖1/ϕ̃K‖−2

L∞(σY ).

(b) Assuming X to be a frame, the dual frame of X is the system (K,L)ψ, where

ψ := |L̃|−1 ϕ

ϕ̃2
K

.

The analysis is applicable also in case ϕ̂ rather than ϕ is compactly supported. One simply

applies the same arguments to the system (L,K)
ϕ̂

instead of (K,L)ϕ. Thus, for this case, the

K̃-shifts of ϕ̂ are required to have disjoint supports.

We had mentioned before the basic fact that a frame and its dual system fail to satisfy the

bi-orthogonality relations that are satisfied in the Riesz basis case. However, for sup-adjoint PWH

systems X, the bi-orthogonality relations are preserved, though only to a limited extent:
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Theorem 3.5. Every fundamental sup-adjoint (tight) frame X := (K,L)ϕ is a union of the form

(K,L)ϕ = ∪g∈G(K,L)∗g

of (denX)2 Riesz (orthogonal) bases. Here, G ⊂ (K,L)ϕ.

Proof: Let (Xi)i∈I be the cosets of X∗ in X, and, with Y the dual frame of X, let (Yi)i

be the corresponding cosets of Y ∗ in Y . By Theorem 2.3, (denX)Y ∗ is the dual frame of X∗.

Assuming X to be fundamental, we know (from (e) of Theorem 2.2) that the pair (X∗, (denX)Y ∗)

is bi-orthogonal, and from that it easily follows that each pair (Xi, (denX)Yi) also consists of bi-

orthogonal Riesz bases. Since each Xi is of the form g +X∗, g ∈ X, the result for a fundamental

frame follows, while the result for a fundamental tight frame follows from the orthonormality of

X∗ (Theorem 2.2, part (f)).

Example. Suppose that X = (ZZd, 2πZZd/n)ϕ, with n positive integer. Then X∗ = (nZZd, 2πZZd)ϕ,

hence X is indeed sup-adjoint. The cosets of X∗ in X are

(k + nZZd, l/n+ 2πZZd)ϕ, k, l = 1, . . . , n.

A necessary and sufficient condition for X to be a fundamental tight frame is the orthogonality

of the subset (nZZd, 2πZZd)ϕ. In particular, one cannot get a sup-adjoint fundamental tight frame

whose elements are not partially orthogonal in the above sense!

While fundamental frames and fundamental tight frames can be constructed with some ease if

the generator ϕ is known to be either compactly supported or band-limited, such frames can also

be generated by functions which are neither compactly supported, nor band-limited. However, if

the generator ϕ or its Fourier transform ϕ̂ is positive (as is the case with the Gaussian kernel) one

cannot use ϕ to construct a fundamental tight frame. In fact, a slightly more general result is true:

Theorem 3.6. Let ϕ be a generator of a fundamental frame X. Let ψ be the generator of the

dual frame. Then:

(a) If ϕ > 0 a.e., then ψ assumes positive and negative values in a non-trivial way (i.e., on sets of

positive measures).

(b) If ϕ̂ > 0 a.e., then ψ̂ assumes positive and negative values in a non-trivial way.

In particular, if ϕ ∈ L2, and either ϕ > 0 a.e. or ϕ̂ > 0 a.e, then, there exists no PWH fundamental

tight frame generated by ϕ.

Proof: If X = (K,L)ϕ is a fundamental frame, then, by Theorem 2.2, X∗ is a Riesz basis,

and, by Theorem 2.3, ψ is perpendicular to X∗\ϕ. Since this latter set contains functions that are

positive a.e. (of the form Elϕ, l ∈ IRd), it follows that ψ cannot be essentially of one sign. This

proves (a), while (b) follows by switching to the fundamental frame (L,K)
ϕ̂

and invoking (a).
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As Corollary 3.1 already indicates, the last result cannot be extended to functions ϕ which are

only positive on their support. However, the argument used above leads to the following partial

converse of Corollary 3.1.

Corollary 3.7. Let X = (K,L)ϕ be a fundamental tight frame, and assume that ϕ > 0 (respec-

tively, ϕ̂ > 0) a.e. on its support. Then the sets (l+suppϕ)
l∈L̃

(respectively, (k+supp ϕ̂)
k∈K̃

) are

essentially disjoint.

Proof: Since X is fundamental and tight, its adjoint X∗ is orthogonal. Thus, if suppϕ ∩

(l+suppϕ) has a positive measure, the positivity of ϕ implies that 〈ϕ,E−lϕ〉 > 0, and hence l 6∈ L̃.

The argument for ϕ̂ is essentially the same.

Example. If suppϕ = [0, a] and ϕ > 0 on (0, a), then Corollary 3.1 combined with Corollary 3.7

show that (pZZ, qZZ)ϕ is a fundamental tight frame if and only if the following two conditions hold:

(a) aq ≤ 2π.

(b)
∑

j∈ZZ |ϕ(· + jp)|2 is constant.

Finally, we have already commented on the value of Theorem 2.3 for the computation of the

generator of the dual frame of a fundamental frame. We add below some further details in that

direction.

Theorem 2.3, together with the duality principle, allows us to derive the following characteri-

zation of the generator ψ of the dual of a fundamental PWH frame.

Corollary 3.8. Let X = (K,L)ϕ be a fundamental frame. Then the generator ψ of the dual frame

of X is the only function in L2(IR
d) that satisfies the following two conditions:

(a) ψ ∈ ranTX∗ .

(b)
∑

k∈K E
kψEl+kϕ = |L̃|−1δl,0, l ∈ L̃.

Proof: Since X is a fundamental frame, its adjoint X∗ is a Riesz basis. By Theorem 2.3,

(denX)ψ generates the dual basis of X∗ = (L̃, K̃)ϕ. Thus, ψ is characterized by the condition

ψ ∈ ranTX∗ together with the bi-orthogonality conditions

〈ψ,ElMkϕ〉 = (denX)−1δl,0δk,0, (l, k) ∈ L̃× K̃.

This last condition is equivalent to the stated condition (b) (after taking into account the fact that

(denX)−1 = |L̃|−1|K|.)

Remark. Note that condition (a) trivially holds in the tight case. Thus one can easily conclude

from the last result that a normalized fundamental tight frame (K,L)ϕ is characterized by the

condition

(3.9)
∑

k∈K

EkϕEk+lϕ = |K|−1δl,0, l ∈ L̃.

The case discussed in Corollary 3.1 can be identified as a simple instance where condition (3.9)

automatically holds for l 6= 0.
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The result reduces the computation of ψ to solving a bi-infinite linear system of equations.

Under more restrictive conditions on the pair (K,L), we will show in section 4 that the computation

of ψ can be achieved by solving a finite system of linear equations (with function-valued coefficients).

3.2. Unitary relations between the analysis operator of a system and the synthesis

operator of its adjoint

We have not discussed so far the exact meaning of the presentation provided by (J(w))w to

T (and, analogously, by (J∗(w))w to T ∗). A complete discussion of that point (in a more general

setup), including the issue of well-definedness of these operators can be found in §1 of [RS1].

In §2, we had circumvented entirely that point, and invoked instead the ready-to-use Theorem

2.12. However, for the sake of the present development, we need at least a basic grasp of that

representation. All WH systems considered in the present subsection are assumed to be Bessel.

Given an indexed set K, and an open set Ω ⊂ IRd, let

L2(Ω,K)

be the Hilbert space of all functions from Ω to `2(K) which are measurable and square-integrable

(in the sense of [H]). Given a WH system X = (K,L)ϕ, we may identify the space `2(X) with

L2(ΩK̃ , L) with the aid of the unitary map

`2(X) 3 c 7→ U1c,

where

(3.10) U1c(w, l) := ̂c|(K,l)
(w).

Here, ̂c|(K,l)
is the Fourier series of the restriction of c to (K, l), and Ω

K̃
is any fundamental domain

for K̃ (i.e., Ω
K̃

+ K̃ is an essential partition of IRd). We also identify L2(IR
d) with L2(ΩK̃ , K̃) via

the map

(3.11) L2(IR
d) 3 f 7→ U2f,

with U2f(w, k̃) := f̂(w + k̃). Interpreting JX as the operator

JX : L2(ΩK̃ , L) → L2(ΩK̃ , K̃),

defined by (JXτ)(w, ·) := JX(w)τ(w, ·), it follows, [RS1], that

(3.12) U2TX = JXU1,

hence that also

(3.13) U1T
∗
X = J∗

XU2.
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However, it will be erroneous to conclude, in view of the above and (2.10), that we had established

an operator relation between, say, TX∗ and T ∗
X . The reason is that, while, up to a constant, (2.10)

indeed shows that both J∗
X and JX∗ are synthesized from the same fiber matrices, the two operators

differ in their domain and target spaces: while J∗
X acts from L2(ΩK̃ , K̃) into L2(ΩK̃ , L), JX∗ acts

from L2(ΩL, K̃) into L2(ΩL, L). Thus, finding exact connections between the relevant operators is

more subtle than it may look like.

Before we proceed, we sidetrack to list one corollary of the above discussion of independent

interest (though quite unrelated to the present course of development): in the form described above,

it is clear that every space L2(Ω, K̃) ⊂ L2(ΩK̃ , K̃) is an invariant subspace of the operator JY J
∗
X ,

for any Bessel X = (K,L)ϕ and Y = (K,L)ψ. Since the space L2(Ω, K̃) represents all functions

whose Fourier transform is supported on Ω + K̃, we arrive at the following conclusion.

Corollary 3.14. Let X = (K,L)ϕ and Y = (K,L)ψ be any WH Bessel systems. Let σ be a

measurable subset of IRd. Then:

(a) If σ is invariant under K̃-shifts, then the space of all L2-functions whose Fourier transform is

supported on σ is an invariant subspace of TY T
∗
X .

(b) If σ is invariant under L̃-shifts, then the space of all L2-functions supported on σ is an invariant

subspace of TY T
∗
X .

Proof: The first claim was proved in the paragraph preceding the corollary (the K̃-

invariance of σ implies the existence of Ω ⊂ Ω
K̃

with σ = Ω + K̃). The second claim follows

by an application of the first to X̂ := (L,K)
ϕ̂
.

It will be technically more convenient to state our subsequent results in terms of the modified

adjoint

X ′ := (L̃, K̃)ϕ∗

with ϕ∗ : t 7→ ϕ(−t). The reason is that JX′ = JX∗ , and hence the connection between J∗
X and

JX′ is somewhat nicer than (2.10):

(3.15) JX′(w) = (denX)−1/2J∗
X(w).

This implies that the details of unitary connections that we are going to discuss below are slightly

simplified if we replace X∗ by X ′.

We have just mentioned the main difficulty in establishing operator identities that connect the

X and X∗ (or X ′). This difficulty disappears if we assume X to be self-adjoint. Indeed, in this case

L = K̃, hence the pre-Gramian identities (2.10), (3.15) can be interpreted as identities between

operators. Thus, in the self-adjoint case, (2.10), (3.12) and (3.13) imply the following:

Theorem 3.16. Let X be a self-adjoint WH system. Then there exists an isometry U : L2(IR
d) →

`2(X) such that

T ∗
X = UTX′U.

Consequently, the operators TXT
∗
X and T ∗

X′TX′ are unitarily equivalent.

In fact, the previous discussion reveals a possible operator U . It is composed of the Fourier

transform, followed by T ∗
Y , when Y = (K,L)χ, and χ the characteristic function of Ω

K̃
= Ω

L
.
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In more general setups, it is easier to derive connections between T ∗
X and TX′ if one is will-

ing to restrict the domain of these operators. Specifically, let Ω be any measurable subset of

Ω
K̃
∩ Ω

L
. Treating L2(Ω,L) (with L either K̃ or L) as a subspace of L2(ΩL,L), and recalling the

isometry between this latter space and L2(IR
d) (cf. (3.11)), one can find a subspace H := HΩ,L

of L2(IR
d) (which is the space of all functions with Fourier transform supported on Ω + L) such

that U2,LH = L2(Ω,L), with U2,L defined similarly to (3.11). In the same manner, following on

the definition of U1, (3.10), we may find subspaces SΩ,L of `2(X
′) and S

Ω,K̃
of `2(X), together

with associated unitary maps U1,L (respectively U
1,K̃

) that map SΩ,L (respectively, S
Ω,K̃

) onto

L2(Ω, K̃) ⊂ L2(ΩL, K̃) (respectively, L2(Ω, L) ⊂ L2(ΩK̃ , L)). Finally, we denote by I
K̃

the “iden-

tity map” that transforms L2(Ω, K̃) from a subspace of L2(ΩK̃ , K̃) to a subspace of L2(ΩL, K̃).

Thus we have the chain of isometries

H
Ω,K̃

−→
U

2,K̃

L2(Ω, K̃) −→
I

K̃

L2(Ω, K̃) −→
U∗

1,L

SΩ,L.

Setting

V
K̃

:= U∗

1,L
I
K̃
U

2,K̃
,

we conclude that V
K̃

is an isometry between H
Ω,K̃

and S
Ω,L

. In a similar fashion, one can construct

an isometry V
L

= U∗

1,K̃
I
L
U

2,L
between H

Ω,L
and S

Ω,K̃
.

The key point in all this development is that, on L2(Ω, K̃), (2.10) gives rise to the rigorous

operator relation

(denX)−1/2J∗

X
= I

L
J
X′
I
K̃
.

Therefore, we may combine the relations (3.12), (3.13) (applied to X and X ′) to conclude that on

H := H
Ω,K̃

(denX)−1/2T ∗
X = (denX)−1/2U∗

1,K̃
J∗

X
U

2,K̃
= U∗

1,K̃
I
L
J
X′
I
K̃
U

2,K̃
= V

L
U∗

2,L
J
X′
U

1,L
V
K̃

= V
L
T
X′
V
K̃
.

We have, thus, proved the following:

Theorem 3.17. Let X = (K,L)ϕ be a Bessel system. Let X ′ be its modified adjoint. Let Ω be

any measurable subset of IRd, such that {Ω + l}l∈L are pairwise disjoint, for L = L, K̃. Let H be

the subset of all L2(IR
d)-functions whose Fourier transform is supported in Ω + K̃. Then, there

exist unitary maps

V
K̃

: H → `2(X
′),

and

VL : T
X′
V
K̃
H → `2(X),

both independent of ϕ, such that the identity

(denX)−1/2T ∗
X = V

L
T
X′
V
K̃

holds on H. Consequently, given any Bessel system Y = (K,L)ψ, (denX)−1TY T
∗
X is unitarily

equivalent on H to the restriction of T ∗
Y ′TX′ to ranV

K̃
⊂ `2(X

′).

Remark. Note that T ∗
X maps into `2(X) while TY is defined on `2(Y ), hence TY T

∗
X is, formally,

not well-defined. However, the two index sets X, Y are naturally identified with the set (K,L),

and this is the way TY T
∗
X should be interpreted.
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Theorem 3.17 falls short of implying directly Theorem 2.2. The minor reason is that it requires

X to be Bessel (that can be overcome by a more careful analysis). The major reason is that we do

not know in advance that the various norm bounds that we are after are realized on spaces H of

the form that appear in the theorem. The fact that the relevant bounds are realized, indeed, on

such spaces H is an immediate consequence of Theorem 2.12, which, however, leads to the direct

proof of Theorem 2.2, presented in the previous subsection.

Nevertheless, Theorem 3.17 does admit some applications. For example, it provides the missing

proof for assertion (b) of Theorem 2.2:

Proof of (b) of Theorem 2.2. If X is not fundamental, then T ∗
Xf = 0, for some f ∈ L2(IR

d)\0.

Let X = (K,L)ϕ, and let Ω be any subset of IRd such that (a): f̂ does not vanish identically

on A := Ω + K̃, (b): The K̃-shifts, as well as the L-shifts, of Ω are pairwise disjoint. Without

loss, we may assume f̂ to be supported on A (otherwise, we define g ∈ L2 by ĝ := f̂χ, with χ

the support function of A, and apply the representation of T ∗
X in terms of J∗

X to conclude that

T ∗
Xg = 0, too). Defining H in Theorem 3.17 with respect to the present Ω, the theorem provides

us with the relation

0 = T ∗
Xf = V

L
T
X′
V
K̃
f.

Since VL, VK̃ are partial isometries, this readily implies that TX′ is not injective, hence so is TX∗ .

The converse is obtained by a similar argument.

A stronger version of Theorem 3.17 is available under slightly more restrictive conditions.

Corollary 3.18. Let X = (K,L)ϕ be a Bessel system, X ′ its modified adjoint. Let Ω
K̃

and ΩL

be fundamental domains for the lattices K̃, L, respectively.

(a) If the L-shifts of Ω
K̃

are pairwise disjoint, then there exist unitary maps V1 := L2(IR
d) →

`2(X
′), and V2, such that

(denX)−1/2T ∗
X = V2TX′V1.

(b) If the K̃-shifts of ΩL are pairwise disjoint, then there exist unitary maps V1 : `2(X
′) → L2(IR

d),

and V2 such that

(denX)−1/2V2T
∗
XV1 = TX′ .

In particular, (a) is satisfied by all univariate systems of low-density, and (b) is satisfied by all

univariate systems of high-density.

Proof: For the proof of (a), we choose Ω := Ω
K̃

in Theorem 3.17. We then recognize that

H
Ω,K̃

= L2(IR
d), and the asserted result then follows from that theorem.

For (b), we choose Ω := ΩL in Theorem 3.17. The construction details of V
K̃

that precede the

theorem then imply that V
K̃

maps H
Ω,K̃

onto `2(X
′). We then take V1 := V ∗

K̃
and V2 := V ∗

L .

For the univariate system (2πpZZ, qZZ)ϕ, we may choose Ω
K̃

:= (0, 1/p), and ΩL = (0, q).

Therefore, one of the intervals is included in the other, and it is easy to relate the type of inclusion

to the “right” type of density.
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Discussion. The last corollary applies to multivariate systems, such as sup-adjoint, sub-adjoint (cf.

§4), and many others, but certainly there are multivariate systems that satisfy neither condition.

To make sure, only low-density systems can satisfy condition (a), and only high-density systems

can satisfy condition (b). This is in analogy with the self-adjointness, a property which in general

implies, and in the univariate is also implied by, the denX = 1 property.

3.3. The Wexler-Raz identity

We sidetrack briefly here to discuss the Wexler-Raz identity [WR], whose proof in [DLL] was

a key ingredient in the approach there. As we mention in the introduction, this section was added

to the present article only after we became aware of the [DLL] work and its details.

We will show that the identity reads at the fiber level as

vAu∗ = uA∗v∗,

with A a fiber of the pre-Gramian matrix, and u, v some `2-vectors (of the right “order”). Such

identity, of course, holds, but only after one verifies that all sums above are well-defined, in the

sense that each one of the rows and columns of A is in `2 (a condition which is self-evident for

a pre-Gramian fiber A), that Au∗ as well as vA are in `2, and that v(Au∗) = (vA)u∗. For the

satisfaction of these latter requirements, we will assume that all our WH systems are Bessel, and

will invoke Theorem 3.2.3 of [RS1] which rigorously justifies the matrix manipulations we employ.

Theorem 3.19 [WR], [DLL]. Let X = (K,L)ϕ, Y = (K,L)ψ, Z = (K,L)g be three WH

systems. Assume that X∗, Y , Z, (and Z∗) are Bessel. Then,

(3.20) TY T
∗
Zϕ = (denZ)TX∗T ∗

Z∗ψ.

Proof: The Bessel assumption on the systems involved ensures us that both sides of (3.20)

are well-defined L2(IR
d)-functions. Let r (respectively, r̃) be the Fourier transform of the left (resp.

right) hand side of (3.20). We will show that r = r̃, a.e.

The pre-Gramian setup detailed at the beginning of §3.2 shows that, for a.e. w ∈ IRd,

r|
w+K̃

= JY (w)J∗
Z(w)v,

with v := ϕ̂|
w+K̃

. Here, we wish only to compute r(w), hence are interested only at the (k̃ = 0)-row

of JY (w). That row consists of (cf. the third display of §3.1) u := |K|−1/2ψ̂|w+L
. Altogether, for

a.e. w,

r(w) = |K|−1/2utJ∗
Z(w)v.

Analogous computation reveals that, for a.e. w,

r̃(w) = (denZ)|L̃|−1/2vtJ∗
Z∗(w)u = |K|−1/2(denZ)1/2utJZ∗(w)v.

Invoking (2.10) (with X there replaced by Z∗), we conclude that, indeed, r(w) = r̃(w).
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3.4. Gramian estimates

We elaborate here further on the the topic of Gramian estimates: the estimation of the frame

bounds by an inspection of the Gramian matrices (cf. §2.3). The arguments that lead to such

estimates are only sketched. In any event, these are straightforward arguments which were already

discussed in more detail (and in a more general context) in §1.6 of [RS1]. For the simplicity of the

presentation, we will consider only the case of a singleton Φ. The extension to a finite Φ is mainly

notational.

Our first objective is the derivation of upper and lower bounds for ‖T‖ that are verifiable by

a mere inspection of the entries of G and G̃. For that purpose, we introduce the following map,

which will be referred to as the A-transform (“A” for Ambiguity):

A := AL : L2(IR
d) → L1(IR

d × ΩL) : f 7→ Af(s, ·) :=
∑

l∈L

Es+lf Elf.

Here, L is some fixed lattice, and ΩL is a fundamental domain for that lattice.

In terms of the A-transform, the (l, l′)-entry of the Gramian G(w) of the WH system (K,L)ϕ

is

|K|−1A
K̃
ϕ̂(l′ − l, w + l).

The (k̃, k̃′)-entry of the dual Gramian G̃(w) is

|K|−1ALϕ̂(k̃ − k̃′, w + k̃′).

These observations lead us to the following estimates:

Theorem 3.21. Let X be the WH system (K,L)ϕ, ϕ ∈ L2(IR
d). Then:

(a) X is Bessel system if the function

f :=
∑

k∈K̃

|ALϕ̂(k, ·)|

is essentially bounded and only if the function

g := (
∑

k∈K̃

|ALϕ̂(k, ·)|2)1/2

is essentially bounded, and we have

‖g‖L∞(IRd) ≤ |K|‖TX‖2 ≤ ‖f‖L∞(IRd).

(b) X is Bessel system if the function

f1 :=
∑

l∈L

|A
K̃
ϕ̂(l, ·)|

is essentially bounded and only if the function

g1 := (
∑

l∈L

|A
K̃
ϕ̂(l, ·)|2)1/2
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is essentially bounded, and we have

‖g1‖L∞(IRd) ≤ |K|‖TX‖2 ≤ ‖f1‖L∞(IRd).

Proof: In view of Theorem 2.12, computing ‖TX‖ (and thereby verifying the Bessel prop-

erty of X) is equivalent to computing the ∞-norm of either G of G∗. Since G(w) is Hermitian,

we may bound its 2-norm G(w) from above by its 1-norm. With f1 as in (b), ‖f1‖L∞
can be

easily proved to coincide with the essential supremum (over w) of the 1-norms of G(w). A similar

argument, with G̃ replacing G, leads to the estimate that involves f .

Again, since G(w) is non-negative, we can also bound G(w) from below by the `2-norm of each

row of it. This leads to the estimate that involves g1. Replacing G by G̃ and repeating the same

idea, leads to the estimate that involves g.

Discussion. It seems instructive to pause and compare the different estimates provided by (a) and

(b) in the above theorem. For example, the upper bound of (a) is majorised by the sup-norm of

(3.22)
∑

k̃∈K̃,l∈L

|ϕ̂(· + k̃ + l)ϕ̂(· + l)| =
∑

l∈L

|ϕ̂(· + l)|
∑

k̃∈K̃

|ϕ̂(· + k̃ + l)|,

while the upper bound of (b) is majorised by

(3.23)
∑

k̃∈K̃

|ϕ̂(· + k̃)|
∑

l∈L

|ϕ̂(· + k̃ + l)|.

Assume, for example, that L ⊂ K̃. Then, (3.22) becomes

(3.24)
∑

k∈K̃

|ϕ̂(· + k)|
∑

l∈L

|ϕ̂(· + l)|.

As to (3.23), identifying K̃/L with some finite ∆ ⊂ K̃, that expression can be written as

(3.25)
∑

δ∈∆

(
∑

l∈L

|ϕ̂(· + l + δ)|)2.

While pointwise the two estimates are not comparable, it is easily seen that the sup-norm of (3.25)

is ≤ the sup-norm of (3.24). Since the second estimate is based on the Gramian, and the example

just studied is of a low-density system, this suggests that the Gramian upper bound estimates ((b)

in the theorem) are better (i.e., tighter) for low-density systems, hence that the dual Gramian

upper bound estimates (i.e., (a) of the theorem) yield better results for high-density systems.

In any event, the above analysis shows that T is bounded whenever ϕ̂ decays fast enough, or

equivalently, whenever ϕ is smooth enough:

Corollary 3.26. Let X be a PWH system generated by ϕ. Then X is a Bessel system if
∑

α∈L

|ϕ̂(· + α)|

is essentially bounded, for L = L, K̃.

Proof: From the above discussion, it follows that
∑

k∈K̃

|ALϕ̂(k,w)| ≤ ‖
∑

l∈L

|ϕ̂(· + l)|‖L∞(IRd)‖
∑

k∈K̃

|ϕ̂(· + k)|‖L∞(IRd).

Theorem 3.21 (a) then implies the claim.
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Discussion cont’ed. Analogous estimates are available in terms of ϕ (rather than ϕ̂) with the

lattices L, K̃ replaced by their duals K, L̃. Consequently, X is a Bessel system if either ϕ is

sufficiently smooth or decays sufficiently fast.

Literature Discussion. We compare the f -estimate in (a) of Theorem 3.21 to Theorem 2.6 of

[D1] and Theorem 2 of [TO2]. Theorem 2.6 of [D1] contains an estimate of the upper frame bound

for a univariate X in terms of ϕ rather than ϕ̂. After making that necessary switch, we find that it

employs quantities of the form ‖
∑

l∈L |Es+lf Elf | ‖∞. However, these norms are not summed up

directly, but rather are grouped into pairs, with respect to which a geometric average is computed,

hence altogether Theorem 2.6 of [D1] is not comparable to our results here. As to Theorem 2 of

[TO2], rewriting it in terms of ϕ̂ rather than ϕ, its sufficient condition for the Bessel property of

the univariate X is the finiteness of
∑
l∈L ‖al‖`1 , with al the Fourier coefficients of ALϕ̂(l, ·). That

boundedness condition clearly implies the boundedness of f in Theorem 3.21.

The derivation of sufficient conditions for X to be a Bessel system is much simpler than

guaranteeing X to be a frame. Unless we are willing to settle for conditions for a fundamental

frame X or a Riesz basis X, it is virtually impossible to derive feasible sufficient conditions for

frames that are based on the magnitude of various entries of G̃ or G. However, in order for X

to be a fundamental frame, G̃(w) should be invertible, and that can be observed in case G̃(w) is

diagonally dominant. Sufficient conditions of this type are discussed in the next theorem.

Theorem 3.27. Let X = (K,L)ϕ be a Bessel PWH system.

(a) If the function

f := ALϕ̂(0, ·) −
∑

k∈K̃\0

|ALϕ̂(k, ·)|

is positive a.e. and is (essentially) bounded away from 0, then X is a fundamental frame for

L2(IR
d) and

(3.28) ‖T ∗−1‖2 ≤ |K|‖1/f‖L∞(IRd).

(b) If the function

g := A
K̃
ϕ̂(0, ·) −

∑

l∈L\0

|A
K̃
ϕ̂(l, ·)|

is positive a.e., and is (essentially) bounded away from 0, then X is a Riesz basis, and

‖T−1‖2 ≤ |K|‖1/g‖L∞(IRd).

Proof: Part (b) follows from (a) and the duality principle: to prove that X is Riesz basis,

it suffices, by that principle, to prove that X∗ is a fundamental frame. A conversion of the condition

in (a) from (K,L)ϕ to (L̃, K̃)ϕ then yields the condition in (b).

We now prove (a): by Theorem 2.12, we need to show that each G(w)∗− is bounded. Note

that the entries of each row of the dual Gramian G̃(w) are of the form

|K|−1ALϕ̂(k,w′), k ∈ K̃,
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for an appropriately chosen w′ ∈ IRd. The condition

ALϕ̂(0, w) −
∑

k∈K̃\0

|ALϕ̂(k,w)| ≥ ε, a.e. w ∈ IRd

thus implies that, for almost every w ∈ IRd, and for every row of G̃(w), the diagonal entry

ALϕ̂(0, w′) is ε greater than the `1-norm of the other entries of this row. Thus, as soon as this

condition holds, the self-adjoint operator G̃(w) is diagonally dominant, hence invertible, for almost

every w, and G∗−(w) = ‖G̃(w)−1‖ ≤ |K|/ε. By Theorem 2.12, X is a fundamental frame, and the

estimate (3.28) holds.

Remark. A slightly different variant of the above theorem is as follows: if f in the theorem is ≥ ε

on the support Ω of ALϕ̂(0, ·), then X is a frame (not necessarily fundamental) and the estimate

(3.28) holds with ‖1/f‖L∞(Ω) replacing ‖1/f‖L∞(IRd).

Literature Discussion cont’ed. Theorem 2.5 of [D1] provides a sufficient condition for a uni-

variate system to be a fundamental frame. The condition is based on the positivity of (a slightly

coarser expression than) the quantity

inf ALϕ̂(0, ·) −
∑

k∈K̃\0

‖ALϕ̂(k, ·)‖∞,

and thus the condition given in Theorem 3.27 is somewhat better. In any event, both conditions

are based on very coarse estimates. The comparison of Theorem 3.27 to the lower bound estimate

provided in Theorem 7 of [TO2] is similar.

As stated several times before, the “basis” (K,L)ϕ satisfies the same properties as its Fourier

transform set (L,K)
ϕ̂
. This means that all the above estimates are valid with ϕ replacing ϕ̂ and

K, L interchanging roles.

4. Detailed Zak transform analysis

4.1. Zak transform analysis of compressible WH systems

In §2.4, it was shown that, for a sup-adjoint WH systems X, the study of T ∗
X is reduced to

studying the behaviour of the single function Z̃X . Though the same does not hold for other WH

systems, there are more general situations when the analysis of X can be reduced to the study of

finite-order Hermitian matrices. In fact, the situation here is analogous to that that occurs in the

study of shift-invariant spaces. While, as discussed in §2.4, the PSI space and the sub-adjoint WH

space have one-dimensional fiber spaces, the more general FSI (=finitely generated shift-invariant)

spaces are similar to the present compressible WH systems: the fiberization of both lead to fiber

spaces of finite dimension. In the latter case, each fiber space Sw,t is spanned by the columns of

PZX(w, t), hence is considered a subspace of `2(∆) (see below for definitions and details). The

critical information required is that basic operations (such as finding image and kernel of operators,

describing orthogonal projectors, computing dual system, etc.) can be performed fiber by fiber.

For FSI spaces, this was done in §2 of [RS1]; the techniques, however, apply to general fiberization

with finite-dimensional fibers, hence to our present case of interest.
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We introduce a new type of “inner product”, the Zak product, of which the function Z̃X that

was used in the context of the sup-adjoint case is a special “diagonal” case. We will then form

finite-order matrices (the Zak matrix and the dual Zak matrix) whose entries are such Zak products.

These matrices may replace the infinite order Gramian matrices, and we reach that reduction by

employing either of the two arguments: (a) direct adaptation of the FSI techniques of [RS1] to

WH setup here; or (b) adaptation of the FSI techniques in order to fiberize further the (already

partially fiberized) Gramian operator, and then invoking Theorem 2.12.

We call a lattice pair (K,L) compressible if the group K̃ ∩L has a finite index in L (equiva-

lently, in K̃), which is the case exactly when K̃ ∩ L is d-dimensional. We define then two quotient

groups:

Γ := L/(L ∩ K̃),

and

∆ := K̃/(L ∩ K̃).

We also think about Γ,∆ as any set of representers for the above groups. We refer to the order of Γ

as the compression factor of X, and to the order of ∆ is the decomposition factor of X. (The

terminology reflects the fact that we are interested primarily in high-density systems X. For low-

density systems, the notions of compression and decompositions factors should be interchanged).

Note that X is self-adjoint if and only if both Γ and ∆ are trivial, X is sup-adjoint if and only if ∆

is trivial, and X is sub-adjoint if and only if Γ is trivial. Note also that the notations Γ, ∆ retain

their meaning from the last section in case of a sup/sub-adjoint system.

Example . Suppose that X = (2πpZZ, qZZ)ϕ. Then, K̃ ∩ L = ZZ/p ∩ qZZ. Clearly, K̃ ∩ L is

non-trivial if and only if pq is rational. Since pq = (denX)−1, we conclude that a univariate (K,L)

is compressible if and only if its density is rational.

In the case of a sup-adjoint X, we identified the pre-Gramian with a vector-valued convolution

operator. It is not hard to see (as we are going to show), that in the present case the pre-Gramian

is a matrix-valued convolution operator.

Here are the details: we let X = (K,L)Φ, Φ finite, be a compressible WH system. The rows

of the pre-Gramian J∗
X are indexed by L × Φ = (K̃ ∩ L) × Γ × Φ, and we re-organize them in

blocks ((K̃ ∩ L), γ, ϕ), ϕ ∈ Φ, γ ∈ Γ. The columns of J∗
X are indexed K̃ = (K̃ ∩ L) × ∆, which we

also organize in blocks ((K̃ ∩ L), δ), δ ∈ ∆. This induces a block re-organization of the entire J∗
X ,

with a typical block indexed by ((γ, ϕ), δ). As in the sup-adjoint case, one observes that the block

J∗
(γ,ϕ),δ(w) is a convolution operator

aγ,ϕ,δ,w : `2(K̃ ∩ L) → `2(K̃ ∩ L) : c 7→ aγ,ϕ,δ,w ∗ c.

Here, the sequence aγ,ϕ,δ,w is defined by

(4.1) aγ,ϕ,δ,w(j) := |K|−1/2ϕ̂(w + γ + δ + j).

The operator J∗
X(w) acts from `2(K̃) = `2((K̃ ∩ L) × ∆) into `2(L × Φ) = `2((K̃ ∩ L) × Γ × Φ),

and, by the above, acts, indeed, as a matrix-valued convolution operator:

J∗
X(w) : (cδ)δ∈∆ 7→ (

∑

δ∈∆

aγ,ϕ,δ,w ∗ cδ)γ∈Γ, ϕ∈Φ.
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This observation allows us to replace the pre-Gramian by the matrix of the symbols of the various

aγ,ϕ,δ,w. As in the sup-adjoint case, the symbol of the sequence aγ,ϕ,δ,w is the Zak transform

|K|−1/2ZK̃∩L(Eγ+δϕ̂)(w, ·).

Thus, we obtained a representation of the pre-Gramian J∗
X(w) as a finite order matrix whose rows

are indexed by Γ × Φ, whose columns are indexed by ∆, and whose structure is as follows:

PZ∗
X(w, ·) :=

(
|K|−1/2 ZK̃∩Lϕ̂(w + γ + δ, ·)

)
(γ,ϕ)∈(Γ×Φ), δ∈∆

.

It is quite obvious that the analogous representer of JX(w) is the adjoint PZX(w, ·) of the above

PZ∗
X(w, ·). We refer to both of these matrices as pre-Zak matrices. The spectrum σ(X) of X

is the set of all (w, t) where PZX(w, t) is not the zero matrix.

The development now becomes quite transparent. Using the pre-Zak matrices, we construct

finite-order analogs of the Gramian and the dual Gramian. The analog of G(w) = J ∗
XJX(w) is the

square non-negative (Γ × Φ)-order matrix ZX(w, ·), whose ((γ, ϕ), (γ′, ψ))-entry is

|K|−1 ZK̃∩L
∆ (Eγ

′

ψ̂, Eγ ϕ̂)(w, ·),

where, for any lattice L, finite set ∆ ⊂ IRd, and f, g ∈ L2, ZL
∆(f, g) is the Zak product of f and

g defined as

(4.2) Z∆(f, g) := ZL
∆(f, g) :=

∑

δ∈∆

(ZLf ZLg)(· + δ, ·).

In analogy with the Gramian matrix, we call the matrix ZX the Zak matrix. The analog of

the dual Gramian is the dual Zak matrix obtained as Z̃X := PZXPZ
∗
X . Thus, it is a square

non-negative ∆-order matrix, whose (δ, δ′)-entry is

|K|−1
∑

ϕ∈Φ

ZK̃∩L
Γ (Eδϕ̂, Eδ

′

ϕ̂).

Example. Let m,n be positive integers, g.c.d.(m,n) = 1. Let X be the univariate WH system

(2πZZ/m, nZZ)Φ (with Φ finite, otherwise arbitrary). Then K̃ = mZZ, hence K̃ ∩ L = mnZZ. We

may thus take Γ = L/(K̃ ∩ L) = (n, 2n, ...,mn), and ∆ = K̃/(K̃ ∩ L) = (m, 2m, ..., nm). The

relevant Zak transform here is Z := ZmnZZ which can be defined as

Zf(w, t) :=
∑

j∈ZZ

f(w +mnj)e2πj/mn(t).

The pre-Zak matrix PZX has the form

(m/2π)1/2
(
Zϕ̂(· + jn+ j′m, ·)

)m
j=1

n

j′=1ϕ∈Φ
,
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(where rows are indexed by j′ and columns by (j, ϕ)). Consequently, the dual Zak matrix is an

n× n matrix whose (j, j′)-entry is

(m/2π)
∑

ϕ∈Φ

m∑

i=1

(Zϕ̂)(w + in+ jm, t)(Zϕ̂)(w + in+ j′m, t).

The Zak matrix, say in case Φ is a singleton ϕ, is an m×m matrix whose (j, j ′)-entry is

(m/2π)
n∑

i=1

(Zϕ̂)(w + im+ jn, t)(Zϕ̂)(w + im+ j′n, t).

Finally, the following variant of the duality principle, though is not an issue here, arises in a natural

way: interchanging between m and n results at a similar interchange between the Zak matrix and

the dual Zak matrix. At the same time, such an interchange amounts to passing from X to its

adjoint X∗. Indeed, the fact that passing to the adjoint amounts, up to a multiplicative constant,

to an interchange between the two basic matrices is the essence of the duality principle.

Remark. Zibulski and Zeevi, [ZZ], as well as, implicitly, Daubechies, [D1], employ the Zak

transform in order to decompose univariate systems of rational density. In particular, [ZZ] employs

two matrices, S and G, which correspond to, yet look quite different from, our dual Zak matrix, and

pre-Zak matrix. However, the difference can be simply attributed to a different choice of a basis for

`2(∆) or `2(Γ). Our Zak matrices here are related to the standard bases for these spaces (made of

functions of one-point-support). On the other hand, the [ZZ]-matrices are related to choosing the

characters of the dual group as the relevant basis. Since both choices are orthonormal, our dual

Zak matrix here is unitarily equivalent to the S matrix of [ZZ].

In order to convert the analysis of the “basis set”X from the infinite-order Gramian matrices to

the finite order Zak matrices, we need to know how to relate the functions that appear in Theorem

2.12 (G, G∗, etc.) to the Zak matrices. However, as was already explained before, the study of the

connection between G(w) and ZX(w, ·) here is entirely analogous to the connection, in the case

of an FSI set X, between the standard infinite-order Gramian (〈x, y〉)x,y∈X and the compressed

Gramians (G(w))w∈IRd . These latter relations were analysed in detail in several references, with

the most comprehensive results contained in [BDR] and [RS1]. In particular, the arguments used

to establish Theorem 2.3.6 of [RS1], when transported to the new setup here, lead to the following

result.

Lemma 4.3. Given a compressible WH system X := (K,L)Φ and its associated Zak matrix ZX ,

consider, for fixed w, t ∈ IRd, the matrix ZX(w, t) as a map from `2(Γ×Φ) into itself. Let ζX(w, t)

be the norm of this map, ζ−X(w, t) the norm of the inverse (defined as ∞ if ZX(w, t) is singular),

and ζ−X|(w, t) the norm of the pseudo-inverse. Then, in the notations of Theorem 2.12, the following

relations hold:

(a) For a.e. w ∈ IRd, GX(w) = ‖ζX(w, ·)‖L∞
.

(b) For a.e. w ∈ IRd, G−
X(w) = ‖ζ−X(w, ·)‖L∞

.

(c) For a.e. w ∈ IRd, G−
X|(w) = ‖ζ−X|(w, ·)‖L∞(σw), with σw the support of ζX(w, ·).

Invoking, thus, Theorem 2.12, we obtain the following characterization of the “basis” properties

of the compressible X in terms of the Zak matrix.
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Theorem 4.4. Let X = (K,L)Φ be compressible, and let ZX be its associated Zak matrix.

Consider, for each (w, t) ∈ IRd × IRd, the matrix ZX(w, t) as a map from `2(Γ× Φ) into itself, and

let ζX(w, t), ζ−X(w, t) and ζ−X|(w, t) be the associated norm functions defined in Lemma 4.3. Then:

(a) X is a Bessel system if and only if ζX ∈ L∞(IRd × IRd). Furthermore, ‖TX‖2 = ‖T ∗
X‖2 =

‖ζX‖L∞
.

(b) Assume X is a Bessel system. Then X is a Riesz basis if and only if ζ−X ∈ L∞. Furthermore,

‖T−1
X ‖2 = ‖ζ−X‖L∞

.

(c) AssumeX is Bessel. Then X is a frame if and only if ζ−X| ∈ L∞(σ(X)), with σ(X) the spectrum

of X. Furthermore, ‖TX|
−1‖2 = ‖ζ−X|‖L∞(σ(X)).

While the Zak matrix is useful for computing the important functions G, G− and G−
| associated

with the Gramian of X, the dual Zak matrix is useful for computing the complementary quantities

G∗, G∗− and G∗−
| associated with the dual Gramian G̃. For that, we consider, for each (w, t) ∈ IRd,

the matrix Z̃X(w, t) as a map from `2(∆) into itself, and denote by ζ∗X(w, t) (ζ∗−X (w, t), ζ∗−X| (w, t) )

the norm-function (respectively, the inverse-norm function, and the pseudo-inverse-norm function)

of Z̃X . Again, the arguments used in Theorem 2.3.6 of [RS1] apply here, and lead to a result

analogous to Lemma 4.3, that connects now the ζ∗-functions to the G∗-functions. This, in view of

Theorem 2.12, leads to following theorem.

Theorem 4.5. Let X be a compressible WH system (K,L)Φ. Let Z̃X be its associated dual Zak

matrix, and let ζ∗X , ζ∗−X and ζ∗−X| be the corresponding norm-functions. Then:

(a) X is a Bessel system if and only if ζ∗X ∈ L∞(IRd × IRd). Furthermore, ‖TX‖2 = ‖T ∗
X‖2 =

‖ζ∗X‖L∞
.

(b) Assume X is Bessel. Then X is a fundamental frame if and only if ζ∗−X ∈ L∞. Furthermore,

‖T ∗
X

−1‖2 = ‖ζ∗−X ‖L∞
.

(c) Assume X is Bessel. Then X is a frame if and only if ζ∗−X| ∈ L∞(σ(X)). Furthermore,

‖T ∗
X|

−1‖2 = ‖ζ∗−X| ‖L∞(σ(X)).

Remark. For a univariate X, parts (a) and (b) of the above result, as well as part (b) of the

following corollary, are due to [ZZ] (Theorem 2 and Proposition 1 there). Though Theorem 2 in

[ZZ] is stated without proof, the supporting discussion there provides an almost complete argument.

The only missing ingredient in the approach of [ZZ] is its sought-for unitary diagonalization (14),

which, incidentally, is proved in [RS1] as Lemma 2.3.5.

Corollary 4.6. Let X be a compressible WH system with Zak matrix ZX and dual Zak matrix

Z̃X . Then:

(a) X is a tight frame if and only if, after normalizing the generator of X, either Z̃X or ZX (or

both) is an orthogonal projector a.e. (equivalently, if the matrix spectrum of almost every

fiber of the Zak or dual Zak matrix consists of at most 0 and 1).

(b) X is a fundamental tight frame if and only if Z̃X is a constant multiple of the identity a.e. on

IRd × IRd.

(c) X is orthonormal if and only if ZX is the identity a.e. on IRd × IRd.
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Proof: Since X is a tight frame if and only if ‖TX‖ = ‖TX|
−1‖−1, we obtain from The-

orem 4.4 that the tightness of X is equivalent to the equality ‖ζX‖L∞
= ‖ζ−X|‖L∞

, which clearly

amounts to the fact that ZX(w, t) has only one eigenvalue, independent of (w, t), other than 0.

This eigenvalue is the normalization constant appearing in (a). The statement with respect to Z̃X

is proved similarly, by invoking Theorem 4.5, and recalling that tightness is also equivalent to the

equality ‖T ∗
X‖ = ‖T ∗

X|
−1‖−1.

Statement (b) follows from (a), when combined with (b) of Theorem 4.5.

Statement (c) follows easily from the last part of Theorem 2.12.

Theorem 4.5 , in particular, shows that, in order for X to be a fundamental frame, almost

all dual Zak matrices Z̃X(w, t) must be invertible. In fact, as is already established in Theorem

1 of [ZZ], the frame property of X is irrelevant here: By invoking Lemma 2.3.5 of [RS1], we

may unitarily diagonalize Z̃X , using a unitary matrix with measurable entries. Thus, if the fibers

{Z̃X(w, t)}(w,t) of Z̃X are singular on a set of positive measure, one can easily construct a function

f such that TXT
∗
Xf = 0 (the fibers of f , (ZK̃∩Lf̂(w + δ, t))δ∈∆ should each lie in the kernel of

Z̃X(w, t) for a.e. (w, t), and the only reason we need Lemma 2.3.5 here is in order to synthesize

the fiber kernels into a measurable function). However, Z̃X(w, t) is non-singular if and only if the

pre-Gramian PZX(w, t) is of rank #∆, the later being possible only if

#∆ ≤ #Γ × #Φ.

Since #∆ is the index of K̃ ∩ L in K̃, and #Γ is the index of K̃ ∩ L in L, we see that

#∆

#Γ
=

|K̃ ∩ L|

|K̃|

|L|

|K̃ ∩ L|
=

|L|

|K̃|
=

1

den(K,L)
.

Defining, naturally, the density of X as

#Φ × den(K,L),

we obtain the following result. The univariate case of this result can be found in [D1], and was

proved there by a similar argument.

Corollary 4.7. Let X = (K,L)Φ be a compressible WH system. Then X is fundamental only if

denX ≥ 1.

Finally, we consider the problem of computing the dual frame of X = (K,L)Φ. We first

study this problem when X is a Riesz basis, say, for H ⊂ L2(IR
d). Let R be a map from Φ to

L2(IR
d). In order for Y := (K,L)RΦ to be bi-orthogonal with X, we need T ∗

Y TX to be the identity,

hence that PZ∗
Y PZX is the identity matrix a.e. Furthermore, for a dual basis Y , the column-

space of (almost) each PZY (w, t) should be the same as that of PZX(w, t) (follows from the fact

that kerT ∗
X = kerT ∗

Y ). Thus, finding PZY (w, t) here is a standard finite-dimensional least squares

problem, and we obtain that

(4.8) PZY (w, t) = Z−1
X (w, t)PZX(w, t), for a.e. (w, t);

38



(compare with Theorem 2.4.7 of [RS1]).

The situation is even simpler for a fundamental frame: with the understanding that inverting

Z̃X amounts to the pointwise inversion of each of its fibers Z̃X(w, t), we realize that Z̃−1
X represents

the inverse of the dual frame operator TXT
∗
X . Thus the Zak transform representation of the

generators RΦ of the frame dual to X can be found by applying Z̃−1
X to the representation of Φ.

Since the action TXT
∗
X on f is represented in the form

Z̃X(ZK̃∩Lf̂(· + δ, ·))δ∈∆,

we see that (cf. (29) of [ZZ])

(4.9) PZY (w, t) = Z̃−1
X (w, t)PZX(w, t), a.e..

In the case of a non-fundamental frame X, the same argument can be employed, but, alas, the

pseudo-inverse of Z̃X should be computed. In the special case when Z̃X(w, t) is either non-singular

or 0, the computation of the pseudo-inverse is avoided, and this explains why we do not have to

tackle this problem in the sup-adjoint case.

4.2. Zak transform estimates

The Zak transform analysis had led us to the decomposition of the operators T ∗
XTX and TXT

∗
X ,

for a compressible WH set, into the fibers (ZX(w, t))w,t∈IRd and (Z̃X(w, t))w,t∈IRd . In §3, we had

exploited the Gramian fiberization in order to estimate the frame (Riesz) bounds. In the same

manner, we may exploit here the Zak transform fiberization is order to derive analogous estimates.

These estimates are collected below without further explanation (other than pointing to their §3

counterparts). One should observe that despite of the seemingly close relation between the Gramian

estimates and the Zak transform estimates, there is practically substantial difference between the

two: the information required for the Gramian estimates is readily available (i.e., values of either ϕ̂

or ϕ; we are tacitly assuming that ϕ is explicitly known, where “explicitly” might mean, e.g., that

ϕ or ϕ̂ are given analytically); at the same time, the Gramian estimates are crude. In contrast,

the Zak transform estimates require finer information (certain Zak transforms and subsequently

Zak products), but award us with better estimates (particularly when the relevant Zak matrix is

of small order).

As we did in §3.4, we assume here that X is the principal compressible (K,L)ϕ. The compress-

ibility of X is essential (otherwise, the Zak matrices remain of infinite order). The extension to

non-principal systems is primarily notational. All Zak transforms of this subsection are computed

with respect to the lattice K̃ ∩ L. In fact, the only Zak transform which is required is that of ϕ̂,

hence we set

g := ZK̃∩Lϕ̂.

As before, Γ and ∆ are the quotient groups

Γ = L/(K̃ ∩ L), ∆ = K̃/(K̃ ∩ L).

It is, perhaps, worth noting that the Zak matrix and the dual Zak matrix are invariant under

shifts by k ∈ K̃ ∩L (in both variables); this observation entitles us to represent any γ ∈ Γ or δ ∈ ∆

in any convenient way, as well as to switch between representers, as the arguments for proving the

estimates below require.
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Theorem 4.10. Let X = (K,L)ϕ be a compressible PWH system. Let g, Γ, and ∆ be as in

the second paragraph of this subsection. Then X is a Bessel system if and only if g is essentially

bounded. Furthermore, let g∆,γ be the function

g∆,γ :=
∑

δ∈∆

g(· + γ + δ, ·)g(· + δ, ·),

and let gΓ,δ be the function

gΓ,δ :=
∑

γ∈Γ

g(· + δ + γ, ·)g(· + γ, ·).

Then:

(a)

|K|−1‖(
∑

γ∈Γ

|g∆,γ |
2)‖

1/2
L∞

≤ ‖TX‖2 = ‖T ∗
X‖2 ≤ |K|−1‖

∑

γ∈Γ

|g∆,γ |‖L∞
.

(b)

|K|−1‖(
∑

δ∈∆

|gΓ,δ|
2)‖

1/2
L∞

≤ ‖TX‖2 = ‖T ∗
X‖2 ≤ |K|−1‖

∑

δ∈∆

|gΓ,δ|‖L∞
.

Proof: We note that |K|−1/2g(w, t) is one of the entries of the pre-Zak matrix PZX(w, t),

and that, further, every entry of PZX(w, t) is, up to a unit multiplicative constant, of the form

|K|−1/2g(w′, t′) for (possibly other) w′, t′. Since the pre-Zak matrix is of finite order, this proves,

in view of Theorem 4.4, the fact that X is Bessel if and only if g is bounded.

The bounds asserted in parts (a) and (b) are proved by an argument analogous to that used

in the proof of Theorem 3.21, after observing that |K|−1(g∆,γ)γ∈γ comprise the entries of a typical

row of ZX , while |K|−1(gΓ,δ)δ∈∆ comprise the entries of a typical row of Z̃X .

“Diagonal dominance” arguments similar to the ones employed in the proof of Theorem 3.27,

when combined with the observations just made in the proof of Theorem 4.10, lead to sufficient

conditions for X being a Riesz basis or a fundamental frame. We omit these details.
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