What is a multivariate spline?
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Abstract. The various concepts and ideas that have contributed to univariate spline theory
are considered with a view to finding a suitable definition of a multivariate spline. In this way,
an overview of the existing more or less complete univariate spline theory is given along with a

survey of some of the high points of the current research in multivariate splines.

My very first paper dealt with multivariate (well, bivariate) splines and I was
then quite certain of what a multivariate spline, i.e., a spline function of many
variables, might be. Now, many years and several answers later, I am not so sure
any more and therefore consider the question worth a forty-minute talk.

It is a worthwhile question since univariate splines have been phenomenally
successful and one would wish to have available a similarly useful tool for the ap-
proximation of functions of several variables. This raises the question of just which
features of the univariate spline to generalize. My talk will therefore be in part a
survey of the more or less complete univariate spline theory with the aim of deciding
which parts to take along into the multivariate context.

But before embarking on that discussion, I want to point out that there is avail-
able one way of generalization that is specifically designed to require no thought,
no new idea (if this construction is satisfactory for you, I have nothing further to
tell you). This is the tensor product construct. Here one takes one’s favorite
univariate spline class $ and fashion from it splines

IRd—>R: (a:,y,...,z) Hf(a:)g(y)h(z)
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Figure 1. The ‘natural’ cubic spline interpolant. Are the two bottom
bumps natural?

in the d variables x,y, ...,z by taking (univariate) functions f,g,...,h in these
variables from $ and multiplying them. One would take linear combinations of
such functions, and the resulting approximation schemes are simply products of
univariate schemes. This means that one can even use the univariate computer
programs, and the resulting schemes are so efficient that it pays to force one’s
particular approximation problem into this form if one can do it. It does require
that the data come in tensor product form, i.e., on a rectangular grid, and that raises
questions. Is the proper multivariate version of an interval a (hyper)rectangle?Also,
just how is one to deal with scattered data? This made me and others look for other
ways of making up multivariate splines.

There are essentially two avenues to splines, the variational and the construc-
tive. Although I have had the mathematical pleasure of writing papers using the
variational approach, I am firmly in the constructive camp and so want to begin by
doing a job on the variational approach.

The story is familiar since it is available wherever splines are sold, so I can be
brief. If I am to fit data points (¢;,v;),7 = 1,..., N, I ought to use the “natural”
cubic spline interpolant, that is, the function which among all functions fitting the
data has the smallest second derivative. This is a good thing, so the story goes,
because in this way I am doing more or less what draftsmen have been doing even
when they were still draughtsmen. More or less, because they would put a ‘spline’,
i.e., a thin flexible rod, through the data, and this rod (if ideal) would take on
the shape of that curve + through the points which minimizes strain energy, i.e.,
the integral with respect to arclength of the squared curvature. Assuming now
that curve v to be a function, i.e., v = {(¢, f(¢)) : a < t < b}, the integral being
minimized can also be written
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Figure 2. Part of the envelope in whose center the ‘natural’ cubic spline
interpolant happens to lie.

and, for small D f, this is much like the integral

[ iy

which is being minimized by the ‘natural’ cubic spline interpolant to the data.

You will discern several false notes in this story. For small D f, there is usually
no call for any subtlety at all, a straight line or parabola will fit nicely. In any
case, going from a curve to a function is a bit fishy. In fact, if we really believe
in the draftsman’s spline, then we should reject the cubic spline and compute the
draftsman’s spline instead. Of course, we will then run into some difficulties. For
example, this minimization problem doesn’t have a solution without further condi-
tions, such as a bound on the length of the curve. Even with such a condition in
place, the draftsman’s spline (or elastica) is not easy to compute. This leads me
to the conclusion that people use cubic splines, not because cubic splines provide
them an automatic French curve, but because cubic splines are easy to compute.

There is a more serious variational approach to splines which these days goes
under the name of Optimal Recovery. Here one starts with the worthwhile observa-
tion that, if we know nothing but the data points (¢;,y;), then we can say nothing
about the function between the data points. We need additional information. Suit-
able information could be a bound on some derivative. For example, to stay with
our simple picture, we might also know that the Ls-norm of the second derivative
D2 f is no bigger than some constant c. Then, for each t, the possible values of f at
t form an interval, and we obtain in this way an envelope within which our function
f must lie. Of course, this envelope depends on c¢. But, it so happens that, for each
t, the midpoint of that interval lies, you guessed it, on our friend the ‘natural’ cubic
spline interpolant, and this is so regardless of ¢. Thus, the cubic spline interpolant
is rather central.

Yet I am not impressed, since all this depends on the decision to give a bound
in terms of the Lo-norm and that decision seems arbitrary to me. Had we used,



more reasonably to me, a bound on the maximum norm of D?f, we would again
have found an envelope, but now the midpoint changes with c. It does converge, as
¢ — 00, but not to the cubic spline interpolant, but to the broken line interpolant!
Is that sufficient reason to reject the cubic spline in favor of the broken line?

In any case, if you look for the reason why splines occur as solutions to such
extremal problems, you will find that it is so because they represent point eval-
uation with respect to bilinear forms involving some derivative, or, equivalently,
they are sections of Green’s functions (for D* or D? or whatever). In a multi-
variate variational approach, we would expect, correspondingly, to have sections of
Green’s functions of partial differential operators turn up. Such Green’s functions
are strongly domain dependent, i.e., the resulting multivariate ‘splines’ change in
local detail as the domain of the minimization changes. This made me give up on
this approach early on. It has recently been given a strong impetus by Duchon
[D76] (see, e.g., [Me79]) who in effect declared that there is only one domain of
interest, namely all of IR¢, and so created the thin plate splines which, for d = 2,
are used in many places. They provide that interpolant f to given data points
(tj,y;),3 =1,..., N, which minimizes

d
/ > (DiD; ),
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hence the name. But the resulting space of interpolants fails to have a local basis,
hence the construction of the thin plate spline interpolant takes O(N3) effort, which
is to be compared to the O(N) effort required for the (univariate) spline interpolant.

I hasten to add to this diatribe that I am all for the variational approach
in case the smoothness measure being minimized has some a prior: justification.
For example, in planning the path of the arm of a painting robot, one wants the
acceleration to be as small as possible, hences its minimization subject to the con-
straints imposed by the painting job makes very good sense. As another example,
we might eventually understand in a mathematical sense just what we mean by a
‘eood’ shape, and it would then be very desirable to look for interpolants of best
possible shape. But, given the computational history of the elastica or the thin plate
spline, we are not likely to compute such a ‘best’ or ‘shapeliest’ interpolant exactly.
Rather, we are likely to follow the example set by D. Terzopoulos and others and
compute such ‘splines’ only approximately, by minimizing over a suitably flexible,
fine-meshed space of piecewise polynomial functions with a local basis.

This brings me to the constructive approach to splines. In this approach, a
spline is, most simply, a pp (:= piecewise polynomial) function of degree < r with
breakpoint sequence t = (¢;); in symbols:

$ = Tr,ty

or, perhaps,
$=nl, i =mNC".

r,t

Correspondingly, a d-variate spline would be any element of

P
T A = Tra N C?,
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Figure 3. The first three Euler splines and their limit as their degree goes
to infinity.

with m,. A the collection of all functions which are pp of degree < r with respect to
some partition A. If this satisfies you, let me try to convince you that there is more
to splines than that.

Already in the very early papers on splines ([E28], [QC38], [S46]), there is much
more structure than that. These early papers are concerned with what we now call
cardinal splines

§=mi_ %,m
i.e., smooth piecewise polynomials with uniformly spaced breakpoints, for example
at the integers. Although cardinal spline theory did not quite develop this way, you
will find that you can understand cardinal splines most simply if you think of them
as smoothed-out step functions, i.e., as obtained from step functions by repeated
convolution with the characteristic function

M == X[0,1]

of the unit interval.

For example, that most beautiful of cardinal splines, the Euler spline, is ob-
tained in this way. Starting with the (shifted) cardinal step function which is
alternately 41, a first averaging brings the alternating broken line, while a sec-
ond averaging (followed by a shift and multiplication by 2) gives the alternating
parabolic cardinal spline which is already hard to distinguish (see Figure 3) from
the function reached after infinitely many such steps, viz. the cosine. Schoenberg
[S73] called this spline function ‘Euler spline’ since it is made up of Euler polynomi-
als. But it had been put to good use long before that baptism. It had appeared as
the solution of various variational problems. For example, it provides [F37] Favard’s
best constant in the bound on the distance of a function from trigonometric poly-
nomials in terms of that function’s k-th derivative. It also occurs [K62] as the
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Figure 4. The support of the bivariate cardinal B-splines My, My, Ms.

simultaneous extremizer of the Landau-Kolmogorov inequalities in which the j-th
derivative is bounded on IR in terms of the zeroth and the kth.

Schoenberg’s fundamental paper [S46] also introduced what became eventually
the centerpiece of univariate spline theory, viz. the B-spline

My == My *---% M, .
N—_—— —

k times

Its integer translates provide a most suitable basis for the cardinal spline space of
order k ( i.e., of degree k — 1).
This structure is easily generalized to d variables, as I will now illustrate for
d = 2. We get bivariate cardinal B-splines by starting with the characteristic
function of the unit square,
M1 ‘= XJo,1]2-

From it, by averaging, e.g., in the direction (1, 1), we obtain
0
MQ(QZ) = / Ml(l‘ + Ut)dt, V= (1, 1),
-1

the familiar piecewise linear pyramid function already used by Courant [C43]. By
following up with another averaging, this time in the direction (1, —1), we obtain
the C'-quadratic finite element

My(z) = /_OIMQ(:C—l—wt)dt wi= (1,-1)

of Zwart and Powell (e.g., [PS77]).
The space
$:={> M(-—ja(j):a:Z" — R}
jex?
spanned by integer translates of such functions M is rightly thought to be a mul-
tivariate cardinal spline space, and there is a complete theory of its approximation

power and use available, as developed by mathematicians working in Finite Ele-
ments around 1970 and given final form by Strang & Fix [SF73].
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Figure 5. The B-spline M (-|t;,. .., tj4+x).

If these splines of uniform structure do it for you, here is yet another point to
quit listening (except that there will be more of this later on). But if you have to
deal with scattered data or other nonuniform problems, you know that you need
more than cardinal splines.

It was Schoenberg’s colleague, the logician H. B. Curry, who pointed out in
a review of Schoenberg’s 46 paper that, with the aid of divided differences, such
B-splines could be constructed for an arbitrary spacing of breakpoints as follows

Nj(@) := ((tjpn — t;)/R)M (2|ts, . . tiw) = (tjgn — t)[tj - - tigw) (- — )57,

and that these points ¢;, now called knots, could even be repeated to control pre-
cisely the smoothness across the knot. In this way, one obtains [CS66] a convenient
basis for any space of piecewise polynomials of degree < k and of specified smooth-
ness across breakpoints.

The list of useful properties of the univariate B-spline is quite impressive. Here

are some of the items on that list (cf., e.g., [B76] or [Sch81] for details and refer-

ences).
e N; depends continuously on its knots ¢;,...,t;4x.
e N, has minimal support, is nonnegative, and > N, = 1, i.e., (N;) pro-

vides a good and local partition of unity.

e (N;) provides a stable basis, i.e, d '|lallcc < |3 Njajlle0 < |la]loo for all
coefficient sequences a and some knot-independent (positive) constant dj.

e Good quasi-interpolants are available, of the form f ~ Qf = > N;\; f,
with \; locally supported, uniformly bounded linear functionals.

e These quasi-interpolants provide optimal approximation order, i.e.,
If — QFII < const[t|*||D* f|| (with [t| := sup At;).

e Shape preserving approximation schemes are available in the simple form

VI = 2N f(7)).
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Figure 6. The minimally supported elements in WS’ A (on the left) have to
be augmented by elements of far-from-minimal support (such
as on the right) in order to obtain a basis for wg’ A-

e Determination of the B-spline coefficients of a spline approximation leads to
banded systems.

e Evaluation of the B-splines can be accomplished by a stable recurrence.
o ...

In fact, this list is so impressive that I have come to the conclusion that, in the
univariate context, splines are, by definition, linear combinations of B-splines.

Once this is accepted, it is obvious what a multivariate spline is; it is a linear
combination of multivariate B-splines. All that is now required is the construction
of multivariate B-splines. This turned out to be a nontrivial task.

A generalization via divided differences turned out to be difficult since the
divided difference [t;,...,t;+]f is customarily defined as the leading coefficient of
the polynomial of degree < k which agrees with f at t;,...,%¢;4 and this definition
becomes doubtful in the multivariate context because interpolating polynomials
are only defined for certain pointsets and, even if defined, have several ‘leading’
coefficients.

While it is possible to develop the univariate B-splines entirely from their recur-
rence relation, there was no obvious way to extend these to a multivariate context.
In fact, when multivariate B-splines were ultimately defined, it took two years of
intense effort to find stable recurrence relations for them.

A very tempting approach was via the minimal support property. In this
approach, one defines multivariate B-splines to be those functions in a given class of
smooth piecewise polynomials whose support is as small as possible. Unfortunately,
already very simple examples, such as C%-parabolics on the ‘three-direction mesh’
(see Figure 6), show that the resulting functions may not be plentiful enough to
staff a basis. (There is an alternative definition of minimal support in terms of the
Bernstein-Bézier net for these pp’s, but that idea has never been fully explored.)

The approach finally used in [B76] relied on yet another B-spline property,
already found in [CS66] where it is shown that

M(ylt;, ..., tjyr) = volg_10N Py,
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Figure 7. Curry-Schoenberg construction of the (univariate) B-spline as
a simplex spline.

with P the canonical projector P : z — (1) on R”* to IR and o any appropriately
scaled simplex [vg,...,vg] in IR oriented in such a way that Puv; = tjvi, all 4.
This construction changes only in minor detail when P is taken to be the canonical
projector onto IR? and then provides what is now called the d-variate simplex
spline

M(ylo) := volp_qg o NPy

(in order to distinguish it from other multivariate B-splines; see below).

It is obvious that M(-|o) is a compactly supported nonnegative function. It
is not hard to see that M(:|o) € mr_gq.a, with the partition A generated by the
(d — 1)-dimensional images under P of faces of 0. With somewhat more effort, one
can establish that M(-|o) is as smooth as possible , i.e., that M(-|o) € C*¥=4=1 in
case o is in general position. It is also easy to construct enough simplex splines to
provide a (local) partition of unity: If the (essentially disjoint) simplices o are so
chosen that | Jo = R? x G, then 3 M(y|o) = voly_4G is constant.

But it took some time before Micchelli [M78] came up with stable recurrence
relations for these simplex splines. For their proof, Micchelli described the simplex
spline equivalently as the distribution which carries the smooth test function ¢ to
the number [ ¢(Pxz)dz. This formulation made it easy to prove [BH82| similar
results for the more general multivariate B-spline M (:| B, P) which is defined as the
distribution on IR¢ which carries the test function ¢ to the number [ ¢(Px)dz,
with B, more generally, a (convex) polytope and P, more generally, some linear
map on IR¥ to IR,

The most recent summary of material about multivariate B-splines is [H86];
see also [Ch88]. These results show that several of these multivariate B-splines have
almost all the properties we listed earlier for the univariate B-spline, i.e., all the
properties that we can expect them to have. (For example, we cannot hope for
a ‘shape-preserving’ map to parallel Schoenberg’s map V since there is as yet no
satisfactory multivariate definition of ‘shape preservation’.) Going down our list
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Figure 8. The partition for a simplex spline cannot be made to fit an
arbitrary partition.

of good properties, we find stable recurrence relations and good quasi-interpolants.
We also find much beautiful mathematics (see, e.g, Dahmen and Micchelli [DM84]),
particularly when we use bodies other than simplices, and use projectors other
than orthogonal projectors. For example, we obtain the so-called box splines
[BH83] when we use the unit cube as the body. Such a box spline is, ofthand, the
distribution defined by

M (z|V)p(z)da ;:/ p()_ oty)dt

R4 [0,1]V veV

for some sequence V in IRY, hence can be obtained recursively by
0
M(z|V) = / M (z + vt|V\v)dt,
-1

with M (-|V') the characteristic function of the convex hull of 0UV in case #V = d.
This shows the multivariate cardinal B-splines introduced earlier to be box splines.

But the initial enthusiasm for these multivariate B-splines has somewhat abated
for the simple reason that they are not entitled to the prefix ‘B’: they fail to be basic.
Since they are obtained as shadows of polyhedra (or polytopes), their partition or
mesh depends on the structure of those polyhedra. E.g., the 2-dimensional shadow
of a simplex has any line connecting any two of the projected vertices as meshlines.
This makes it in general impossible to suit multivariate B-splines to a given par-
tition. Even if we restrict attention to partitions generated by such shadows, the
collection of all pp functions of the appropriate degree and smoothness is usually
larger than the span of all these B-splines. This puts into question the ultimate
usefulness of these multivariate B-splines for practical work, except, perhaps, for
the box splines (if a regular partition is satisfactory).

But it also puts into question that naive definition of a spline as a pp function
of some degree and some smoothness on some partition. For this class can often
be shown not to have a locally supported basis. I.e., even if the class contains
locally supported elements, it also contains functions which cannot be represented



by them. On the other hand, these non-local elements are usually not useful for
approximation, i.e., it can often be shown that

dist (f, $) ~ dist (f, $loc)7

with
$1oc := span{s € $ : supp s compact}.

If this leaves you a bit wondering what multivariate splines might be, I am
pleased. For I don’t know myself. I am coming to the realization, though, that it will
be necessary to separate the various roles the univariate spline plays simultaneously.
My guess is that, if there is ultimately a satisfactory definition of a multivariate
spline as a tool for approximation, it will capture the best features of the univariate
spline, i.e., it will refer to classes of functions probably pp of controllable smoothness
which are spanned by a stable, locally supported basis which is not too hard to
handle in computations. Such classes will also be used to provide suitable and
entirely satisfactory approximations to ‘splines’ in the variational sense.
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