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Abstract A novel method is presented for distributed matching across different view-
points. The fundamental perspective invariants for curves in the real projective
space are the volume cross-ratios. Probabilistic analysis of projective invariants
shows that they are not unique and therefore not discriminative. However, a
curve in m-dimensional Euclidean space is completely prescribed by the signa-
ture manifold of joint invariants generated by taking all possible combinations
of n points on the projective curve where n is at least m + 2. Furthermore, sub-
manifolds given by the projection of the signature manifold also represent the
curve uniquely. Sections of the sub-manifolds that admit large enough variation
of cross ratios are found to be sufficient, statistically, for matching of curves.
Such sectional signatures allow fast computation and matching of features while
keeping the descriptors compact. These features are computed independently at
cameras with different viewpoints and shared, thereby achieving the matching
of objects in the image. Experimental results with simulated as well as real data
are provided.

Keywords: Camera networks, correspondence-less matching, joint projective invariant sig-
natures
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1. Introduction
Object recognition in automated visual surveillance systems must be capa-

ble of matching features which represent distinctive parts of objects such as
people or vehicles in complex environments in an online fashion across mul-
tiple view-points. Commercial, law enforcement, and military applications
abound, including detection of loiterers, monitoring vehicles on highways, pa-
trolling borders, measuring traffic flow, counting endangered species, and ac-
tivity monitoring in airports. As costs for cameras and computers continue to
drop while the desire for security and other applications increases, research in
this area has been developing rapidly over the last decade [4; 8; 18]. Match-
ing curves across widely varying viewpoint requires local image features that
are invariant to changes in pose, occlusion, illumination, scale, and intrinsic
differences between cameras.

This chapter describes a method that uses joint projective invariants to match
curves across multiple views. Given a pair of images taken from unknown
viewpoints, a set of curves is extracted from each image that are the projections
of unknown 3D curves in the scene. The problem is to determine if two curves
in two images match, i.e., if they correspond to the same curve in the scene.

An invariant is defined to be a function on the set of points (or a subset)
of an image, of a planar or 3D object, that remains constant under a collec-
tion of transformations of the object. Two images (or sub-images) with the
same values of the invariant are identified as images of the same object under a
transformation, thereby making the problem of multiple hypothesis detection
direct. Due to the utility of transformation-invariant features in their ability to
reduce the set of possible matches and speed up the search for similar classes
or objects, invariant-based approaches to problems in computer vision have
been well studied [14; 15].

Invariant-based methods may be classified as global or local: global invari-
ants utilize the entire image to compute feature values whereas local invariants
are computed from much smaller subsets. Local invariants are more desirable
due to their robustness to occlusion and noise. However, one of the fundamen-
tal problems with the use of local invariants is that they must be computed on
corresponding subsets of points in each view.

Related Work
The object correspondence problem arises in many different contexts. Pro-

jective invariants have been applied to various computer vision tasks such as
localization [11; 19], autonomous navigation [24], 3D reconstruction [22], and
surveillance [25]. A few researchers have focused on the probabilistic analysis
of projective invariants. In [2], a probability distribution was derived for the
four-point cross-ratio, a classical planar projective invariant, under different
assumptions on the distribution of the four points. The distribution of cross
ratios was further examined in [9] as more constraints on relative distances of
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the four points are imposed. The performance of cross ratios was described
quantitatively in terms of probability of rejection and false alarm in [13]. Un-
fortunately, as noted by [1], in all these works the correspondence of points
between images was given a priori or external makers were used to assist with
the correspondence. Without correspondence information, the classification
methodology breaks down since the cross ratios are not unique.

In other related work, Scale Invariant Feature Transform (SIFT) [10] fea-
tures have been used to compute a large set of local feature vectors from
each image, and the correspondence between two images established using
RANSAC [5]. This approach has been used for 3D model reconstruction in
the Photo Tourism system [23]. However, the computational complexity of
SIFT and RANSAC makes it difficult to use for real-time video surveillance
applications with non-overlapping field-of-view camera networks.

Rothwell et. al. [21; 20] proposed an approach for planar object recogni-
tion by constructing a canonical frame for determining projectively invariant
indexing functions for planar curves. The idea is to identify four distinguished
points on the curve and then compute the projective transformation that maps
these points to the four corners of a square. The distinguished points are chosen
using tangency conditions that are preserved under projective transformations.
The representation of the curve in the canonical frame is claimed to be semi-
local. The method extends to model-based matching of shapes but is not suit-
able for a camera network setting because different distinguished points may
be selected under different occlusion conditions in the two cameras. To tackle
this issue, the authors introduced the notion of redundancy in their later work
[20]. The idea is to have multiple canonical frames from various segments
of the curve. However, the bi-tangency condition required for distinguished
points may not hold in such scenarios.

Similar ideas have been put forth by Hann and Hickman [7; 6] and by Orrite
and Herrero [17]. These methods also utilize bi-tangency points on curves to
learn a projective map. The key difference in the more recent work [7; 6; 17]
from the algorithms proposed in mid-nineties [21; 20] is that they learn the
best projective transformation between two given planar curves in an iterative
fashion whereas the earlier work focussed on solving for a projective transfor-
mation that best maps the bi-tangency points to four corners of the unit square.

There are several shortcomings of existing methods for curve matching
across multiple viewpoints that preclude their employment to applications like
video surveillance in camera networks. Firstly, the schemes proposed are ei-
ther inherently centralized or are too expensive in terms of network resources.
The classification rule based on these methods relies on the Hausdorff distance
between the curve from one point to the image of the curve from the other
viewpoint under the best estimate of the projective transformation given by
identification of bi-tangency points. In order to compute this Hausdorff dis-
tance, each sensor node in the network will require images from other nodes.
Secondly, in order to deal with differences in sampling of images (resulting
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from different grids in imaging devices), existing methods employ an itera-
tive scheme where the learnt projective transformation is corrected for based
on the resulting mismatch in the image domain. This requires complete ex-
change of images at each iteration. Thirdly, the methods depend on the ability
to consistently identify bi-tangents. But, due to possible occlusions, the curves
extracted from the images may not admit any bi-tangents. Finally, the meth-
ods based on detecting interest points and representing images in a visual dic-
tionary obtained by clustering SIFT descriptors [3] are inherently offline. In
applications such as video surveillance (where the object to be matched may
be moving), these methods require frame synchronization across video feeds
from different cameras and dictionary computation and exchange every few
frames.

Our Approach
We present a method for matching curves in different views without assum-

ing any knowledge of the relative positions and orientations of the viewpoints.
Our approach is based on the computation and comparison of projective in-
variants that are expressed as volume cross ratios of space curves extracted
from images of an arbitrary 3D scene. Signatures based on these cross ra-
tios are computed independently from each image. The invariant signatures
are semi-local and compact. A clustering-based method is presented for dis-
tributed matching of signatures between viewpoints that simultaneously solves
the correspondence and matching problems. This work was inspired by recent
advances in joint invariants [16] and analysis of uniqueness of joint projective
invariant signatures [1].

Joint invariant signatures were recently studied by Olver [16] for various
transformation groups. However, due to the sheer size and global nature of
the signatures, they cannot be directly employed for curve-matching. The
novel ideas here include generating compact semi-local signatures indepen-
dently from each image and clustering-based unsupervised matching. We sys-
tematically reduce the size and computational complexity of the matching by
reformulating the problem and offering a tradeoff between size of feature space
and complexity of optimization.

Our method alleviates the aforementioned shortcomings of existing meth-
ods. Unlike existing methods that approach curve matching in the image do-
main, the proposed method matches curves in an invariant domain. The classi-
fication rule is based on comparing the projective invariants of a given pair of
curves. The invariants are known to be complete and therefore uniquely repre-
sent the corresponding curve. Therefore, it is only required to exchange these
invariant descriptors of the curve rather than the entire curve itself. Our scheme
deals with differences in image sampling by regularization. Furthermore, we
utilize a recent result from [1] whereby it was established that a small pertur-
bation of points on the curve results in a small relative error in the invariant
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domain. The proposed method does not critically depend on the existence of
bi-tangents. However, whenever bi-tangents are present, our approach utilizes
them to reduce the size of the invariant descriptors that need to be exchanged
between camera nodes. To the best of our knowledge, this is the first time
projective invariant curve matching has been employed on a real dataset with
extensive performance characterization. Most of the existing work has been
limited to experimentation with toy examples [1; 6; 7; 21; 20]. Finally, the
description of a curve using joint projective invariants is invariant to Euclidean
transformations too. Therefore, in video surveillance applications, the repre-
sentation is redundant across frames of the video-feed. This saves network and
computational resources and allows for robust matching of curves between two
cameras without frame synchronization.

The chapter is organized as follows. Section 2 describes the curve matching
problem in a multiview setting and briefly presents mathematical preliminaries
in joint projective invariants. Section 3 describes the joint invariant signature
and the computational complexity associated with using the entire signature
manifold. Although correspondence-less matching is possible with the invari-
ant signature manifold, its use is not desirable due to the global nature of the
descriptor and the size of the computational problem. In Section 4, the size of
the problem is reduced by using the fact that a slice (or sub-manifold) of the
signature manifold, if chosen properly, prescribes the curve completely. Fur-
thermore, local signatures can be extracted from this sub-manifold as shown
in Section 5. These local signatures consist of regions of the prescribing slice
with high enough variation of cross ratios to encode important information con-
tent and represent the curve uniquely with high probability. Finally, Section 6
presents a distributed, clustering-based method for simultaneous matching and
correspondence of image curves, and Section 7 presents experimental results
with simulated as well as real datasets.

2. Problem Formulation and Preliminaries
This section introduces the notation (largely adopted from [16; 1]) and

presents the problem formulation for pairwise curve matching across different
viewpoints. Let S1, S2 be two images taken by uncalibrated cameras from un-
known viewpoints of an arbitrary 3D scene. Let {C1,i}Mi=1, {C2,j}Nj=1 denote
the collection of planar curves extracted from images S1 and S2, respectively.
For each pair of curves (C1,i, C2,j), the objective is to either establish or reject
the possibility that the two curves in the image space at different viewpoints
represent the same space curve in the observed scene. The sampled, discretized
version of a curve Ci is denoted as C(d)

i with the total number of samples de-
noted |C(d)

i |. The n-dimensional Cartesian product of the curve Ci is denoted
as Cn

i .
A smooth planar curve in Euclidean space is a one-dimensional manifold

and a space curve is a two-dimensional manifold. We denote the finite-dimensional
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Figure 1.1. The five-point projective joint-invariant is the ratio of the product of areas of the
shaded triangles and the product of areas of the non-shaded triangles.

smooth manifold associated with a given curve as M . A given curve may un-
dergo various transformations like rotation, translation, scaling and projection.
These transformation can be described as a Lie group, denoted G acting on
the manifold M . The joint action of the group on the manifold describes how
the group transforms any given n-tuplet on the manifold. Formally, the joint
action of the group G on the Cartesian product Mn is given as:

g · (z1, . . . , zn) = (g · z1, . . . , g · zn)

for g ∈ G and (z1, . . . , zn) ∈Mn.
An n−point joint invariant of the transformation group G on M is defined

to be a function I(z1, . . . , zn) that is invariant to the joint action of the group
on the manifold. The projective transformation group, G = PSL(m + 1,R),
which is the subject of study in this chapter, acts on the projective space RPm

as w = g · z = Az+b
c·z+d , where A is an m×m matrix, b, c are m× 1 vectors, and

d is a scalar. The transformation g maps the point z ∈ Rm to w ∈ Rm.
For an n-point joint action of the projective transformation group on the

projective space, the fundamental m-dimensional projective joint invariants
are given by the volume cross ratios [16]:

CR(i0, . . . , im−2; j, k, l, n)=
V (i0, . . . im−2, j, k)V (i0, . . . im−2, l, n)
V (i0, . . . im−2, j, l)V (i0, . . . im−2, k, n)

(1)

where V (i0, . . . , im−2, j, k) is the volume of the simplex with vertices given
by z0, . . . , zm−2, zj , zk in Rm:

V (i0, . . . , im−2, j, k) = det
[
z0 z1 · · · zm−2 zj zk
1 1 · · · 1 1 1

]
.

This implies that any invariant of n points on a curve in RPm, such that
n ≥ m+ 2, can be expressed as volume cross ratios defined in Eq. (1). For the
case m = 2, n = 5, the expression above reduces to the ratios

CR(0; 1, 2, 3, 4) =
V (0, 1, 2)V (0, 3, 4)
V (0, 1, 4)V (0, 2, 3)

(2)
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and

CR(1; 0, 2, 3, 4) =
V (0, 1, 2)V (1, 3, 4)
V (0, 1, 4)V (1, 2, 3)

(3)

where V (i, j, k) is the area of the triangle defined by zi, zj and zk. The cross
ratio defined in (2) is described as the ratio of the product of the areas of the
shaded triangles in Figure 1.1 and the product of areas of the non-shaded
triangles. For m = 3, n = 6, there are three fundamental volume cross-
ratios: CR(0, 1; 2, 3, 4, 5), CR(0, 2; 1, 3, 4, 5), and CR(1, 2; 0, 3, 4, 5). Geo-
metrically, CR(0, 1; 2, 3, 4, 5) is the ratio of the volumes of four tetrahedrons:
V (0, 1, 2, 3)V (0, 1, 4, 5)/V (0, 1, 2, 4)V (0, 1, 3, 5). Fig. 1.1 shows a bird’s eye
view of the double pyramid with common base resulting from the union of the
tetrahedrons [16].

The probabilistic analysis of random five point cross-ratios reveals that no
single cross-ratio is unique on smooth manifolds [1]. Consequently, for planar
curves, the matching schemes based on comparing single cross-ratios are not
discriminative. The six-point joint-invariants for 3D space curves lend them-
selves to the same analysis as the empirical distributions are found to exhibit
characteristics similar to the planar case presented in [1]. Furthermore, it is
argued using jitter-analysis that the cross-ratios are robust to noise. For more
details the reader is referred to [1].

3. Joint Invariant Signatures
The non-uniqueness of any single cross ratio value implies that no single

cross ratio value can be used for matching without establishing correspondence
of points [1]. However, the joint invariant signature defined to be the manifold
comprising cross ratio values generated by all possible n point sets on a curve
does represent the curve uniquely up to a projective transformation [16].

Let I be an n-point joint invariant map (see Section 2) for the projective
transformation group, I : Cn

i → R. Denote the n-dimensional1 invariant sig-
nature manifold given by the images of curves C1 and C2 under the map I by
JCn

1
and JCn

2
respectively:

JCn
1

= I(Cn
1 ), JCn

2
= I(Cn

2 )

where Cn
i = Ci × · · · × Ci. If the given curves are related by a projective

transformation, i.e., C1 = g ◦ C2 for some g ∈ G = PSL(m + 1,R), then
from the definition of joint action, Cn

1 = g ◦ Cn
2 . This implies that the set of

all cross ratio values observed on the two curves are the same:

JCn
1

= I(Cn
1 ) = I(g ◦ Cn

2 ) = I(Cn
2 ) = JCn

2
.

More importantly, C1 = g ◦ C2 for some g ∈ G if and only if JCn
1

= JCn
2

[16]. Therefore, two curves are equivalent up to a projective transformation if
and only if the Hausdorff distance between the sets of cross-ratios is 0, i.e.

d(JCn
1
, JCn

2
) = 0.
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Figure 1.2. (a) Smoothed contour of letter “W” from the license plate dataset [26]. (b) Sur-
face plot of a 2D slice. The points z2, z3 and z4 are the pivot points and points z0, z1 span the
2D slice of the 5D signature sub-manifold as they traverse the entire curve. (c) Surface plot and
contour image of a informative local section of the 2D slice.

In general the sets JCn
1

and JCn
2

are not bounded. Thus the Hausdorff crite-
rion needs to be restated as:

d(U ∩ JCn
1
, U ∩ JCn

2
) = 0, (4)

where U ⊂ R is any closed and bounded subset of real numbers. Also, in
practice, C1, C2 are sampled discrete curves and the sampling grids for the
two images may not correspond, resulting in non-zero Hausdorff distance. But,
given the jitter analysis above, it is guaranteed that

d(U ∩ JCn
1
, U ∩ JCn

2
) < ε (5)

where ε > 0 depends on the amount of jitter resulting from noise, quantization
differences, and mismatches between the two images’ pixel arrays.

Establishing the relation in (5) for sufficiently small ε yields correspondence-
less matching. However, solving for the Hausdorff distance is computationally
intensive and the rest of this chapter deals with systematically reducing the size
of the problem, both in terms of the algorithmic complexity of computing the
joint invariants as well as solving the correspondence problem. Various ap-
proaches are compared based on the size of the problem. From the perspective
of space requirements, another aspect of the problem size is the size of the in-
variant descriptor. For correspondence-less matching, using the complete joint
invariant signature manifold, |C(d)

1 |n + |C(d)
2 |n cross ratio values must be

computed and compared using the Hausdorff distance and solving Eq. (5), has
a complexity of O(|C(d)

1 |n · |C
(d)
2 |n). This approach is clearly not practical.
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4. Slicing through the Signature Manifold
A sub-manifold of the signature manifold may be generated by taking a slice

of the manifold by pivoting one or more points while at least one of the points
takes values over the entire curve. An important result in the theory of joint
invariant signatures for projective transformations is that certain sub-manifolds
also describe the curve uniquely. Such slices (or sub-manifolds) may not be
generated arbitrarily: If the pivot (fixed) points in RP2 (RP3) are collinear
(coplanar), then the resulting slice comprises all zero cross-ratio values. A
p-dimensional sub-manifold of the signature manifold is obtained by pivoting
n− p of the n points. Let P ⊂ {1, 2, . . . , n} denote the set of indices of pivot
points, with |P | = p. Define

A1 = {z ∈ Cn
1 |zi = xi for i ∈ P, zi ∈ C1 for i /∈ P}.

A1 is a p-dimensional slice of the Cartesian product Cn
1 . Let JA denote the p-

dimensional signature sub-manifold obtained by restricting the signature man-
ifold J to the slice A. For instance, let P = {2, 3, . . . , n}. A1 is 1D with
z1 taking all values on the curve C1 and the corresponding 1D signature sub-
manifold JA1 defined to be the signature collected over this 1D slice of Cn

1 :

JA1 ≡ I(• , x2, . . . , xn) = I(Cn
1 ∩A1)

From [16] we know that any of the slices of the signature sub-manifold also
prescribes the entire curve. Thus

C1 = g ◦ C2 for some g ∈ G ⇐⇒ d(JA1 , JA2) < ε

for ε > 0. This implies that if d(JA1 , JA2) < ε for sufficiently small ε, then
curves C1 and C2 match. To use this test for matching, we need to find the
pivot points x̃i ∈ C2, for i ∈ P , that determine the slice A2 and minimize the
Hausdorff distance between JA1 and JA2 ,

∆ = min
x̃i∈C2, i∈P

d(JA1 , JA2).

and test for ∆ < ε. In contrast to the formulation in the previous section that
allows for correspondence-less matching, testing for ∆ < ε simultaneously
achieves correspondence and matching. Also note the tradeoff between the
size of the invariant descriptors versus the computational load.

Consider the special case of projective transformations of planar curves
(m = 2, n = 5). A 1D slice allows for much smaller numbers of invariants
(O(|Ci|)) to be compared but at the same time requires solving a 4D optimiza-
tion problem (O(|Ci|4 × |Ci|)):

∆ = min
x̃2,x̃3,x̃4,x̃5∈C2

d(I(A), I(•, x̃2, x̃3, x̃4, x̃5))
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(a)

(b)

(c)

Figure 1.3. Inflection points marked with dots on (a) original contours, (b) smoothed contours
and (c) post-elimination based on the amount of rotation of tangent about inflection points.

A more balanced trade-off between time and space may result from using
2D slices. A 2D sub-manifold of the signature manifold JC5

1
is defined to be

the collection of invariants collected over the 2D slice of the set Cn
1 . This

signature requires O(|Ci|2) cross ratio values to be computed and compared.
For P = {2, 4, 5}, the corresponding discrete optimization problem is

∆ = min
x̃2,x̃4,x̃5∈C2

d(I(A1), I(•, x̃2, •, x̃4, x̃5))

which requires a search in O(|Ci|3) dimensional space.

5. Toward Local Signatures
All the signatures discussed so far are global in nature. Owing to the lack

of robustness of global signatures to occlusion, we now restrict our attention to
sections of invariant signature sub-manifolds. This requires that the n points in
the domain of the sub-manifold are selected over a short segment of the given
curve. For curves in RP2, a section of a 2D slice is shown in Figure 1.2(e).

A method to choose segments of a curve consistently across varying view-
points is based on the identification of inflection points. Inflection points are
defined to be the points on the curve at which the curvature changes sign.
Consider the motion of the tangent to a given planar curve at a point as the point
moves along the curve. The tangent either rotates clockwise or anti-clockwise
in the plane. The rate of rotation of the tangent is given by the curvature of
the curve. The points at which the rotation changes direction (clockwise to
anti-clockwise or vice versa) are the inflection points of the curve. It is well
known that inflection points are invariant to projective transformations. Thus
they can be found consistently across different perspectives and result in the
same segmentation of the curve.

However, inflection points are very sensitive to noise. Figure 1.3 shows
inflection points for various contour images extracted from the license plate
dataset. Due to the quantized nature of the contours and associated noise or
discontinuities, a simple test for inflection points results in a host of possi-
ble candidates as seen in Fig. 1.3(a). Smoothing the curve using a simple
low-pass filter eliminates most of the noisy candidates (Fig. 1.3(b)). Further
elimination based on the area under the curvature plot about each candidate



Matching in Camera Networks 11

point reveals the significant inflection points as seen in Fig. 1.3(c). This pre-
processing method is robust to significant amounts of noise and widely varying
perspectives. It allows for robust segmentation of curves.

It should be remarked that most interesting shapes admit inflection points
in the resulting contours. However, in the case where no inflection points are
observed, we have only one segment - the whole curve itself - and the dis-
tributed clustering method described in the next section still produces a good
match. Thus, our matching methodology does not depend on the presence of
inflection points.

Given segments of a curve, the next step is to identify good pivot points in
the segment and sections of the curve that yield informative feature values. As
discussed in [1], high cross ratio values on a curve are rare and therefore a
collection of cross ratio values with large enough mean and variance is unique
with high probability. Thus the segments of the curve are scanned via ran-
dom sampling for pivot points that generate such discriminative features. The
cross-ratios observed in a tight neighborhood around pivot points constitute the
feature vectors.

6. Distributed, Clustering-based Matching
An important issue in an implementation of the local signature-based match-

ing algorithm is that of non-uniform sampling of the curves in the two images.
That is, some parts of the curve may be more densely sampled in C1 than in
C2. One solution is to re-sample each extracted contour from an image as a
preprocessing step on to a uniform grid. This realizes a uniform resolution over
the sampled curve. Alternatively, this pre-processing step can be avoided by
using a distributed, clustering-based method. Given a section of the signature
sub-manifold from image S1, the n-point sets in image S2 with volume cross-
ratios lying in the neighborhood of the given section are clustered iteratively
to learn the matches between the two images. The key idea behind the match-
ing algorithm is that local sections on the curve correspond to tight clusters in
the domain of the signature manifold. The five-point sets corresponding to the
received feature vector at camera 2 from camera 1 is centered around a mean
z = (z1, . . . , z5) and enclosed in an epsilon ball (z − ε, z + ε) ⊂ C5

1 . This
motivates the method described in Algorithm 1.

Another important aspect of the algorithm is to deal with the sensitivity of
high cross-ratio values in noisy settings. High cross ratio values close to sin-
gularity points are saturated to a predetermined threshold. Consistent with the
ideas in Section 3 (also see remarks leading up to Eq. (4)), the cross ratio map
is restricted to a closed and bounded set of real numbers, U = [−l, r], clipping
the cross ratios that lie outside this interval.
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Figure 1.4. Contour images from the license plate database [26]. The digits extracted from
license plates as seen at (a) Camera 1, (b) at a randomly generated viewpoint of the curves
observed at camera 1, (c) at Camera 3, and (d) at a randomly generated viewpoint of the curves
observed at camera 2. (e) Confusion matrix for 100 random projective transformations of curves
in the license plate database.

def ClusterCenter = matchSIG(Jsig, C)
Input: Section of Joint invariant signature Jsig, Local planar curve C
Output: Center of the best cluster ClusterCenter
repeat

Generate M random 5-point sets on C;
for i = 1, 2, . . .M do

Compute CR = cross ratio of ith set;
if min

(
|CR− Jsig|2

)
< δ then

update the clusters Clust = update(Clust, ith set)
end

end
foreach cluster iClust in Clust do

Compute the distance d(iClust, Jsig);
end
Find best cluster bestClust = iClust with minimum d();
Obtain Dmin = d(bestClust)

until Dmin < ε or max iterations ;
return center of bestClust.;

Algorithm 1: Algorithm for distributed curve matching.

7. Matching Performance
This section discusses performance of the clustering-based algorithm on

simulated data using the Epipolar Geometry Toolbox [12] as well as on a li-
cense plate image database [26].
Case: m = 2, n = 5
Figure 1.2 shows contour plots from license plate dataset along with invariant
signatures. Figure 1.2(a) shows the contour of the digit “6” (extracted from
images of the license plate 67724QB). The set of five points on contours that
generated the invariant signatures (in Fig. 1.2(c)), are highlighted with sym-
bols. The points z2, z3 and z4 are the pivot points and points z0, z1 span a 2D
slice of the 5D signature manifold. The surface plot of the 2D slice is shown
in Fig. 1.2(b) and the grayscale contour image is shown in Fig. 1.2(c). The
local section of the 2D slice consists of a 30×30 macroblock with surface plot
shown in Fig. 1.2(d). Numerous such signatures were generated for contour (a)
and the matching signatures in contour (b) were unique with high probability.
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Figure 1.5. Receiver operating characteristic curves at various noise levels in the contour
images based on joint projective invariant signatures (solid lines). Compared with Hann and
Hickman’s method [6; 7] (dashed lines)

The images from the license plate dataset captured at two different view-
points are shown in Figures 1.4(a,c). The test dataset comprising the 12 con-
tour images was enlarged by generating random projective transformations of
the given contours. The confusion matrix for this experiment involving 100
random projective transformations is shown in Fig. 1.4(f). It is evident from
the experimental results that the method enjoys a good specificity as well as
sensitivity. The number of detected inflection points for the test images ranged
from 0 (for the digit ’8’ after smoothing) to 8 (for the letter ’X’).

Finally, to study the performance of matching in noisy conditions, the re-
ceiver operating characteristic curve was generated for various SNR levels as
shown in Fig. 1.5. The results are reported for the entire multi-view license-
plate dataset available online at [26]. The performance is compared with the
method proposed by Hann and Hickman [6; 7] which was found to perform
better than Rothwell’s canonical frames method [21]. Clearly, our method out-
performs the canonical-frame method at all SNR levels. The computing time
for the matching algorithm was considerably less than that proposed in [6; 7].
Each comparison with the proposed method took∼4-8s on a 2.4GHz machine.
Case: m = 3, n = 6
The Epipolar Geometry Toolbox [12] was used to simulate a 3D scene with
moving space curves being tracked by two pinhole cameras. Since the signa-
ture sub-manifolds are invariant to Euclidean as well as perspective transfor-
mations, they uniquely describe these space-time curves. In other words, the
signature sub-manifold need not be recomputed at every frame of the trajectory
of the curve. This allows for robust matching of curves in the image planes of
the two cameras at every instant, without frame synchronization. For more
details and results on matching space curves, refer to [26].

8. Discussion
This chapter presented a new algorithm for curve matching using slices of

the joint invariant signature. While invariant-based methods traditionally suffer
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from the lack of uniqueness of any single cross ratio value, with high proba-
bility image curves can be uniquely described by multiple cross ratio values,
chosen judiciously. The novel contributions in this chapter are in computing
semi-local, compact descriptors of curves from each image and developing an
efficient, distributed algorithm for simultaneous correspondence and match-
ing. Matching results are provided using both simulated data and a license
plate dataset.

Notes
1. Note that the manifold lies in m × n dimensional Euclidean space but since it is parameterized by

the curve, the effective dimension is n
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