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Everything should be made as simple as possible, but not simpler.
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Abstract

Recorering three-dimensional information from images is a principal goal of computer vision.
An approach calle&tructue Fom Motion(SFM) does so without imposing strict require-
ments on the obsezv or scene. In particulaBFM assumes camera motion is unknand

the scene is only required to be static. This thesis describes @HM technique calleBro-

jected Eror Refinementhat computes the positions of feature points @teuctue) and the
locations of the camera or obseryi.e.,motior) from a noisy image sequence. The technique
addresses limitations okisting SFM techniques that makhem unsuitablexeept in con-

trolled ewironments; the approach presented in this thesis models perspeuijection,

allows unconstrained camera motion, deals with outliers and occlusion, and is scalable. This
new technique is recunge and thus is suitable for video image streams becausenages

can be added at ptime.

Projected Error Refinement we SFM as a geometricvierse projection problem,
with the goal of determining the positions of the cameras and feature points such pnat the
jectors defined by each image optimally intersect (projectors are the lines of projection speci-
fying the direction of each feature point from the cansewatical center). This ixpressed as
a global optimization problem with the objeetifunction minimizing the mean-squared
angular pojection eror between the solution and the obsetvmages. Occlusion is dealt
with naturally in this approach because only visible feature points define projectors that are
considered during optimization - occluded features are ignored. The technique models true
perspectie projection and is scalable to an arbitrary number of feature points and images.
Projected Error Refinement is non-linear and uses fasieet parallel iterative refinement

algorithm that taks an initial estimate of the structure and motion parameters and alternately



ii
refines the cameras’ poses and the positions of the featureipgatallel. The solution can
be refined to an arbitrary precision or refinement can be terminated prematurely due to limited
processing time. The solution a@mes rapidly twards the global minimumven when
started from a poor initial estimate. Experimental results aendor both 2D and 3D per-

spectve projection using real and synthetic images sequences.
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Chapter 1
| ntroduction

Vision is our most important sense andvies us with the richest source of data about our
ervironment. One of the primary goals of a vision system is to determine the structure of the
ervironment and to locate the obserwithin it. The dificulty in visually determining scene
structure and obsegv location is that optical projection is a destuetiransformation - the
image projected onto the retina or camera is puredydimensional and contains ngpécit
three-dimensional information. Thevarse projection problem, namely reeang 3D struc-

ture from 2D images, is fundamentally ill-posed and additional assumptions or constraints
must be made for the problem to become well posed. The remarkable prgficfetne

human visual system izidence that imerse projection is not a hopeless cause.

The assumptions made in computer visionvig® a useful basis to distinguishfdif
ent techniques. df example, stereo vision assumes the redapositions of tw cameras is
precisely knavn [12], whereas techniques that infer local shape from image contours presume
physical properties of the scene such as smoothness [25], [69]. An approaciScadiete
From Motion (SFM) males minimal assumptions about the camera and scene and does not
require specialized hardse (Shariot and Price [49] and Uliman [67] summarize earlek w
in SFM, and Oliensis [39] ges a critique of recent techniques). IdeddiFM allavs arbitrary
camera motion and only requires that the scene is statwevdnp mary SFM techniques,
such as the &ctorization Method and its deatives, assume a non-perspeetprojection
model and therefore are only accurate for specific camera motions and scene structures [59],

[5], [42], [46], [70], [60]. This thesis describes amn8FM technique calleBrojected Error
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Figure 1.1: The vision pipeline includes multiple stages: image capture and digiti
image enhancement, feature detection and trackingyeeog 3D structure, i.eStructue
From Motion surface fitting and object modelling, and camera tracking anigiat#on.

Refinementhat recoers the positions of feature points and the locations of the cameras, and
avoids some of the additional constraints imposed by other techniques omdtse iprojec-

tion problem.

1.1 Problem Description and Assumptions

Recorering 3D structure and motion from images is a multi-stage process of which SFM is
but one part, as sham in Figure 1.1. SFM occurs after images are captured, digitized and

prominent features in each image identified and matched with the features in the other images.
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The input to SFM is typically a list of features and their projected 2D positions in each image,

and the output is the 3D positions of these feature points and the 3D locations of the cameras

and the rotations of the images around the optical cehBushces may be subsequently fit-

ted to the reoeered points to construct a three-dimensional model of the scene for use in
object recognition and computer graphics (e.g., wireframe models [3]). Theered@osi-

tions of the camera may be used fovigation and obstaclevaidance (e.g., motion planning
[27]).

Structure From Motion techniques generally méhe follaving assumptions:

the trinsic and possibly intrinsic parameters of the camera are wmkno

» the scene is static; called thgidity constraint,

* multiple images are projected fromfdifent vievpoints,

» the features xracted from the images are primés such as points or

lines,

* the correspondence of features between the imagesvsikne., thecor-

respondence problem is solhed.

The most restrictie of these assumptions is the rigidity constraint. Rigidity is neces-
sary for image consistepdecause the images are not captured at the same time, seik
stereo vision where images aredaksimultaneously by wcameras. If the scene changed
arbitrarily between each wiethen the projected images are unrelated, makiwegse projec-
tion ill-posed. There are marapplications where the scene can be assumed to be static, in

particular object modelling [3], [47]. It is also possible to relax the rigidity constraint if non-

IMost SFM techniques use point features. Those based on line featueesohze-
what diferent input and output forms [28], [7], [71], [26].



rigid motion can be identified andgseented by other means [33], [5], [58].

SFM also assumes that the correspondence problem eds@etermining feature
correspondences is nonvidl because thexact camera motion between each image in the
sequence is unkmm. Features can be trazk reliably between images if the frame rate is
high relatve to camera motion [52], [76]. Mertheless, feature tracking is an aetarea of
research and correspondence errors do patuch, if undetected, carverwhelm subsequent
SFM analysis and render the solution meaningless. Detecting correspondence errors is an

important feature of Projected Error Refinement.

Many SFM techniques assume the intrinsic camera parameters ava ke focal
length, aspect ratio, principle point and the angle between the imagg ealledntrinsic
camera calibration. Several SFM techniques based on projeetgeometry determine these
parameters in the course of solving for structure and motion [34], [41], [2]. Camera calibra-
tion is important and self-calibration iswebusly desirable, hoever, it is som&hat distinct
from the problem of rea@ring structure and motionoFexample, calibration is easiest when
camera motion is rotational, whereas rgng structure and motion strictly requires camera
translation [18]. In mancases, the intrinsic camera parameters are constant and can be deter-
mined beforehand [18], [30] or thehange smoothly and can be dynamically adjusted [32],
[41]. Camera calibration is nox&mined in this thesis and it is assumed that the intrinsic cam-

era parameters are found by other means.

1.2 Motivation

SFM is a pwerful approach to computing scene structure and camera motion because it
simultaneously reaers both the positions of features and the location of the ansend it
makes &irly minimal assumptions and thus is suitable for a wateety of applications. He-
ever, existing SFM algorithms impose additional constraints to reduce the problem to linear
complity, do not scale to lge numbers of features or images, or are natstoio the irrg-

ularities and imperfections of real image sequences, such as image noise, occlusion, missing
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features and correspondence errors. As a residtiregg SFM techniques typically do not per-

form well in real applications [62], [39]. This researchsnmotvated to address the limita-

tions of isting SFM techniques. In particuldive key deficiencies are identified:

10. An accurate optical projection model. This implies at |passpectie pro-

jection Parallel projection, weak perspeaiand para-perspeati projec-

tion are only accurate for limited camera motions and scene structures.

11.Rolust to noise caused by an imperfect camera model or introduced in
prior stages of the vision pipeline. This requireareiningall the aailable

image information.

12.Handleocclusionandmissing featuresOcclusion is an innate property of

real scenes.

13.Handle correspondence erroreature detection and tracking cannot be

expected to gie perfect correspondences. Occasional correspondence
errors must be handled, which may manifest as gross errors in the projected

positions of some feature points.

14.Recursive. Techniques that can incrementally refine aistang solution
by adding ne& images are most suited to real-time video image processing.

Recomputing the solution from scratch fees/ nev image is indicient.

1.3 Projector-based | mage Representation

Selecting the representation of images is important becausgelylatletermines the
complity and capabilities of the solution. More precisdty the irverse projection prob-
lem, there is no compelling reason to use planar images (a sirgilanemt is made by Nae

and Eklundh [36] for using projecgé geometry). Projected Error Refinement represents



projector

Figure 1.2: A projector is the line &tending from the optical centey of the camera to tl
feature poinp; in the sceneyj; is theunit direction vector of this line and an ‘image’ is the

of direction \ectors for all the visible features. The onlgidable information about the st
ture of the scene is thelative direction of each feature point from the optical center

images in terms girojectors; that is, the lines of projectioxtending from the optical centers

of the camera and passing through the feature points in the scenayasrshigure 1.2. The
only information about the 3D position of a feature point is its k&atirection from the cam-
era - there is no kmdedge of its distance. This is precisely modelled by a projector which
describes a line through the scene on which the feature point must liee Plaiiar image

coordinates, projectors depend only on the position of the center of projection and not the

rotation of the image around?fThis is desirable because only the cansd@ation preides
useful information for reogering 3D structure; i.e., rotating the cameravjtes no ne
information about scene structure whereavingpthe camera to a @i#rent location does.
Projectors concisely andicitly represent the relant information about scene structure,
which leads to a more inturg understanding of thevierse projection problem and cacil-

itate simple solutions to otherwise fditilt problems, such as occlusion. The projet@ased
image representation alsacflitates outlier detection because a projector is the principal axis

of a cone describing the confidencgiom of a featur& position due to projection noise, as

That is to saythe image coordinate frame is not important and can be normalized.



angular projection
error

Figure 1.3: A projector is the principal axis of awne describing the xpected position of
feature pointp; due to noise. Note: the error in the displaced positiop; @fue to nois

increases the further it is from the center of projeatjon

shawn in Figure 1.3. An projector that lies outside itg@ected error cone is defined to be an
outlier. Projectors can be defined foryageometric projection transformation inyagdimen-
sion and are easily adapted tdfeliént projection models. 2D and 3D perspeacprojection

are eamined in this thesis becauseytlaee most applicable in computer vision.

The projectotbased image representation is gglant tonormalized projective image
coordinates andspherical image coordinates that are used by SFM techniques basegron
jective geometry [76], [50], [17], [2]. As described in Chapter 3, projeetimage coordinates

are essentially a 3D homogeneous representation of 2D planar image coordinates of the form
[x y ﬂ , Wheref is a non-zero scalar multiplier [36], [17]. Spherical image coordinates are sim-

ilar except that the image is spherical and image coordinates are represented by points on the
surface of asphere rather than a plane [31], [23]. Spherical image coordinates are thus isomor-
phic to unit direction gctors in the projector model. Homogeneous coordinates are frequently
used in SFM because thsimplify incorporating the intrinsic camera parameters, particularly
focal length, into the computation of structure and motion, theeatijtéting self-calibration

[2], [41]. Projectve geometry also has the useful property that parallel and pevepacjec-

tion are defined identically [50]. Projeatigeometry is a well-deloped field of mathematics

with a strong theory of projection andv@rse projection. Although Projected Error Refine-

ment uses a projecttiased image representation, it formulates therge projection problem
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in terms of Euclidean geometnj topic of future research, described in Chapter 10, is to

investicate whether Projected Error Refinement mayetasimpler definition when described

in terms of projectie geometry

The representational fifrences between projectors, projeetimage coordinates,
spherical image coordinates and planar images are less significant thaneh@re used.
Most SFM techniques are based opleiting geometric or algebraic properties that are
invariant under projection to multiple images, from which camera rotation and translation is
more easily etracted. Br example, thecentroid of several points is constant under parallel
projection, and theross-ratio of four collinear points is constant under perspecgrojec-
tion. Theessential matrix [29], the fundamental matrix [17] and theFactorization Method
[59] all exploit various ivariants of perspeete and parallel projection to rear the relatie
extrinsic camera parameters fromawr more images. Rever, these imariant properties are
typically defined for a specific number of feature points and images, and therefore these

approaches do not permit occlusion or are not easily scalable to additional features and images

and thus are sensiéi to noise Projected Error Refinement, on the other hand, optimizes the
structure and motion parameters usatigthe visible projectors, thus it supports occlusion,

missing features and is arbitrarily scalable.

1.4 Projected Error Refinement

The projectors defined for a feature point byedént images are necessarily concurrent; i.e.,
they all intersect at a single point in the scene. This imposes a weak constraint on the position
and rotation of each camerapeessed in terms of thexteinsic camera parameters. A well

known result in SFM is that géen suficient number of features and images, there are a finite

3The FRactorization Method is scalable in the number of features and imageis, b
assumes parallel projectioredhniques based on the essential and fundamental matri-
ces can bex¢ended to include more feature pointg they are only defined for tav
images, which is inadequate for reliable reconstruction [63], [53], [10]. None of these
methods intrinsically handle occlusion or missing features.
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number of camera and feature locations that are consistent with theeasbsaages [66],

[64], [20], [29], [14], [74]. It is also well understood that these so-catfiedmal data solu-

tions are \ery sensitre to noise and additional image data must be included for reliability
[49], [62], [61], [10]. Redundancover-determines the uerse projection problem and there-

fore projectors no longer precisely intersect due to noise. Projected Error Refinement there-
fore formulates iverse projection as @ptimizationproblemfor determining the positions of

the cameras and feature points such that the projectors defined by theaptagablly inter-

sect?

The objectve error function in Projected Error Refinement is the mean-sqaaged
lar projection eror - the angle between the projectors defined by the cddbénages and the
corresponding projectors in the solution. The angular error of a projector is independent of the
distance between the feature point and camera, therefore the fwéyes &éeature is from the
camera the greater the anticipated error in its position due to noise (see Figure 1.3). As
described in Chapter 5, optimization methods that instead minimizéstaacebetween pro-
jectors are biased amst features close to the camera [68], [11], [8], [53]. In Projected Error
Refinement the error of inddual projectors can be weighted to alladditional information
to be included during optimization, such as the strength of a feature match. Occlusion is han-
dled naturally because only visible feature points define projectors whose error terms contrib-
ute to the global sum total - missing features are simply ignored. Projected Error Refinement
is non-linear and anf&fientparallel iterative refinemenalgorithm is used which tak an ini-
tial estimate of the structure and motion parameters, as found by a minimal data solution, and
then alternately refines the features and images to reduce the angular projecti&e parait-
ing the refinement of structure and motionvyiles a high dgree of parallelism - all the fea-
ture positions are refined in parallel, as are the camera locations and image rotations.

Refinement of the solution can continue to an arbitramsl lef precision or can terminate pre-

4Optimality is defined in terms of thangular pojection eror; that is, the dference
between the obsesd images and the solution.
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maturely for exkample, due to limited processing time. Projected Error Refinement is vecursi

and thus is suitable for real-time video analysis because the projectors fremraage can
be added at antime and the solution further refined. Ma8FM techniques compute their
solution to a fied precision and must run to completion, or process images in batch mode and

therefore must re-compute the solution feerg nev image.

1.5Major Contributions

The major contribtions of this thesis can be summarized as:

1. A model of SFM based oprojectors and angular piojection eror that
views inverse projection as a geometric problem rather than an algebraic

one.

2. A new minimal data solutiorto the iverse projection problem for 2D and
3D perspectie projection that ges an intuitre geometric interpretation of

the constraints and parameters of the problem.

3. A new optimization-based SFM technique callrobjected Eror Refine-
mentthat uses an &€ient parallel iterative refinementlgorithm to opti-
mize scene structure and camera motion by italgtiminimizing the
angular pojection erpor in the images. This technique models perspecti
projection and is arbitrarily scalable and webto noise. Occlusion is sup-

ported and outliers are detected and rejected in a well-defined manner

1.6 ThesisOutline

The oganization of this thesis reflects thevdlmpment of the Projected Error Refinement
technique. The input to this method is a labelled list of feature points and their projected posi-

tions in each image xpressed as projectors. The output is a 2D or 3D map containing the
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recovered positions of the feature points and camera centers and the rotations of the images.

No a priori knowledge of the positions of the feature points or cameras is assumed and the
solution is correct up to a scakctor and a rigid rotation and translation. Results areeteri

for both 2D and 3D perspeed projection.

Chapter 2 réiews related wrk in SFM. This field has reced considerable attention
over the years and no attempt is made here toxbaustve. Rather the predominant
approaches to thevarse projection problem are described, focusing on the assumptions that

are made and the practical adtages and disadrtages of each approach.

Chapter 3 describes the projector model eéise projection on which Projected Error
Refinement is based. Defent models of optical projection that are used in SFM are com-
pared. The projector model is then used to describe ¥kesa projection problem for multi-

ple images to identify the constraints and parameters of the problem.

Chapter 4 describes a projeeb@sedminimal data solutiorthat xamines the mini-
mum number of feature points and images necessary for reconstruction and assumes zero
image noise. The fefct of noise on this solution is then described ang ivis insuficient to
examine a fied minimal number of image measurements; that iy, iehable SFM tech-

niques must be scalable.

Chapter 5 xtends the minimal data solution dexdl in Chapter 4 toxamine addi-
tional feature points and images. Whereas the former computes the solution that precisely
matches the (minimal) images, the so-callefined solutionnstead alternately adjusts the
positions of the feature points and camera centers to minimize the angular projection error in
the non-intersecting projectors. First, the minimal data solutioridge® an initial estimate of
the positions of a subset of feature points and cameras, which is then augmented with the
remaining features and images. This estimate is refined using paralleVateedinement
until further optimization has gégible efect on reducing mean angular projection erfor

example is gien using synthetic images stiag howv the refined solution ges a better
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reconstruction of the scene than the minimal data solution.

Chapter 6 briefly describes the Kanade-Lucasydsi(KLT) feature tracér for detect-
ing features and tracking themres the image sequence [52], [4]. TheTKtracker obtains
good results on aaviety of scenes and does not requkiersve parameter adjustment. We
ertheless, feature tracking isvee perfect and»amples are gen of the types of errors that

can occur

Chapter 7 wamines the problem obutliers and describes tw complementary
approaches to detecting outliers. The first, caladdom Sample Consensus (RANSAC)
[15], grows a minimal data solution by adding onbriable consistent data points. The sec-
ond, calledoruning, computes the solution based on all the data points and then prunes incon-
sistencies. An>@lanation is gien why RANSAC is unsuitable for outlier detection in the
Projected Error Refinement approach ang gtuning is used instead. Arample is gren to

shav how pruning outliers imprees the solution.

Chapter 8 briefly>amines the issue of occlusion and missing features, which are han-
dled naturally by Projected Error Refinement. Aaraple shars hav missing features fct

the accurag of reconstruction.

Chapter 9 describexgerimental results on synthetic and real image sequences. Syn-
thetic images pmde ground-truth data and aNoquantitatve error analysis. A series of
experiments on 2D and 3D synthetic sceneswstie performance of Projected Error Refine-
ment under dferent simulated viging conditions. Seeral real (3D) image sequences are

analyzed to she how the technique performs in anety of real applications.

Chapter 10 summarizes the main conititns of this thesis and discusses directions

for future research.

Appendix A describesiangulation, which is used to augment the minimal data solu-

tion with additional feature points.
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Appendix B describes the 2D beacon problem and the 3D location determination

problem, which are used to augment the minimal data solution with additional images, for 2D

and 3D perspective projection respectively.

Appendix C describes the structure error and motion error, which are the errorsin the
recovered positions of the feature points and cameras centers, respectively. These terms mea-
sure the accuracy of the recovered scene structure and camera motion when ground-truth data

isavailable.
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Chapter 2
Related Work

Recorering 3D structure from 2D images is a long-standing problem in computer vigidn b
was first identified in psychology in the study of human vision and in photogrammetry with
determining eleation from aerial photographs. Psychologists oleskrthat the changing
appearance of an object ung@ng motion is a pwerful cue for determining its structure,
from which the tern&ructure From Motion originated [16]. An analogous problem arises in
photogrammetry when computing eéion from werlapping aerial photographs. The prob-
lem in both cases is determining 3D structure, or depth, from 2D projeunti@ngnotion is

not precisely known. Thompson [57] sheed that tvo aerial photographs sharingdidistinct
landmarks is sfitient to determine the relad camera motion by solving a system o&fiv
non-linear simultaneous equations, after which the 3izagén of the landmarks as found
by triangulation. Ullman [66] dered an eqwalent result and skaeed that parallel projection

requires four points in three images.

SFM continues to be an aatiarea of research and numerous resuite baen pub-

lished addressing dérent aspects of the SFM problem and proposinigréifit solutions.

Existing SFM techniquesll into three catgories based on their general approach f39]:

1. Image pairs these techniqguexa&mine tw images to determine the rela-
tive change in the pose of the camera. The positions of the feature points

are found by subsequent triangulation.

5These catgories are not necessarily mutualkckisve.
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2. Kalman filtering- these techniques combine partial reconstructions com-

puted from subsets of images (usuallp)w

3. Optimization- these techniques determine the globally optimal structure
and motion parameters by minimizing an error functieer@ maw fea-

tures and imageg®rojected Eror Refinemenfalls into this catgory.

For practical purposes, tvaver, what is most important are the assumptions a tech-
nique maks and the sensitty of the solution to common errors. Therefore, after describing
SFM techniques based on their algorithmi¢edénces, the requirements of a reliable general-
purpose SFM technique arevimved. The chapter conclude by proposing a-stage

approach satisfying most of these requirements.

2.1 SFM from Two I mages

Structure From Motion is a hard problem because both the camera motion and scene structure
are unknwn. When either is knin the problem becomes much simpler; fwaraple, stereo

vision assumes calibrated cameras and has a simple linear solution. The most popular
approach in SFM has been to determine the change in the pose of the camera b&tween tw
images by separating the computation of camera motion from that of scene strumture. F
example, theessential matrix29], [64] depends only on camera motion, not the 3D positions

of the features, allwing the relatre etrinsic camera parameters of theotwnages to be
recovered independently of scene structure. SimildhgFactorization Method59] assumes

a parallel projection camera model, which abocamera translation to be easily determined

and simplifies the problem to one of finding camera rotation.

Recovering structure and motion from dwmages eploits irvariant properties of pro-
jection that depend on only a subset of the parametarivéa, making the werse projection

problem simpler and, in some cases, lind&undy and Zisserman [35] describedrious

invariants of parallel and perspestiprojection that hee been used in SFf?/I.Quan [44],
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Shariot and Price [49], Holt and Nete&di [20], Longuet-Higgins [29], Tsai and Huang [64],

Tomasi [59], Moongt al. [34], Shashua and Mab [51] and Shashua [50] described SFM
techniques that dér in their camera model, linearityumber of features, and restrictions on
camera motion and scene structurgatiant properties of projecteénhes (as opposed to fea-
ture points) hee also beenxplored; for @ample, Huang anddtigeras [28] g/e a non-linear
solution for determining camera motion from lines projected to three imagesjeé\al. [71]
gave a linear solution to a similar problem, and &aigre and Mitiche [26] combined lines
and point features. Other SFM techniqueghacorporated imagesl ocity information, e.g.,

Ullman [67] and Sahney et al. [45].

Many SFM techniques are based on ¢sgential matrix derved by Longuet-Higgins
[29] and independently by Tsai and Huang [64]. The essential matrix describes a polynomial
invariant denved from two uncalibrated images that share eight feature points under perspec-
tive projection, from which the associated camera motion parameters catrdoted lin-
early The essential matrix has a counterpart for uncalibrated images calleddamental
matrix [17]. The essential and fundamental matrices form the basis of most SFM techniques
[50], [30], [63], [72], [76], [14], [44], [64], [29], [40]. Haever, these 8-point algorithms are
very sensitre to noise because thenly examines a small number of features i tiwmages.
Torr and Murray [63], Hartke[19] and Philip [40] described rabt methods for computing
the essential matrix and fundamental matrix Xgneining additional feature points. ever
the essential and fundamental matrices are only defined domages and other techniques

must be used to incorporate additional images; e.g., Kalman filtering (seg.belo

The Factorization Method, dereloped by ®masi [59], is also widely used in SFM
[46], [5], [42], [9]. The Fctorization Method assumes parallel projection, whictwallthe
translation of the camera in each image to be determined directly from the projected centroid

of the feature points. This le@s linear rotation equations which are sdlwsingSngular

6 Some ivariants, such as the centroid and cross-ratioe laa obious geometric
interpretation. Others, such as the essential matrix, are defined purely algebraically
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value decompositioSVD). SVD determines the optimal rotation parameters, in terms of

affine least-squares, from a complete set of projected feature points. SVD does not enforce an
orthonormal rotation matrix, i.e., it only raars afine motion, therefore the result is normal-

ized by &amining additional feature points to obtain metric reconstruction [59]. & nhidst
invariant-based techniques, thackorization Method is scalable in both the number of fea-
tures and the number of images.wéwer, it is not recursie and it assumes parallel projec-

tion, which seerely limits camera motion and scene structure (these limitations are described
in more detail in Chapter 3). Arxtension of the &ctorization Method to para-perspeeti
projection by Poelman and Kanade [42] relduthis constraint, Ui the fundamental limita-

tions of non-perspeete projection remain.

SFM techniques thatxamine a fied number of images can be further distinguished
according to whether tggecover metric i.e., Euclidean, structure [72], [64], [28], [29], [71],
[74], [66], [41], affine structure [59], [34], [42], [46], [60], [51] oprojectivestructure [50],
[76], [44], [36], [17], [2]. That is, the solution is correct up to a scatdor and Euclidean
transformation (i.e., translation and rotationjinaf transformation (i.e., translation and non-
rigid rotation, orskew) or an arbitrary projeate transformation. As noted by Oliensis [39],
projective reconstruction is equalent to Euclidean reconstruction up to a non-rigid interpre-
tation of the rotation matrix, therefore the choice dependsliapn the intended purpose and
whether the intrinsic camera parameters arevkndor example, object modelling clearly
requires metric structure, whereas for object recognition, i.e., deciding whethenages

correspond to the same object, the projecstructure is stitient [50].

For mary linear SFM techniques it is possible to deruniqueness resultsofFexam-
ple, Tsai and Huang [64] deed the uniqueness of the 8-point algorithm, and Horn [21], Holt
and Netraali [20], Quan [44], Ngahdaripour [38], Rugeras and Maybank [14] ancekget
al. [71] examined the general uniqueness properties of reconstruction fronartds three
images. Uniqueness is primarily of interest for mathematical completeness and it is rarely an

issue when redundant data ismiable. Havever, for some applications uniqueness may be
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important; for @ample, coplanar and collinear points are common in indoor scenes and may

result in dgenerate solutions. Uniqueness requirements are therefore of most interest during

feature selection.

The principle adantage of SFM techniques based on a small number of images is that
they often hae linear solutions. Heever, because theexamine fev features and images the
solution is \ery sensitre to noise in these measurements. This is typically address&dry e
ining additional feature points and performing least-squares analysis [71], [64], [28], [34],
[33], [63], [19], [40], [32]. Havever, with the &ception of the Ectorization Method, these
techniques are rarely scalable to multiple images which limitsxtieateo which the solution
can be made raist. Some methodsgloit invariants of non-perspeeé projection models
and thus are only accurate for specific cases of camera motion and scene structure; e.g., the
Factorization Method and its deatives [59], [46], [5], [42], [9]. In particulaparallel projec-
tion, para-perspecte projection and weak perspeetiprojection cannot model perspeeti
foreshortening (an important depth cue) and therefore the camera must remain a constant dis-

tance from the scene and the scene carargtsignificantly in depth.

2.2 Kalman Filtering
SFM techniques thakamine only tvo images hee limited reliability and cannot be scaled to
longer image sequencdsalman filteringis often used to combine multiple reconstructions

over time to obtain better estimates of the structure and motion paramete7rsFt[)75§(am-
ple, Shapiro [48] used a Kalman filter to mtate afine structure computed from image pairs,

Azarbayejani and Pentland [2] usedExtended KalmaniFer to integrate projectie struc-

ture and motion ree@red from uncalibrated images using the fundamental n?amnget

” A Kalman filter is a general mathematical technique for modelling a dynamic linear
system that pnades a least-square estimate of the systigrarameters (i.e., the struc-
ture and motion) dered from the préously obsered measurements (i.e., the
images).
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al. [72] gave a similar solution for calibrated images using the essential matrix, and

McLauchlan and Murray [32] usedvariable State-Dimension Filter - a Kalman filter with a
modified state ector - to intgrate the structure and motion parameters separatbigh

allowed features to be missing or occluded.

In general, Kalman filtering produces a better estimate of the structure and motion
parameters than its component reconstructionaewer, the quality of the result still depends
on the method used to analyze each pair of images. In parti€alaran filtering only gies
optimal parameter estimates foliaear system, and the error distriiion of the measure-
ments must be approximately Gaussian with a zero mean (Note: in thist¢bataneasure-
ments” refer to the structure and motiadues receered from each pair of images, not the
images themseés). Havever, SFM methods thatxamine pairs of images Y& a non-uni-
form error distrilntion due to their senstity to noise; i.e., thg non-uniformly amplify the
original image noise. The ability of Kalman filtering to assimilate these solutions is therefore

undermined.

Kalman filtering essentially pvides an gternal mechanism forxéending SFM tech-
niques based on image pairs to longer image sequences.\rcasas this ges a better esti-
mate of the structure and motion parametersveder, under the conditions in which Kalman
filtering is used, the solution cannot be guaranteed toyomare reliable than the underlying

technique [39].

2.3 Optimization-based SFM Techniques

Whereas Kalman filtering impves estimated parametalwes by using succegsimeasure-
ments, optimization-based SFM techniques determine globally optimal pararlets by

minimizing an objectie error function with respect #@bl the images and features at onaar. F

8 The Extended Kalman filter (EKF) approximates non-linear systems by a lengar T
lor series gpansion.
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example, Vng et al. [72] obtained an initial estimate of structure and motion from tw

images using the essential matrix, whicaswhen refined usingevenberg-Marquardt (LM)

optimizatior? with error function based on noisariance. Szeliski and Kang [55] also used

LM to perform non-linear optimization and initially estimated the positions of feature points
directly from a single image by assuming the distance from the scene to the camera w
known. Coog and Eller [11] optimized the camera positions refatio knavn feature posi-

tions using least-squares, and Spetsakis [53] used a non-linear “loaded spring” model to mini-
mize the errors in the positions of feature points. Taetdfization Method may also be
considered an optimization-based technique because SVD is a least-squares medlotgd. In f
least-squares optimization is widely used in SFM techniques based on image pairs, where
additional feature points argamined to combat noise [71], [64], [28], [34], [33], [63], [19],

[40], [32]. Although @amining more feature pointsvgis a somehat better result, recon-

struction from only tw images is knon to be unreliable in general [53].

Optimization-based SFM techniques primarilyfelifin their projection model and
objective error function. The ‘ideal’ error function, at least for rewng structure and
motion, is the metric distance between the original andrezed camera positions and feature
points. Havever, this is impossible to compute because it requires complete scene informa-

tion. Any claim of optimality is therefore lgely meaningless because it depends entirely on

the chosen error functiof.

Optimization produces the best estimate of structure and motion from e gi

images with respect to the chosen error functiorwdder, optimization is fundamentally a

search algorithm and cegrgence to a local minimum is possiBi'eThe ability to locate the

9 Levenbeg-Marquardt is a batch least-squares optimization method [43].

10 By definition, all optimization methods are ‘optimal’ with respect to their obgcti
error function, assuming thecorverge to the global minimum. The rekai merit of
different error functions is an open question.

11 This is also true for Kalman filtering, which performs itemtiinear least-squares
optimization.
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global minimumdepends on the accuyaaf the initial estimate and the shape of the error sur-

face, the latter of which is difult to characterize because of theganumber of parameters
involved. Non-linear methods are alsovedn to conerge and typically h&e more compbe

error suréces, thus there is a greateelikood of comerging to local minimum.

Optimization and Kalman filtering can be considered alter@stio obtaining reliable
structure and motion fronast, lut unreliable, imariant-based methods. Kalman filtering inte-
grates multiple partial reconstructiongeo time in the hopes of obtaining a better estimate,
whereas optimization tak an initial estimate and finds globally optimal paramet&reg
from it. Both methods rely on obtaining a good estimate of the structure and motion parame-
ters by other means; Kalman filtering relies on these estimates continwadustgas optimi-

zation requires a good estimate only once.

2.4 Requirements of a General Purpose SFM Technique

A general purpose SFM technique should reliably ahdeftly recaver scene structure and
camera motion while assuming as little as possible about the camera and scene. 3ifivally
research focussed on the problem of making therse projection problem tractable anfi-ef

cient by eploiting invariants of the projection equations for a small number of images [66],
[44], [36], [17], [28], [64], [71], [67], [29], [74], [26], [50], [51]. More recentlghe reliability

of these methods to noise has been the focus [76], [10], [54], [40], [9], [48], [2], [42], [63],
[70], [59]. Nevertheless, SFM has yet to be usetdisvely in real applications because other
practical requirements still remain; in particuldealing with outliers, occlusion and scalabil-

ity over multiple images. The requirements of a general purpose SFM technique can be sum-

marized as:

1. Fast - real-time SFM requiresfafient algorithms. In mancases obtaining

an approximate solution quickly is more important than its precision.
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2. Rdiable - the solution must be rabt to common errors such as noise, out-

liers and missing features (i.e., occlusion).

3. Accurate - the scene, camera, and camera motion must be accurately mod-

elled.

These requirements pride a practical basis tv&uate SFM techniques.Merse projection is

a hard problem and tradef®fire uneoidable.

Fast methods require linear ofiefent non-linear algorithms.df example, SFM tech-
niques based on the essential matrix or the fundamental matvixigpi® ast, if unreliable,
estimate of structure and motion from onlyotwnages [29], [64], [17]. Thed€torization
Method gves a more reliable solution in some casesxXaynening multiple images,ub only
under conditions where the orthographic camera moddllid {69]. Speed and rate of con-
vergence is an important reasonyimear optimization methods, such as SVD and Kalman
filtering [72], [48], [2], [32] hae been preferredver non-linear optimization methods [55],
[53].

In real-time applications video images egricontinuously and are temporally coher-
ent. For maximum diciengy, each image must be processed quickly by updating an internal
model; that is, processingriecursive. The alternatie, calledbatch processing, requires stor-
ing all the preious images and recomputing the solution for eaghimage, which is prohib-
itively expensve in terms of storage and processing time. SFM techniques based on non-
linear optimization [55], [72] and Kalman filtering [48], [2], [72], [32] are recwrsind there-
fore suited to real-time SFM. Thaétorization Method [59], [5], [46], [9], on the other hand,
is a batch method and is less suitable, although reeuwssiiations hge been deeloped [42],

[70].

The unreliability of receering structure and motion from a small number of features

or images is well understood [54], [53], [62]. Noise can be addressed by applying least-square
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analysis to a pair of images [76], [71], [40], [63], [28], or using Kalman filtering tgnate

estimates from successiimage pairs [72], [48], [2], [32], or by globally optimizing the
parameters\eer all the features and images [59], [55], [53], [72], [11]. The problem of outli-
ers, on the other hand, is rarely addressed. In particataespondence errors resulting from
mismatching features between images are not uncommon in practice. These eerarsdra
uniform distritution; i.e., thg appear asutliers. Outliers are problematic becauseytitan
easily werwhelm least-squares optimization and render the result meaninglessxigtnsg e
SFM techniques do not handle outliers and assunyeatfee(manually) remaed during pre-
processing. Notablexeeptions are Szeliski and Kang [55] who discarded feature points that

had a lage projected error after LM optimization; McRwIds and Lwe [33], who tested for

the presence of non-rigid motion byaenining the residual error after LM optimizatitfh;

Boult and Brevn [5], who examined the residual error after SVD tgs®nt the scene into its

rigid components; and Thompsehal. [58], Zhanget al. [76] and Shapiro [48], who per-
formed outlier detection and rejection from a pair of images. In general, the issue of outliers is
poorly addressed in SFM, if at all. Wtheless, this problem must be addressed before SFM

can be used in automated/eanments.

The problem of outliers is closely related to that of occlusion because both require that
features can be missing in specific images. One of the problems of linear SFM techniques is
that thg invert linear systems which requires/hmy full matrices. That is to sagll the fea-
tures must be present in all the images because there is no mechanism for representing “no
information’ Occlusion is more readily handled by non-linear optimization methods because
they examine the error in indidual feature points.df example, Szeliski and Kang [55] and
McReynolds and Lwe [33] assigned occluded feature points a zero weight. McLauchlan and
Murray [32] proposed a wel adaptation of the (linear) Kalman filter by introducing a
dynamic state ariable that allwved features to be added and regeth Most SFM techniques,

however, do not support occlusion and therefore musinm@ne only those feature points that

12 Non-rigid motion violates the rigidity constraint and is another source of outliers.
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are present in all the images [50], [26], [74], [2], [71], [44], [17], [72], [51], [46], [9], [70O],

[42], [60]. Their solutions are therefore sub-optimal because not aNdlatde image data is
used. This approach to occlusion also does not scale to long image sequences hedause fe
ary features are present in all the images. fed#int approach as talen by the Rctorization
Method which instead filled in occluded feature points by estimating their 3D positions from a
subset of images, and then re-projected these points back to the images whever¢he
occluded, a process calldwllucination [59]. Howvever, ary notion of optimality is lost
because no distinction can be made between original anedelata and there is a danger of
introducing artificial outliers. Despite being an inherent property of real scenes, the issue of

occlusion has recesd surprisingly little attention in SFM.

A final requirement of a general-purpose SFM technique is that the scene, camera, and
camera motion are accurately modelled. In practice, this requires pemsppzofection. Br-
allel projection, para-perspeati and weak perspeati projection are frequently used in SFM
because theoffer a simpler projection model that enables linear solutions [59], [46], [42], [5],
[48], [10], [70], [66]. Havever, these projection models are onblid approximations to opti-
cal projection when the camera & from the scene and maintains a constant distance, and
when the relatie depth of the scene is small. SFM techniques based on non-peespewti
jection are therefore not general-purpose becaugdithie camera motion and scene struc-
ture. Thepin-hole camea model, i.e., perspewi projection, is a more accurate model of
optical projection bt does not model some non-linear lens distortions. More accurate camera

models do ®ist, such as Tsa’'camera model [65]ubthey are rarely used in SFM.

2.5 A Two-Stage Aproach: Projected Error Refinement

This thesis proposes ameptimization-based SFM technique calljected Eror Refine-
ment This is a tw-stage approach where the structure and motion parameters are first esti-
mated from a subset of the features and images; e.g., using a SFM method defined for a pair of

images. This initial estimate is then refined using non-linear optimization with the abjecti
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error function measuring the angular projection error between the solution and the original

images. Occlusion is handled naturally because only the visible feature pointsutertnibr

terms - missing features are ignored. Outlier detection and rejection is also well-defined in
terms of the projector model; after optimization, if the residual error of a feature point is sta-
tistically inconsistent with the noise model then it is considered to be an outlier and is
rejected. This is similar to Szeliski and Kang [55], who also optimized structure and motion
based on a projected image error measurement and handled occlusion and outliers in a similar
mannerHowever, Szeliski and Kang assumed the distance between the camera andasene w
known and constant. This simplified the projection equations andedithe initial positions

of feature points to be estimated directly from one image. Another simdastage technique

was proposed by #get al.[72], havever the ignored the issue of outliers and occlusion.
Spetsakis [53] described a non-linear optimization method that supported occlusahid b

not consider the problem of outliers.

Projected Error Refinement is non-linear and dicieht parallel iterative refinement
algorithm is used that alternately refines the structure and motion parameters. After initially
estimating the camersamotion and scene structure, the cansepa’se (i.e., its position and
rotation) in each image is & and the positions of the feature points are optimized in paral-
lel. Next, the feature points are & and the cameras’ pose in each image is optimizath ag
in parallel. Rrallel iteratve refinement carerges rapidly twards the global minimum.
Refinement alles the solution to be computed to an arbitrary precision or it can be termi-
nated prematurely; the latter being important for real-time applications where the precision of
the solution can be made subject to the processing resoueadiedle. A similar approach to
alternately refining the structure and motion parameters recently proposed by Poelman
and Kanade [42] for approximating perspeeprojection by iterate para-perspeet recon-

struction. Havever, they did not support occlusion or address the issue of outliers.

To summarize, Projected Error Refinement is &nieft non-linear optimization tech-

nique that is scalable in the number of features and images, supports missing features (i.e.,
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occlusion) and detects outliers in a well-defined mam@erspectie camera model is used

and no additional assumptions about camera motion or scene structure are made other than the
rigidity constraint. Furtherary initial estimate of camera motion and scene structure can be
used. In this sense, Projected Error Refinemesasgat least as accurate a reconstruction as

other SFM techniques.
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Chapter 3
Optical Projection Models

Determining the 3D positions of points in a scene icdit because the projected 2D image
only records a poirg’relatve direction from the camera, not its distance. Rexng distance,

depth, or equwilent thereof, is knen as theinverse projection problem. This chapter
describes optical projection as performed by the cameraaimlis mathematical models of

it used in SFM, including thprojector model on which Projected Error Refinement is based.
Inverse projection is then described in terms of the projector model to identify the parameters

of the problem and its constraints.

3.1 Optical Projection

A camera is a direction sens#isensorLight enters the camera through a lens which redi-
rects the light rays to particular sensor elements depending on the direction from which the
arrived, as shwn in Figure 3.1. More preciselihe lendocuses the light from diferent points

in the scene onto the image sensba point in the scene lies on tpkane of focus then its

light rays are focussed onto a single sensor elefiennot, then the light from the point gets
distributed onto a mgon in the image, i.e., it isulbred. The projection of a point onto the
image therefore depends on its refatdirection from the camera and, to a less¢erd, its

distance. The projected image ivegheless purely ta+dimensional and contains nepécit

depth informatiort

13 For this discussion the granularity or resolution of the sensor is not important and
can equally be a CCD array or photographic film.



28

sensor lens plane of focus

Figure 3.1: A camera lens projects a point in the scene omlre of focus to a point in th
image. Points not on the plane of focus are progragsblurred in the image according
their distance from the plane.

3.2 The Pin-Hole Camera and Per spective Projection

The optical properties of a camera lens awey \Wifficult to precisely model. ¢t this reason,

the classical model of optical projection used in computer vision igitHaole camera. The
pin-hole camera consists of an enclosed box with a infinitely small hole on one side, called the
center of projection or optical center, through which light enters before striking the image
sensor on the opposite side, asvaiin Figure 3.2. The projected image igdrted because

the image plane is located behind the optical ceftexr image is typically modelled as being

in front of the optical center to obtain an upright image, without loss of genelfalitg opti-

cal center of the camera is thend origin and the image plane is normal to the pas#i

axis, then the transformation mapping a feature ppint [xyz] in the scene to a point

p' = [x‘ y] in the image is callegerspective projection and is defined as

. _ fix
p_ZH, 3.1

14 Image blur can be used to reeo depth from a single image if certain assumptions
are made. These techniques are callpth from focus [37].




29

S ——
i ey =T o
p'// centér’\~\_\
of projection = -
T~ e

image

Figure 3.2: The pin-hole camera approximates a camera lens by perspeqtrojection. Al
light from the scene passes throughddrger of projection onto an inerted image. The ima
is perfectly focussed because only one light ray enters the cameravéondiection. Note
the field-of-viev of the pin-hole camera cannotceed 180.

wheref is thefocal length of the camera, i.e., the distance from the optical center to the image
plane. Perspeete projection does not model lens focus or image biurit does model the
most important property of optical projection - that objects appear smaller the furtharehe

from the camera.

3.3 Non-Per spective Projection

Although perspecte projection only approximates optical projection, it is often still too com-
plex for efficient linear SFM methods. In particuldahe projected positiop' of a feature

point depends the camesgiose and three tBfent scene parameters, namely the 3D position

of p. This results in non-linear solutions and for this reason simpler camera models are fre-

guently used. The simplest, callparallel projection, is defined as

p' = @ 3.2

and is illustrated in Figure 3.3(a). Under parallel projection, the projected pgsitisinde-
pendent of the distance pfirom the camera.dpallel projection is only a good approximation

to optical projection when the camera is locatdrom the scene, such that the incident light
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(a) Parallel Projection
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(b) Weak Perspective Projection I ©
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Figure 3.3: (a) Parallel projection, (b) weak perspective projection and (c) para-perspective
projection are approximations to perspective projection that simplify the inverse projection
problem by reducing the number of parameters, at the expense of constraining camera motion
and scene structure.

rays are almost parallel. In spite of this, parallel projection isused by several SFM techniques,
including the Factorization Method [59], [60], [46], [5], [66], [58], [68], [67]. As a result,
these methods require the camera to be located far from the object of interest and to maintain
aconstant distance so that the projected size of the scene remains unchanged. The depth of the
scene along the optical axis must also be small to avoid perspective foreshortening effectsin

the projected shape of the object.
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Weak perspective projection is used to address the constraint of parallel projection on

the camera maintaining a constant distance from the scene [10], [70], [4&}, [58hk per-

spectve is defined as

':fﬂ 33
P=

where z, is the distance from the optical center to ¢bgect plane - a plane parallel to the

image that passes through or nearby the object, amshdrigure 3.3(b). Wak perspecte
first projects the scene onto the object plane by parallel projectiorwéallby a perspect
projection onto the image, which simplifies to a scale chandectikzély, weak perspeate

replaces the depthof each feature point by amexage deptlz, for each object, thus reducing

the number of parameters. Wever, this requires gamenting features into distinct objects
which is dificult withouta priori depth information, so typically the scene is assumed to con-

tain a single object at a distanggefrom the camera [10], [70], [48], [55]. As before, the scene

cannot ary significantly in depth to pvent foreshortening.

Para-perspective projection addresses the problem of weak perspedti that motion
parallel to the image plane does ndeetf the projected appearance of an object. This has the
effect of causing increasing image distortion the furthethef optical axis an object is located

[42]. Para-perspecte projection is defined as

ZO J 0~ ZN 3.4

wherec = [Xo Yo z& is the objecs center off mass, as shavn in Figure 3.3(c). &a-perspec-

15 5zeliski and Kang [55] claim to perform perspeetprojection bt it is more accu-
rate to describe their camera model as ‘scaled’ perspettitheir model, the scene is
first projected onto the object plane, using perspegrojection rather than parallel
projection, follaved by a scale change.
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projector

center of
projection

Figure 3.4: In the projector model a feature poinp is projected to aectorv in the image
which defines the line through the scene on whiafust lie. There is no other information
the whereabouts gf.

tive first projects the scene onto the object plane by parallel projection in the direatjon of
i.e., parallel to theector from the optical center to the center of mass. Thiswgbateom-
pensates for the change in the appearance of an object ag# afdhe optical axis. As with
weak perspeocte, sgmentation is wided by assuming the scene contains a single object
[42]. As with all the other non-perspeiprojection models, the scene canray\signifi-

cantly in depth.

SFM is a hard problem and compromises must be made. Non-persp®ciection
models are used becauseytifiacilitate fast linear solutions that are mathematicallygahe.
However, with the &ponentially increasing processingwsr of computers, the fundamental
limitations of techniques based on non-perspedtrojection is becoming more important
than speed, especially with thevdlpment of dfcient non-linear optimization techniques
[55], [72]. Except for limited applications, accurate scene reconstruction requires peespecti

projection.

3.4 The Projector Model

The projector model is a generalization of the pin-hole camera. Apainthe scene is pro-
jected to the image by a straight line, calledrgjector, as shwn in Figure 3.4. The only

information contained in the image about the positignisfits direction from the optical cen-
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ter, which is described by the unit directioactorv. The image of a scene containing multiple

features is the set ofewtors describing the rele@ directions of the visible feature points.

These direction ectors depend only on the location of the optical center and not the rotation

of the camera around it, and thereforg anitable internal coordinate frame can used to

describe theectors.
If the optical center of the camera is therld origin, the directionectorv of the pro-
jector for a feature poirt = [xy Z in the scene is

vz P 35
pl

In practice, images are acquired from a camera modelled by persgaciection. The con-
version from planar image coordinaj@s= [x' y] to the corresponding directioestor is

- (X =%p) (¥ =¥p) T -

[ =%0) (v -yp) f|

wheref is the focal length an@(P VFJ is theprinciple pointof the image; i.e., the point of

intersection of the optical axis and image pl&he.

The projectotbased image model is egalent tosphericalprojectionor central pro-
jection where the scene is projected onto a unit sphere surrounding the opticalre¢mer
than a planar image as in the case of parallel or pergpqutojection. Although planar
images are usedinsvely in computer vision, spherical projection or its &glént has long
been used in SFM.dF example, Koenderink and & Doorn [23] used spherical projection to

derive invariant properties of theptical flow fieldobtained from a series of closely spaced

16 Egn. 3.6 assumes the aspect ratio is 1 and the images are perpendicular
Regardless, the coersion from Cartesian image coordinates to projectors is well-
defined in terms of the intrinsic camera parameters.
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images to reoger the type, magnitude and direction of the localas@$ on a rigid object.

Spherical projection as used by & and Huang [74] to reger camera translation and rota-
tion from two or three images. More recentiaybank [31] used spherical image coordinates
to extract theessential matrix relating the projected positions of feature points io invages,
from which the rotation and translation transformation between tbeir@ge coordinate

frames are rec@red.

Projectors and spherical image coordinates are similhort@geneous coordinates

used &tensvely in SFM techniques based on projeetgeometry [76], [50], [17], [2]. The

homogeneous coordinates of a projected feature poirp'are [x" y" ﬂ wheref# 0 and

p' = %Eﬂ is the corresponding planar image coordinate. Maybank & @ formulation

of the irverse projection problem in terms @gipolar geometry and homogeneous coordi-
nates (i.e., in projecté space) that is eqalent to his aforementioned essential matrix formu-
lation in Euclidean space, and noted that the progdébrmulation permits reconstruction up

to acollineation in the case where the intrinsic camera parameters arewnlara yields a

simpler analysis of the uniqueness of the re’guﬁaugeras [13] used homogeneous image
coordinates xensvely, where thg are callednormalized image coordinates, for intrinsic
camera calibration and to ra@ camera rotation and translation using the essential matrix
derived from eight feature points projected tootwnages. A non-linear solution requiring
only five feature points as also gien. Homogeneous coordinatedeliffrom projectors and
spherical image coordinates in thatyttee a 3D representation of 2D planar coordinates,
hence images represented using homogeneous coordinates strictly caarsofibla of viev

exceeding 188 although this is rarely a limitation in practice.

Projectors are a general model of projection that can be defined/fgeametric pro-

17 A collineation is an arbitrary linear transformation in projeetspace.
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jection transformation in gndimension, although only 2D and 3D perspecprojection are

examined in this thesi®

3.5 The Inverse Projection Problem

Inverse projection describes the problem of vecmg the position of a feature point from its
projected position in an image. In the projector model, the projection of a featurg ®int
represented by a uniegtoryv, the direction gctor of a line originating at the optical center on
whichp must lie. The position gf along this line cannot be determined from the image alone.
For a single image of a scene thexests an infinite number of consistent features positions.

That is to sayinverse projection from a single image is fundamentally ill-posed.

If the scene is projected to@vwor more images with dérent optical centers, and the
same features are projected each time (i.e., the rigidity constraint), thewetfse iprojection
problem changes dramaticallor example, if the positions of the optical centers and orienta-
tions of the images are kwa, then the feature points can be directly veced by finding the
intersection of aytwo projectors, callestereoscopic triangulation, as shwn in Figure 3.5.
The unknavn parameters of thevarse projection problem are therefore the positions of the
optical centers of the cameras and the orientations of the projected images around them, i.e.,
the trinsic camera parameters. The only constraints on these parameters are that all the pro-
jectors defined for each feature point are concurrent, i.e., all the projectors must intersect at a
single point. As described in Chapter 4, the concuyr@fanultiple lines can be described
mathematically in terms of the camera parameters. The more features and images there are the
more constrained these parameters become. In some cases the constraints mdicieatinsuf
to uniquely determine the solutionorFexample, 2D inerse perspedte projection from tw

images is undeconstrained mgardless of the number of feature points becauseinvages

1810 be precise, 2D and 3i&ntral projection are &amined because images canéa
a field of viev exceeding 180 For practical purposes, wever, central projection is
equialent to perspeaté projection.



36

Figure 3.5: Inverse projection from multiple imagevatves determining the positions of
optical centers, for each camera and the orientation of the imagtovs around them. If t

extrinsic camera parameters are kmathen the positions of the feature poiptsan be dete
mined by triangulation.

can be placed in virtually gnconfiguration and their respeaai projectors will intersect.
However, for 3D inverse perspecte projection, tw images of fie points has at most three
solutions in the general case, asve by Thompson [57] and Ullman [66], and winoin

Chapter 4 using the projector model.

SFM has traditionally formulated theverse projection problem as determining the
rotation and translation transformations between itwages by xploiting algebraic iaari-
ants of the associated projection equations; xangple, &pressed by the essential matrix.
The projector model, on the other handiegia more intuile geometric interpretation of the
constraints and parameters of theense projection problem based on taet that the projec-
tors defined by each image must intersect. This is a natayabirdescribing SFM and it has

practical benefits in terms of scalability and dealing with outliers and missing features.



37

Chapter 4
Reconstruction from Minimal I mage Data

Given multiple images of a rigid scene, the constraints on the locations of the cameras and ori-
entations of the images are that the projectors defined for each feature point in the scene must
intersect. The concurrence of these lines can be described in terms gfrithe@cecamera
parameters. Each image adds a set of associated camera parametervéosth@rojection
problem, and each feature point adds constraints on these parametersth®i minimal

number of images and features necessary for reconstruction, the resulting system of simulta-
neous equations can be sdveactly to recoer the camera parameters, and hence scene

structure.

This chapter deves aminimal data solution to the iverse projection problem for 2D
and 3D perspeate projection. In the projector model, only ttetative directions of the fea-
ture points in each image are important, therefore the projected images are first normalized to
a standard image coordinate frame. The parametric equation of a projector is then described,
which defines the line through the scene on which the feature point must lie, whose parame-
ters are the position of the camera and the rotation of the normalized image. Each feature
point defines a projector fovery image in which it is visible. The necessary concurrence of
these lines defines a system of equations which aredsabing Neton’s method to recer
the trinsic camera parameters. Axeenple is gien of receering structure and motion from
a minimal set of synthetic images. The chapter concludes by describindettteoéprojec-
tion noise on the minimal data solution andyvaldlditional features and images must ene-

ined to obtain a reliable reconstruction.
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Figure4.1: The world coordinate system for (a) 2D and (b) 3D perspedgirojection define
feature pointp,, as the origin and the optical centg as unit distance along the positk-

axis. The remaining optical centerare described bygolar coordinates. Note: the imageac-
tor v, always points to the origin. |2 the rotation of the image is determined entirel

the position ob. In 02 the rotation of the image about the axis/gfis gven byd.

4.1 Extrinsc Camera Parameters

The unknavn parameters of thevarse projection problem are thetrensic parameters of
each camera, i.e., the location of the optical center and the rotation of the image around it. The
original scenes coordinate system is unkmo and therefore a avld coordinate system is

imposed where an arbitrary feature pqgigtis defined as the origin and the optical ceotgr

of an arbitrary image as being unit distance along the yp®giaxis, as shon in Figure 4.1.

The optical centers of the cameras are described in polar coordinatési

_ cpse ’ 4.1
sin@
and in® as
cosOcosd
0 = I sinBcoso |- 4.2

sind
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In 02, the rotation of the image is determined entirely by the position of the optical center
because the projectoy, must alvays points tq, at the origin. InNOd3, the only free parame-
ter is the rotation of the image about the axis gfwhich is parameterized ky. Therefore,

for the general case dfimages, thexdrinsic camera parameters for 2D perspectirojection

areo; = {rj, ej} , Whereo, = {1,0}, forj = 0... (J-1). For 3D perspecte projection
the parameters are; = {rj,ej,q;j} and 6j, where oy = {1,0,0} and 3, = 0, for
j=0..J3-1.18

Imposing a wrld coordinate system is necessany Bs a consequence the original

scene structure and camera motion can only beeeed up to a scaladtor and a rigid trans-

lation and rotation. This is true of all SFM techniques thatvescmetric structure.

4.2 Image Normalization

As described in Chapter 3, only the positions of the optical centers coatuikeful informa-
tion for inverse projection, not the rotations of the images. Therefore,eitiers in each
image are first normalized. In particylaifl vectors are made unit length and then rotated to

align v, the unit ector for feature poinp,, along the ngative x-axis. For 2D perspecte

projection this rotation is gen by

v =y Jo Vo , 4.3
~Vp ~Ug

whereV' is the normalizedactor v is the unit ector andv, = [Uo V(J. For 3D perspecte

projection the rotation is gen by

18 These parameters only apply to the minimal data solution where zero noise is
assumed and projectors precisely intersect. The refined solution, described in Chapter
5, emplays the full 3 or 6 dgrees of freedom associated with the camera location and
rotation, for 2D and 3D perspegi projection respeciely.
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V' = VG (-Vg —Vy, Ve BVy) 4.4

whereG is a Gram-Schmidt orthonormal basis constructed frgrandv,, after whichv'; is

parallel to thex-y plane.

4.3 Parametric Equation of Projectors

A feature poinp projected to an image with optical cermatefines a projectpwith direction
vectoryv, passing through the scene on wthycis knovn to lie (see Figure 3.4). The paramet-
ric equation of this line is

p =0+Quv. 4.5

The polar coordinates ofare gven by Eg. 4.1 and Eq. 4.2. As the (unkmd position

of o changes, theectors in the image must rotate to maintginpointing top, at the origin

(see Figure 4.1). Therefore, the directiattorv of a projector depends on the normalized
image ectorv' suitably rotated according to the position of the optical center and, in the 3D

case, the parametérdescribing the rotation of the image. Substituting Eq. 4.1 and the matrix

for a 2D rotation o into Eq. 4.5 gies the parametric equation of a projectobiift

p=r cosd +Qv' [ cqse sin® ) 4.6
sinB —-sin® cosd

Likewise, substituting Eq. 4.2 and the matrix for a 3D rotation definef®lyy 6} into Eq.

4.5 gives the parametric equation of a projectobift

cos0 cosd 1 0 0 cos¢ O sing| | cosB snB O
P =r|sinBcosp|+Qv'[J0 cosd snd|lI 0 1 0 |U-snBcosbO. 47
sing 0 —sind cosd| |—-sind O cosd 0 0 1

4.4 Concurrency Constraint

A feature point defines a projector for each image in which it is visible. By definition, these
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lines are concurrent. The concurremd multiple lines constrains the parameters of the lines

involved:; in this case, thexeinsic camera parameters. The concuryeoiclines in 02 and

03 are defined diérently and therefore the bacases arexamined separately

4.4.1 Concurrent Linesin 02

The concurrence of wlines in 02 provides no useful constrainkeept that the direction

vectors of the tw lines cannot be parallel. ¥&n only two projected images of a scene, the
positions of the tw cameras is undeonstrained mgardless of the number of features. 2D
inverse perspecste projection from tw images is therefore ill-posed and at least three images

are required.

A feature point projected to three images defines three concurrent lines:

p=0;+ lel
p=o0,+ ngz 4.8
P =03+Q,v;

v = B o] = b=t

whereo = [xy/ is the optical center and = [y \| is the normalized unit directioregtor

giving

obtained from Eq. 4.6. EIiminatir@j and simplifying gves

Xg Uy | | X5 Uy | | Xg Usg

YiVi|| Y2Va| | ¥Y3V3|| = 0. 4.10
Uy ) Us
Vi \P) V3

Eq. 4.10 describes the constraints on the parameters of three concurrentiAes in
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4.4.2 Concurrent Linesin 03

Unlike 02, the concurrence of two lines in 02 is special and imposes useful constraints on

the parameters of the lines. Two lines are concurrent if

P=0,+Qv,

411
P =0,+Q,v,
giving
X1 u; Xy u
Vil T Q1 vq| = (Y, T Q5| Vyl, 4.12
Z Wy Z W5

where 0 = [xy 7 istheoptical center and v = [ v ] isthe normalized unit direction vec-
tor obtained from Eq. 4.7. Eliminating Qj and simplifying gives
(Xp=%5) Uy U,

(Y1=VY2) Vg Vo | = 0.
(zg —wy) Wy w,

4.13

Eq. 4.13 describes the constraints on the parameters of two concurrent linesin 3.

4.5 Minimal Data Solution

The minimal data solution examines the minimum number of feature points and images nec-
essary to solve the inverse projection problem. Each image adds an independent set of param-
eters describing the pose of the camera. Each feature point in the scene imposes a non-linear
concurrency constraint on these parameters, given by Eq. 4.10 and Eq. 4.13. The inverse pro-
jection problem is well-conditioned if the number of equations equals the number of parame-
ters. If the system of equations are independent they can be solved numerically to determine

the extrinsic camera parameters. If the equations are not independent then the problem
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remains undeconstrained; the uniqueness of SFM reconstruction and gendeate condi-

tions are described in [66], [64], [14], [38], [20]. In most nogeateerate cases there iseaw

small number of solutions, possibly one. The minimal data solutionsviense projection in

02 and 02 are somehat diferent and therefore there @amined separately

4.5.1 Minimal Data Solutionsfor 2D I nver se Per spective Projection
Each image irJ? has tw extrinsic camera parameteos = {rj, ej} , Whereo, = {1,0} .

For J images there are therefa2¢J — 1) parameters.df | feature points, each point defines

one constraint forvery three images (Eq. 4.10), i.6.; 2 equations per feature point, with

the eception ofp, whose projectors are implicitly concurrent in the definition of tbedv

coordinate system. The resulting system of equations is well-conditioned if

(J-2) (1-1) 22(J-1)
1J-3J-21+420

4.14

which has tw minimal solutions, §=3, 1=5} and {J=4, 1=4}. That is, there arevo minimal
data solutions to the 2Dvarse perspeate projection problem - one minimal in the number
of images and the other minimal in the number of featurey; dhex three images of év

points and four images of four points.

4.5.2 Minimal Data Solution for 3D Inver se Per spective Projection

Each image ind2 has four gtrinsic camera parameters: the location of the optical center
0 = {rj, ej,¢j} and the rotation of the imag?;, whereo, = { 1,0, 0} andE’)j = 0. ForJ
images there are therefodgJ — 1) parameters. df | feature points, each point defines one
constraint for a pair of images (Eq. 4.13), with tkeegtion ofp,. The resulting system of

equations is well-conditioned if

(1-1)24(J-1)
| -4J+320

4.15
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1 -0.5 0 0.5 1 1.5 2
Figure 4.2: A synthetic 2D scene containing difeature pointg; projected to three imag
with optical centers, by ideal 2D perspeett projection.

which has one minimal data solutiod=, [=5}. The minimal data solution to the 3Dverse
perspectie projection problem is thereforedumages of fie points. This result is consistent

with Thompson [57] and Ullman [66].

4.6 Example

Figure 4.2 she's a synthetic scene @2 containing fie feature pointP, P1, P, P3, P4 Pro-
jected to three images with optical centegso,, 0, by ideal perspeate projection (i.e., zero
image noise). First, the images are normalized andria woordinate system defined wit

as the origin anay, at {1,0}. The four unknan parameters are the polar coordinates of the
remaining optical centers, = {r,,8,} ando, = {r,, 6,} . Each feature point defines one
equation describing the concurrence of its three projectors, withxtiepteon ofp,. This

gives a system of four non-linear equations in four unkrsy which are sokd numerically

using Nevton’s method to gie the polar coordinates of the optical cenférs:
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0 0.25 0.5 0.75 1 1.25 1.5

Figure 4.3: The reconstructed scene from the minimal images projected in Figure 4
relatve positions of the feature points and images is identical to the original scene,
scale &ctor translation and rotation.

0, = {1,0%
0, = {1.4826, 19.1237°}
0, = {1.4212, -39.0534°}

The positions of the feature points are then found by triangulation from a pair of images:

Po= {00}

p, = {0.4779, 0.3747}
p, = {0.6676, 0.3204}
p; = {0.0035, —0.1806}
p, = {0.8013, -0.3738}

The reconstructed scene issiman Figure 4.3, which is identical to the original scenexsho

in Figure 4.2 up to a scale change, rotation and translation. That is, the metric structure of the

19 This calculation took 0.075 seconds of CPU time on a 133MHz PdntiR@ run-
ning Mathematica 2.2 using thé-indRoot operator (i.e., Ngton’'s Method).
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original scene and camera motion is rezed.

To summarize, gen three images of a scene containing feature points, and with
no prior knavledge of the whereabouts of either the features or camera centers, the positions
of the feature points and the optical centers of the cameras can \reedoased on the con-
straint that the projectors defined by each image intersect. X&Dpbe vas shan here for
clarity - an equialent éample can be constructed for 3¥ense perspecte projection using

two images of fie points.

4.7 Effect of Projection Noise

In practice, it is impossible to precisely measure the direction of feature points in the scene
due to imperfections of the camera model, digitization, etglldstrate the déct of noise on
the minimal data solution, the images projected in Figure 4.2 are corrupted by zero-mean

Gaussian noise with an angular error @f= 0.15° in each projectorcorresponding to
approximatelyo = 3 pixels for a camera with a 35mm lens and a 648Ipixde image. The

scene reconstructed from the noisy images isvsho Figure 4.4. The result she that the

error in the solution resulting from a nominal amount of image noise is significant. This
behaior is typical of SFM techniques thakamine a small number of feature points and
images [54], [62]. Imerse projection is inherently unstable and small errors in the projected
positions of feature points are greatly magnified in the solution. In order to obtain a reliable
estimate of scene structure and camera motion, redundant data in the form of additional fea-

ture points and images must bamined.

4.8 Summary

The minimal data solutions to 2D and 3verse perspecte projection described in this
chapter are not intended to be viable alteveatito &isting SFM techniques. Indeed, there
exist better linear solutions that require only @ f@ore feature points, such as those based

around the essential matrix [29], [64]. Rathtke minimal data solution\ggs an intuitre geo-
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Figure 4.4: The reconstructed scene from the images projected in Figure 4.2 after ei
jector is corrupted by 0.2%oise (approximately 3 paks). The receered positions of the fe

ture points is sBwed and there is a significant error in the positiomptompared with t
original scene.

metric interpretation of the parameters and constraints ofwaesanprojection problem based

on the concurrerycconstraint, and e these determine the minimal number of feature points
and images necessary for reconstruction. The minimal data solution also introduces the pro-
jectorbased model of thewerse projection problem that is used by Projected Error Refine-
ment to deal with noise, scalabilitycclusion and outlier detection, as described in thé ne

chapter
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Chapter 5
Projected Error Refinement

Inverse projection from fe features or images i€xy sensitre to noise and most SFM tech-
niques &amine additional image data and apply least-squares analysis [61], [63], [59], [70],
[9], [42], [40], [76], [55], [46], [11] or Kalman filtering [34], [72], [48], [2] to obtain more
reliable reconstruction. As described in Chapter 2,yn&FM methods are only defined for

two or three images and the reliability of these methods is limited because additional images
cannot be included. Kalman filtering attempts ¥ercome this limitation by inggating mul-

tiple estimates\er time, havever Kalman filtering cannot guarantee a more reliable solution
than its component reconstructions due to their non-uniform error digtrib Optimization-

based SFM techniques, on the other hand, are scalable in both the number of features and the
number of images, anca&mineall the aailable projected information. The principle disad-

vantage of optimization-based methods are thatyraeannon-linear

This chapter describd¥ojected Eror Refinementan optimization-based SFM tech-
nique based on the projector model. In the minimal data solution, described in Chapter 4, the
projectors precisely intersect because perfect perspegtojection is assumed. In reality
projectors do not precisely intersect because of image noise. The optimal positions of the
images and feature points are therefore defined as those which minimize the mean-squared
angular piojection eror of each projectoiThe resulting objeate error function is non-linear
and an dicientparallel iterative refinemenalgorithm is used that separates the refinement of
structure and motion. In particujdhe structure parameters (i.e., the positions of the feature

points) and motion parameters (i.e., the positions of the cameras’ optical centers and the rota-
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Figure 5.1: The optimal position of a feature poipt minimizes the angle between
obsered image projectovij and the projector(p; - oj) in the solution. Note: the furthe
feature is from the camera the greater the error in its distance from the projector

tions of the images) are alternately adjusted while the otheapisdonstant. Each iteration
monotonically decreases the mean projection eRmjected Error Refinement requires an
initial estimate of the structure and motion parameters which is obtained using the minimal
data solution described in Chapter 4. Aample is gien at the end of this chapter of reec

ing the structure and motion parameters from synthetic 2D images containing noisegsho
how examining additional feature points and images and minimizing the projection essr gi

a more reliable reconstruction of the scene.

5.1 Concurrency of Projectors

The projected position of feature point in an image is imprecise due to an imperfect camera
model, quantization, feature detector resolution, and other sources of ‘noise’. The optimal
position of a feature point with respect to its non-concurrent projectors is defined to be the
point which minimizes the obsezd error in the images; in particyl#tte mean-squareshgu-

lar projection error between the featueobsered direction ectors and its estimated direc-

tion vectors from the rea@red camera locations and the featngodsition, as shen in

Figure 5.1. Other optimization-based SFM techniques that minimize the ethg@tanar)

image error include Poelman and Kanade [428nWét al. [72] and Szeliski and Kang [55].
Others, such as Capand Eller [11] and Spetsakis [53], define the optimal position of a fea-
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Figure 5.2: An alternatve definition of the optimal feature position is the point which t
mizes the distance between the projectorsvéder, featuresdr from the camera arepgectel
to have a greater error in their position, therefore this definitwark feature pointsaf avay.

ture to be the point that is minimum distance from all its projectors, asmshd~igure 5.2.
However, this is a less accurate model because projection noise is primarily caused by limita-
tions of the camera sensor should not be modelléerelritly for diferent features. In other
words, features locatedrffrom the camershould hase a greater error in their reced posi-

tion. Minimizing the distance between non-concurrent projectors, rather than the projected

error, effectively increases the measured precision of feataremvay, which is unvarranted.

5.2 Angular Projection Error

The angular projection error of a projector is the atagl«between the obsezd projector\/ij
in the image and the reeered projector(p; - oj) in the solution, shaen in Figure 5.3 and

given by

‘progvp(pi —0,-)‘
tang,; = J

= . 5.1
b progy, (P~ )|

T T L
For -5 <& < 5, &; isminimized when tang; ismini mized, % therefore the squared pro-

jection erroris
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Figure5.3: The angular projection erray; is given by the ratio of the projection of thectol
(p; - oj) onto the image’ projectorv;

ij?
a
vectorvij .

and the projection ofp; — oj) onto the orthogon

0 2
2 — - V..
prog . (pi ~ 0)| vio !
2 — ij _ ij ij
tan“e; = 5 = 5 5.2
prog,, (p; - Oj)‘ vi; O(p; — 9))
’ v, Vi
ij —ij
Vij andvi? are unit ectors so Eq. 5.2 simplifies to
(v op, - 0))
\V .= 0.
tanzsij = Vi P79 5. 5.3
(Vij O(p; - Oj) )
In O the orthogonal ector ofv;; = Uy vy is vi? = |-, u, giving
(~v; ug] 0P = 0))
-v.. u..| O(p; — o,
tanzs”. = L S > 5.4
(Ju; vy O(p; - 0))
3 5
20 . . . € € T
The Taylor Series ¥pansion oftane is € + 3 + < + ... For small angleg < 180
o

- or approximately 0.01%.

(i.e.,e <1°) the diference betweenandtane is O -—— -,
hgo’t
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Determining the orthogonabxztorv in 0% is more dificult. However, the length ofvi? is

given by the cross product

prog _D_(pi - Oj) = Vi X (p; - Oj)
55
‘pmg (p|_0)‘ x (p;—0y)) O(vj; x (pi—9)))

giving
(Juy vy wig) % (P =0))) OC[uy; vy wjx(pi—o,-))

tan’s. = 5.6

(Ju; v WJD(pI—o))

wherev;; = [u”. v, Wiﬂ'

Eq. 5.4 and Eq. 5.6\ the angular projection errtan? € betvveerw”, the obsersd

direction \ector in the image, andp, - oj) , the recwered projector in the solution, for 2D
and 3D perspecte projection respeetely. In both cases, this error is defined in terms of the

parameters ob; andp;.

Because théangent of &; is minimized, angular errors greater thafi 8€e indistin-
guishable from those less tharf 98s a result, if the estimated position of a feature pojims
such that the angle between the projectgrin the image and(p; —oj) in the solution

exceeds 99 then optimization will coverge to a solution where the feature point is located
behind the camera instead of in front of it. This is a case where Projected Error Refinement
fails to conerge to the correct solution. Projected Error Refinement models projectors as lines
rather than rays and therefore it does not enforce the constraint that feature points must be

located in front of the camera.
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5.3 Extrinsic Camer a Parameters

In the minimal data solution, the unkmo parameters are the positions of the cameras’ optical
centers and, for 3D perspesiprojection, an additional parameter describing the rotation of
the image. Havever, if the images contain noise then the projectors no longer intersect. There-

fore, the ectorv, i.e., the projector for feature poipg, may not precisely pass through the

origin, as it does in the minimal data solution (see Figure 4.1). That is, ttheaptation of
the image becomes uncoupled from the location of the optical cEatdr image in 2D per-
spectve projection therefore has three parameters: the position of the caomieal center

0 = {rj, Gj} and a paramete;rj describing the rotation of the image. Similaggch image

in 3D perspectie projection nw has six gtrinsic parameters: the position of the cangera’

optical centero; = {r;, ej, q)j} and three parametel{spj, )\j, 6j} describing the rotation of

the image.

5.4 Structure Parameters

In the minimal data solution, the positions of the feature points are computed directly from the
recovered images by triangulation. This is not possible when the projectors do not precisely
intersect, where the position of each feature v8 th@ point which minimizes the angular pro-
jection error of its projectors. This position is determined by the placement of the projectors
and hence can be described using the same parameters, i.gtritisececamera parameters.
However, in Projected Error Refinement the positions of the feature points are treatdel as
pendent parameters. Although this may seem to introduce additional parameters that are
unnecessaryt allows for the structure and motion parameters to be refgmaately andin
parallel, as described in the xtesection. This is significantly morefiefent than optimizing

all the etrinsic camera parameters simultaneousiyProjected Error Refinement, the param-
eters of the imerse projection problem are therefore the positions of the cameras’ optical cen-

ters and the rotations of the imagas] the positions of the feature points in the scene.
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5.5 Parallel Iterati ve Refinement

Projected Error Refinement performs non-linear optimization and determines the parameter
values by minimizing an objeg# error function; in this case, the mean-squared angular pro-
jection error of the projectorsoF a set ofl feature points projected tbimages, the sum-

squared angular projection error isen by
-1 J-1
mijtanzsij, 5.7
i=0 j=0
Wheretanzsij is the projected error of the feature pgntin the image with optical center,
and 0 is theweight or confidence of this project%lr The error in each projector depends
only on the position 0b;, the rotation of the image, and the estimated position of the feature

pointp, (see Eq. 5.4 and Eq. 5.6). The error conta by each feature point can therefore be

computed independently of the other features. Simjléry error contribted by each image
can be computed independently of the other images. In otrdsyEq. 5.7 may beweitten

as

i wjtanzsij%, 5.8

representing the sum-squared error contet by each feature point, or

||M |

2 C
oojtan sij) - 59

-I:I I:I_
||M |

representing the sum-squared error coatall by each image.

Parallel iteratve refinementxgloits this equalence to reduce the number of parame-

2L Al weights are either zero or 1, depending on whether the feature is occluded or
visible in the image. Chapter 10 describes a proposed useialble weights for ana-
lyzing long image sequences.
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ters considered during optimization. During the first iteration, the parameters of all the feature

points are optimizetdh parallel whilst learing the &trinsic camera parameters constant. That
is, the cameras are &g in space and each feature point is adjusted to find its optimal position.
In the nat iteration, the parameters of all the cameras are optimizeatallel whist leaing

the feature positions constant. That is, the feature points ace dind each camera is opti-
mized. Because Eq. 5.7, EQ. 5.8 and Eq. 5.9 areaqunt, the global projected error mono-

tonically decreases.

Parallel iteratve refinement is significanthaster than attempting to simultaneously
optimize all the parametersoiFexample, the general caseldéatures and images under 3D
perspectre projection imolves6J extrinsic camera parameters andeaylage compl& non-
linear objectve error function. Separating the refinement of structure and motion reduces the
number of parameters that are considered yatoae time and wolves much simpler error
functions. In particularoptimizing the feature positionsvimlves only three parameters per
feature, and optimizing the camera position®lives only six parameters per image. Most

importantly all the features and images are optimized in parallel.

Parallel iteratve refinement scales well because additional features and images are
refined in parallel and do not significantly increase the coutplef the error functions. Iter-
ative refinement also alles the solution to be refined to an arbitrary precision or to be termi-
nated at aytime to obtain the best current estimate of the structure and motion parameters.
This is important for real-time SFM applications where the tinalable to process each
image is limited. Non-iterate methods cannot prdle meaningful intermediate results and
must eecute to completion and V& a fixed precision [59], [46], [48], [50].d&allel iteratve
refinement also alles nev images to be added atyatime, by adding their associated projec-
tors and resuming refinement with the additional data. Non-reeurgethods unsuitable for
real-time applications because {thaust recompute the solution from scratch fegrg nav

image [59], [46], [70], [50], [33], [9], [17], [55].



56
The parallel iteratie refinement algorithm described heraswdeeloped indepen-

dently hut is similar to an iterate technique recently described by Poelman and Kanade [42].
However, in their technique it @s used to approximate perspeetprojection by iterate
para-perspeacte projection and tlyedo not handle outliers or missing features. The case of
2D parallel iteratie refinement is also similar to a 2D algorithm proposeddyor et al.

[56].

5.6 Initial Estimate

Projected Error Refinement requires an initial estimate of the structure and motion parameters,
which is pravided by the minimal data solution described in Chapter 4. First, a subset of the
feature points and camera centers are reconstructed from a minimal set of images.vFhe reco
ered images are then used to estimate the positions of the remaining feature points by triangu-
lation, as described in Appendix A. The positions of the remaining cameras’ optical centers
are then estimated from the rgeoed feature points, called theacon problemin 2D [24] or
thelocation determination problem in 3D [28], [15], as described in Appendix B. Brigilya

set of knevn ‘beacons’ (i.e., the feature points) are obsérfvom an unknen location, then

the location of the obsesv can be determined from the ralatbbsered direction of the bea-

cons; i.e., the positions of the cameras’ optical centers can be determined from the relati

direction of the recgered feature points.

The minimal data solutionas chosen to pwide the initial estimate to sivothat SFM
can be solgd entirely based on the projector model.datf Projected Error Refinement can
use an estimate of the structure and motion parameters obtained frexising SFM tech-
nique, such as theaEtorization Method or one based on the essential matrix. Although the
initial estimate will often be poor because if it is computed from a small set of features and
images, Projected Error Refinement usuallyveages to the global minimum and c@n-

gence to local minima has not be a problem in practice.
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Figure 5.4: A synthetic scene containing eight feature pomtgrojected to fie images wit
optical centerso, by 2D perspecte projection. The projectors (aws) are corrupted |
Gaussian noise ad = 1.5° (approximately 3 pigls).

5.7 Example

Figure 5.4 shws a synthetic scene liG containing eight feature poingg,i = 0, ..., 7 pro-

jected to fie images with optical centeo§,j =0, ..., 4. Gaussian noise is applied to all the
images, where = 0.15°, or approximatelyo = 3 pixels. A random subset of &features

and three images ixtacted, in this cas¢ oy, 0,,0,} and {p;, P53, Ps: Pg P7} - The posi-

tions of these feature points and optical centers are estimated using the minimal data solution.
Next, the positions of the remaining feature points are determined by triangulation from a pair
of the recwered images (see Appendix A) and the locations of the remainingrtages are

determined from the initial fevrecoered feature points (see Appendix B). The resulting ini-

tial estimate is shwn in Figure 5.5 and has an mean angular projection errGrafdia max-

imum error of 18, in the projector frono, to p,. As shaevn, there is a noticeable error in the
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Figure5.5: The initial estimate of the feature points and optical centersessd from a mir
imal subset of the images projected in Figure 5.4. This solution is poor due to image |

recovered positions of the feature points, compared to the original sceme shBigure 5.4,

and a significant error in the re@sed location ob,.

The initial estimate of the cameras’ optical centers, image orientations and feature
points are refined using Projected Error Refinement to minimize the angular projection error
in all the images. Refinemenawterminated when the flifence in the mean projection error
between tw successe solutions was less than 2%; in thixample, 17 iterations. The final

refined solution is stven in Figure 5.6 and has an mean angular projection errdra@d a

maximum error of 0.2% in the projector frono, to p;.

The recoered scene structure and camera motion is only accurate up to astale f
and a translation and rotation because the original scenerdinate system is unkmo.
Quantitatvely comparing the solution to the original scene is therefofeudif because it

requires determining the optimal scale, rotation and translation to map the sslatordi-



59

0.6 o |
1
0.4
‘§\\ e}
—
7 0
0- /4
-0.2
-0.4
-0.6
-0.8 Qo
1 1 1 1 1 2| 1
0 0. 25 0.5 0.75 1 1.25 1.5

Figure 5.6: The refined solution after 17 iterations. This solutiaeglia better reconstruct
of the original scene, st in Figure 5.4, than the initial estimate, whan Figure 5.5.

nate system to the original scene. This is cal@@fitting or shape egistration and is a non-

trivial optimization problem [1], [22]. In order to simplify measuring the error in the solution,

the feature points in the original synthetic scene are selected around a unit circle for 2D per-

spectve projection, or a unit sphere for 3D perspectirojection. The feature points in the

solution should therefore also be located on a unit circle or sphere, making the transformation

mapping the solution to the original scene easier to determine, which is described in detalil in

Appendix C. After the solution has been transformed to the original scem&'dinate sys-

tem, the mean distance between the original and/eeed feature points \gs thestructure

error of the solution, and the mean distance between the original ancredgositions of

the camer& optical centers gés themotion eror, as shwn in Figure 5.7. In thisxample,

the structure error of the refined solution is 0.03 and the motion error is 0.08. Both distances

are measured relaé the circle with radius 42 Figure 5.8 shes a trace of the refinement

from the initial estimate to the final refined solution,vging haw iteratvely minimizing the

angular projection error results in the solutionvasging tovards the ideal feature and cam-
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Figure 5.7: The refined solution is transformed to the original ssenebrdinate system
measure the reconstruction error (Note: the original feature points lie on a unit circle «
at the origin). The mean distance between the original fegiuigack) and their rea@rec
positions (gray) gies thestructure error, and the mean distance between the original c:
centers (black) and their rea@red positions (gray) s themotion error.

era positions.

5.8 Summary

Projected Error Refinementtends the minimal data solution described in Chapter dame

ine additional feature points and images. Projectors do not precisely intersect due to image
noise, therefore the optimal positions of the feature points and images are those which mini-
mize the mean-squared angular projection error of the projectors. Projected Error Refinement

consists of three steps:

22 The motion error is typically greater than the structure error because the positions of
the cameras are not considered when computing the transformation between the solu-
tion the original scene, not because camera motion is less reliablemretahan

scene structure.
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Figure5.8: (a) Trace of refinement (gray) from the initial estimate to the final solution,

pared with the original feature and camera positions (black). (b) Plot of the struct
motion error vs. refinement iterations.

1. Estimate the positions of a subset of feature points and images using a suit-

able method, such as the minimal data solution.

2. Extend the initial estimate to include the remaining feature points and
images.

3. lteratively refine the structure and motion parameters by alternately opti-

mizing the positions of the feature points and camera poses to minimize the

angular projection error of each projector

Projected Error Refinement reliably rgeos the metric structure of the original scene
in the presence of image noise. It is scalable to an arbitrary number of features and images and
does not mak additional assumptions about scene structure and camera motion other than the

rigidity constraint. As with all optimization methods, the ability tovege to the global min-
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imum depends on the accuyaaf the initial estimate. In practice, a@gence as not been a

problem; it is not knan whether this is related to optimizing the structure and motion param-

eters separately

Optimization-based SFM techniquesvgithe most accurate scene reconstruction
because theexamine all the feature points and images and thus are the leasvedasibise
[39]. Projected Error Refinement is similar to somesteng SFM techniques.df example,
Projected Error Refinement uses an obyectrror function based on the projected image
error, similar to Szeliski and Kang [55]; it uses aficgént parallel iteratie refinement algo-
rithm, similar to Poelman and Kanade [42]; it is reagslike Weinshall and dmasi [70];
and is scalable, l&k Tomasi [59]. Projected Error Refinement is unique in that it combines all
these properties into a single SFM technique using an vawggometric model of werse
projection based on projectors. Furtherojected Error Refinement supports occlusion and
deals with outliers in a well defined manner etpractical issues that are widely ignored by

other SFM methods [76], [63].
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Chapter 6
Feature Detection and Tracking

Projected Error Refinement, éknost SFM techniques, re®rs scene structure and camera
motion from point features. An important assumption of SFM is that the correspondence
problem is soled; that is, image feature pointsvhaalready been detected and matched to
feature points in the other images. Feature detectimivies identifying ‘interesting’ image
features, in the hopes that these correspond to important structural features of the scene. Fea-
ture detection is a di€ult problem, havever, because image features can be caused by a wide
variety of plysical phenomena. Features detected in one image must be matched with the fea-
tures in the other images to determine their correspondences. Image sequences are typically
generated from a mring camera and if the camera motion is smooth then features can be
tracked between images based on the locality of their projected positions in each image. Ho
ever, SFM does not assume&aet camera motion is kam and correspondence errors do
occur Correspondence errors can causgeanrrors in the identified positions of some feature
points, i.e.,outliers. Outliers can also be introduced when feature detecitstd identify

rigid scene features.

This chapter briefly describes tKanade-Lucas-Tomas (KLT) feature trackr that is
used to detect and track feature points in real image sequences. A full description of the
method is gien in [59], [52], [4]. Feature detection and tracking is one of the principal
sources of outliers in SFM, so it is important to understamddudliers are introduced. The

detection of outliers is discussed in thetrehapter
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6.1 The Kanade-Lucas-Tomas Feature Tracker

Many feature tracking algorithms define feature detection and feature tracking as separate
operations; that is, features are selected based on some local image interest operator that may
ignore hav features are subsequently tradk For example, Shapiro [48] defined a corner
detector bt determined feature correspondences using image correlation. Theaklker, on

the other hand, specifically defines good features as those that can bd watlk in other

words, feature detection and tracking are closelygmated [59].

6.1.1 Feature Tracking

The KLT tracker matches small image patches betweenitmages. Br the purpose of SFM,
the center of each patch is considered the feature ‘point’. If the canfienave rate is high
then the transformation of a small image patch betweeriraanes can be approximated by a

simple 2D translation. A feature patéhis tracked between twimaged , andl ,, ; by deter-

mining the 2D displacemenggtord that minimizes the least-squaredeliéncee, ordissim-

ilarity, of the image intensity gradienter the tvo regions, defined as
£ =J'V(/[ln(x)—ln+l(x+d)]zw(x) dx, 6.1

wherel n(x) is the intensity of the image at poinandw(x) is an optional weighting function.

In other words, a feature patch is traxkby finding the best nearby patch in the second image

that looks almost identical.

Features dgrade as theare trackd oser seeral images. & example, a feature may
become partially occluded or rotate txé avay from the camera. Feature patches are there-
fore periodically compared to their appearance in the first image grtlarhae gravn too
dissimilar are discarded. Because géatamera motion may Vetranspired since the feature
patch first appeared, the dissimilarity between the current and original feature patch is instead

measured by finding thedfinetransformatiorA and displacementectord that minimizes the
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function

g =IV(/[IO(X)—In(Ax+d)]2 X, 6.2

where¢ is the dissimilarity ofV between imagé, andl,, andA is a2 x 2 matrix describing

the deformation of the feature patdhdue to camera motion.

6.1.2 Feature Detection

The KLT tracler selects feature patches based am Wwell they can be trackd. In particular

Eqg. 6.1 is well-conditioned if the tweigewvaluesA, andA, of the spatial intensity gradient

of the feature patchV are lage and approximately the same magnitude [5a{clies with
large eigemalues correspond to corners, salt-and-peppgures and other patterns that can
be reliably trackd. Features are selected by scanning a patch wiadmss the entire image.

Any patch wheremin(A, A,) > A is selected as a good feature for tracking, whedefines

the minimum feature strength, and so indirectly determines the number of features selected.

6.2 CorrespondenceErrors

Correspondence errors occur whero tigatures are matched that are not projections of the
same point in the scene. This can occur if the scene contains multiple features that are similar
in appearance and locally adjacerdr BExample, Figure 6.1 sk two images in which three
features in the first image V@been incorrectly matched with features that are nearby in the
second imageui are diferent points in the scene. Because camera motion is wnkifiea-

ture correspondences must be made without priowlauge of the xpected image motion

and therefore it is ditult to check correspondences for consisgethapiro [48] estimated

the projected positions of feature points from theivioes trajectory which\aided some
correspondence errorgytithis required more than twamages and did not enforce global con-

sisteng.



Figure 6.1: Example ofcorrespondence errors. Features #1, #2 and #10 are incorre
matched to features that are similar in appearance and adjacent in the imgesdlberen
points in the scene.

Correspondence errors caus@éaapparent errors in projected positions of some fea-
ture points, which can easily be an order of magnitude greater than the error due to noise.
Whereas noise can be modelled by a zero mean Gaussiaruti@triborrespondence errors
have a lage non-uniform errorThe frequeng with which correspondence errors occur and
their magnitude depends on the ability of the feature detector to discriminate features, the
motion of the camera, and the appearance and density of features in thesrenbijah the

obsenrer has limited control.

6.3 False Features and Non-Rigid Motion

Outliers can be also introduced when detected features do not correspond to rigid points in the
scene. This can occur when an image feature is generated by a depth discontinuity in the
scene, as sk in Figure 6.2. These are calltailse features because thedo not represent

rigid feature points in the sceneal§e features are egalent to non-rigid motion because

their apparent positions migrate along the occluding contour wpwiiet changes. &ise fea-

tures and non-rigid motion are filtult to detect without first resering full 3D structure
because their projected image errors betwegntan images are small and théollow

smooth image trajectories that are similar to those of rigid feature points.



Figure 6.2: Example offalse features. Features #16 and #26 are caused by a depth disc
ity and do not represent rigid points in the scene. Instead, their apparent 3D position
with viewpoint. False features are @dult to detect because their projected image moti
smooth and similar to that of rigid feature points.

False features and non-rigid motion are caused by the fundamental limited ability of
feature detectors to identify rigid points in the scene. Although the rigidity constraint pre-
cludes non-rigid motionalse features cannot be whollyoaded without constraining scene

structure.

6.4 Summary

The KLT tracler performs well in a ariety of real scenes and does not requxtersve
parameter adjustment. Wever, as with all feature traeks, it is not perfect. Correspondence
errors anddlse features occur under rgadifferent conditions and are impossible to predict

or avoid withouta priori knowing the scene structure and camera motion. Both types of outli-
ers efectively violate the rigidity constraint on which SFM is based and ¥ geeundetected

they can werwhelm subsequent SFM analysis. The detection of outliers caused by correspon-
dence errors,alse features and non-rigid motion is therefore an important component of a

robust SFM technique, and is the topic of the Chapter 7.
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Chapter 7
Outlier Detection

Recorering scene structure and camera motion from image sequences is subjecy to man
sources of errofSome errors are introduced during quantization or are caused by imperfec-
tions of the camera model and can be reasonably modelled as Gaussian noise. Noise can be
addressed byxamining additional feature points and images and performing least-squares
analysis or equalent; e.g., Kalman filtering [48], [2], [72], [32], Singulaalwed decomposi-

tion [40], [70], [42], [9], [46] or non-linear optimization [55], [53]. Others sources of error

such as correspondence errors and non-rigid motion, cagsentam-uniform errors that can-

not be modelled as Gaussian noise, i.ey th&roduceoutliers. Outliers cannot be wholly
avoided in real image sequencesvbigheless, the issue of outliers has been widely ignored

in SFM and the results of feature detection and tracking are typically manuallyedHeck

outliers prior to SFM analysis.

This chapter describes tmcomplementary approaches to automatic outlier detection.
The first approach, calleBandom Sample Consensus (RANSAC), incrementally gns a
solution by adding only consistent data points. The second approach,praied), incre-
mentally trims a solution by remimg inconsistent data points from it. Bothvbeabeen used
by some SFM techniques [76], [15], [63]. Agptained in this chapteRANSAC is unsuitable
for outlier detection in the projector model and therefore pruning is used insteaxarAple
is given using synthetic 2D images containing outliers thavshew detecting and pruning

the outliers gies a more reliable reconstruction of scene structure and camera motion.
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7.1 Random Sample Consensus

Random Sample Consensus is a general technique proposed by Fischler and Bolles [15] for
parameter estimation from noisy data that contains outliers. REN&#Ss used by Fischler

and Bolles for the problem of determining camera location from landmarks; i.e., the location
determination problem (see Appendix B). More recentlyas wsed by drr and Murray [63]

as a robist method for computing the fundamental matrix from a pair of images that contains

some correspondence errors.

In the RANSAC approach, a mod# is fitted to a set of noisy data poiftsof which
an unknavn subset are outliers. In the cotitef SFM, the modeM describes the parameters
of camera motion and scene structure, and the data points are the projected positions of the

features points in the images. First, a sulset, of the data points are randomly selected to
obtain an initial estimat ; of the model (i.e., a minimal data solution). The remaining data
points are thenxamined to identify which are consistent wit,. In particulay if the errore

of a point is consistent with the noise model, &g 30, then the point is added to tben-
sensus set of P, .. If a point is found to be inconsistent with,, e.g.,& > 30, then it is con-

sidered an outlier and discarded. Figure 7.ivshe eample of RANSAC applied to a simple
linear data fitting problem.wWo data points{ 2, 2.3} and {3, 3.5} provide the initial esti-
mate. Of the remaining data points, the errof B) 15.1} and {15, 5.0} exceed the noise

threshold and thus are considered outliers. The solution is recomputed using the consensus set

to obtain a more reliable fit to the data points.

RANSAC obtains the initial modeM, from a random subset of data points, and it

quite possible that one or more of these points are outliers. If the number of remaining points
that are inconsistenkeeeds thexpected outlier frequegahen it is most likly caused by a

poor initial model, and a memodel is computed from a tBfent subset of points.
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Figure 7.1: Example of RANSA applied to linear data fitting. RAN&Aobtains an initi
estimate from tw data points and detects outliers based on their residuake@atliers ar

ignored when computing the final solution.

RANSAC has been sknn to work well for outlier frequencies as high as 25% and it is
suitable for applications where the magnitude of outliers greatiyeels the noiseuel [15].

However, RANSAC has the follwing implicit requirements:

1. an initial estimate of the solution can be obtained from a subset of points,

2. individual points can be added to the initial model to measure their error

and thereby determine whetheryttage outliers.

For example, RANSAC was used by drr and Murray [63] to compute the fundamental matrix

from two images. First, a minimal subset of feature point correspondence pairs were selected
to estimate the camera motion parameters. The remaining pairs of features wexkaitien e

ined to determine whether thevere consistent with the estimated camera motion. A data
point in this contet is a pair of corresponding features. RANS£#an be used to identify out-

liers in this case because the error introduced by a single pair of features can be measured to

determine if the pair are consistent with thevpmesly estimated camera motion.
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Projected Error Refinement, \Wever, does not xxamine pairs of featuresubrather

individual projectors. In particulathe error in an inglidual projector cannot be measured
without first estimating the position of the associated feature point, which requires adding
other projectors in order to perform triangulationwdeer, by doing so, it is not possible to
determine which of these projectors are outliers. In otloedsy RANSAC cannot be used for
outlier detection in the Projected Error Refinement approach because all the projectors for an
image or all the projectors for a feature point must be added at once, making it impossible to

identify which are outliers.

7.2 Pruning Outliers

As described abe@, a rolist SFM solution cannot be obtained by adding only consistent pro-
jectors to a minimal data solution because projectors must be added in groupgerHbis
possible toremove or prune inconsistent projectors from arxigting solution. Whereas
RANSAC starts from a smallub good solution and adds only consistent data points, pruning
starts from a laye hut poor solution and rermes inconsistent data. The rationale behind prun-
ing is that least-squares minimization attempts to digithe projected errowenly over all

the projectors. As a result, in most cases a least-squares solution fékdpeojectors better
than the outliers. In particulahe residual error of outliers will be sowteat greateras illus-
trated in Figure 7.2. Thexent to which outliers can be detected based on their residual error
depends on their frequenaenagnitude and distnitiion, and it is entirely possible for outliers

to hare a smaller residual error thaalid data points in some cases. In generakeaer, the
error of outliers is greater than that of non-outliers, in which cagectirebe detected based

on their residual error in the initial solution.

Most SFM techniques that perform outlier detection use some form pruning; that is,
they compute a solution based on mdeatures and/or images and then reenmconsisten-
cies. for example, Szeliski and Kang [55] performed LM optimization and discarded feature

points whose projected residual erraceeded3o. The residual error after optimization can
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Figure 7.2: Example of pruning applied to linear data fitting. Outliers are detected be
the magnitude of their residual erin the initial least-squares solution. Pruning the ou

and re-computing the solutionvgs a better solution.

also be used to indicate the presence or absence of non-rigid motion; e.g., Boultvamd Bro

[5] examined the residual after SVD tagseent a non-rigid scene into rigid components, and
McReynolds and Lave [33] determined whether a scene is rigid based the residual error after
LM optimization. Other SFM techniques use weighted least-squardd-estimators, to

adjust the weight of each projector during optimization according to the residuametinor

the efect that outliers hae less impact on corrupting the solution [63]. Other techniques
replace least-squares minimization with moreustboptimization methods, such besst

median of squares (LMedS) [76], [58], [63]. LMedS minimizes theedian of the squared

errors; that is, it finds the solution whose median error is smallest. LMed®yisolust to

outliers lut requires a non-linear search of the solution space and cannot be reduced to least-

squares, unli& M-estimators.

The outlier detection performed by Projected Error Refinement is similar to Szeliski
and Kang [55]. First, the solution is computed from all the feature points and images using

parallel iteratve refinement. After refinement has eemed, the angular projection erroiof
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each projector is measured to determine whether it is consistent with the noise model, i.e.,

€ <30. Two pruning options are possible. The first, calbedservative pruning, remo/es

only the outlier with the greatest residual eredgter which the solution is re-refined. The jus-
tification for this approach is that the projector with the greatest residual error is the most
likely to be an outlierThe second approach, calleberal pruning, remaes all projectors

whose error xceeds3o. However, because the solution has been corrupted by outliers, this

approach may unintentionally prune sonadid/ projectors. As described in Chapter 8, the
occlusion of a f& valid projectors does not significantlyfedt the solution and liberal prun-

ing is performed because it ester albeit less accurate.

To summarize, after parallel itenai refinement has ceerged, all the projectors
whose residual erroxeeeds3o are pruned. The solution is then re-refined using the remain-

ing projectors. This process is repeated until all the projectors are consistent with the noise

model.

7.3 Example

Figure 7.3 shes a synthetic scene ik projected to three noisy images, where four of the
projectors{vg 3, V1 5 V5 6 V4 5} are outliers and kva an angular projection error df. 3he

first refined solution, with outliers included, is shoin Figure 7.4 and has structure and
motion errors of 0.10 and 0.14, respeely. Of the four outliers,{ v, 5,V 5 V4 5} have an
angular projection errorxeeeding3c in the solution. These three projectors are therefore

pruned and the solution is re-refined using the remaining projectors. At the end of the second

refinement stage all the projectorsrédaan error less thaBo, including the fourth outlier
V, ¢- The final solution is shen in Figure 7.5 and has structure and motion errors of 0.05 and

0.08, respectely. In this &kample, the remal of three of the four outliers resulted in approx-

imately a tvo-fold improvement in the reaered structure and motion parameters, although
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Figure 7.3: The synthetic scene from Figure 5.4 where four of the projectors areutters
(shawn in black) and hae an angular projection error of.3
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Figure 7.4: (a) The first refined solution to the images projected in Figure 7.3 without
detection. (b) This solution is transformed to the original ssecmrdinate system to m
sure the reconstruction error (the original features and camera positionsvanarshtack).
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Figure 7.5: (a) The final refined solution after pruning outliers. (b) This solution transfi
to the original scens’coordinate system. Note: the outlier fromto p, could not be ident

fied based on its residual angular projection error

the fourth outlier could not be identified based on its residual error

7.4 Summary

Correspondence errors, non-rigid motion aaldd features cannot be modelled as Gaussian
noise because théhave lage non-uniform error distrigions. All these sources of error are
therefore considered asitliers; in other words, thg are modelled as gthing inconsistent

with the noise model. In both RAN&Aand pruning, detecting outliers relies o@mining

the residual error of the projected feature points. This error should therefore be meaningful.
For example, Projected Error Refinememrpkcitly minimizes the obseable angular projec-

tion error in the images. Theé&torization Method [59] and essential matrix [29], [64], [63],

on the other hand, perform least-squares analysis of systems of linear equations, where the
geometric or visual interpretation of the residual error is undleantliers are to be detected

based on their residual error then it is important that this error is well-defined in terms of

image noise. Otherwise, the risk @liling to detect outliers or detectinglde positres is
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increased.

Non-linear optimization-based SFM techniques, such as Projected Error Refinement,
are particularly suited to outlier detection becauseviddal projected feature points can be
removed [55], unlile linear methods which require all the feature points and images to be
present [48], [59], [64], [29], [72], [42]. Although outliers can be reewbfrom linear sys-
tems after the solution is obtained, the solution must then be recomputed from scratch from
the nevimage data [76]. In Projected Error Refinement, projectors can beedrur added)

at ary time and refinement simply continues.

Outlier detection is an open problem and both RARBSAd pruning caraifl to detect
all the outliers. Nonetheless, outliers are wandable in real image sequences and outlier
detection is an important component oy aabust SFM technique for general-purpose appli-

cations.
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Chapter 8
Occlusion

Occlusion occurs when a feature is not visible in an image because #uwe sarfwhich it lies

faces way from the obseer, because a sate closer to the observobstructs the we or

because the appearance of the feature has changed and it is no longer detected as such (i.e., a
dropout). Occlusion is an intrinsic property of real scenesadat, fthe appearance and disap-
pearance of suaites is one of the strongest depth cues in human vision [16]. The only circum-
stances where occlusion does not occur is in the special case ofea object rotating

through a limited angle such that all its famd facing surdces remain visible. Nertheless,

occlusion is handled poorlif at all, by most SFM techniques. This is one of the reasogis wh

SFM has yet to be usedtensiely in real applications, where occlusion is ubiquitous.

SFM research has gely focussed on determiningfiefent, i.e.,linear, solutions to
the inverse projection problem. M@ver, as described in Chapter 3figengy is only one of
mary requirements of a general-purpose SFM technique. It must also accurately model scene
structure and camera motion and beusitio common errors, such as noise, outliers and miss-
ing features; i.e., occlusion. Linear methods are typically defined for a small number of fea-
ture points and images, or thexamine multiple features and images and perform linear least-
squares optimization. Linear methods ast fbecause solving linear systems of equations is
efficient; for xample, SVD or Kalman filtering. Keever, the codicients of these linear sys-
tems are devied from the projected positions of feature points, which does naet dlothe
presence of “no information” as occurs when a feature point is missing or occluded. Linear

SFM techniques therefore requai the features to be presentlhthe images. In &ct, the
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ability to handle occlusion is sacrificed fofi@engy.

The most common solution to the occlusion problem isémnéne a subset of features
and images where all the features are visible in all the images [17], [72], [49], [50], [51], [2],
[9]. This is implicit in SFM techniques based on image pairs [64], [29], [38], [63], [76], [71].
However, examining only a subset of thealable projected information means the solution is
sub-optimal. Br example, the reliability of SFM techniques based on image pairs is limited
because additional images cannot be included in the solwgonifethey are aailable. Fur-
ther, in long image sequencesMdeature points are visible in all the images. In order to
recover complete scene structure, subsets of features must therefgearieesl, which intro-
duces the additional nonitial problem of hav to combine partially werlapping solutions.
Occlusion also poses a problem for Kalman filtering because the stabe representing the
structure parameters is déia. A nwel solution to this problem &g proposed by McLauchlan
and Murray [32] who replaced the statector by avariable state-dimension filtewhich

allowed the structure parameters to be added andveshdynamically

A different approach to the occlusion problenetaky some linear SFM techniques is
to examine all the features and images and ‘fill in’ the missingficteits [59], [42], [70].
This is accomplished by reeering the 3D positions of occluded feature points from a (com-
plete) subset of images, and then re-projecting these points back into the images where the
are occluded, a process callbdllucination However, hallucination precludes optimality
because least-squares optimization cannot distinguish between the original eed dizta.

Hallucination also increases the risks of introducing artificial outliers.

The handling of occlusion by linear SFM techniquesdifiocat best. Non-linear opti-
mization-based SFM techniques are better suited to dealing with occlusion becaudeahdi
projected feature points can be added or xemaarbitrarily For example, in Szeliski and
Kang [55] occluded feature points wergemn zero weight and so did not contrié to param-

eter optimization. SimilarlySpetsakis [53] minimized the distance between non-current pro-
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jectors that alleved indvidual projectors to be absent fromyamage.

8.1 Occlusion in Ppjected Error Refinement

If a feature point is not projected to an image then the feature shaelchdanfluence on the
computed position of that imagedptical center or the rotation of the image around it. Simi-
larly, an image should ke no influence on the computed positions of feature points that are
not visible in the image. This wlous property is bilt-in to Projected Error Refinement. In
particular when refining the»érinsic camera parameters with respect to thedjiXeature
points, only the visible projectors in the image define error terms that are considered during
optimization - missing featuresvy&no influence. Liewise, when refining the feature points

with respect to the (fed) camera poses, only the projectors defined by the images in which
each feature is visible are considered when optimizing the position of that feature point. This
is equvalent to Szeliski and Kang [55] where the weight associated with occluded feature

points is set to zero.

Occlusion is handled naturally by Projected Error Refinemeny. féature may be
present or absent in yanmage - only the visible projectors ameaeined when refining the
structure and motion parameters. This property also enables features to be addedeat remo
at ary time. This &cilitates outlier detection and alle nev images and their associated pro-
jectors to be added without\iag to recompute the solution, making the approaaiy suit-
able for processing long image streams. The ability to dynamically add angerprogectors

is a ley feature of Projected Error Refinement.

8.2 Example

Figure 8.1 shes a synthetic scene ik projected to three noisy images, where 8 of the 40
projectors are occluded, i.e., 20% occlusion. The refined solutionvigishd-igure 8.2 and
has mean structure and motion errors of 0.2 and 0.6, regdgctihis solution represent the

optimal placement of the feature points and camera centers that minimizes the angular projec-



80

-1.5 -1 -0.5 0 0.5 1 1.5

Figure 8.1: The synthetic scene from Figure 5xXcept that 20% of the projectors
occluded.
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Figure 8.2: (a) The refined solution to the occluded images projected in Figure 8.1. |
refined solution is transformed to the original sceweobrdinate system to measure the re
struction errar

tion error in thevisible projectors. Occlusion fcts the accurgoof reconstruction because it
reduces the amount of dateeedetermining the noise errors. Wever, as shan, scene struc-

ture and camera motion is still be reliably nem@d @en with a lage amount of occlusion.
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Chapter 9
Experimental Results

This chapter describegmerimental results on synthetic and real image sequences. Synthetic
images allav the camera motion, scene structure and projection conditions to be controlled
and adjusted to obseartheir efect on reconstruction. Quantiteti error analysis is also possi-

ble because ground-truth datavaitable. Seeral real image sequences axarained to sha

the performance of Projected Error Refinement on real image data under agtiraj ¢i@n-

ditions. Havever, ground-truth data for real image sequences fiudlif to obtain, making a

guantitatve analysis of the rewered structure and motion parameterﬁcnljft.22 With the

exception of one of the real image sequences (Figure 9.16), the real image sequences are

uncalibrated and therefore only a qualitatexamination of the solutions is possil?fe.

9.1 Synthetic Image Sequences

A series of gperiments vas conducted on synthetic images to analyze the performance of
Projected Error Refinement under simulatedving conditions. The &ct of the follaving

parameters arevesticated:

22 The SFM field presently lacks a standardized suite of calibrated image data for the
guantitatve analysis and comparison offdient SFM techniques.

23 The uncalibrated image sequences were obtained from the Gaitih ¥énd Auton-
omous Systems Center's image database.
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1. Refinement iterations the number of iterations that the structure and

motion parameters are refined mried from O, i.e., no refinement, to 20

iterations.

2. Image noise the direction gctors of the projectors are corrupted by angu-
lar Gaussian noiseawing fromo = 0°, i.e., perfect perspewé projec-
tion, to 0 = 0.2°, corresponding to approximately 4 eix noise for a

camera with a 35mm lens and a 640epixide image.

3. Features and imageshe number of features and imagesased from 3

to 13 images for 2D perspegtiprojection, and from 2 to 12 images for 3D

perspectie projection. From 5 to 15 features are projected in both cases.

4. Occlusion rate- the percentage of projected feature points that are

occluded in the images ianed from 0%, i.e., no occlusion, to 50% occlu-

sion.

5. Outlier frequeng - the percentage of projected feature points that are outli-

ers is \aried from approximately 2% to 10%; i.e., from 1 to 6 projectors for

the de#ult of 10 features and 6 images.

6. Outlier magnitude the magnitude of outliers isakied from 5 times the

image noise to 10 times; i.e., 030 pixels) to E (20 piels).

Except from the number of features and images, equrienent adjusts one parameter in iso-
lation. The numbers of features and images arged simultaneously to determine the best
working set size - the total number of projectors directly determinesfitierady of non-lin-

ear optimization. The datlt parameteralues are: 10 refinement iteratioos~= 0.1° image

noise (i.e., 2 pigls), 10 features projected to 6 images, no occlusion, and no outliers.
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Figure 9.1: A synthetic scene is constructed by placing feature ppjnésound (a) a unit i

cle for 2D perspeate projection or (b) a unit sphere for 3D perspecpirojection. The pr
jected images are the directions of the feature points from the optical a@nters

Both 2D and 3D perspewé projection arexamined. 3D perspeegg projection is of
most interest because it closely models camera projection. 2D perspg@djection is also
useful for applications wolving predominantly planar motion. Although a full 3D model

could be used in these situations, a 2D model may beisaf and is more &tient.

9.1.1 Synthetic | mages

Synthetic images were generated by randomly placing feature points and camera centers and
recording the relate directions of the features from the optical centers, asrshoFigure

9.1. For 2D perspecte projection, feature points are placed on a unit circle with the optical
centers distribted around it. In 3D perspegti projection, the feature points are placed on a

unit sphere. Placing features on a circle or sphere in tysfagilitates measuring the struc-

ture and motion error of the resulting solution, as described in Appendix C, and does not
affect the generality of the results. Eaciperiment is repeated 10 times with delént scene

and the results arey@raged. The 95% confidence intris computed for the angular projec-
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Figure 9.2: (a) The angular projection error and (b) the structure and motion error as
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Figure 9.3: (a) The angular projection error and (b) the structure and motion error as
tion of the number afefinement iteationsfor 3D peispective pojection

tion error

9.1.2 Experiment 1. Refinement Iterations

This eperiment &amines hw the number of refinement iterationdeats the projected

image error and the accuyaaf reconstruction. The results for 2D and 3D perspegrojec-

tion are shan in Figure 9.2 and Figure 9.3, respeely. Zero iterations corresponds to the

initial estimate obtained from the minimal data solution. Asvshdhe initial estimate ges a
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Figure 9.4: (a) The angular projection error and (b) the structure and motion error as
tion of theimage noise for 2D perspective projection.

poor reconstruction of scene structure and camera motion, and hge aal@énce in the
angular projection error because none of the features or imagegydtabeen refined. Mo

ever, as the number of refinement iterations increases, the projection error decreases rapidly
with a corresponding decrease in the structure and motion &fter approximately 10 itera-

tions there is ngigible further reduction in the projected image eradthough the rec@red

structure and motion error continues to inyersomahat?*

9.1.3 Experiment 2: Image Noise

This experiment &amines has the amount of image noisefedts the projected image error

and the accurgcof reconstruction. The results for 2D and 3D perspeqgprojection are
shavn in Figure 9.4 and Figure 9.5, respeely. With zero noise, i.e., ideal perspeetipro-
jection, the scene structure and camera motion argammbperfectlyAs noise increases, the
projected image error increases compeehtj in particulaythe magnitude of the angular pro-
jection error after refinement is approximately the same as the angular noise in the original

images. As shan, the structure and motion error is related to the projected imageiedror

24 The motion error is greater than the structure error becausevahkaosolution is
transformed to the original scea&€oordinate system, as described in Appendix C, not
because camera motion is less reliably veoed than scene structure.
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Figure 9.5: (a) The angular projection error and (b) the structure and motion error as
tion of theimage noise for 3D perspective projection.

cating that minimizing the angular projection error has the desitect @hproving the accu-

ragy of reconstruction. Comparing th&perimental results for 2D and 3D indicates that 2D
perspectrie projection appears to be more sewsito noise than 3D perspeiprojection.

This may be due to the additional dimension in 3D imposing a stronger constraint on the loca-

tion of a feature point, rela&e to its projectors, than the planar 2D case.

9.1.4 Experiment 3: Number of Featuresand I mages

This eperiment @amines hw the number of features and imagefe@&s the accurgcof

reconstruction. The results for 2D and 3D perspegirojection are shn in Figure 9.6 and

Figure 9.7, respem@ly.25 One of the goals of thisxperiment is to identify a goodasking
set size. This wolves a trade-dbetween the accurpof reconstruction and thefiefengy of
refinement - more features and imagegegia better reconstructiomutbrefinement tags
longer As shavn, for 2D and 3D perspeeé projection, both the number of features and the

number of images ka a similar dect of impro/ing the receered scene structure and camera

25 The mean angular projection error in the solution is notveHor this eperiment
because it is independent of the number of features and imagexafple, the pro-
jected image error for the minimum number of features and images, i.e., the minimal
data solution, is alays zero.
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Figure 9.6: (a) The structure error and (b) the motion error as a function of the number of fea-
tures and images for 2D perspective projection.

distance/unit sphere
distance/unit sphere

features

(b)
Figure 9.7: (a) The structure error and (b) the motion error as a function of the number of fea-
tures and images for 3D perspective projection.

motion. There is only a small reduction in the structure and motion error after approximately
twice the minimal number of features and images, indicating that a good working set size is
about 10 features and 5 images. These results also indicate that both additional features and

additional images are necessary for reliable reconstruction; that is, examining only more fea
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Figure 9.8: (a) The angular projection error and (b) the structure and motion error as a func-
tion of occlusion for 2D perspective projection.
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Figure 9.9: (a) The angular projection error and (b) the structure and motion error as a func-
tion of occlusion for 3D perspective projection.

tures or only more images has alimited effect on improving the solution.

9.1.5 Experiment 4: Occlusion

This experiment examines how the amount of occlusion in the images affects the projected
image error and the accuracy of reconstruction. The results for 2D and 3D perspective projec-
tion are shown in Figure 9.8 and Figure 9.9, respectively. Occlusion reduces the number of

visible projectors that constrain the structure and motion parameters. Therefore, increasing the
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amount of occlusion increases the sevigytiof the solution to noise in the visible projectors.

As shavn, the projected image error and structure error increase slightly with increasing
occlusion. In thesexperiments, the occluded projectors are selected rand@abause the
remaining projectors arevenly distrituted the still largely negate the dects of noise, which

is reflected by only a small increase in structure efiioe lager increase in the motion error

is unpected and may be a siddeet of the rgistration method used for measuring recon-
struction errarrather than camera motion being more sesestt occlusion than scene struc-
ture. In ay event, this gperiment shas that Projected Error Refinement can reliably veco

scene structure in the presence of significant occlusion.

9.1.6 Experiment 5: Outliers

These gperiments gamine hav the presence of outliers in the imagee@st the projected
image error and the accuyaof reconstruction. The firsixperiment compares the results of
pruning outliers with the results when outlier detection is not performed. A synthetic scene
containing 10 feature pointsas projected to 6 images, with 3 of the projectors (i.e., 5%)
being outliers. Eachxperiment vas repeated 10 times and the results weeeaged. The

results for 2D and 3D perspaaiprojection are gen in Table 9.1 anddable 9.2 respecitly.

Table 9.1: Pruning outliers for 2D perspead projection.

Projected Error

Structure Error

Motion Error

with pruning 0.07° 0.05 0.21
without pruning 0.48 0.14 0.61
Table 9.2: Pruning outliers for 3D perspead projection.

Projected Error

Structure Error

Motion Error

with pruning

0.08

0.03

0.18

without pruning

0.53

0.34

0.68

These results sk that for both 2D and 3D perspeetiprojection, eliminating outliers
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Figure 9.10: (a) The angular projection error and (b) the structure and motion error as
tion of outlier frequency for 2D perspective projection.
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Figure 9.11: (a) The angular projection error and (b) the structure and motion error as
tion of outlier frequency for 3D perspective projection.

improves the reogered structure and motion, up to an order of magnitude.

The second outlierxperiment gamines hw the number of outliers afects the pro-
jected image error and the accyrat reconstruction. The results for 2D and 3D perspecti
projection are shen in Figure 9.10 and Figure 9.11, respedii. Increasing the number of
outliers reduces the accuyaof the initial refined solution (prior to outlier detection). As a
result, it is more dffcult to detect outliers based on their residual error and it is metg fikr

valid projectors to be pruned unintentionalys shavn, the mean andaviance of the pro-
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Figure 9.12: (a) The angular projection error and (b) the structure and motion error as
tion of outlier magnitude for 2D perspective projection.

jected image error increases with increasing outlier frequievith a corresponding increase

in the reconstruction errofhe lager \ariance indicates that some outliers were not detected
and that these kia corrupted the least-squares solution. TRigeament shas that while
pruning outliers based on their residual error feative for a small number of outliers, it

becomes less fefctive as the number of outliers increases.

The third outlier gperiment &@amines hw the magnitude of outliers affects the pro-
jected image error and the accyrac reconstruction. The results for 2D and 3D perspecti
projection are shen in Figure 9.12 and Figure 9.13, respesdtl. These results are similar to
those for outlier frequencAs the magnitude of outliers increases, the decreasing agairac
the initial refined solution mals it more diicult to detect the outliers. Amoutliers that are
not detected corrupt the least-squares solution and decrease theyactueao/ered struc-
ture and motion. Thisxperiment shas that while pruning is &ctive for outliers whose
magnitude is small relat to the image noise, it is les$eetive for outliers with a laye angu-

lar magnitude.

To summarize, outlier detection can imypgahe reconstructed structure and motion,

up to approximately an order of magnitude. Pruning outliers based on their residual error in
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Figure 9.13: (a) The angular projection error and (b) the structure and motion error as
tion of outlier magnitude for 3D perspective projection.

the refined solution is &Hctive for a fev outliers that hee a relatrely small magnitude. Ho-
ever, increasing the frequepor magnitude of outliers mak them more ditult to detect,

and those that remain undetected increasingly corrupt the solution.

9.2 Real I mage Sequences

Five real image sequences wexarmined to she the performance of Projected Error Refine-

ment on real image data. Features were @@elkcross the image sequences using the Kanada-
Lucas-Dbmasi feature traek (see Chapter 6). A minimal subset of features and images from
each sequence were selected by hand to obtain an initial estimate of the structure and motion
parameters (see Chapter 4). The remaining features and images were then added to this solu-
tion (see Appendices A and B). This initial solutioasahen refined until the éfence in the

mean angular projection error betweer tsuccesse solutions \as less than 1% (see Chap-

ter 5). Except for the teabox image sequence (Figure 9.16), the original positions of the fea-
ture points and camera centeraswot knawn and therefore only a qualitadi analysis of the

recovered structure and motion is possible.



(b)
Figure9.14: (a) Frame 1 and (b) Frame 11 (of 11) of the Rgh@1ibe image sequence.

9.2.1 Image Sequence 1: Rub&'Cube

This sequence contains 11 images of a Rslficibe rotating on a turntable. The cameas w

at a fixed position throughout the sequence. The first and last frames areistfeigure 9.14.

30 feature points were traet across the sequence with minimal occlusion, i.e., most of the
features were visible in all the images. Feature point #26rshrothe upperight corner of

Figure 9.14, does not rotate with the turntable and theretbrkies non-rigid relatre motion.

There are also twfeature points, #9 and #13, that are caused by depth discontinuities. The
reconstructed 3D positions of the feature points and camera centersvamarskagure 9.15.

After the first refinement stage, feature point #26 is detected as an outlier and its projectors are
removed from the images and the solution is re-refined. The residual errors of features points

#9 and #13 are less th80 and therefore thyenot identified as outliers.

As shavn in Figure 9.15, the positions of the feature points and camera centers are
recovered reasonably well. The reconstruction is imperfegelgras a result of the small
change in vierpoint over the sequence. The projectors defined for each feature are therefore

close to parallel, making the estimated positions of the feature points morevedaogiiise.
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Figure 9.15: (a) The recwered positions of the feature points (black) and camera ¢
(gray) from the Rubis Cube image sequence. (b) A topvdoview of the recwered featur
points (Note: the outlines of cube and turntable are not part of the reconstruction).

This experiment shas that Projected Error Refinement is able toveca good estimate of
scene structure and camera motion underable vieving conditions, although in thixam-

ple the accuracof the result it is limited by the small weng angle.

9.2.2 Image Sequence 2: Teabox

The teabox image sequence illustratew lirojected Error Refinement is simplified when
either scene structure or camera motion iswkna priori. This sequence contains eight
images of a teabox mounted on a pan-tilt head and rotated througim38® increments.

Two of the images, at5° and 138, are shan in Figure 9.16. The eight corners of the box
were manually labelled because the images were too widely spaced to permit automated fea-
ture tracking. The original structure of the teabox and the positions of the camerasvare sho

in Figure 9.17.

In the first @periment, the calibrated positions of the cameras were used to directly

recover scene structure. The positions of the feature points were first estimated by triangula-
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Figure 9.16: Two frames of the calibrated teabox image sequence, 4&°(and (b) 315.

300

20

Figure 9.17: The calibrated positions of the cameras (gray) and feature points (black)
teabox image sequence.

tion from a pair of images, and then refined using all the images. In otings,wwhen the
extrinsic camera parameters are wmg the positions of the feature points can be determined
in a single iteration. In thisxample, the @erage structure error in the positions of the veco

ered feature points is 3mm, where the dimensions of the teabox are X38@mmx 65mm,

or 1.7% of the interior diagonal dimension of the box.
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In the secondxperiment, the calibrated positions of the features were used to directly

recoser camera motion. First, the positions of the camera centers were estimated from a subset
of the feature points. Thexteinsic camera parameters were then refined, in parallel, with
respect to all the feature points. In otherds, when scene structure is Wmg the positions

of the camera can be determined in a single iteration. In xaim@e, the werage motion

error in the receered camera positions is 28mm, or 7% of the distance from the camera to the
rotational center of the pan-tilt head (395mm). Thgdaeverage motion error is most &ky

because four of the images, &t 90°, 180 and 270, have only six of the corners of the box
visible, making their solutions more senaitito noise in the images. This result could be

improved by eéamining more feature points.

These gperiments shw howv Projected Error Refinement can be adapted to the prob-
lem of direct scene reconstruction from calibrated images, or direct camera calibration from a
known calibration taget. In both cases, the reémt scene structure or camera motion can be

solved in parallel in a single iteration.

9.2.3 Image Sequence 3. Hotel

This a sequence of 11 images of a camenamgaround a model of a hotalilding. The first

and last images are sk in Figure 9.18. Feature trackingasvreliable because camera
motion was smooth and 52 feature points were &dolver the sequence. Ther@svminimal
occlusion and no correspondence errorsatgef features. Despite thedarchange in vieg-

point, the relatie distance of the camera from the model remained constant. The projected
size of the model does not change and the images rhanimal perspecte foreshortening
effects, therefore this image sequenarild be suitable for SFM techniques based on a paral-
lel projection camera model [59], [46]. The reconstructed 3D positions of the feature points
and camera centers obtained kardfel Iteratve Refinement (using perspeetiprojection)

are shwn in Figure 9.19. Due to the gmr change in vigpoint than in Figure 9.14, the

obsered projectors more strongly constrained the features’ positions. Xdngée shws, at
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Figure 9.19: (a) The recwered positions of the feature points (black) and camera c
(gray) from the hotel image sequence. (b) A topatlwiew of the recwered feature poin
(Note: mary of the original feature points are nartically aligned with the sides of the he
building).

least qualitatiely, that Projected Error Refinemenves a better reconstruction of scene

structure and camera motion when there isgefachange in vigpoint.
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Figure 9.20: (a) Frame 1 and (b) Frame 12 (of 12) of théding image sequence.

9.2.4 Image Sequence 4: Building

This is an outdoor sequence of 12 images diilding talen by a hand-held video camera.

The first and last images are smoin Figure 9.20. Camera motioraw erratic because the
video camera as hand-held, weever the features were $ufently distrituted and distinct so

that no correspondence errors occurred during feature tracking. A total of 91 features were
tracked over the sequence, Wever most were present only in aMdérames; that is to say

there vas substantial occlusion. Camera moti@s\avay from the bilding and therefore the
relatve size of the scene changeg&othe sequenceaRllel projection is ill-suited to this
image sequence because the change in the projected size of the scene cannot be modelled. It is
also unclear whether weak perspezior para-perspeed would work in this &ample either

due to the noticeable perspeetiforeshortening of the leftadl of the ilding. The recon-
structed 3D positions of the feature points and camera centeesdilePteratve Refinement

are shwn in Figure 9.21. A f& of the image features were caused by depth discontinuities,
however these did not &dct the solution because thevere present onlyver a fav frames.

This experiment shars an application where perspeetiprojection is required for accurate

reconstruction because the image sequence contains paespiestrtion, namely the size of



99

8 0 cngprprast
}' oo et %
® J.O'o'
.:. -2.5
™
v o\
[ )
. Y. g
z 3
° -7.5 '.
.o" 172 °
o".. %
0 o'
0 2.5 5 7.5 10 7.5 5 2.5 0
y X
(a) (b)

Figure 9.21: (a) The recwered positions of the feature points (black) and camera ¢
(gray) from the hilding image sequence. (b) A topwvdo view of the receered scene.

scene changes as the cameraes@nd the shape of the scene is foreshortened in depth. Pro-
jected Error Refinement is able to accurately vecscene structure and camera motion in

this exkample because it models perspezirojection.

9.2.5 Image Sequence 5: Indoor Lab

The lab sequence contains 11 images of an indoor scesreligla forvard maing camera.
The first and last images are shmoin Figure 9.22. Because the camera@aoforward, mag
features in the scene wexd out of viev and n&v features appeared on the reallvas the
camera meed closerA total of 61 features were trasdk in the sequence, with substantial
occlusion. Camera motionas smooth and the feature points were &dakliably A few fea-
ture points were caused by depth discontinuitigstiiey were only present in avieframes
and did not déct the solution. This image sequenceolides significant perspecé efects
and, as a result, absolutely requires a persfeptojection camera modelaiRallel approxi-
mations, such as weak perspesetand para-perspeadi projection, are unsuitable for this

application because the depth of the scene changes consid&habhgconstructed 3D posi-
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Figure 9.22: (a) Frame 1 and (b) Frame 11 (of 11) of the lab image sequence.
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Figure 9.23: (a) The recwered positions of the feature points (black) and camera ¢

(gray) from the lab image sequence. (b) A topadoview of the recwered feature poin
(Note: The rear @l is shavn at y=0, therefore grfeature points where y>0 are incorrect

tions of the feature points and camera centers avensimoFigure 9.23.

This was the most a di€ult image sequence to re@v scene structure and camera
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motion because the field of weof the camera &s small and because ryafieatures were

only visible over a narrav range of vievs. As a result, the projectors defined for these feature
points are close to parallel, making their estimated positions especiallyveetsitmage

noise. This is reflected by the poor reconstruction ofynfi@ature points, as stva in Figure

9.23(b). In this rample there were ¥ features detected on the periphery of the images,
increasing the reliance on features close to the direction of motion. These features are more
sensitve to noise because their projectors remain close to parallel.Xpesraent shas that

for predominantly fonard motion, it is important to detect features near the edges of the
images for maximum angulaasation in the obseed projectors. It also siws that while
Projected Error Refinement is able to nemmoapproximate scene structure and camera motion
under dificult viewing conditions, it is limited by the quality of thea@lable projected image

data.

9.3 Summary

Experimental results are important for measuring the acgwfathe recwered scene struc-
ture and camera motion underfdient vieving conditions. Unfortunatelythe quantitatie
analysis and comparison of féifent SFM techniques is not widespread in this field. This is
due in part to the lack of standardized, calibrated image sequences and adsetheffea-

ture tracking algorithms that are emy@a. For these reasons, synthetic image data is predom-

inantly used for quantitate error analysis.

The synthetic imagexperiments described in this chapteamined the déct of sim-
ulated vieving conditions on the projected image error and the resulting structure and motion
errors of the solution. The firskgeriment confirmed that minimizing the angular projection
error of the projectors has the desirel@@fof reducing the error in reconstruction. The sec-
ond periment shaved that the projected error after refinement is closely related to the origi-
nal image noise; in particulahe mean angular projection error is of approximately the same

order as the angular image noise. This indicates that the angular projection error after refine-
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ment can be used to estimate the image noise when it is e leqiori. The third e&peri-

ment shwed that reconstruction from the minimal number of features and images is poor and
thatboth additional feature points and additional images are required for accurate reconstruc-
tion. This eperiment also indicated that a goodrking set size is approximately 10 features
projected to 5 images. The fourtkperiment shaed that while occlusion doesfedt the
guality of reconstruction, if the visible projectors remain well disted then scene structure

and camera motion can still be accurately veced. The lastgeriment sheved that detect-

ing and pruning outliers based on their residual error in the solutiofecsied and improes

the accurag of reconstruction. Heever, the ability to detect outliers is limited by the accu-
racy of the initial refined solution (with outliers included) and pruning outliers is |é=stieé

when the number of outliers is ¢gr or when outliers va a lage magnitude.

The real image sequences demonstrated the performance of Projected Error Refine-
ment in real applications. The first image sequence illustrated that scene structure and camera
motion can be res@red accurately undeaMorable vieving conditions een when the change
in viewpoint is small. The secondmeriment shawed hav Projected Error Refinement can be
adapted to the problem of direct scene reconstruction or camera calibration when either the
structure or motion parameters are \kna priori, and that the desired motion or structure
parameters can be found in a single iteration. The third image sequence illustratedngco
structure and motion for a moag camera and sha that, qualitatiely at least, reconstruction
is more accurate when there is ajeachange in vigpoint. The fourth image sequence illus-
trated reconstruction from an outdoor image sequenen tak a hand-held camera. These
results shaved that scene structure and camera motion can be accuratelgregcdespite
significant occlusion, and that perspeetefects do not pose a problem for Projected Error
Refinement because it models perspecprojection. This x@eriment also illustrates ho
Projected Error Refinement optimizes scene structure and camera motion baslethen
obsenred feature points and images, ualliknear methods which must firstteact a complete

subset of features and images. The last image sequenegedstiat accurate reconstruction is
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most dificult and least accurate when the camera motion is along the optical axis.aghis w

compounded by the lack of features detected near the edges of the imagespéiimseat
indicates that a lge change in lateral wgoint and/or wide field of vie is required for
accurate reconstruction, otherwise the projectors defined for each feature point are close to

parallel and the solution is more sengtto noise.
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Chapter 10
Conclusions and Future Work

This thesis described awenon-linear optimization-based SFM technique caRedjected
Error RefinementResearch in SFM has primarily focussed owetigping eficient linear
methods and addressing the issue of noideié&ticy is desirable, hwever it is not itself suf-
ficient for general-purpose SFM reconstructioriicifnt non-linear optimization methods are
better suited to this task becauseythee scalable and caramine all the @ailable features
and images. Theare also recurge, which allevs features and images to be added or

removed arbitrarily making occlusion natural and simplifying the handling of outliers.

10.1 Major Contributions

Projected Error Refinement fulfills maof the requirements of a general-purpose SFM tech-
nique. It is scalable, supports occlusion and detects outliers in a well-defined.rRansgec-

tive projection is supported and no further constraints are imposed on the camera motion or
scene structure other than rigidifyhis technique minimizes tlegular pojection eror of

the visible projectors to obtain an optimal estimate of the structure and motion parameters.
This approach is recur& and ne images can be added atyaime. Although other SFM
techniques share some of these properties, Projected Error Refinement is uniquadliarenat
supported using projectorbasedcamera modet a geometric model of werse projection

based on projectors rather than image coordinates.

Projected Error Refinement uses aficeint parallel iterative refinementalgorithm

that tales an initial estimate of the scene structure and camera motion and alternately refines
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the structure and motion parameters. This reduces the cotpm@énon-linear optimization

to (a) optimizing the camemapose with respect to kwa features and (b) optimizing a fea-
ture’s position with respect to knm camera poses. Features and images are reéfipecsl-

lel and projectors can be added or rgatbat ag time and the refinement of the solution
simply continues. &allel iteratve refinement also alles the precision of the solution to be

determined by thevailable processing time, which is important for real-time applications.
The major contribtions of this thesis can be summarized as

1. An intuitive geometric model of Structure From Motion based on projec-

tors and angular projection error

2. A new minimal data solution to thevarse projection problem for 2D and

3D perspectie projection based on projectors.

3. An efficient non-linear optimization-based SFM technique for 2D and 3D
perspectie projection that is recux&, scalable and handles occlusion and

outliers.

10.2 Future Research

There are seeral aspects of Projected Error Refinement that can bevegpm atended to

malke the technique more useful and reliable.

10.2.1 Representation Using Proj ective Geometry

Projected Error Refinement performs non-linear optimization of the capsés and fea-
ture positions. The projection equationgdlved may hee a simpler representationprojec-

tive geometry. In particulay the objectre error function measures the angular projection error
of each projectorwhich is the angle between dwines in Euclidean space. In projeeti

geometrythis angle can be more simply described as the distance betwekarmhegeneous
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points. Ary simplification of the objecte error function will directly impree the eficiency

of refining camera pose and feature position. Preggfeometry also has the desirable prop-
erty that perspecte and parallel projection are treated @liRrojectre geometry is presently
used by seeral isting SFM techniques, although principally for the purpose of intrinsic

camera calibration and projeatireconstruction, rather than for non-linear optimization.

10.2.2 Improve Efficiency

Parallel iteratve refinement simplifies thevarse projection problem by separately the refine-
ment of feature position and camera pose. Presentlylinear methods are used for both
estimating the initial camera locations from four feature points, and later on for optimizing
camera pose with respect to all the feature points. Huangaangfas [28] a/e a linear solu-

tion to the location determination problem thaamined additional feature points and lines.
Alternative solutions to the location determination problem that simplify optimizing the cam-
era locations should bevestigated because this is computationaly more g&pensve than
optimizing the feature positions.fi€iency may also be impreed by using more sophisticated
optimization methods withakter comwergence properties. In particuldrevenbeg-Marquardt
optimization comerges fster near the global minimum and has been successfully used by
other optimization-based SFM techniques [55]. At present, Projected Error Refinement uses a

simple gradient descent method [73].

10.2.3 Intrinsic Camera Calibration

Projected Error Refinement assumes the intrinsic camera parametersvaneokrabtained

by other means. 8eral «isting SFM techniques based on projeetgeometry rear the
intrinsic camera parameters as well as scene structure and camera motion [34], [41]. Although
independent calibration algorithmsist, it would be preferable to allothe intrinsic camera
parameters to change dynamicallyepthe image sequence, in particular the camdogal

length. For example, Pollefgset al. [41] recently proposed a SFM technique based on projec-

tive geometry that alles the camera’focal length to ary in each image, as might occur for a
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camera with a zoom lens.

Adding focal length as anaviable parameter will require some modification to the
projector model. Presenlpnly therelative directions of the projectors in an image are
important and therefore the optical axis of the camera is ignoredevidn if the focal length
may \ary, then the projectors become parameterizsttors measured rebadi to the optical
axis (see Chapter 4.2). This also introduces an additional parameter to the optimization of
camera pose, namely the focal length of the camera. It is mmusbwvhat, if ag, effect this
parameter will hee on the covergence properties of optimizationoffulating Projected
Error Refinement in terms of projesi geometry mayakilitate adding focal length as an
variable parameterAs described in Chapter 3, projectors are \edent to homogeneous
image coordinates used in projeetgeometrySome of the results from projeaigeometry

for intrinsic camera calibration may therefore be transferable to the projector model.

10.2.4 Improve Outlier Detection

Projected Error Refinement currently enysl@ simple heuristic for outlier detection based on

the residual error of projectors after refinement. Experimental resultseedhthis vas not
effective for lage numbers of outliers or outliers with agamagnitude. In these situations a
more sophisticated outlier detection mechanism is required;xamnme, M-estimators or

least median of squares (LMedS). M-estimators is a relagily simple &tension of least-
squares minimization that adjusts the weight of each error term according to the magnitude of
the residual errolLMedS is a more comptenon-linear method that searches for the solution
with the smallesinedian projected errorBoth approaches to outlier detection are more reli-

able than pruning outliers based on their residual ,esitdhe g&pense of increased comple

ity.

10.2.5 Extend to L ong I mage Sequences

Projected Error Refinement is recuesand ne images can be added aydime without re-
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computing the solution from scratch. Mever, long image sequences nonetheless will mono-

tonically increase the compiigy of optimization because all the preus features and images

will continue to be refined each iteration. In long image sequences, the visible portion of the
scene changes significantlyherefore, rather than continuing to optimié the feature
points and images, itauld be more dicient to only optimize the feature points and images
currently of interest. Such dynamic working set of current features and images can be
obtained by adjusting the weight of projectors based on the ‘age’ of the images or other crite-
ria. For example, the projectors in the most recent images are more important than those in
earlier images and therefore should beegia lager weight. An open question isvindo

decide when projectors are no longer of interest and should be permanentheddnom

consideration.
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Appendix A
Triangulation

Projected Error Refinement requires an initial estimate of the structure and motion parameters
to bagin optimization. This obtained from the minimal data solution described in Chapter 4,
although aw suitable SFM technique could equally be used. In most cases, the initial estimate
will be computed from a subset of the features and images. Therefore, prior to refinement, the
positions of the remaining feature points are estimated by triangulation fiof tive rece-

ered images. ¢t each feature point, the intersection of amo of its projectors prades an
estimate of its position. This position will be subsequently refined with respect to all the

images.

In the case of 2D perspegi projection, tw projectors in02 will precisely intersect

unless thg are parallel. The point of intersection ofotwrojectors, with directionectorsv,
andv,, for a feature poirp that is projected to twimages, with optical centecg ando,, is

expressed by

p=0,+Q,v,

P =0,+Q,v, Al

Substitutingoj = H andv; = H gives
\ V.



110
X1+Q1ul _ szeru2
Y1 Vi Y2 Vo
Qqup ~QuUy _ X=X A D

up —Uy||Q Xy = X1
Vi Vo Qo YTy,

whichislinear in Q, and Q.. Solving for either Q, or Q, gives the position of p aong the

associated projector.

In the case of 3D perspective projection, two projectors in 0% will rarely intersect.

Therefore, the position of the feature point is estimated to be the midpoint of the shortest vec-

tor w;,, between the two projectors. A vector w connecting a point on each lineis given by

W= (0, +Q,vy) = (0, +Q,V,) Aa
wi% = (0, =0, +Q,v; = Q,v,) (0 —0,+Q v, = Q,V)) '
whichisquadraticin Q, and Q.. The minimum length vector w, ... . isfound by solving for its

partial derivatives set equal to 0, i.e.,

D 2 - 0 2 =
20 W =0 solw’=0, A4

which is a ssimple non-linear minimization problem. The midpoint of minimum length vector

Wi, connecting the two projectors gives the estimated position of p; i.e.,

W
p=(0,+Qv,) + ;m. A5
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Appendix B
The Beacon Problem and L ocation Deter mination
Problem

The initial estimate of the structure and motion parameters may not contain all the feature
points and images. As described in Appendix A, the positions of the missing feature points are
estimated by triangulation from the r@eoed images. Similarlghe positions and rotations of

the missing images can be estimated from thevezed feature points. This is called thea-

con problem for 2D perspectie projection [24], or théocation determination problem for 3D
perspectie projection [28], [15]. In both cases, if a set ofwndoeacons (i.e., the receered

feature points) are obsed from an unknen location, then the position of the obsarean

be computed from the relaé directions of the beacons. In othewrds, the position of the
cameras optical center can be estimated kgraining the relatie direction of a set of receo

ered feature points. The 2D beacon problem and the 3D location determination problem are

defined diferently and are thereforgamined separately

B.1 The Beacon Problem

In 02 the obsered anglea, , between tw feature pointp, andp,, with unit direction ec-
torsv; andv,, respectiely, is gven by

sinay 5, = Vg XV, B.1
The Law of Cosines states that thg , defines a circle passing through, p, and the opti-

cal centero of the image, as shum in Figure B.1. That is, at all points along the perimeter of
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Figure B.1: The 2-D beacon problem. The obsmhanglea, , between tw recwered fes
ture pointsp, andp, defines a circle of radius , on which the obseero must lie. A thirc

feature pointp, defines another such circle. The intersection of theeeciwles gves the
position ofo.

this circle the obseed angle betweep, andp, is the same. The radius of this circle iegi
by

_ [P1= P
12 sinalyz'

B.2

There are tw opposing circles of radiug , passing through twpointsp, andp,. The cor-

rect circle is determined byamining the sign of the cross-prodwgtx v,,.

The obsered angle between twfeature pointg, andp, defines a circle on which

the obserer o must lie. Examining a third feature poinf defines a second such circle. As

shavn in Figure B.1, the intersection of thes@teircles gves the unique position of the cam-

era’s optical centelOnce the location of the camera is found, ane of the feature points can

be used to determine the appropriate rotation of the image around the optical center
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FigureB.2: The 3-Dlocation determination problem. The locations of the three feature pc
pi, p? FTs along the three image projectors must match the distance between the sa
points in the solution.

B.2 The Location Determination Problem

The 2D beacon problem has a 3D analogxeset that nev the obsered anglen, , between

two feature pointg, andp, defines aurface on whicho must lie. In principle, the intersec-
tion of three such swates, devied from the three dérent pairings of feature points,
f(py Py) . f(Py, P3) andf(p,, py) , will uniquely determine the location of However, this

approach requires solving a compih order polynomial. A simpler approachswescribed

by Fischler and Bolles [15], called thacation determination problem. This method is non-
linear and ramines three feature points, with a fourth point used to resohbiguity Huang

and FRugeras [28] also described a linear solution to the location determination problem that

examined six feature points.

If three feature pointp,, p, andp, are projected to an image with direction \ec-
torsv,, v, andvs, then the position of each feature point along its resfgeptojector must

match the distance between the k&red points in the solution, as shoin Figure B.2 That

is,
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p;=0+Q,v,

Py =0+Q,v,

p;=0+ Q3v3, B.3
with the constraint that

P—Py =d;,

Py =Pyl =dy 3

P, = Pg =d; 3 B.4

where d is the distance between the two points in the solution. Eq. B.4 is quadratic in three

unknowns, Q,, Q,, Q., and has up to eight solutions [15]. However, for every positive solu-

tion there is a geometrically isomorphic negative solution behind the camera, so there are at
most four actual solutionsto consider. To resolve the ambiguity, the procedure is repeated sub-

stituting a fourth point p,, in place of p5 to identify the unique solution.

Eq. B.3 gives the relative distances Q, of each feature point p; from the focal point o.

The actual position of o with respect to the feature pointsis found by solving

0-pq =Q
0-pgy =Q, B.5
0-pg =Q;

which has two solutions, one on each side of the triangle with vertices p,, p, and p;. The

correct position of o is determined by examining the triple scalar product (v, xv,) 0.
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Appendix C
Measuring Structure and Motion Error

The recoered positions of the feature points and the cameras’ optical centers are accurate
only up to a scaleattor and a rigid translation and rotation because the original scaos-
dinate system is unkmm. Measuring the accunamf the solution is therefore @ifult
because determining the optimal coordinate transformation mapping the solution to the origi-
nal scene is a non-tal data fittingor shape egistration problem [1], [22]. Br example, fit-
ting two sets of data points i3 is a non-linear optimization problemvolving seven

independent parameters.

In order to simplify mapping the solution to the original coordinate system, the syn-
thetic images described in this thesis were generated from scenes where the feature points lie

on aunit circle for 2D perspectie projection, or anit sphee for 3D perspectie projection,

as shwn in Figure 9.1. &r example, Figure C.1 s a synthetic scene in° containing

eight feature points projected todiimages. Because the original feature points lie on a circle,
so should the reeered feature points. Therefore, a circle is fitted through the features points

in the solution, which is defined as

2 2 _ 2
(Xi - Cx) + (y| - Cy) =1r, C1l
wherec = {c,, cy} is the center of the circle amds the radius. Similar)yfor 3D perspec-

tive projection, the resered feature points should lie on a sphere, which is defined as

(5 =c) %+ (yi—¢) 2+ (z-¢c)? = 2, C.2
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2

-2

-2 -1.5 -1 -0.5 0 0.5 1 1.5
Figure C.1. Example of a synthetic 2D scene with eight feature pgntying on a circl

that are projected to ®vimages with optical centees. 1° angular noise has been added t
projectors in the images.

wherec = {c,, Cy» c,} is the center of the sphere. A circle or sphere is fitted to the feature

points in the solution to minimizes the least-squares distance between the points and the

perimeter of the circle or sphere. The corresponding obgeetror function is

£ = ZU(xi—cx)2+(yi—cy)2—r2] C3

for the case of a circle, or

£ = ZU(xi—cx)2+(yi—cy)2+(zi—cz)z—rzj C.4

for the case of a sphere. The radiusinitially estimated to be 1, and the ceraémassm of

the feature points pvides the initial estimate afand is gien by
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0.4

0.2

-0.2

-0.4

0 0.2 0.4 0.6

Figure C.2: A circle fitted to the feature points in the initial (unrefined) solution to the ir
projected in Figure C.1. The center of the cimctgves the translationector from the solutic
to the original scens’coordinate system, and the radius of the cirslesghe scale changa
is the centepf-mass of the feature points.

1-1
5
i=0

m = C5

wherel is the number of feature points. Figure C.2nhthe circle fitted to the feature points
in the solution to the images projected in Figure C.1. This cireésdhe translation and scale
factor mapping the solution to the original scenesiteponly the rotation transformation to

be determined.

The optimal rotation that aligns the translated and scaled solution with the original

scene minimizes the least-squares distascdmtween the feature poingg in the solution

and their positiong; in the original scene. I? this distance is gen by

€ = _
: —sin® cosH

b _p{cose sine] C6

where8 specifies the rotation of the circle around the origier’rthis distance is gen by
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Figure C.3: The feature points in the solution (gray) are finally rotated to find the best"
the points in the original scene (black). The distance between theered@nd original fe
ture points is called thgructure error, and the distance between the r&red and origin.
optical centers is called timaotion error.

N 1 0 0 cosp O sing cosf snB 0
€ = |Pi~p;|0 cosd sind 0 1 0 |0U-sinb cosb 0| C7
0 —sind cosd| |—-sing O cosd 0 0 1

where {6, ¢, 8} specify the rotation of the sphere around the origin. Egn. C.6 and Eqn. C.7

are soled to find the optimal rotation parameters. Figure C.8/shbe final positions of the
feature points in the solution after scaling, translation and rotation to the original coordinate

system.

The arerage distance between the feature points in the final solution and their positions

in the original scene is called teeucture error €. and is defined as

S

-1
3
—i=0

SS— |

, C.8
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wherel is the number of features. Theeaage distance between the cameras’ optical centers

in the final solution and their positions in the original scene is calledtien error €,, and

is defined as

J-1
Zoej
- ] =
€y = 7 C.9
whereJ is the number of images. In thigsaenple, the structure error is 0.09 and the motion
error is 0.20. Both errors are unit-less distances measureglaatathe circle or sphere\ha

ing radius 1 on which the original feature points lie.

An important consequence of this method for measuring the structure and motion error
is that the cameras’ optical centers are ignored when determining the optjsahten
transformation. That is, gestration is based on an optimal fit of the feature points éda
result, the measured motion erroe., the error in the reeered cameras’ optical centers, is
typically lager than the structure errdris is a by-product of thegistration method and is
not because camera motion is less reliably vexam by Projected Error Refinement than
scene structure, and afdifent technique for fitting the solution to the original scene wi# gi

a different structure and motion error [1], [22].
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