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Abstract

Currently the aspect graph is computed from the theoretical standpoint of perfect resolution
in object shape, the viewpoint and the projected image. This means that the aspect graph may
include details that an observer could never see in practice. Introducing the notion of scale into the
aspect graph framework provides a mechanism for selecting a level of detail that is “large enough”
to merit explicit representation. This effectively allows control over the number of nodes retained
in the aspect graph. This paper introduces the concept of the scale space aspect graph, defines
three different interpretations of the scale dimension, and presents a detailed example for a simple
class of objects, with scale defined in terms of the spatial extent of features in the image.
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1 Introduction

The aspect graph [14] is considered important because it provides a complete view-centered rep-
resentation of an object. Considerable research has been performed in recent years on algorithms
that compute the aspect graph and its related representations [4, 7, 8, 11, 12, 18, 25, 26, 28, 30, 31,
32, 33, 36, 37]. However, the practical utility of the aspect graph has been questioned. A recent
panel discussion on the theme “Why aspect graphs are not (yet) practical for computer vision” was
held at the 1991 IEEE Workshop on Directions in Automated CAD-Based Vision [10]. One issue
raised by the panel is that aspect graph research has not included any notion of scale. (Actually,
the lack of knowledge of how to make use of the concept of scale was acknowledged to be a problem
for computer vision in general rather than just aspect graphs in particular.) The use of scale can
be seen as a method of making the representation more realistic by relaxing certain assumptions
implicit in the aspect graph approach.

To date, the aspect graph has effectively been computed only for the ideal cases of perfect
resolution in object shape, the viewpoint and the projected image, leading to the following set of

practical difficulties:

e A very small change in the detail of the 3-D shape of an object may drastically affect the

number of visual events and nodes in the aspect graph.

e A node in the aspect graph may represent a view of the object that is seen from such a small

cell of viewpoint space that it is extremely unlikely to ever be witnessed, and

e The views represented by two neighboring nodes in the aspect graph may differ only in some

small detail that is indistinguishable in a real image.

Each of these factors contributes to a rather large overall size of the aspect graph representation.
(For example, the worst—case node complexity is O(N?) for an N-faced polyhedron assuming a 3-D
viewpoint space [25, 33].) By introducing the concept of scale one hopes to reduce this large set of

theoretical aspects to a smaller set of the “most important” aspects.



This problem relates to another issue raised about the aspect graph, namely, the problem of
indexing during object recognition. This is an important topic, and has been addressed in part by
other researchers using concepts such as equivalence [34] and probability [2, 8, 13, 36, 37]. While
the work presented here will be of aid in addressing this difficulty, it is not proposed as a solution
by itself. As such, this issue will not be addressed further in this paper.

We begin by briefly reviewing the aspect graph representation and the scale space concept. Then
a general definition of the scale space aspect graph is given, followed by discussions of three different
interpretations of the scale parameter that address the above mentioned difficulties. The most
promising of these interpretations, in which image resolution is a function of scale, is supported by
a complete example showing the scale space aspect graph for the case of a nonconvex polygon in the

plane. We conclude with some suggestions of avenues for future research on these interpretations.

2 A Brief Review of the Aspect Graph Concept

A general definition of the aspect graph is that it is a graph structure in which:

e There is a node for each general view of the object as seen from some maximal connected cell

of viewpoint space, and

e There is an arc for each possible transition across the boundary between the cells of two

neighboring general views, called an accidental view or a visual event,

A general viewpoint is defined as one from which an infinitesimal movement in each possible direc-
tion in viewpoint space results in a view that is equivalent to the original. In contrast, an accidental
viewpoint is one for which there is at least one direction in which an infinitesimal movement results
in a view that is different from the original. Under this definition the aspect graph is complete, in
that it provides an enumeration of the fundamentally different views of an object, yet is minimal
in the sense that the cells of general viewpoint are disjoint.

The various algorithms that have been developed may be classified using three properties; the

object domain, the view representation and the model of viewpoint space. Object domains have



evolved from polygons [12], to polyhedra [11, 25, 30, 32, 33, 36, 37], to solids of revolution [7, 8, 18],
to piecewise-smooth objects [4, 26, 27, 28, 29, 31], to articulated assemblies [3]. Almost without
exception, a view of the object is represented using a qualitative description of the line drawing,
such as the image structure graph (ISG) [21]. The actual labeling of contours and junctions varies
slightly among researchers. Distinctions between general and accidental views are usually based
on isomorphism of the ISG. Lastly, two viewpoint space models are commonly used. The first is
the 2-D wviewing sphere, on which each point defines a viewing direction for orthographic projection
[7, 11, 18, 25, 26, 27, 28, 29, 31]. The other is 3-D space, in which each point is the focal point for
a perspective projection [4, 8, 25, 3, 30, 32, 33, 36, 37]. (For greater detail on categorization and
comparison of these algorithms, see [9].) Figure 1 depicts the aspect graph of a simple block, as
found using each viewpoint space model.

Most algorithms for computing the aspect graph follow the same basic high—level approach:

Step 1. Use the geometric definition of the object to enumerate the set of accidental views that
occur (usually derived by examining individual object regions alone and in pairs and triplets),

yielding the corresponding bifurcation surfaces in viewpoint space from which they are seen.

Step 2. Calculate the parcellation of viewpoint space defined by the meaningful portions of these

accidental view surfaces.

Step 3. Traverse the parcellation of viewpoint space to build the aspect graph and attribute the

nodes with descriptions of the representative views.

We concentrate on step one in this paper, by trying to develop a more proper set of visual event

surfaces, as well as describe their nature in a more realistic manner.

3 A Brief Review of the Scale Space Concept

In its strictest sense, the phrase “scale space of X” is taken to mean a parameterized family of X in

which the detail of features in X is monotonically decreasing with increasing scale and the qualitative
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Figure 1: Aspect graph of block using different models of viewpoint space.

features of X at a given scale can be traced back across all lower scales (“causality”). Research in

this area was popularized by Witkin’s scale space analysis of the inflections of a 1-D signal [39].



X

Figure 2: The scale space representation of an example 1-D signal.

Since that time the scale space concept has been applied to the curvature of 2-D curves [5, 22]
and 3-D curves [23], the 2-D intensity map [1, 15, 20, 40] and 3-D object shape [16, 17]. In
addition, a number of other researchers have described other “hierarchical” or “multi-resolution”
representations, such as pyramids, that are similar to the scale space concept.

To better explain the approach we review the basics of Witkin’s 1-D signal analysis. The quali-
tative (or symbolic) structure of a 1-D signal can be given in terms of the locations of its inflection
points. The 2-D scale space of a 1-D signal is developed by introducing a second dimension, o,
representing the size of a Gaussian kernel used to smooth the original signal. In this one parameter
family of 1-D signals a value of & = 0 yields the original signal, while ¢ = oo means the signal is
reduced to a flat line. The scale space of an example signal is shown in Figure 2. Here, a particular
inflection that exists at one value of o may be traced over increasing values of o until it is eventually
annihilated (merged with a neighboring inflection). In keeping with the monotonicity requirement,
inflection points can only be annihilated as o increases, never generated. Thus the value of scale

at which an inflection ceases to exist is a measure of its strength or importance.



For 2-D and 3-D curves, similar analyses based on curvature and torsion of the signal create
3-D and 4-D spaces, respectively, in which the curve properties may be examined. When applying
the concept to surfaces, such as 2-D intensity images and object surface descriptions, the change in
topology as measured by some symbolic representation is examined. More will be said concerning

these approaches in later sections on interpretations of scale.

4 The Scale Space Aspect Graph

At this point, the high—level concept of a scale space aspect graph should be rather apparent. The
essence of the scale space concept is that a one parameter family of instances of some entity be
created, and that changes in the qualitative complexity of the entity are evident over changes in
scale. The aspect graph is nothing more than a qualitative description of the underlying structure
of the parcellation of viewpoint space into general views. Therefore it is appropriate to consider a
parameterized family of these parcellations as the basis for the scale space aspect graph.

Given this basis, scale space is defined as a multi-dimensional space parameterized by both
viewpoint location (direction) and scale value. This corresponds to a 4-D (z,y, z,0) space when
the perspective projection viewing model is assumed, and a 3-D (60, ¢,0) space in the case of
orthographic projection. Fach visual event surface is now a function of viewpoint and scale. At
o = 0 the parcellation of the viewpoint space, and thus the aspect graph, is exactly as computed by
some known algorithm. As o increases, the parcellation of viewpoint space should deform in such
a way that at certain discrete values of scale the aspect graph becomes simpler (has fewer nodes).

There are (at least) two alternative representations of the scale space aspect graph. In part
(a) of Figure 3, it is depicted as an explicit sequence of conventional aspect graphs, each element
representing a range of o over which the aspect graph has a constant qualitative structure. This
form bears considerable resemblance to the wisual potential of articulated assemblies developed
in [3]. In their representation separate instances of the aspect graph are recorded for varying
articulation parameter values of an object (for instance, the angle of rotation on a hinge). At

certain critical values of this configuration parameter the structure of the parcellation is changed.
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Figure 3: Conceptual Depictions of the Scale Space Aspect Graph.

Here scale can be thought of in a similar manner. As an example, one might imagine the aspect

graph of the block in Figure 1 appearing as the first in the series of Figure 3.a, and that later



graphs may correspond to those after the disappearance of the one—face and two—face views, which
are intuitively less important than the three-face corner views.

While the above form is more explicit and perhaps simpler conceptually, there is potentially a
great deal of redundancy in the multiple instances of the aspect graph. Part (b) of Figure 3 depicts
a more compact representation that is more directly analogous to the typical form of an aspect
graph. Each node represents a “volume” of the scale space in which the same general view exists.
Each arc again represents a visual event, but the underlying event surface is now parameterized
by the scale dimension. This form corresponds most closely to the asp representation developed
in [25]. In their representation features are represented in a higher-dimensional space according to
their location on the image plane as a function of viewpoint position (direction). “Volumes” in this
space represent particular feature configurations. The aspect graph is formed as the projection of
these “volumes” into viewpoint space. This is essentially the conversion process used to generate a
particular entry in the sequence of aspect graphs in the first representation in Figure 3.a from the
second scale space form.

Other representations, such as extensions of the interval tree concept [20, 39] may exist depend-

ing on the interpretation of the scale parameter, which is the topic of the next section.

5 Interpretations of the Scale Parameter

Weaknesses in the aspect graph representation arise from certain implicit and explicit assumptions.
Explicit assumptions, such as the use of the ISG as a view representation, will only be touched
on lightly in the following sections. The effects of these choices alter the contents of the aspect
graph, but the underlying approach is not changed. Instead we focus on the implicit assumptions,
which have perhaps a more fundamental impact. These center around the qualitative nature of the

representation, i.e., the lack of scale information. Three basic assumptions mentioned earlier are:

1. The object shape is known in exact detail. Visual events are generated through interactions
of the various surface portions. Small bumps or indentations may generate several event

surfaces, the visual changes of which might be considered insignificant. Also, certain events



may barely exist due to a fragile alignment. Thus small changes in the object shape can

drastically alter the set of potential events, and thereby the parcellation of viewpoint space.

2. The camera is idealized as a point. This assumption manifests itself in the fact that each
node in the aspect graph represents a view of equal significance. The underlying shape and
size of the cell in the parcellation should have bearing on its importance. Since a camera does
have a finite size, certain views are unlikely to ever be witnessed, because of their location in

space and size compared to their neighbors.

3. There is infinite resolution in the projected image. In this case each feature in the ISG is
accorded equal significance. This means that a given view may have a feature that is too small
to detect from within its cell, and two views may differ by only such a feature and therefore
be the same in practical terms. Also, each portion of the line drawing is distinguishable at
an infinite viewing distance, a definite departure from reality. This leads to infinite—extent

cells, when there should be a finite limit to meaningful viewing distance.

We have proceeded this far without assigning any particular meaning to the scale dimension
and without saying how the scale parameter might be used to create a family of parcellations of the
viewpoint space. This question does not have a unique answer, but the above visual phenomena will
serve as areas of initial research, until a more complete understanding is achieved. Previous scale
space representations have been applied to 1-D, 2-D and 3-D intensity functions by interpreting
the scale parameter in terms of the solution to the diffusion equation [15] (or more specifically, as
the variance of a Gaussian kernel used to blur the function). It has been proven that only under
this interpretation will the qualitative features of the function disappear and not be created as
the scale value is increased [15]. Unfortunately, the entities on which the aspect graph concept is
based (such as visual events, projected line drawings, and 3-D shape) are not intensity functions.
As such, it is hard to define what one means by “blurring” the parcellation of viewpoint space.
Therefore, the requirement that the quantity of features monotonically decrease in size will likely

have to be relaxed for most interpretations of scale.
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Figure 4: The effects of object smoothing on views of bowtie object.
5.1 Scale of features of object shape

The first interpretation involves examining the relative sizes of features of the object, by altering
shape according to a scale parameter. This corresponds to smoothing the features of the object
surface, such as knocking down small bumps and filling in small holes. One would hope that
continual smoothing leads to effects that correspond to the loss of detail noticed while moving
away from the object. Intuitively, one wants to smooth the object surface until a featureless blob
is achieved, while examining the structure of the parcellation along the way. The question is how
to perform the smoothing operation.

A technique which initially seems appealing is the “dynamic shape” concept [16, 17]. This is
a form of 3-D volumetric blurring in which the surface is marked as the level set of the resulting
distribution. The volume over which averaging occurs is a function of the scale parameter, while
the determination of the surface level is a constant threshold. The effects of this technique, for a
particular scale value, can be seen for the “bowtie” object in Figure 4. For a given level of smoothing
the central portion of the object would cease to exist as the object splits in two. Subsequent views
of it might appear as shown in Figure 4.b. While the view from the side might seem a logical
consequence of smoothing the object, the view from the top does not. One would more likely
expect to see the views in Figure 4.c, in which the smaller face no longer exists, but only because

it has merged with neighboring faces. This is because the volumetric smoothing works upon solid
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shape, while that which is observable is surface shape.

Thus, since observed surface shape is really what we desire to smooth, and it is relative to the po-
sition of the viewpoint, we propose to smooth the object surface in a direction that is perpendicular
to the viewing direction. Consider a 3-D shape S(z,y, z) located at (0, 0, 0) of a coordinate system,
and a distant viewpoint (z,,¥y,, z,), from which an orthographic projection will be made. First,
orient (rotate) the object so that the viewpoint is on the Z axis, i.e., S = R(zy, Y0, 20)S(2,y, 2).
Second, consider a certain visual scale, o, defining a 2-D Gaussian kernel, which we convolve with

each 2-D slice of S to get g(m,y,z,mv,yv,zv,ao) as:

o 00 00 oo ] _% et
5 = /—oo [/—oo /_OO R(wv’yv’zv)s(wlvylvzl)me [ %0

The integrals can be exchanged to give:

dz'dy'| dz'

(z—2")2+(y—y")?

S = /oo /oo [/OO R(:L'U,yv,zv)S(m',y’,z')dz’] e_%[ °0 ]dx’dy’
= /_OO/_OO [/_OO (m,y,z,xv,yv,zv)dz]e 0 dz'dy

Now consider the interior integral. This is the projected thickness of the object along the viewing
direction, which is independent of scale and could be precomputed (for each direction). Thus, by
choosing a level set of S, we generate a visually similar surface at the o scale, which is effectively
equivalent to smoothing the projected orthographic range image. This is similar to smoothing a
projected image intensity function by the same 2-D Gaussian kernel for each viewpoint. (A topic to
be mentioned again later.) A derivation assuming perspective projection leads to a similar result.

By using the above approach, the views in Figure 4.c could now be expected. The visual event
surfaces generated by different portions of the object will now be highly dependent on viewpoint
position for their existence. Two portions of the object that interact from one vantage may not
have the same relative shape and position to do so from another. Eventually an interaction will no
longer occur for any viewpoints as the smoothing level increases. Taken to the extreme, object shape
should tend toward an ovoid with no visual event surfaces. Since the above computational process
and the resulting representation are undoubtedly complex, we will not explore this interpretation

any further in favor of another presented later that accounts for the same visual phenomena.
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5.2 Scale of viewer relative to cell of viewpoint space

A second interpretation is to examine the relative sizes of cells in viewpoint space with respect to a
finite-sized observer. In the past researchers have considered the probability of certain views based
on relative cell volumes [2, 8, 13, 36, 37]. There are a few problems with this approach. First, volume
of a cell, without regard to shape, is perhaps not a proper indication of the likelihood that a given
view is seen. For two cells of the same volume, one blob-like and the other stick-like, if the observer
is of any size at all then the blob-shaped cell becomes a more likely view than the stick-shaped cell.
Second, the infinite-extent cells (those that exist for an orthographic model) are the only ones of
consequence, since any finite-extent cell has effectively a zero probability. This is not proper, since
in reality we cannot see the object from an infinite distance. It is possible to impose somewhat
meaningful viewing limits based on environmental concerns, yielding a finite—sized viewpoint space,
but we desire a more natural method of deciding these limits.

Thus we propose to generate a more extensive relation of viewer and cell. For this we relax
the assumption that the viewer is idealized as a point. Instead, a finite-sized sphere, the radius of
which is a function of scale, will model the volume of space in which light rays may be gathered
and directed onto the image. (Imagine rotating the circular lens of a camera about the focal point
to sweep out the volume of a sphere.) Any light impinging upon this sphere contributes to the
composite image, as observable features from each point in the sphere are merged?.

This interpretation can be explained in terms of changes in the parcellation as follows. For a
given size sphere there will still be a region of viewpoints in a typical cell at which the sphere is fully
contained within the cell. For those viewpoints from which the sphere overlaps the cell boundary,
a composite view exists consisting of those views from the cell, the accidental boundary, and the

neighboring cell. The nature of this composite view depends on the type of accidental boundary.

2Under the assumptions of geometric optics [38], a thin lens will focus all impinging light rays onto its optical
axis. However, not all rays will be focused to the same point. Thus the view may be distorted or out of focus in
regions corresponding to light rays that are far from the direction of the optical axis. Under the assumptions of
Gausstan optics, all light rays are along or near the optical axis, resulting in a common focal point. In the following
discussion the assumption of geometric optics is made, while ignoring any distortion. The constraints of Gaussian
optics may then be used to impose intuitive limits on these results later.

13
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Figure 5: Blending of views across event surfaces for finite—sized viewer.

For example, consider a visual event surface that marks the visibility boundary for a face of the
object. (See Figure 5.a for an example using a cube.) The composite view is the same as the one
in which the new face is visible. This means the area of the two—face cell will impinge upon the
region where the face is hidden, by a layer of thickness equal to the viewer sphere radius.

In other cases the composite view is really the accidental view itself. For example, consider an
event surface representing a triple occlusion point in the image. (See Figure 5.b for an example of
three edges on a polyhedron.) In the ideal case this alignment is only visible from the surface (a
quadric surface for the example), but for a given size sphere, superimposing this view with those
of the neighboring cells merely increases the apparent size of the triple point, as the nearby T
junctions all merge together. Therefore, in this instance, the formerly accidental view can be seen
from a volume of space and is now a “stable” view. This new cell of space is formed as the union
of viewer sphere volumes centered at each point on the event surface.

Thus we can model the changes to the parcellation by extending the visual event surface po-
sitions by an amount equal to the radius of the current viewer sphere in one or two directions
depending on the event type. When extensions occur in both directions a new general view is
added to the aspect graph. In addition to these event surface extensions, the amount of available
viewing space is reduced by a layer extended out from the object surface, since the camera can only

get within a certain distance of the object.
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Figure 6: Changes to parcellation of rectangle based on expanding sphere radius.

As scale (sphere radius) changes certain cells are eliminated from the parcellation, while others
come into existence. Those being shrunk on all sides will cease to exist at a scale that corresponds
to the maximal size sphere at a point on the skeleton of the original cell as produced by a medial
axis transform. Note that several such maxima may exist, resulting in different portions of the cell
disappearing at different scales. (For example, an hour—glass—shaped cell would become two cells
before it disappeared.) As these cells cease to exist other cells are generally created in the region of
overlap of the expanding cells. In these areas a composition of the two expanding views is formed.

As a small example, we consider a rectangle in a plane as shown in Figure 6. For the plane,

the viewer sphere becomes a circle. In part (a) the original parcellation is shown in which only one
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and two—edge views exist. The direction of expansion of each event line is indicated by the arrows.
Initially the regions in which two edges are observed impinge on those regions seeing only one. At a
scale equal to half the width, the cells corresponding to views of the narrower sides are eliminated
and replaced by the overlap area in which that edge and the two longer edges are seen at once as
shown in part (b). (This counterintuitive view, as with the four—edge view, would not exist under
Gaussian optics constraints.) Notice also the expanding region about the polygon in which the
camera no longer fits. In part (c) the one—edge views of the longer sides are removed in a similar
manner at a scale equal to half the length. Finally, in part (d), the overlap of the regions viewing
three edges (in which all four edges can potentially be seen) emerges from the region surrounding
the object that the camera cannot enter. This occurs at a scale value of [+ w + \/%, where [ and
w are the dimensions of the polygon.

The importance of the various aspects generated by this process could be ranked according to
the scale at which their cells disappear. But in this case the infinite ranging cells would be ranked
equivalent. Perhaps a more accurate ranking is according to the “volume” of the scale space cell
derived from the shape of the aspect’s cell over all scales. However, this measure is still affected by
the infinite-extent cells. Therefore we now discuss our final scale interpretation, which we believe

is the most promising. It is supported by a detailed example.

5.3 Scale of features in the projected image

This last interpretation examines the relative sizes of the various features in the image. This
corresponds to examining the view under varying levels of image resolution. The features in the
image could be analyzed in at least two ways, according to their projected nature in the image
intensity function, or in terms of their apparent size as a function of viewpoint position.

When analyzing an image intensity function more than one possibility exists. Given assump-
tions about object surface (say matte in texture) and light source placement (a point light source
coincident with the viewpoint) an image intensity function can be constructed. Such a function

can be subjected to 2-D Gaussian smoothing as a function of scale (much like the 1-D signal in
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Figure 2), and the resulting features analyzed. In terms of the projected line drawing the features
would be the edges detected in the smoothed image that are above a given magnitude threshold.
Thus “weaker” edges would disappear first, meaning the strength of an edge defines its importance.

An alternative is to describe the image according to the surface topology of the intensity func-
tion, e.g., the “hills and dales” representation [15]. A study has been made of the changes that
occur for a given image under Gaussian smoothing, such as the annihilation of saddle regions and
merging of small hills or dales into one. Others are beginning to explore the types of visual events
that exist for this view representation [35]. However, one difficulty is that much of the current
theory that predicts changes in the ISG is not applicable under this representation. Also, since the
image changes for each viewpoint, it is very difficult to conceive of the new nature of the visual
event surfaces, as was noted for the object shape interpretations. Therefore we now concentrate on

using scale as a measure of the size of features in the projected line drawing.

5.3.1 Measuring the size of features in an image

In current aspect graph analyses, a projected line drawing is constructed assuming an infinite
resolution image plane. Also, the exact dimensions of the lines are lost as the drawing is abstracted
to the image structure graph, where all arcs are treated equally. Both of these assumptions ease the
computations that are made to calculate visual event boundaries, but limit the practical usefulness
of the result. Thus it is proposed that the scale of the features in the view be reintroduced as a
function of image resolution. Implicit in this method is the fact that we will account for changes
in size due to viewing distance. These ideas are similar in nature to those used by researchers
determining visibility constraints for automatic sensor placement [6].

First one must determine which features should be measured. In order to be measured, a feature
must have some spatial extent in the image. This means that a junction, which occurs at a single
point, should not be one of the features we now concentrate on. Alternatively, both edges (limbs)

and object faces (portions of surface patches) generally have measurable extent in a view. How
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Figure 7: The angle of visual arc occupied by an edge feature.

does one quantify the size of a feature? It is not sufficient to measure the length of an edge or the
area of a face on the object. It is the projection of these features that matters.

The first solution that comes to mind is to measure the dimensions of the features in an image
coordinate system, the resolution of which is based on our scale parameter. Then the length along a
projected edge, the perimeter or area of a face, or possibly the radius of a sphere that circumscribes
the feature would be quantified in terms of a number of pixels. Unfortunately, this approach
implicitly requires a more detailed camera model. Such parameters as focal distance, image plane
size (field of view), the particular viewing direction and the viewing position must all be known.
While such a sophisticated model would undoubtedly be more realistic, it is too complex to consider
as a first step. (Of course, a multi-dimension scale space is imaginable, and may eventually prove
necessary, but it is easier to first explore the concepts using a single-dimension scale space.)

An alternative measurement, used commonly by psychologists and biologists, is the angle of
visual arc o, or field of view, occupied by the feature. (See Figure 7.) Furthermore, if this is
combined with the natural perspective viewing model [24] implicitly used by many aspect graph
researchers, every feature’s size can be described by only one parameter value in the range 0°—360°.
Exactly how this value is measured depends on the feature. (Under this model points in the scene
are projected onto a sphere of infinitesimal radius centered about the viewpoint, rather than onto
an image plane at a fixed distance from the focal point, pointed in a particular direction. Fach
point’s image coordinates are defined by the spherical angles of the ray from the focal point to it.)

For a straight edge, the distance between its projected endpoints will span a particular visual

arc, as shown in Figure 7. For a curve, the maximum distance between any two projected points
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along its length indicates the visual extent. For a face, one must consider the maximum inscribable
circle of the projected outline. For the square face of the cube seen in Figure 7, the size of the circle
will decrease with distance and viewing directions off from the face normal. For a curved—surface
patch the boundary curve includes both surface discontinuities and apparent contours, and thus it
is more difficult to compute this maximal circle.

This scale model accounts for the quantitative size of a feature in both an absolute and relative
sense. In the absolute sense, the actual effects of viewing distance are considered. Given a particular
visual arc threshold, a feature cannot be distinguished after moving a certain distance away, as one
would realistically expect. In a relative sense, a feature can be considered as insignificant if it is
much smaller than the neighboring features, even when clearly visible. Again this is a function of
viewpoint, as two features may change their relative size as the viewpoint moves. Unfortunately,
one drawback of this model is that it does not directly correspond to Gaussian blurring of the
features. Therefore, there may not be a strictly monotonic decrease in the size of the scale space
aspect graph as a function of scale. This will become apparent in our later case study.

So how is the above interpretation used? It should be obvious that image resolution can be
defined in terms of degree of visual arc. Pixel size in the image directly corresponds to the minimum
visual arc necessary to distinguish a feature, while at 0° the camera has infinite resolution. At an
angle of 360° there is only a single pixel in the image and everything projects to it. For a given
scale, any feature mapping to a size smaller than one pixel is considered as not observable. Thus,
for a given resolution, two views that were previously different may now appear equivalent. More
exactly, the image resolution has a direct effect on the shape of the visual event boundaries. In the
ideal case (o0 = 0°), which corresponds to how aspect graphs have been computed in prior work, a
visual event that denotes the alignment of some set of features is seen from a ruled surface. Once
the scale becomes nonzero, features do not have to align exactly. As long as the points in question
map to within one pixel of each other in the image, they can be considered as aligned. Thus the
restriction of a ruled surface no longer holds, and the distortion from the ideal surface is increased

as the scale parameter (visual arc required to distinguish the features) grows.
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Figure 8: Visual event curve defined for an edge.

5.3.2 Case study : A nonconvex polygon in a plane

Since the interpretation of scale as spatial extent of features in the image seems to capture an im-
portant phenomenon in visual perception, and since this interpretation seems more computationally
tractable in comparison to the others, we examine it more fully by presenting a case analysis of non-
convex polygons in a plane. This domain is chosen both for ease of presentation and computation.
Extensions to broader domains are discussed in the conclusions.

For this problem there exists a 3-D scale space (z,y,0). The only feature of nonzero spatial
extent is an edge. An edge in isolation is considered visible when it is larger than the scale of
resolution of the image. The degree of visual arc subtended by the projected line segment connecting
the endpoints measures the feature. In order to construct the equation of the visual event surface
denoting edge visibility, first assume the endpoints of the edge are given by e; = (z1,y1) and
ez = (22,y2). Then given a viewpoint defined by v = (z,,y,), the visibility curve can be defined
as the set of viewpoints such that the angle formed by the lines drawn from the viewpoint to each
endpoint is constant. This is merely the set of vertex points of a set of triangles formed by the
endpoints and the viewpoint, each triangle having the edge as one side and the chosen visual arc

angle opposite it. See Figure 8. Using the law of cosines this curve’s equation is:
A—a? =" +2abcosoc = 0

where the lengths of the sides of the triangle shown in Figure 8 are given by:

c= @ —e P+ -n)  b=ylm—e )+ —n)?  a=y/(n1—2.)+ (5 -y
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Figure 9: Visibility ranges of an edge for varying visual arc angles.

and o is the visual arc angle. This curve is merely a circular arc segment [19], the size and center
of which vary with o for a particular edge as shown in Figure 9.a. The shape of the surface in scale
space can be seen in Figure 9.b.

The nature of this surface is such that in the ideal case of infinite camera resolution (o = 0°) the
curve in the plane degenerates to the line containing the edge. As aspect graph theory predicts, the
edge is visible from the infinite half-space on the proper side of this line. At any finite resolution
(o0 > 0°) the curve bounds a finite region of the plane, outside of which the projection of the edge
is too small to distinguish. This distortion of the original line into the circular curve is an instance
of relaxing the ruled event surface restriction mentioned earlier.

Having defined the visibility of an edge, we must next consider the visual interaction of a pair
of edges, A and B, that are joined at a common vertex as shown in Figure 10. This particular
interaction varies slightly based on whether the edges form a convex or concave angle. For a convex—

angled pair (see Figure 10.a), a particular visual arc angle will define a visibility region for each

21



edgesinvisible

B occluded | *| A occluded

pseudo edge AB

only B

pseudo edge AB

edgesinvisible

() joint visibility of convex-angled edge pair (b) joint visibility of concave-angled edge pair

Figure 10: Joint visibility ranges of edge pairs.

edge bounded by the above event curve. If the given visual angle is not large there may be an area
of overlap of these two regions in which both edges are visible and seen joined to one another. The
intersection point between the curves falls along the line that bisects the angle between the edges.

Now consider a “pseudo edge” formed by chaining together the two edges. This pseudo edge
has a wider defining angle than either of the others for certain vantage points, given by the distance
between the noncommon endpoints. Thus it can be expected that from certain viewpoints neither
of the edges is individually distinguishable, but the combined length of the pseudo edge is. This
pseudo edge is seen as a blending of the two underlying edges, as the common vertex becomes
indistinguishable. The meaningful portion of the curve representing the pseudo edge’s visibility
ends at intersections with the curves for each edge that occur along the lines containing the edges.
These bounds are dictated by the fact that the pseudo edge only exists if both edges are potentially
visible, but neither is distinguishable. This concept of a feature that is a blending of others is
unique to the scale space approach, since an assumption of infinite resolution allows every edge to

be perceived regardless of distance.
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For a concave—angled edge pair a somewhat similar situation occurs, as given in Figure 10.b.
Again there are three basic event curves defining regions from which either (1) a single edge is
visible, (2) both edges are visible, or (3) the pseudo edge is visible. Here, the visibility curve
encompasses the individual curves because it is not possible to see one of the edges alone if you
cannot see the pair. Again the intersection points occur along the line extensions of the edges.

The final kind of interaction involves occlusion. Just as a change in visibility of an edge is
marked by its endpoints appearing to coincide in the image, the limits of occlusion occur when
the endpoints of two separate edges appear to coincide. Thus the same circular equation can be
used to define this event curve. In Figure 10.b the merging of the noncommon endpoints marks
the occlusion of one edge by another, and defines the same event curve as before. The change from
occlusion limit to pseudo edge visibility limit occurs at the point of intersection with the individual
edge event curve. The visibility limits of other neighboring edges that are the true occluders, shown
by dotted curves in the figure, form the other limiting boundaries to the occlusion regions.

In order to consider an entire polygon, the set of event curves and their meaningful ranges is
derived from the set of real and pseudo edges. Each pseudo edge can be modeled as derived from
a convex or concave corner of the object, regardless of how many edges are actually involved. It
some cases this corner is only implied as the junction of two smaller pseudo edges. Examples of
this will be seen shortly.

We now examine how the scale space theory can be applied to compute the structure of the scale
space aspect graph. In principle, the equations of each event surface can be used to calculate a data
structure such as the geometric incidence lattice, used in previous aspect graph algorithms [33], to
represent the subdivision of the 3—D scale space. However, since these surfaces are not ruled, the
necessary intersection calculations can be very difficult. Instead, since the planar parcellation for
a given scale can be more directly computed, we will explore the other form of the representation,
namely, examining the structure of the aspect graph over the range of scale. For this we define a

set of scale events that fall into three basic categories which will be illustrated shortly:
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1. Begin or end overlap of two curves. Two curves may initially have their meaningful portions
touch at a single point as they start to overlap, or their meaningful portions touch at a single
point as they cease to overlap. If two event curves are involved, either a new region is created
or one is deleted to represent the overlap area. If an event curve and an edge are involved,

generally it is only the boundary of an existing cell that is altered.

2. Triple point. The meaningful portions of three curves intersect at a single point in the
parcellation. If three event curves are involved, both before and after the critical scale these
curves bound a region. The region that existed before will no longer be in the parcellation
and it will be replaced by the new region. If two event curves and an edge interact, either a
new region will be created or one will be removed. This is because the object exists on one
side of the edge, and only one of the regions is meaningful. If one event curve and two edges
are involved, a region may again be created or removed. In general this creation or deletion

coincides with the insertion or removal of a meaningful segment of the event curve.

3. Curve coincidence. The meaningful portions of two curves coincide along their length in
the parcellation. In the case of two event curves, before the critical scale they intersect in
the parcellation and are part of the boundaries of a set of regions. At the critical scale the
definitions of the two curves are the same, and any regions that existed between them no
longer do. Beyond the critical scale the curves again intersect one another and bound a new
set of regions. When an event curve and an edge are involved, the region between them is
deleted from the parcellation. In addition the event curve is removed, since it will have passed

into the object where it has no meaning.

It is of course possible for combinations of the above events to occur at the same scale. As such it
is not necessary to consider larger groups of curves. For instance, if four curves were to intersect
at a point, each of the four triplets of curves would be intersecting as well.

Finally, a note on the size complexity of this representation. In the ideal case, a polygon with N

edges will generate O(N?) visual event lines, which when intersected in the plane will bound O(N*?)
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Vertex Coordinates (X,y)
1 (-1, 1)
1 6 2 (-1,-1) Pseudo edges | Vertex chain | Corner type Subedges
3 (-0.25, -0.25) G 2-3-4 concave ED
v 4 (0.25,-0.25) H 345 concave DC
5 (L,-1) | 2-3-4-5 concave |GH,GC,EH
6 (1,1 J 1-2-3 convex FE
X . K 4-5-6 convex CB
3 4 (b) vertex coordinates L 5.6-1 convex BA
M 6-1-2 convex AF
Real edges | Vertex endpoints N 1-2-3-4 convex FG
A 6-1 O 1-2-3-4-5 convex Fl
2 5 B 5-6 P 3-4-5-6 convex HB
c 4-5 Q 2-3-4-5-6 convex I B
(a) nonconvex polygon E gg (d) pseudo edge definitions
F 1-2

(c) actual edge definitions

Figure 11: Definition of example nonconvex polygon.

cells that correspond to aspects. Instead, now each of the NV real edges generates an event curve.
In addition, there are O(N?) pseudo edges, since there are N possible chains of edges of length 1
to N that comprise them. Each of these O(N?) pseudo edges also generates an event curve. In
the 3-D scale space, the number of cells is bounded by the number of scale events that create or
destroy them in the 2-D parcellation. Given S curves, the triplet scale event may generate O(S?)
cells. Thus with O(/N?) event curves, the number of cells in the scale space aspect graph is bounded

by O(N®) in the worst case.

5.3.2.1 An example. Figure 11 defines a six-sided nonconvex polygon. In part (c) a list of the
real edges is presented, while in part (d) the list of pseudo edges is defined. Each pseudo edge is
composed of the string of actual edges it represents. Also given is its interpretation as a convex or
concave corner, and the pair of edges that comprise the corner. Notice that pseudo edge [ can be
considered as a concave corner for three different edge pairs in the concavity.

There are seventeen event curves that serve as region boundaries somewhere in the scale space
aspect graph. These are labeled in Figure 12 for a sample parcellation at o = 5°. The curves A
through F' represent visibility limits of the actual edges, while J through () represent the visibility

limits of the pseudo edges across convex corners. The pseudo edges across concave corners, GG
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single lettersindicate visibility boundary, + indicates occlusion boundary

Figure 12: Labeling of meaningful portions of event curves for polygon.

through I, generate their respective visibility limits, as well as six curve segments that mark the
occlusion limits of the edges in the concavity by the side edges. Notice that the curve generated
by vertices two and five serves as the termination limit for the majority of the event curves since
the elements of the concavity are not visible if the two vertices appear merged.

If one constructs the parcellation of the 3-D scale space using a sampling of the scale parameter
similar to that used for articulated assemblies [3], a total of fifty aspects is determined. These are
listed in Table 1 and described according to the range of scale over which they exist and the view
that is seen in terms of the edges and the vertices between them. (Due to the relative sizes and
positions of the edges, pseudo edges J and K are never visible in isolation, and so they do not appear
in the table.) The vertices have been broken down into four categories; T junctions, real vertices
on the object, the implied vertex that is the merging of the endpoints of an indistinguishable edge,
and an implied vertex in the overlap range of two pseudo edges. The structure of the scale space
aspect graph, which corresponds to the parcellation of scale space, is given in Figure 13.

It is perhaps more instructive to examine the second form of the scale space aspect graph, which
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Table 1: Index of polygon aspects with visual arc existence ranges.

ASPECT | EDGES IN | VISUAL ANGLE ASPECT EDGES IN VISUAL ANGLE
VIEW RANGE (degrees) VIEW RANGE (degrees)
1 A 0* - 180 26 F+H 0-45
2 B 0* - 180 27 G+ B 0-45
3 C 45 - 180 28 GeC 0-127.98
4 D 36.87 - 180 29 G x H 0-216.87
5 E 45 - 180 30 Ge K 0-45
6 F 0* - 180 31 GxP 0-45
7 G 0- 225 32 Ix P 0 - 59.04
8 H 0- 225 33 J-C 0 - 30.96
9 I 0 - 255.96 34 JeH 0-45
10 L 0-90 35 NeC 6.1 - 24.75
11 M 0-90 36 N x H 0-45
12 N 0- 59.04 37 N xI 0 - 59.04
13 (0] 0-90 38 E-CeB 0-22.5
14 P 0- 59.04 39 EeD+ B 0* - 14.04
15 Q 0-90 40 EeDeC 0* - 75.4
16 AeF 0* - 45 41 EeHeB 0-29.5
17 BeA 0* - 45 42 EeH x K 0 - 30.96
18 DeC 30.96 - 112.5 43 F+DeC 0* - 14.04
19 E+ B 0* - 30.96 44 FeE-C 0-22.5
20 E-C 0-77.65 45 FeGeC 0-29.5
21 EeD 30.96 - 112.5 46 G x Hx K 0-6.1,24.75- 45
22 EeH 0-127.98 47 Jx GeC 0 - 30.96
23 E-K 0 - 30.96 48 Jx G xH 0-6.1,24.75- 45
24 EeP 6.1 - 24.75 49 EeDeCeB 0* - 14.04
25 F+C 0* - 30.96 50 FeEeDeC 0* - 14.04

* indicates aspect exists for visual arc angle of 0°
+ indicates edges joined by T junction vertex
— indicates edges joined by implied vertex that is collapsed edge
e indicates edges joined by actual vertex on object
X indicates edges joined by implied vertex due to overlap of edges

Figure 13: Scale space aspect graph of example polygon.
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Table 2: List of changes in parcellation due to various scale events.

EVENT | EVENT DESCRIPTION INSERTED REMOVED TOTAL
ANGLE ASPECTS ASPECTS ASPECTS
0.0° infinite lines become finite curves (cA - c¢C, cE - cH), | 7-15, 20, 22, 23,
new finite curves (cD, cI - cQ) 26-34, 36-38, - 43
41, 42, 44-48
6.1° triple points (CJ cG, cC), (cK, cH, cE) 35, 24 48, 46 43
14.04° triple points (cD, cE, cQG), (cD, cE, cF), - 43, 50, 39, 49
(cD, cC, cH), (cD, <cC, ¢cB) 39
begin overlap (cD, €E), (cD, eC) 20t, 40t -
22.5° end overlap (cE, cF), (cC, cB) - 44, 38 37
24.75° triple points (cJ, cG, cC), (cK, cH, cE) 48, 46 35, 24 37
29.5° end overlap (cF, cG), (cB, cH) - 45, 41 35
30.96° triple points (cC, cF, cI), (cC, cF, cG), - 25, 33, 19, 23
(cE, cB, cI), (cE, cB, cH) 31
triple points (cC, eD, eE), (cE, eC, eD) 21, 18 -
coincide (cC, cE) 22, 28 22, 28, 42, 47
35.26° triple points (cC, cD, eE), (cE, cD, C) 22F 28% - 31
36.87° triple point (cC, cE, eD) 4 - 32
end overlap (cC, eE), (cE, €C) - 22t 28+
45.0° triple points (cH, cE, eE), (cG, cC, €C) 5,3 -
end overlap (cD, eE), (cD, €C), (cE, eD), (cC, eD) - 21+, 221, 181, 28+, 4t
end overlap (cA, cF), (cA, cB), (cF, cl), (cB, cl) - 16, 17, 26, 27 24
triple point (cJ, cF, cQ), (cJ, cE, cG), (cJ, eE, €F) - 34,48
triple point (cK, cB, cH), (cK, cC, cH), (cK, €B, eC) - 30, 46
coincide (cG, cH) 7,8 7, 8, 31, 36
59.04° triple point (cN, cF, cI), (cN, cG, cI), (cN, €F, Q) - 12, 37 20
triple point (CP cB, cI), (cP, cH, cl), (cP, B, eH) - 14, 32
75.4° triple point (cC, cD, cE) 297 40 19
75.96° end overlap (CH eE) (CG eC) - 5t 22F 3% 28%F 19
77.65° end overlap (cC, cE) - 20, 29T 18
90.0° triple points (cL, CA cB), (cL, €A, eB), - 10, 11
(cM, cA, cF), (cM, €A, €F) 14
triple points (cO, cF, cI), (cO, eF, €I), - 13,15
(cQ, cB, cI), (cQ, B, €l)
112.5° end overlap (cD, cE), (cD, cC) - 21, 18 12
127.98° | end overlap (cE, cH), (cC, cG) - 22, 28 10
180.0° coincide (cA, eA), (cB, eB), (cC, eC), - 1,2,3,4,5,6 4
(cD, €D), (cE, eE), (cF, eF)
194.04° | begin overlap (cG, eE), (cH, €C) 7t, 8%, 9F - 4
210.96° | begin overlap (cG, eD), (cH, eD) 7t 8F - 4
216.87° | triple point (cG, cH, eD) - 29 3
225.0° begin overlap (cI, eE), (cI, eC) ot - 1
triple points (cG, €D, eE), (cH, €D, eC) - 7,8
253.74° | begin overlap (cl, eD) ot - 1
255.96° | triple points (cI, eD, eE), (cl, eD, eC) - 9 0

is the series of distinct parcellations existing over the changes in scale. There are 23 different angles

at which scale events occur that modify the parcellation, excluding the initial transformation at

o = 0°.

in Table 2 according to the interacting curves and edges, the newly created aspects, those aspects

removed from the parcellation, and the resulting number of aspects after the events have occurred.

+ indicates existence of aspect not changed, but boundary description is altered

cX indicates event curve X, eX indicates actual edge X
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The representative parcellations at intermediate values of o are drawn and labeled in Figure 14.
We now discuss some of the basic scale events that occur for this object. Scale events are indicated

by angle and the two parcellations of Figure 14 they bridge.

o triple point between three event curves. At angles 6.1° ((b) — (c)) and 24.75° ((e) — (f))
typical examples of this event occur, with one cell being created and another deleted. What
is interesting about these cases is that they are exact opposites of one another. Cells 24 and
35 exist over the finite scale range between the events, while cells 46 and 48 exist before and
after. The scale event angles were found using a search for the scale angle value at which the

intersection points between curve pairs converged.

o triple point between two event curves and one edge. The types of events for this group vary.
At angle 36.87° ((i) — (j)) cell 4 is created, while at 216.87° ((u) — (v)) the opposite occurs
as cell 29 disappears. At 35.26° ((h) — (i)) an interesting event occurs in which a new cell in
the parcellation appears (cell 22), but it is merely another disjoint area in which that aspect
can be seen. These two areas are later merged as the result of another event. The angles
at which these events occur can be calculated by solving for the location of a point on the

participating edge from which the other two visible edges are seen to be the same size.

o triple point between one event curve and two edges. The creation of a cell can occur when a
curve passes over a vertex and emerges from the object, as for cell 21 at 30.96° ((g) — (h)).
This angle is found by solving for o after substituting the vertex position into the event curve
equation. It is also possible for cells to disappear as event curves are absorbed into the object
after passing over the vertex. In these cases the event curves that represent a pseudo edge
containing that vertex no longer exist. For a convex corner this coincides with a triple point
of three event curves, as occurs at 90° ((0) — (p)) for pseudo edge AF'. For a concave corner
only the curve and edges are involved, as happens for pseudo edge G' at 225° ((v) — (w)).

These events occur at angles equal to that between the participating edges.
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(e) visual angle = 23.6

(d) visual angle=18.0

(g) visual angle=30.3

isual angle=27.0

(f) vi

(i) viewing angle = 36.0

(h) viewing angle = 33.3

Figure 14: continued.

31



(j) viewing angle = 41.0 (k) viewing angle = 52.0

(n) viewing angle = 76.8 (o) viewing angle = 84.0

Figure 14: continued.
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(p) viewing angle = 102.0 (q) visual angle = 120.0

(r) visua angle = 154.0 (s) visual angle=187.0

s

(t) visual angle = 201.0 (u) visual angle = 214.0

Figure 14: continued.
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(v) visual angle=221.0 (w) visual angle = 239.0

(x) visual angle = 254.8 (y) visual angle = 260.0

Figure 14: continued.

e cnd overlap of two event curves. This event marks the end of existence of a cell from which
multiple edges are seen. It may happen that when overlap ends there is still a common point
between the curves, for instance vertex 1 when cell 16 disappears at 45° ((j) — (k)), or they
may be completely separated, as when cell 20 collapses at 77.65° ((n) — (0)). In the former
the event angle corresponds to half the angle between the edges at the vertex, while in the

latter one must search for the final common point’s location to compute the angle.

o end overlap of event curve and edge. This event alters the boundary of a cell without changing

its existence. Again there may be a single common point of contact after the event, as for
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curve D and edge F at 45° ((j) — (k)), or not, as when curve C leaves edge £ at 36.87°
((i) — (k)). This latter event merges the two cells corresponding to aspect 22 generated as
discussed earlier. The event angle in the first case is found as the angle between the event
edge and the edge corresponding to the event curve, less 180° since the corner is concave. In

the second case the angle is calculated after a search is done to find the final point of contact.

o begin overlap of event curve and edge. In this case the boundary of a cell is again altered
without changing the existence of the cell, in essence performing the inverse operation of
ending overlap. Before overlapping, the edge and curve may have a common point at a
vertex. If not, they may begin intersecting at an endpoint of the edge or in the middle.
Instances of these respective events are given for curve GG and edge E at 194.04° ((s) — (t)),

curve D and edge F at 14.04° ((c¢) — (d)), and curve I and edge D at 253.74° ((w) — (x)).

These visual angles can be calculated in the same manners as for the ending of overlap.

o coincidence of two event curves. There are two occurrences of event curve coincidence, curves
C and E at 30.96° ((g) — (h)) and curves G and H at 45.0° ((j) — (k)). In each instance
four cells are removed and two inserted into the parcellation. What is interesting is that two
of these cells correspond to the same aspect. For instance the aspect which sees only pseudo
edge G exists between the curves G and H. Before coincidence this area is in the right half
of the parcellation, while after coincidence it is in the left half. The angle at which this event
occurs is found by solving for o in the event curve equation for one edge with the location of

the other curve’s defining point inserted.

o coincidence of event curve and edge. For this event the curves merge with their respective
edges, and both the curve and the cell between curve and edge no longer exist. This occurs

at an angle of 180° ((r) — (s)) for all six real edges and their curves.

In this example a few other departures from the structure of an ideal aspect graph can be
noticed. There is no longer a 1-to—1 correspondence between aspects and cells. This is because

the cells in scale space are not “convex” and a given projection into viewpoint space may result in
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separate cells. It is also the case that the cell in scale space representing a single aspect need not
be a single volume as is usually defined. For instance, there are two distinct cells for the view of
pseudo edge (G, which only touch at a single point in scale space.

As a final conclusion, one might wonder what the “important” aspects are for this polygon.
If one uses range of scale as a measure, then aspect 9, which sees the view of the concavity, is
the strongest. A complete volumetric analysis of the cells in scale space has not been performed.
However, by examining the representative parcellations in Figure 14 it seems that those aspects
corresponding to views of edges A, B and F' as well as pseudo edges I, L, M, O and ) occupy
the larger areas in each parcellation, and therefore might be considered as more important. The
majority of the other views exist in near the concavity. It is interesting to note that the above

views are not those corresponding to the larger sized cells of the ideal parcellation in Figure 14.a.

5.3.3 Extensions to 3—D objects

We next consider expanding the object domain. While polyhedra seem analyzable because the
3-D positions of the visible features remain constant, the viewpoint dependent nature of limbs on
curved surface objects will likely render their solution computationally intractable. For polyhedra,
the visibility surface for an edge feature is the toroidal shape generated by rotating the circular
curves about the edge in question [19]. Similar to the pseudo edges in 2-D, the visibility of chains of
edges around the boundary of a face must be examined, as the nature of the face’s shape changes.

The visibility of a face as a whole is governed by the size of its projected area. If any two points
along the boundary are closer than the visual limit, then that portion of the face projects to a
dot. The visible portion of the face is the set of points for which the intersection of a cone of solid
angle o emanating from the viewpoint and the face’s plane does not cross its boundary. Events will
correspond to faces projecting as multiple smaller areas and finally to no visible area. Finally, the
events involving self-occlusion can be related to those involving visibility, as was done for polygons,
and analyzed in a similar manner. The continued formalization of these events and the definition

of the corresponding event surfaces will be the subject of future research.
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6 Discussion

In this paper we have presented the idea of incorporating a quantitative measure of scale into the
qualitative representation of the aspect graph. The proper use of scale information in computer
vision is far from a solved problem. Some elements of this work further emphasize this point.

We began by defining what a scale space aspect graph should be. After presenting several
alternative scale interpretations, we now need to examine how closely they follow the original
definition. Smoothing the visible surface shape of the object accounts for several intuitive visual
effects. However, because of the viewpoint dependent nature of the calculations, the complexity
of this method may be prohibitive. In addition, it seems that the desired visual effects could
be generated through a combination of the other interpretations, and therefore leave this model
redundant. While the use of a finite—sized observer is an aid in ranking cell importance, by itself it
does not account for certain of the basic visual phenomena, as do the other interpretations. The
approach is less complex than the first, but seems useful only when applied to finite-extent cells
while exerting logical control on the maximum size of the viewer. Thus this interpretation seems
best suited to a supplementary analysis of the results of other interpretations.

The most promising interpretation seems to be scale as visual feature extent. Both distance
from viewer to object and relative sizes of features are taken into account, developing a much more
realistic description of the viewpoint space parcellation. However, even this approach has certain
minor shortcomings. First, the monotonic reduction in the number of cells is not strictly adhered to,
as indicated by the final column in Table 2. The overall trend in size is towards zero, but at certain
events new cells are introduced (for instance cell 4 at 36.87°). The large increase in the number
of aspects from twelve to forty—three as a nonzero scale value is assumed is at first disconcerting.
However, this does not seem so bad when one realizes that the ideal case (which could never happen
in practice) is merely a highly degenerate instance of the more general parcellation. Lastly, the
measurement of cell importance using volume could potentially benefit from the finite—sized viewer
assumption. Whether such an interaction should be modeled as a two step process, or can be

combined through a single scale parameter, is still a topic for research.
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Finally, it seems necessary to evaluate the “correctness” of the importance labeling of the
aspect as given by the different interpretations. In most cases the “important” aspects in the
scale space version of an aspect graph do not necessarily correspond to those in the ideal version.
Furthermore, some of the results do not agree with our intuition as to what a human would consider
important. Future research, perhaps through psychophysical experiments, may lead to other useful

scale interpretations or perhaps even a single unified scale parameter.

References

[1] Babaud, J., Witkin, A. P., Baudin, M. and Duda, R. O. 1986. “Uniqueness of the Gaussian
kernel for scale-space filtering”, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 8, pp. 26-33, 1986.

[2] Ben-Arie, J. “Probabilistic models of observed features and aspects with application to
weighted aspect graphs”, Pattern Recognition Letters, vol. 11, pp. 421-427, 1990.

[3] Bowyer, K. W., Sallam, M. Y., Eggert, D. W. and Stewman, J. S. “Computing the generalized
aspect graph for objects with moving parts”, I[FEE Transactions on Pattern Analysis and
Machine Intelligence, to appear, 1993.

[4] Chen, S. and Freeman, H. “On the characteristic views of quadric-surfaced solids”, Proceedings

of the IEEE Workshop on Directions in Automated CAD-Based Vision, pp. 34-43, 1991.

[5] Clark, J. J. “Singularity theory and phantom edges in scale space”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 10, pp. 720-727, 1987.

[6] Cowan, C. K. “Automatic camera and light-source placement using CAD models”, Proceedings

of the IEEE Workshop on Directions in Automated CAD-Based Vision, pp. 22-31, 1991.

[7] Eggert, D. and Bowyer, K. “Computing the orthographic projection aspect graph for solids of
revolution”, Pattern Recognition Letters, vol. 11, pp. 751-763, 1990.

[8] Eggert, D. and Bowyer, K. “Computing the perspective projection aspect graph of solids
of revolution”, IEEFE Transactions on Pattern Analysis and Machine Intelligence, to appear,
1993. (See also Eggert, D. “Aspect graphs of solids of revolution”, Doctoral Dissertation,
Department of Computer Science and Engineering, University of South Florida, 1991.)

[9] Eggert, D. W., Bowyer, K. W., Dyer, C. R. “Aspect graphs: state-of-the-art and applications
in digital photogrammetry”, Proceedings of the ISPRS 17th Congress: International Archives
of Photogrammetry and Remote Sensing, Part B5, pp. 633-645, 1992.

10] Faugeras, O., Mundy, J., Ahuja, N., Dyer, C., Pentland, A., Jain, R., Ikeuchi, K. and Bowyer,
g
K. “Panel theme: Why aspect graphs are not (yet) practical for computer vision”, Proceedings

of the IEEE Workshop on Directions in Automated CAD-Based Vision, pp. 98-104, 1991.

38



[11]

[14]

[15]
[16]

[21]

[22]

[24]

[25]

[26]

Gigus, 7., Canny, J. and Seidel, R. “Efficiently computing and representing aspect graphs of
polyhedral objects”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
13, pp. 542-551, 1991.

Gualtieri, J. A., Baugher, S. and Werman, M. “The visual potential: One convex polygon”,
Computer Vision, Graphics, and Image Processing, vol. 46, pp. 96-130, 19809.

Kender, J. R. and Freudenstein, D. G. “What is a ‘degenerate’ view?”, Proceedings of the
ARPA Image Understanding Workshop, pp. 589-598, 1987.

Koenderink, J. J. and van Doorn, A. J. “The internal representation of solid shape with respect
to vision”, Biological Cybernetics, vol. 32, pp. 211-216, 1979.

Koenderink, J. J. “The structure of images”, Biological Cybernetics, vol. 50, pp. 363-370, 1984.

Koenderink, J. J. and van Doorn, A. J. “Dynamic shape”, Biological Cybernetics, vol. 53, pp.
383-396, 1986.

Koenderink, J. J. Solid Shape, (MIT Press, Cambridge, Mass.), 1990.

Kriegman, D. and Ponce, J. “Computing exact aspect graphs of curved objects: Solids of
revolution”, International Journal of Computer Vision, vol. 5, pp. 119-135, 1990.

Levitt, T. S. and Lawton, D. T. “Qualitative navigation for mobile robots”, Artificial Intelli-
gence, vol. 44, pp. 305-360, 1990.

Lindeberg, T. and Eklundh, J. “Scale detection and region extraction from a scale-space primal
sketch”, Proceedings of the 3rd International Conference on Computer Vision, pp. 416-426,
1990.

Malik, J. “Interpreting line drawings of curved objects”, International Journal of Computer

Vision, vol. 1, pp. 73-103, 1987.

Mokhtarian, F. and Mackworth, A. K. “Scale-based description and recognition of planar
curves and two-dimensional shapes”, IEFE Transactions on Pattern Analysis and Machine
Intelligence, vol. 8, pp. 34-43, 1986.

Mokhtarian, F. and Mackworth, A. K. “A theory of multiscale, curvature-based shape repre-
sentation for planar curves”, IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 14, pp. 789-805, 1992.

Nalwa, V. S. “Line-drawing interpretation: A mathematical framework”, International Journal
of Computer Vision, vol. 2, pp. 103-124, 1988.

Plantinga, H. and Dyer, C. R. “Visibility, occlusion and the aspect graph”, International
Journal of Computer Vision, vol. 5, pp. 137-160, 1990.

Ponce, J. and Kriegman, D. “Computing exact aspect graphs of curved objects: Parametric
surfaces”, Proceedings of the 8th National Conference on Artificial Intelligence, pp. 340-350,
1987.

39



[27]

[30]

[31]

32]

33]

[34]

[35]

[36]

37]

[38]

Ponce, J., Petitjean, S. and Kriegman, D. “Computing exact aspect graphs of curved objects:
Algebraic surfaces”, Proceedings of the European Conference on Computer Vision, pp. 599-614,
1992.

Rieger, J. “The geometry of view space of opaque objects bounded by smooth surfaces”,
Artificial Intelligence, vol. 44, pp. 1-40, 1990.

Rieger, J. “Global bifurcation sets and stable projections of nonsingular algebraic surfaces”,
International Journal of Computer Vision, vol. 7, pp. 171-194, 1992.

Seales, W. B. and Dyer, C. R. “Modeling the Rim Appearance”, Proceedings of the 3rd Inter-
national Conference on Computer Vision, pp. 698-701, 1990.

Sripradisvarakul, T. and Jain, R. “Generating aspect graphs for curved objects”, Proceedings

of the IEEE Workshop on Interpretation of 3D Scenes, pp. 109-115, 19809.

Stewman, J. and Bowyer, K.W. “Direct construction of perspective projection aspect graphs
for planar-face convex objects”, Computer Vision, Graphics and Image Processing, vol. 51, pp.

20-37, 1990.

Stewman, J. H. and Bowyer, K. W. “Creating the perspective projection aspect graph of
convex polyhedra”, Proceedings of the 2nd International Conference on Computer Vision, pp.

494-500, 1988.

Stewman, J. H., Stark, L. and Bowyer, K. W. “Restructuring aspect graphs into aspect-
and cell-equivalence classes for use in computer vision”, Proceedings of the 13th International
Workshop on Graph-Theoretic Concepts in Computer Science, pp. 230-241, 1987.

Waldon, S. and Dyer, C. “Towards an Aspect Graph for Photometric Imaging”, Technical
Report, Computer Science Department, University of Wisconsin, 1991.

Wang, R. and Freeman, H. “Object recognition based on characteristic view classes”, Proceed-
ings of the 10th International Conference on Pattern Recognition, pp. 8-12, 1990.

Watts, N. “Calculating the principal views of a polyhedron”, Proceedings of the 9th Interna-
tional Conference on Pattern Recognition, pp. 316-322, 1988.

Welford, W. T. Geometrical Optics: Optical Instrumentation, (North Holland Pub., Amster-
dam), 1962.

Witkin, A. P. “Scale-space filtering”, in From Pixels to Predicates, (Ablex Publishing Corp.,
Norwood, NJ), pp. 5-19, 1986.

Yuille A. and Poggio, T. “Scaling theorems for zero crossings”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 8, pp. 15-25, 1986.

40



