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Abstract.  A robust and automatic system has been developed to detect the visual 
axis and extract important feature landmarks from slit-lamp photographs, and objec-
tively grade the severity of nuclear sclerosis based on the intensities of those land-
marks. Using linear regression, we first select the features that play important roles 
in classification, and then fit a linear grading function. We evaluated the grading 
function using human grades as error bounds for “ground truth”  grades, and com-
pared the machine grades with the human grades. As expected, the automatic sys-
tem significantly speeds up the process of grading, and grades computed are consis-
tent and reproducible. Machine grading time for one image is less than 2 seconds on 
a Pentium III 996MHz machine while human grading takes about 2 minutes. Statis-
tical results show that the predicted grades by the system are very reliable. For the 
testing set of 141 images, with correct grading defined by a tolerance of one grade 
level difference from the human grade, the automated system has a grading accu-
racy of 95.8% based on the AREDS grading scale. 

1   Introduction 

A cataract is a clouding or opacity of the eye’s lens that can cause vision problems. Nu-
clear sclerosis is an important type of age-related cataract. Traditionally, the degree of 
nuclear sclerosis has been evaluated by a trained human grader based on comparison of 
the photograph to be graded with a series of standard photographs (called Standards). The 
grading system can use either an integer scale or a decimal scale. Grading systems using 
an integer scale include the Lens Opacities Classification System (LOCS) I-II system [3, 
4], the Wisconsin system [7], an adaptation of which became the Age-Related Eye Dis-
ease Study (AREDS) system, the Wilmer system [12], the Cooperative Cataract Epidemi-
ology Study Group (CCESG) system [9], and the Oxford system [10]. When a decimal 
scale is used, the grader places the photo between adjacent Standards, and then assigns a 
grade with a decimal value in the interval. Decimal scale cataract grading systems include 
the LOCS III system [5], Wisconsin AREDS lens grading protocol [1], and a simplified 
cataract grading system in the World Health Organization (WHO) cataract grading group 
[11]. 

While very useful, subjective systems have a number of disadvantages: (1) being a sub-
jective process, the method shows large variability among graders (different people have 
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different spectral sensitivity) and by the same grader over time; (2) the method is a manual 
process, so it is time-consuming; (3) as commonly utilized, the traditional method has 
limited capacity to account for the variability inherent in taking and developing photo-
graphs, such as exposure and development time; and (4) it is hard to reliably measure 
cataract severity change over time. 

There have been some attempts towards computerized cataract detection recently [8]. 
However, so far there is no fully automatic and objective nuclear sclerosis grading system 
based on slit-lamp photographs. The goal of this work is to automate this process and 
provide an objective and repeatable grading system for nuclear sclerosis evaluation from 
slit-lamp images. Given a slit-lamp image of the eye, the system can automatically extract 
the feature landmarks in the image, and classify the level of nuclear sclerosis based on the 
intensities of those landmarks. 

2   Materials and Photography Protocol 

A Topcon SL-6E  slit-lamp was used to take the nuclear sclerosis photographs. In this 
process, a vertical slit beam of light is shone through the lens nucleus at a 45° angle from 
visual axis after the pupil has been dilated pharmacologically, and the obliquely-
illuminated lens is photographed with a camera situated on the visual axis. The result 
approximates a cross-section of the lens, depicting the backscatter of the beam as it travels 
through the lens nucleus from anterior to posterior. Slit lamp photographs are acquired as 
color slide transparences on Ektachrome 200 film. The slides were digitized on a Nikon 
CoolScan slider scanner. In our project, we use the AREDS grading system [1], which 
uses a decimal scale from 0.9 to 6.1. 

There are about 1000 images used in this project. Those images are originally from the 
Beaver Dam Eye Study (BDES) and can be separated into four groups: 1) Standard Set 
includes the six base images, 1-6, from the AREDS grading system. These are the images 
to which other images are compared for grading. 2) Sample Set1 has 57 images that have 
been graded and the grades have been double-checked, so the grades for these images are 
more accurate and consistent. 3) Sample Set2 includes 93 images which were graded 
without double-checking. 4) Sample Set3 includes 800 images without human grades. In 
Sample Set1 and Sample Set2 there are a few poor-quality images that are rotated, 
blurred, or scaled. Those images were automatically detected and pulled out for human 
grading only. Sample Set1 has four images of this kind and Sample Set2 has five bad 
images.  

3   Image Processing and Feature Detection 

                             
 

Fig. 1. Feature landmarks on slit-lamp image   Fig. 2. Visual axis detection based on circle model  



 

In our images, the corneal bow is the leftmost bright vertical curve in the image. Tracing 
left to right through the image, the corneal bow is followed by the dark anterior chamber. 
The leading edge of the anterior cortex is the second bright vertical curve. Other impor-
tant features in the images are shown in Fig. 1.         

3.1 Detecting the Visual Axis and Identifying the Ocular Landmark Features 

The visual axis is the anterior-posterior line that bisects the nucleus horizontally. Since we 
will measure the degree of nuclear sclerosis based on the luminance values along this 
trace, reliable placement of this visual axis is critical for feature extraction and further 
analysis. The edges of the corneal bow and the anterior cortex are the most reliable fea-
tures in the image, regardless of the degree of sclerosis, and hence were selected as the 
features used in identifying the location of the visual axis. In most cases, the corneal bow 
and the anterior cortex are symmetric with respect to the visual axis. If no noise existed, 
their edges could be modeled well as the arcs of two circles. Given an arc of a circle, we 
can calculate the center of the circle based on its curvature. After calculating the center 
points of the two circles defined by the corneal bow and the anterior cortex, the line con-
necting the two center points is a good approximation of the visual axis (Fig. 2). 

We used the Canny edge detection algorithm [2] to detect edge points in an input slit-
lamp image, then extracted the edges for the corneal bow and anterior cortex based on 
their relative locations in the image. However, explicitly fitting circles based on the edge 
data is problematic given the amount of image noise. One problem comes from the “key-
hole” artifact in the anterior chamber, which is the reflection of the apparatus used. This 
artifact appears in almost every image, and its location in the anterior chamber varies from 
image to image. As a result, when we try to detect the anterior cortex edge, we may actu-
ally find edge points associated with the keyhole. We eliminated this problem by locating 
the keyhole using a matched filter technique. After the keyhole is detected, the edge points 
belonging to the keyhole were avoided when searching for the anterior cortex edge. The 
problem still exists in cases when the keyhole overlays the anterior cortex, however.  The 
other problem comes from poor-quality images, which include blurred, rotated, scaled and 
improperly cropped images. Those problems can make the automatic process fail to detect 
the proper edges and therefore the estimated visual axis is poor. 

In order to reliably detect the visual axis and automatically determine how well the vis-
ual axis is detected, we developed a voting scheme to obtain a confidence level indicating 
the correctness of the visual axis. This voting scheme essentially combines a Monte 
Carlo-like approach with a robust estimation technique [6].  

The voting algorithm works as follows. Assume the edge of an arc is extracted and a 
circle model fits the arc reasonably well. Our method to estimate the center of the circle is: 
(1) randomly select five widely-separated points on the arc. From these five points, iden-
tify the five longest chords between pairs of these points; (2) compute the lines perpen-
dicular to the five chords; (3) find the intersections of these lines. If the arc is perfectly 
circular, all five lines will intersect at one point; otherwise, there will be 10 intersections; 
and (4) compute the centroid of the 10 intersections as the location of the estimated center 
of the circle.  

The circle center for the corneal bow is found in two rounds. In the first round, repeat-
ing the above four steps many times with different sets of five edge points, each time an 
approximate center is obtained for the circle. By averaging these center point estimates, 
we get the center, C1, of the circle based on all selected sets of five points. Note in the 
first round, there may exist some outliers in the circle center approximation.  In the second 
round, we repeat the steps used in first round, except we use the approximated center C1 



 

to eliminate outliers, i.e., centers whose distance from C1 is larger than a threshold. We 
average all the center points except the outliers in the second round and denote the cen-
troid of these points C2. This two round process produces a robust estimate of the center 
even when there is a high percentage of outlier edge points used. 

The same algorithm is applied to estimate the center of the circle for the anterior cor-
tex.  At each iteration in the second round, after we get an approximate center of the circle 
for the anterior cortex, we connect C2 with this center to form a visual axis line.  Since 
the line always goes through the fixed point C2, we can use a one-dimensional array to 
record the orientation of these lines. After many iterations, the histogram of the orienta-
tions provides evidence of the best location of the line (with highest consensus) and the 
distribution of orientations gives a measure of the uncertainty (Fig. 3). 

 
Fig. 3. Voting scheme for visual axis detection 

In summary, the following algorithm was used to automatically detect the visual axis in 
a slit-lamp image: 

Step 1. Monte Carlo Simulation 
Randomly choose a set of five widely-separated edge points and calculate the center of the            
circle estimated using these five points. 

Step 2. Voting for Visual Axis Detection 
i)  Repeat Step 1 many times for corneal bow edge points in two rounds. Throw out center 
point outliers in the second round and average the remaining center points to get a center 
point of the corneal bow. Use this center point, C2, as one point that defines the visual axis. 
ii)  Repeat Step 1 many times for anterior cortex edge points in two rounds. Throw out cen-
ter point outliers in the second round. At each iteration in the second round, compute the 
line connecting C2 and the calculated center point. Histogram the orientations of all the es-
timated visual axis lines. 
iii)  Select the line orientation that occurs with the highest frequency in the histogram as the 
visual axis. 

  
This approach is efficient and robust to image noise. At each iteration, only five points 

are used, so computing the center for the best circle fit by those five points is fast.  How-
ever, using a true Monte Carlo approach requires some criterion to evaluate the results of 
each iteration. Without any such measure available, accumulating all estimates and taking 
the one with the “most votes” maintains the benefits of randomization: statistically, we are 
likely to obtain valid solutions most of the time. The iterations enable us to eliminate 
image noise as arcs fit to erroneous data produce centers distributed over a large area. 
Arcs along the true circle “agree.”  Hence we can determine, by consensus, the best center, 
and by looking at the distribution of centers, we can determine a level of uncertainty (Fig. 
4). 



 

  
(a)          (b)     (c)             (d) 

Fig. 4. Visual axis orientation voting histograms for two images. (b) Line orientation histogram for 
image (a), (d) Line orientation histogram for image (c). The single sharp peak in (b) indicates that 
most iterations agreed with the line location. A broader histogram in (d) indicates a lack of consen-
sus, and therefore some difficulty in ascertaining the correct line location  

After the visual axis is detected, a linear densitometric track along the visual axis was 
performed to get a one-dimensional intensity profile. To make the values of the profile 
robust, a narrow band centered on the visual axis was used to average the pixels along the 
vertical direction in the band at each point on the visual axis. Based on this intensity pro-
file, the original image and the edge image, landmark features can now be detected relia-
bly with conventional image processing methods.  

3.2 Construct Regression Features 

Seven landmark features were extracted from the photograph, and, for each landmark, an 
intensity mean of the pixels within a 7 pixel wide by 60 pixel high rectangle centered on 
this point was recorded. Based on expert knowledge, four of the seven features were cho-
sen as most significant: anterior lentil, sulcus, posterior lentil, and posterior lamella (with 
variable names AnteLen, Sulcus, PostLen, and PostLam, respectively).  The other three 
features are highly correlated with the four selected ones and thus considered to have 
negligible effect on grading. During the human grading procedure, the trend of intensity 
change from anterior lentil to posterior lamella along the visual axis plays an important 
role, so several composite features were also defined, for example, the ratio between the 
intensity at the anterior lentil and the posterior lentil (RatioALPL, RatioALPLNorm). 

Two other features considered were the standard deviation of intensity in the neighbor-
hood of the sulcus in order to take into account the effect of intensity in the center of the 
lens. An eye whose image has a narrow black strip along the sulcus is defined to have low 
degree of nuclear sclerosis. Two areas of interest of different size were defined: one is a 7 
pixel by 60 pixel rectangle, and the other is 17 by 120, both centered on the sulcus. The 
feature SulStdSmall is the intensity standard deviation of the pixels in the small rectangle, 
and the feature SulStdLarge is the intensity standard deviation of the pixels in the big 
rectangle. Intuitively, the ratio of SulStdSmall to SulStdLarge, which defines the feature 
ratioSulStd, should be small if a narrow black strip exists around the sulcus. In summary, 
10 features were computed from each image and used to represent all the information for 
grading. 
 
4   Data Analysis and Results 
 
We built our grading function in two steps. First, the Standard Set and Sample Set1 were 
used as the training data to select the most important features for grading.  Second, the 
Standard Set alone was used to train the grading function, which was defined using the 



 

most important features selected in the first step. Strictly speaking, the only “ground 
truth”  data are the Standards because the grades assigned to the Standards are the defini-
tion of the grades. However, six images are too few to estimate the parameters in a grad-
ing function with many variables. Since the grades for the images in Sample Set1 were 
checked after grading, they are more accurate and consistent. Even though they can not be 
treated as ground truth due to the limitations of human grading, those scores provided a 
good approximation of the “correct grades,”  so it is reasonable to use those data to deter-
mine the most important features affecting grading. After the most important features 
were identified, the Standards were used to determine the parameters for combining the 
features. We tested the grading function using Sample Set1 and Sample Set2 as testing 
data.  

4.1 Feature Selection 

To decide which of 10 candidate features are important for grading, a linear regression 
model using all 10 features was used to fit the training data (Standard Set and Sample 
Set1).  Table 1 shows the coefficients of the model and the p-values for the 10 features 
and the constant term. 

Table 1. Coefficients for a linear model with 10 features1 

 Estimate t value Pr(>|t|) 
AnteLen -0.2704 -3.134 0.0033 ** 
Sulcus 0.1012 5.678 1.45e-06 ***  

SulStdSmall 0.1227 0.256 0.7990 
SulStdLarge -0.1343 -0.502 0.6181 

PostLen 0.2163 2.760 0.0088 ** 
PostLam -0.0030 -0.211 0.8342 

RatioALPL -1.5422 -0.916 0.3651 
RatioALPLNorm 36.4366 3.722 0.0006 ***  
RatioALPostLam 0.3806 0.760 0.4519 

RatioSulStd -0.1483 -0.104 0.9179 
(Intercept) -34.7648 -3.606 0.0009 ***  

 
The features with p-values less than 0.001 are considered significantly important for 

grading. Those features are Sulcus and RatioALPLNorm. This is consistent with experts’  
knowledge. The intensity of the sulcus is a good indicator of the general brightness of the 
image, and the images of eyes with more serious nuclear sclerosis tend to be brighter. The 
feature RatioALPLNorm indicates the intensity change from anterior lentil to posterior 
lentil. The higher the RatioALPLNorm value, the higher the degree of nuclear sclerosis the 
eye usually has. The normalized ratio, RatioALPLNorm, is less sensitive to image noise 
due to variations of exposure time or development time compared to the un-normalized 
value, RatioALPL; this improvement is evident from the fact that RatioALPLNorm has a 
lower p-value than RatioALPL. The features designed to detect the strip around the sul-
cus, SulStdSmall, SulStdLarge and RatioSulStd, did not have low p-values, probably be-
cause of the difficulty of identifying this information. 
 

4.2 Model Fitting and Accuracy Evaluation 

                                                           
1 Significant level codes for p value:  “ ***” : [0,0.001); “ **” :[0.001, 0.01); “ *” :[0.01,0.05); 
“ .” :[0.05,0.1);   “  ” :[0.1,1] 



 

After the two most important features for the classifier were determined, a linear grading 
function using those features was fit using the Standards. To evaluate how well the grad-
ing function predicts the grades for the testing data, the computed decimal grades were 
converted to the scale used in the AREDS system by rounding the grade to the nearest 0.1. 
The difference between human grades and computed grades was quantized into 40 groups 
(-5 to 5 at intervals of 0.25). The histogram of the grading differences is a good indicator 
of how close the machine grading is to the human grading. The grading function as a 
linear combination of the features Sulcus and RatioALPLNorm, was defined by: 

Grade = 0.03077*Sulcus + 1.40517*RatioALPLNorm - 0.4654 

Table 2 shows that the computed grades are very close to the real values for the Standards. 

Table 2. Computed grades for the Standards 

Standard 1 2 3 4 5 6 
Computed Grade 0.98 1.96 3.14 3.98 4.91 6.03 

   

                Fig. 5. Residuals vs Fitted plot and Q-Q plot              Fig. 6. Histogram of grading differences 
between human grades and computed grades 

The normal Q-Q plot in Fig. 5 shows the residuals are very close to being normally dis-
tributed. The plot of the residuals and their corresponding grades show there are no trends 
or patterns in the residuals, visually verifying the use of a linear model. 

For the grades of the testing images predicted by the grading function, Fig. 6 shows 
that out of 141 images, 135 are machine graded to within one grade of the human grade, 
which is 95.8% of the population. No image has more than a two grade difference, and 
only 6 images have a two grade difference. In human grading, one grade fluctuation is 
quite common and regarded as acceptable. 

 
5   Concluding Remarks 

 
A system has been developed that automatically detects the visual axis and extracts fea-
tures from slit-lamp photographs. Expert knowledge and a linear regression model were 
used to define and select important features for nuclear sclerosis grading. After the two 
most important features were chosen, a linear grading function was fit using the Standards 
and evaluated based on human grading. The linear grading function achieved a grading 
accuracy of 95.8% within 1 grade using the AREDS grading system for the testing data. 
While adding some relatively important features such as anterior lentil and posterior lentil 
into the grading function may slightly reduce the residual standard error for prediction in 
some test cases, if similar classification accuracy is achieved, the grading function with 



 

fewer features is preferred since it has the advantage of being simpler and more robust to 
image noise and image processing errors.  

It is interesting to point out that we achieved this classification result using only the six 
Standards as training data. This is evidence that the linear grading function using the two 
features, Sulcus and RatioALPLNorm, largely captures the relationship between the sever-
ity of nuclear sclerosis and the image. With a function of known analytical form, the two 
unknown parameters can be determined by two good samples. This may explain why 
using only six Standards results in a good grading function. 

To further evaluate classification accuracy, human graders can look at the machine 
grades to see how many of them are acceptable. The next step is to automatically grade 
the 800 images in Sample Set3 and ask human experts to evaluate them. Other images to 
be tested include the Standards under different exposure or development times, and fol-
low-up images for individuals over time. Since selecting important features is critical for 
modeling the grading function, it may be worth trying some more complex feature selec-
tion methods such as Likelihood Basis Pursuit (LBP) [13]. Another possibility is to con-
sider non-linear grading functions.  
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