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Abstract—Estimating human age automatically via facial image
analysis has lots of potential real-world applications, such as
human computer interaction and multimedia communication.
However, it is still a challenging problem for the existing computer
vision systems to automatically and effectively estimate human
ages. The aging process is determined by not only the person’s
gene, but also many external factors, such as health, living style,
living location, and weather conditions. Males and females may
also age differently. The current age estimation performance is
still not good enough for practical use and more effort has to be
put into this research direction. In this paper, we introduce the
age manifold learning scheme for extracting face aging features
and design a locally adjusted robust regressor for learning and
prediction of human ages. The novel approach improves the age
estimation accuracy significantly over all previous methods. The
merit of the proposed approaches for image-based age estimation
is shown by extensive experiments on a large internal age database
and the public available FG-NET database.

Index Terms—Age manifold, human age estimation, locally ad-
justed robust regression, manifold learning, nonlinear regression,
support vector machine (SVM), support vector regression (SVR).

I. INTRODUCTION

HUMAN faces, as important visual cues, convey a signif-
icant amount of nonverbal information to facilitate the

real-world human-to-human communication. As a result, the
modern intelligent systems are expected to have the capability
to accurately recognize and interpret human faces in real time.
Facial attributes, such as identity, age, gender, expression, and
ethnic origin, play a crucial role in real facial image analysis ap-
plications including multimedia communication, human com-
puter interaction (HCI), and security. In such applications, var-
ious attributes can be estimated from a captured face image to
infer the further system reactions. For example, if the user’s age
is estimated by a computer, an age specific human computer
interaction (ASHCI) system may be developed for secure net-
work/system access control. The ASHCI system ensures young
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Fig. 1. Face aging of two individuals. Each row shows images of the same
individual at different ages.

kids have no access to internet pages with adult materials. A
vending machine, secured by the ASHCI system, can refuse to
sell alcohol or cigarettes to the underage people [10], [23]. In
image and video retrieval, users could retrieve their photographs
or videos by specifying a required age range [23]. Ad-agency
can find out what kind of scroll advertisements can attract the
passengers (potential customers) in what age ranges using a la-
tent computer vision system.

Although automatic image-based age estimation is an impor-
tant technique involved in many real-world applications, it is
still a challenging problem to estimate human ages from face
images. Fig. 1 shows some face images of two individuals with
different ages. Since different individuals age quite differently,
the aging process is determined by not only the person’s gene
but also many external factors, such as health, living style, living
location, and weather conditions. Males and females may also
age differently due to the different extent in using makeups and
accessories. How to extract general discriminative aging fea-
tures while reducing the negative influence of individual differ-
ences still remains an open problem.

There exits some work on age synthesis and rendering in the
last several decades [9], [27], [29], [31], but there are only few
publications on age estimation due to the complexity of aging
patterns. The age progression displayed on faces is uncontrol-
lable and personalized [10], [26]. Such special characteristics
of aging variation cannot be captured accurately due to the pro-
lific and diversified information conveyed by human faces. On
the other hand, the age estimation problem is different from the
problem of face recognition with age variation [24], where the
goal is to estimate facial identities while no ages are estimated
from the input faces. The research effort on age estimation may
help recognizing faces containing age variations.

There are three main categories [8] that can categorize most
existing image-based age estimation methods, such as anthro-
pometric model [21], [27], aging pattern subspace [10], and age
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regression [7], [22], [23], [33], [34]. The cranio-facial develop-
ment theory and facial skin wrinkle analysis are used to create
the anthropometric model. The changes of face shape and tex-
ture patterns related to growth are measured to categorize a face
into several age groups. These methods are suitable for coarse
age estimation or modelling ages just for young people [27].
However, they are not designed for continuous or refined age
classification [21]. In order to handle incomplete data such as
missing ages in the training sequence, the aging pattern sub-
space (AGES) method [10] models a sequence of individual
aging face images by learning a subspace representation. The
age of a test face is determined by the projection in the sub-
space that can best reconstruct the face image. For the regres-
sion methods, facial features are extracted by the active appear-
ance models (AAMs) [3] that incorporate the shape and appear-
ance information together. An input face image is then repre-
sented by a set of fitted model parameters. The regression co-
efficients are estimated from the training data with an assump-
tion of the regression function such as a quadratic model (QM)
[23]. Yan et al. [33], [34] also dealt with the age uncertainty by
formulating a semi-definite programming problem [34] or an
EM-based algorithm [33].

As Deffenbacher et al. [4] argued, the aging factor has es-
sentially sequential patterns which are quite similar to the age
morphing [9]. Ages could present a significant trend of under-
lying sequential patterns when a large number of aging data are
provided. This inspires us to explore the refined age estimation
technique by age manifold analysis. The age manifold analysis
has two advantages to facilitate the age estimation task. First, the
manifold analysis is a way to represent the original age data in
low dimensionality which is necessary to overcome lack-of-fit
of the regression model. Second, the manifold learning captures
the underlying face aging structure which is important for accu-
rate modeling and age prediction. To the best of our knowledge,
except for our preliminary work in [8], no previous work has in-
vestigated manifold learning [6], [28], [30] for age estimation.

On the other hand, the traditional quadratic model [23] for age
regression is based on a least square estimation (LSE) criterion.
The LSE is not robust to outliers since the outliers could come
from some incorrectly labelled ages. Moreover, the optimization
based on the LSE criterion minimizes the empirical risk which
usually cannot generalize well especially when a large number
of training data are not available. The small sample size problem
is typical in age estimation because of the difficulty in collecting
aging images.

In this paper, we propose a novel scheme for aging feature
extraction and automatic age estimation. The basic idea is to
learn a low-dimensional embedding of the aging manifold using
an appropriate subspace learning method. Then we design a new
method, called locally adjusted robust regressor (LARR), for
robust learning and prediction of the aging patterns [14]. The
effectiveness and advantages of the proposed method will be
demonstrated with extensive experiments on a large internal age
database and the public available FG-NET database.

II. AGE ESTIMATION FRAMEWORK

As shown in the diagram of Fig. 2, the proposed age
estimation framework mainly consists of five modules, which

Fig. 2. Age estimation framework based on face image analysis and
statistical learning.

are face detection, face normalization, manifold learning, robust
regression, and local adjustment.For training, face image patches
are automatically detected and cropped from images by face
detection. A large number of training images are collected
from a broad range of subject ages. The cropped face patches
undergo a normalization including geometric alignments and
illumination normalization (basically histogram equalization).
Then the age manifold is learned to map the original face image
data into a low-dimensional subspace. A robust regression
function is applied to fit the manifold data. Finally, a local
adjustment of the regression results is performed to refine the
local fitting of the data. For test, an input face picture goes
through the same process of face detection and normalization.
Then the normalized face image is projected on the learned
manifold which was computed in the learning stage. Finally, the
age of the input face image is predicted by the locally adjusted
robust regression function. Compared with our previous work
in [8], this paper focuses more on the regression part of the
whole framework to improve the robustness and effectiveness
of age estimation.

We organize the remainder of the paper as follows. In Sec-
tion III, a simple description of three manifold learning methods
is given, and manifold visualizations are illustrated for our age
data. In Section IV, the quadratic regression model is introduced
which was used in previous approaches. In Section V, we intro-
duce the support vector regression method which was adopted
as our robust regressor. A local adjustment of the regression re-
sults is presented in Section VI. Experimental evaluations of the
proposed approach and comparisons with previous methods are
presented in Section VII, and, finally, the conclusion and future
work are provided in Section VIII.

III. MANIFOLD LEARNING FOR HUMAN AGING

Age is one of the basic attributes in facial images. Suppose
the image space is represented by a set of aligned face images

with image dimension in the order
of subject ages. A ground truth set as-
sociated with the images provides the age labeling. Our goal
is to learn a low-dimensional manifold in the embedded sub-
space as well as its representation with

, which is a one-to-one mapping to . So, the pro-
jection from image space to manifold space can be modelled
as , where denotes the projection function,
which can be either linear or nonlinear. Considering the label
information in the modeling, we adopt supervised learning ap-
proaches to find . Recent advances in manifold learning
suggest several ways of calculating the manifold embedding.

The objective of manifold embedding is to find an
matrix satisfying or directly find , where

, ,
, and . In a supervised manner

[6], manifold embedding constrains to search nearest neighbors
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Fig. 3. Age manifold visualization. The two rows illustrate the 2-D and 3-D manifold of UIUC-IFP-Y age data learned by PCA, LLE, and OLPP algorithms. The
datapoints of age from 0 to 93 are colored from blue to red.

in the data space with the same labels of the query. Some typical
dimensionality reduction and manifold embedding methods are
summarized as follows.

1) Principal Component Analysis (PCA) [5]: The PCA
method finds the embedding that maximizes the pro-
jected variance, , where

is the scatter matrix,
and is the mean vector of . The PCA method
is mentioned here because it is very popular for many
tasks such as face recognition [32].

2) Locally Linear Embedding (LLE) [28]: The LLE algo-
rithm seeks the nonlinear embedding in a neighborhood-
preserving manner by exploiting the local symmetries of
linear object class reconstructions, and seeking the op-
timal weights for local reconstruction.

3) Orthogonal Locality Preserving Projections (OLPP)
[2]: The OLPP method produces orthogonal basis
functions based on the LPP [19] to obtain more dis-
criminating power for embedding. The LPP searches
the embedding that preserves essential manifold
structure by measuring the local neighborhood dis-
tance information. It defines the affinity weight as

when and are
nearest neighbors of each other, otherwise ,
and is a symmetric matrix. It also defines
a diagonal matrix , and a Laplacian
matrix , then the optimal projection is

Define ,
and compute

as the eigenvector of

associated with the smallest eigenvalue. Then another
is computed as the eigenvector of

associated with another smallest eigenvalue.
The age manifolds of the UIUC-IFP-Y age data learned by the

two linear embedding methods, PCA and OLPP, and the non-
linear LLE are visualized in Fig. 3. The datapoints of age from 0
to 93 are colored from blue to red. From the 2-D and 3-D views,
the OLPP [2] method characterizes the age manifold better than
the PCA and LLE methods with a distinct aging trend. More
discussions are provided in Section VII. Furthermore, the OLPP
method can give a lower error rate than PCA and a linearization
form of the LLE for age estimation in our preliminary experi-
ment [8]. So, we choose to use the OLPP method for our age
manifold learning and the OLPP features are extracted for each
cropped and normalized face image.

IV. QUADRATIC REGRESSION

Given the extracted features for each face image, a regression
function is often used to characterize the relationship between
the extracted features, , and the age labels,

A typical choice of the regression function, , is the quadratic
model (QM). For example, Lanitis et al. proposed to use the QM
function for age regression [22], namely

(1)

where is the estimate of the age, is the offset, and are
the extracted feature vector and its square, and and are
weight vectors.
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Fig. 4. Regression criteria. (a) Quadratic regression loss function. (b) �-insen-
sitive loss function, which is less sensitive to outliers than the quadratic loss
function. Another benefit from this function is a sparse set of support vectors to
represent the regression function, i.e., only points outside the � zone contribute
to the regression function. The horizontal and vertical axes are y and f(y), re-
spectively.

The QM method has been used for age regression in previous
approaches [22], [23]. The model parameters are optimized by
minimizing the difference between the actual ages of the in-
dividuals, , and the ages estimated using (1), i.e., .
The loss function usually corresponds to a least square estima-
tion (LSE) criteria. However, there are some disadvantages for
the QM method: 1) the aging is a complex nonlinear regression
problem, especially for a large span of years, e.g., 0–90. The
simple quadratic function may not model properly the complex
aging process; 2) the least square estimation is sensitive to out-
liers that come from incorrect labels in collecting a large image
database; and 3) the least square estimate criterion only mini-
mizes the empirical risk which may not generalize well for un-
seen examples, especially with a small number of training ex-
amples. This is typical in age estimation because of the difficulty
in collecting age images and the diversity of age patterns due to
different living conditions, cosmetics, gender differences, and
facial shapes. In sum, we need to seek a robust model for mod-
elling the aging patterns.

For the purpose of robust regression of the aging process,
we adopt the support vector regression (SVR) method [35].
The SVR might attack the three limitations of the traditional
quadratic regression model to facilitate the age estimation task.

V. SUPPORT VECTOR REGRESSION

The basic idea of SVR is to find a function that has most
deviation from the actually obtained target for the training

data , and, at the same time, is as flat as possible. In other
words, we do not care errors as long as they are less than . This
property determines the SVR to be less sensitive to outliers than
the quadratic loss function. In comparison with the conventional
quadratic loss function shown in Fig. 4(a), the -insensitive loss
function of SVR is shown in Fig. 4(b). Given the same input,
the -insensitive loss function is more robust than the quadratic
function in dealing with outliers.

A. Linear SVR

Consider the problem of approximating the set of data
, , , with a linear func-

tion

(2)

The optimal regression function [35] is given by

subject to

(3)

where constant determines the tradeoff between the flat-
ness of and data deviations, and , are slack variables
to cope with otherwise infeasible constraints on the optimiza-
tion problem of (3). The -insensitive loss function as shown in
Fig. 4(b) is

if
otherwise.

(4)

The primal problem of (3) can be solved more efficiently in
its dual formulation [35] resulting in the final solution given by

(5)

and

(6)

where , are Lagrange multipliers. The value of in (2) can
be determined by plugging (5) into (2) [11].

B. Toy Example

To illustrate the SVR idea and see the importance of proper
setting of the parameter , we use a toy example that contains
30 points in 2-D with 10 in a line and the remaining 20 being
outliers distributed on both sides of the line [13]. Hence, the
data contains 67% outliers. Using the SVR algorithm imple-
mented by Gunn [11] (which provides a user interface) and a
linear kernel with , the result is shown in Fig. 5(a).
Observe that the line was correctly estimated despite the high
percentage of outliers.

On the other hand, observe that SVR returns 27 support
vectors (90% of the input data) and seven of them are very
close to the boundaries (two dashed lines), but there are ac-
tually 20 outliers in the original data. So, we cannot simply
classify the support vectors (SVs) as outliers. Increasing the
value might “drag” the seven closest support vectors inside the
dashed boundaries, and then only the outliers in the data would
be returned as support vectors. However, when we increase

gradually up to 0.09, there are still 26 SVs returned which
are still not the true outliers, as shown in Fig. 5(b), and even
worse, the slope of the line has changed significantly. This
demonstrates that using a large is not a good idea because it
may degrade the model structure.

Based on this experiment, we observe: 1) the SVR technique
can potentially deal with data containing a high percentage of
outliers; 2) classifying support vectors as outliers is not work-
able; 3) using a large value for is not a good idea for SVR; and
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Fig. 5. SVR on real 2-D data with � = 0:02 in (a) and � = 0:09 in (b). Note that the support vectors (marked by circles) are not the true outliers in either case.

4) using small is preferable, especially when a large number
of outliers are present.

This toy example and the above observations were first pre-
sented by Guo et al. in [13]. The robust regressor, SVR, was
applied successfully for outlier detection and removal in affine
motion tracking with the setting of a small . Here we adopt the
same idea but use it for another application—robust age regres-
sion. Instead of using the simple linear regression, we need a
nonlinear SVR for the complex aging patterns.

C. Nonlinear SVR

A nonlinear regression function may be required in practice
to adequately model the data. It can be obtained by using ker-
nels, in the same manner as a nonlinear support vector machine
(SVM) for classification [35]. A nonlinear mapping can be used
to map the data into a high-dimensional feature space where a
linear regression is performed. Different kernels, such as poly-
nomials, sigmoid, or Gaussian radial basis functions, can be
used depending on the tasks. For our robust age regression, we
found that the Gaussian radial basis function kernel performs
much better than the linear regression. The reason is that the
linear regression cannot model the complex aging process. A
radial basis function is of the form

(7)

where is a constant to adjust the width of the Gaussian func-
tion. Given the kernel mapping, the solution of the nonlinear
SVR is obtained as [35]

(8)

and

(9)

The difference to the linear regression is that is no longer
given explicitly. Also note that in the nonlinear case, the op-
timization problem corresponds to finding the flattest, or linear

Fig. 6. Plot of the true ages (black circles) versus the estimated ages (red
squares) for one thousand female face images. The ages are predicted by the
nonlinear SVR with a Gaussian kernel.

regression function in the higher dimensional feature space,1 not
in the input space.

VI. LOCALLY ADJUSTED ROBUST REGRESSION

Now, a question may be asked, is it “good” enough using the
SVR as a robust regressor for human age prediction? To answer
this question, let us look at an estimation result using the SVR.
Fig. 6 shows the predicted ages (red squares) with respect to the
ground truth ages (black circles). Note that this is not a regres-
sion curve. One thousand data points are sorted in ascending
order of the ground truth ages, i.e., from 0 to 91 years for fe-
males. The predicted ages are obtained from the SVR method.
From this figure, we observe that the SVR method can estimate
the global age trend, but cannot predict the ages precisely. By
inspecting the result carefully, we find that the SVR predictions
give bigger age values for many younger people, and smaller
age values for some older people. In some cases, the estimated
age values could be far away from the true ages, e.g., more than
40 years.

Why the SVR method cannot show better performance than
we expect for age prediction? The reason can be in two aspects:

1Note that the feature space means a higher dimensional space in support
vector regression, which is different from the feature extracted from data in
image processing. Actually, the extracted features from images are the input
data for SVR in our age modelling.
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Fig. 7. Illustration of the idea of locally adjusted robust regression.

First, the problem of age prediction is really challenging be-
cause of the diversity of aging variation. Each individual may
age in his/her own way and be affected by external factors, such
as health, living condition, and exposure to weather conditions.
Second, the SVR method attempts to find a flat curve to approx-
imate the data in order to obtain good generalization capability.
As shown in Fig. 7, the SVR computes a flat curve within a small

tube. However, the age data may distribute like the (green) ir-
regular curve. One cannot expect the SVR to estimate an irreg-
ular curve like this because of the over-fitting problem. Further,
one cannot assign a large to enclose all true data points inside
the tube, as demonstrated in the toy example in Section V-B.
So how do we model the aging function by allowing the irreg-
ular distribution of true ages?

A. Local Adjustment of the Regression Result

One feasible solution is to adjust the age regression values
locally so that the estimated age values can be “dragged” to-
wards the true ages. We call it a locally adjusted robust re-
gressor (LARR). The idea of LARR is illustrated in Fig. 7. Sup-
pose the predicted age value by SVR is , corresponding to
the input data . The point is displayed by the black dot
on the regression curve. The estimated age, , may be far
away from the true age value, , shown as the red dot on the
true age trajectory curve. The idea of the LARR method is to
slide the estimated value, , up and down (corresponding to
greater and smaller age values) by checking different age values,

, to see if it can come up with a better
age estimation. The value indicates the range of ages for local
search. Hopefully the true age value, , is also within this range,
i.e., .

Therefore, the LARR method is a two-step procedure: 1) a
robust regression over all ages of the training data by using the
SVR method. This step can be considered as a global regression
process; 2) a local adjustment within a limited range of ages
centered at the regression result.

Now the key issue is how to verify different age values
within a specified range for the purpose of local adjustment.
Remember, our goal is to “drag” the initially estimated age
value, , by the global regressor, toward the true age, , as
close as possible. We take a classification approach to locally
adjust or verify different ages, considering each age label as
one class. Because only a small number of age labels are used
for each local adjustment, regression methods cannot work
properly. For our classification-based local adjustment, there

are many possible choices of classifiers, but here we adopt a
linear SVM for our local age adjustment. The main reason is
that the SVM can learn a classifier given a small number of
training examples. This has been demonstrated by the author
previously for learning in the small sample case, such as face
recognition [17], [18], image retrieval [15], audio classification
and retrieval [16], and face expression recognition [12]. The
capability of learning a classifier in the small sample case is
also important for human age prediction. Usually the number
of training examples, e.g., 50, is smaller than the feature di-
mension, e.g., 150, in age estimation, even though we perform
experiments on a large database (see Section VII for details).

B. Linear SVM

Given a set of training vectors belong to two separate classes,
, where , , the

linear SVM learns an optimal separating hyperplane,
, that maximizes the margin [35]. The SVM learning is to find

the saddle point of the Lagrange functional

(10)
where are the Lagrange multipliers. The Lagrangian has to
be minimized with respect to , and maximized with respect
to . The optimization is usually transformed to its dual
problem

(11)

and the optimal hyperplane is represented by the dual solution,

(12)

The value of can be estimated by plugging into the original
equation, .

In testing, the classification is given by

(13)

for any new data point . If the training data are nonseparable,
slack variables can be introduced. See [35] for more details.

C. Binary Tree Search With Limited Range

The classical SVMs are designed to deal with the two-class
classification problems. There are three typical ways to extend
it to a multiclass classification application: 1) learning classi-
fiers for each pair of classes, and taking a binary tree search in
testing; 2) training SVMs for each class against all the remaining
classes; and 3) training SVMs for all classes simultaneously.
The last two schemes are not appropriate for our purpose, be-
cause in the local adjustment only partial classes of age data are
involved. If the last two schemes are used, the SVMs have to be
re-trained dynamically for each adjustment, which is computa-
tionally expensive. The first scheme is feasible to fulfill our task
since there is no need to re-train the SVMs online. Therefore, all
pair-wise SVM classifiers can be trained offline. Only a limited
number of classes are involved in the binary tree search for test.
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The binary tree structure for multiclass SVM classification
has been used successfully for 3-D object recognition [25] and
face recognition [18]. In general, the number of pair-wise com-
parisons is for each test in an -class classification
problem. Here, the number of pair-wise comparisons is limited
to when only classes are involved in each local ad-
justment, and . Each age corresponds to one class label.

D. Local Search Range Determination

The local search range, , is determined by several factors,
such as the scale of the data (large versus small scale) and the
performance of the robust regressor (here the kernel SVR).

It is difficult to determine the local search range theoretically.
However, there are some guidelines for choosing local search
ranges. The larger the search range, the bigger the chance to
contain the true ages within that range. If the search range is
too small, the true age label might not be reached and the local
search may find an arbitrary age label. On the other hand, if the
search range is too big, it also increases the possibility to obtain
an adjusted age that is far away from the true age, because the
local classification is just a locally optimal search.

In our experiments, we specify different ranges and demon-
strate the effects of different local search ranges on the results.
The main goal is to show that the local adjustment can really
improve the performance over the robust regressor for human
age estimation.

VII. EXPERIMENTS

A. Data Sets

Extensive age estimation experiments are performed on the
UIUC-IFP-Y Internal Aging Database,2 a large size age data-
base used in a few existing papers [7], [8], [33], [34]. The data-
base contains 8000 high-resolution RGB color face images cap-
tured from 1600 different voluntary Asian subjects in an outdoor
environment, 800 females and 800 males, in the age range from
0 to 93 years. Each subject has five near frontal images with
provided ground truth ages. To our knowledge, this human age
database is the largest one ever reported.

The FG-NET Aging Database [1] is a public available age
database that we adopt for the experiments. The database con-
tains 1002 high-resolution color or grey scale face images with
large variation of lighting, pose, and expression. There are 82
subjects (multiple races) in total with the age ranges from 0 to
69 years, and each face image has 68 labelled points character-
izing shape features. The shape features can be combined with
appearance features to form a face representation, called active
appearance models (AAMs) [3]. The AAMs use 200 parameters
to model each face for the purpose of age estimation [10], [33],
[34].

B. Results

To evaluate the age estimation performance, we first use a
face detector to find the face area in each image, and label the
eye corner locations of each face subject. Based on the face and

2The images in the database cannot be shown here due to the IP and confi-
dential issues.

Fig. 8. MAEs at each age for females and males on the UIUC-IFP-Y database,
given by our LARR method.

eye corner locations, the face images are cropped, scaled, and
transformed to 60 60 gray-level patches. The images have sig-
nificant variances in illumination since the photographs were
taken in the outdoor environment. The grey-level values of each
face image are normalized to a normal distribution with zero-
mean and one standard deviation in order to reduce the effect of
out-door illumination changes. The database also contains some
facial expression variations and makeup.

The face image patches with the same size of 60 60 are fed
into the manifold learning module. To visualize the embedded
age manifold using different techniques, we choose 4000 face
images of female subjects [8]. Fig. 3 displays the 2-D and 3-D
manifold visualization of the PCA, LLE, and OLPP algorithms.
The datapoints of ages from 0 to 93 are colored from blue to red.
We can obtain three observations. 1) The PCA method does not
shown clear manifold trend of ages. The reason is that the PCA
is purely unsupervised without using any age label information,
which seems to be important for learning the embedded mani-
fold from the complex aging patterns. 2) The manifold learned
by the LLE (a nonlinear embedding method) is approximately
an ellipsoid with higher age (red) in the center and lower age
(blue) at periphery. 3) The OLPP algorithm achieves good visu-
alization of the age manifold with a distinct aging trend. There-
fore, we choose the OLPP method in our age manifold learning
module in the age estimation framework.

After the age manifold was learned, each face image can be
projected onto the age manifold to extract a feature vector. We
use the first 150 features for each face image by following our
previous work in [8]. The system then learns a robust regression
function using the kernel SVR method for females and males
separately. Actually the manifold was learned for the female



GUO et al.: IMAGE-BASED HUMAN AGE ESTIMATION BY MANIFOLD LEARNING AND LOCALLY ADJUSTED ROBUST REGRESSION 1185

Fig. 9. Cumulative scores of the algorithms with different settings for (a) female age estimation, (b) male age estimation on the UIUC-IFP-Y database, and (c) age
estimation on the FG-NET database, at error levels from 1 to 15 years.

and male independently. As demonstrated in the toy example
in Section V-B, a small value should be chosen for the -in-
sensitive loss function in (4). We set for our age es-
timation task. In SVR learning, parameters and are deter-
mined on a validation set. Experimentally, we found that a good
choice is and , separately. To locally adjust the
global regression results, we tried different local search ranges
as powers of two, e.g., 4, 8, 16, 32, and 64 classes, and the re-
sults from different search ranges are compared to see the effect
of local adjustment. The purpose of choosing the powers of two
is to simplify the binary search structure. One can observe that
the local search range does influence the age estimation results.
Currently, we cannot set the local search range automatically in
a data-driven manner, and we will investigate this issue in the
future. The pair-wise linear SVM classifiers were used for the
local adjustment, centered at the age value (or label) obtained
from the global regressor.

We perform a standard four-fold cross validation test to eval-
uate the accuracy of our algorithms for age estimation on the
UIUC-IFP-Y age database. The test was executed on the female
and male subsets separately. The reason is that we found females
and males age quite differently in the database. So, our current
system has a latent module to first estimate gender before age
estimation in the UIUC-IFP-Y database. For each experiment,
about 1/3 of the training data are used as a validation subset to
determine the optimal parameter setting such as and . Then
the parameters are fixed and the whole training data set is used to
learn the robust regression function. The pair-wise linear SVM
classifiers are learned using the same training data and used for
local adjustment in testing. Finally, all performance measures
are reported on the unseen test data.

The performance of age estimation can be measured by two
different measures: the mean absolute error (MAE) and the cu-
mulative score (CS). The MAE is defined as the average of the
absolute errors between the estimated ages and the ground truth
ages, , where is the ground truth
age for the test image , is the estimated age, and is the total
number of test images. The MAE measure was used previously
in [10], [22], [23], [34]. The cumulative score [10] is defined as

, where is the number of test
images on which the age estimation makes an absolute error no
higher than years.

Table I and Figs. 8 and 9 show the experimental results. The
first and second columns in Table I show the MAEs for females

TABLE I
MAES OF OUR METHOD WITH DIFFERENT SETTINGS

and males in the UIUC-IFP-Y age database, separately. Dif-
ferent ranges, e.g., 4, 8, 16, 32, and 64, were tried for local ad-
justment of the global regression results. One can see that the
local adjustment truly reduces the errors of the global regres-
sion. For example, the MAE of the SVR is seven years for the
female (column 1 in Table I), but is reduced to 5.86 (column 1,
row 5) when 16 local classes are used for the LARR method, and
so on. Different ranges of adjustment do have different MAEs.
For comparison, we also show the results using purely the SVM
classifiers in the first row. One can see that the classification
scheme has lower errors than the pure regression method for
both females and males, but it has higher error rates than some
of the locally adjusted results. The best LARR result in terms of
MAE is 5.25 years for females when the local search range is 64
classes, while it is 5.30 years for males when the adjust range is
32 classes. The ranges of local adjustment depend on the data
and the global regression results. To illustrate the MAEs at each
age, two pictures for female and male results are displayed in
Fig. 8, respectively.

Fig. 9(a) and (b) shows the CS measures for females and
males separately. We can observe that the LARR methods (with
different ranges for local adjustment) improve the score signif-
icantly over the pure regression method for lower error levels,
e.g., years. For example, in one year error level, most
LARRs with proper ranges of local adjustment could improve
the accuracy by 175% and 267% for females and males sepa-
rately. This improvement is significant. We also notice that large
ranges are required for local adjustment on the UIUC-IFP-Y age
database. For instance, when 16 classes are used for local adjust-
ment, the CS curve is explicitly lower than 32 or 64 classes. We
do not show the cumulative scores for four and eight classes here
in order to not mess up the figures. Those two CS curves are even
lower than 16 classes. One may also notice that the CS curve of
SVM classifiers is close to the LARR32 and LARR64 for both
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Fig. 10. Comparisons between our LARR method and other state-of-the-art methods in terms of the cumulative scores for (a) female age estimation, (b) male age
estimation on the UIUC-IFP-Y database, and (c) age estimation on the FG-NET database.

TABLE II
MAE COMPARISONS OF DIFFERENT ALGORITHMS

females and males, but the MAEs of the SVM are higher than
the LARR16 or LARR32 as shown in Table I. This indicates
that we need both MAE and CS measures complementarily to
measure the performance of an algorithm in age estimation.

As shown in Table II, we also compare our results with all
previous methods reported on the UIUC-IFP-Y age database. It
turns out our LARR method has the MAEs of 5.25 and 5.30
years for females and males separately, which are explicitly
smaller than all previous results under the same experimental
protocol. Our method brings about 24% deduction of MAEs
over the best result of previous approaches. The comparisons of
cumulative scores are shown in Fig. 10(a) and (b). The method
of the RUN2 only has the age error levels up to ten years in [33].
The results were provided by the authors in [33] and [34].

We use the same AAM features as in [10], [33], [34] to
evaluate our LARR method on FG-NET database. Since the
FG-NET database has small size, we do not learn any age
manifold but use the AAM features directly. Our focus is then
to evaluate the performance of the new LARR method for age
estimation on the FG-NET database. The popular test strategy,
namely leave-one-person-out (LOPO), was usually taken for
the FG-NET age database, as suggested by the existing work
[10], [33], [34]. We follow the same strategy and compare our
results with the state-of-the-art methods. The experimental
results are shown in the third column of Tables I and II. One can
see that our LARR method has an MAE of 5.07 years which
is lower than all previous methods listed in Table II. Our best
MAE was obtained using either four or eight classes for local
adjustment as shown in Table I. Increasing the local search
ranges for the LARR method will make the errors larger. For
example, the MAE will be 6.03 years when 32 classes are used
for local adjustment. We cannot get the result for 64 classes
since there are at most 63 or 61 age labels in the LOPO test. In
other words, there are missing ages in the FG-NET database.
When the pure classifiers, SVMs, are used, the MAE is 7.16,

which is much higher that the 5.16 years of the pure regression.
One possible reason is that there is not sufficient data for
pair-wise SVM training, while the global SVR uses all the data
in the model. Another observation is that the robust regression
itself (without local adjustment) has an MAE of 5.16 years,
which is still lower than all previous methods shown in Table II.
Our LARR method further reduces the MAE to 5.07 years.

Fig. 9(c) shows the cumulative scores of our LARR method
on the FG-NET database. LARR8 means using eight classes
for local adjustment. We do not show LARR4, LARR16, and
LARR32 in order to avoid messing up the display. The cumu-
lative scores of those ranges are close to LARR8 with slight
differences. LARR8 has higher accuracy than the pure regres-
sion by SVR at lower error levels (1–6), but close to it at higher
error levels. The cumulative scores of the pure SVM are much
lower than the pure SVR for most error levels, which indirectly
indicates the significance of constraining the SVM search in a
local range. The cumulative score comparisons are shown in
Fig. 10(c). Our LARR method performs much better than the
QM and MLP methods. The method of RUN1 [34] is close to
our LARR in low age error levels, but worse than LARR in
high levels. In contrast, the method of RUN2 [33] is close to
our LARR in high age error levels, but worse than the LARR
in low error levels. Overall, our LARR method has higher accu-
racy than both the RUN1 and RUN2 on the FG-NET database.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new framework for
face-image-based automatic age estimation. A manifold
learning method was introduced for learning the low-dimen-
sional age manifold. The support vector machine and support
vector regression methods are investigated for age prediction
based on the learned manifolds. To improve the age estimation
performance and robustness, a locally adjusted robust regressor
(LARR) was designed. From the experimental evaluations on
our internal UIUC-IFP-Y database and the public available
FG-NET database, we conclude that 1) the LARR method gives
better age estimation than the purely robust regression by SVR
or purely classification by SVM and 2) the LARR method out-
performs many state-of-the-art approaches to age estimation.
We expect to see more applications of the LARR method to
other challenging real-world problems. An interesting topic to
investigate in the future is to determine the local adjust ranges
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in a data-driven manner instead of specified values, which may
further improve the accuracy.
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