
Display of Scientific Data Structures for Algorithm Visualization

William Hibbard1&2, Charles R. Dyer2 and Brian Paul1

1Space Science and Engineering Center 2Department of Computer Sciences
University of Wisconsin-Madison

Abstract algorithms as networks of modules. The data flow
architecture is popular because of the flexibility of
mixing calculation modules with display modules, and
because of its easy graphical user interface. However,
data flow networks are not generally used for developing
detailed algorithms. Current data flow implementations
support finite sets of data structures; in order to support
algorithm details they would need to support user-
definable, application-specific data structures.

We present a technique for defining graphical
depictions for all the data types defined in an algorithm.
The ability to display arbitrary combinations of an
algorithm's data objects in a common frame of reference,
coupled with interactive control of algorithm execution,
provides a powerful way to understand algorithm
behavior. Type definitions are constrained so that all
primitive values occurring in data objects are assigned
scalar types. A graphical display, including user
interaction with the display, is modeled by a special data
type. Mappings from the scalar types into the display
model type provide a simple user interface for
controlling how all data types are depicted, without the
need for type-specific graphics logic.

The Balsa and Zeus systems [1] provide a set of tools
for designing visualization environments for algorithms.
Demonstration environments produced using Zeus
provide very detailed and effective views of the internal
workings of complex algorithms. However, the
environment must be custom designed for every
algorithm.

The Powervision system [6] uses an object-oriented
language to support interactive development of image
processing algorithms. The system includes a fixed set of
display methods, defined in terms of a set of virtual
functions for accessing data objects. As algorithm
designers define new object classes, they must ensure that
the virtual access functions extend to those classes, and
may need to design new display methods for particularly
novel classes. The Powervision system exploits object-
oriented techniques to reduce the amount of program
logic needed to display new object classes, but the system
does not eliminate it.

1: Introduction

Designing scientific algorithms is something of an
art. For example, algorithms for extracting useful
information from remotely sensed data are based on well
understood mathematical and statistical techniques, but
often combine these techniques in problem specific ways
that can only be determined experimentally. Scientists
can usually recognize incorrect results in graphical
depictions of the output of their algorithms. To find the
source of errors they need a way to apply this same visual
understanding to the internal logic of their algorithms.
Interactive debugging systems allow scientists to step
through program logic and to print the values of program
variables and arrays, in order to track down low-level
bugs. They need the same sort of interactive capability
applied to diagnosing problems with high-level algorithm
behavior. However, where low-level logic can be
understood from a few printed values, high-level
behavior involves masses of data that can only be
understood through visualization. Thus there is a need
for techniques for generating graphical depictions of the
internal data objects of scientific algorithms. In order to
be useful to scientists, the user interface for controlling
these depictions should be simple and not require
graphics expertise.

In this paper we describe a technique, that we call the
"scalar mapping technique", for generating graphical
depictions of the internal data objects of scientific
algorithms, without the need for type-specific display
logic. We also describe an implementation of this
technique in the VIS-AD (VISualization for Algorithm
Development) system, an experimental laboratory for
developing algorithms.

2: The scalar mapping technique

The scalar mapping technique defines an infinite set
of data types that can serve as the types of data objects in
a programming language. The data types are defined in
such a manner that every primitive value occurring in a
data object has one of a finite set of scalar types. The
technique also models a graphical display, including user
interaction with the display, as a special data type whose
primitive values have one of a finite set of display scalar

The data flow architecture [3] is widely used for
scientific visualization, with implementations including
AVS [9], SGI Explorer, Khoros [7] and apE [2]. It
provides a graphical user interface for specifying

1

types. Mappings from the scalar types to the display
scalar types provide a simple user interface for
controlling how all data types are displayed, since the
graphical depiction of a data object of any data type can
be derived from the scalar mappings.

primitive type real and are values attached voxels that
are depicted by iso-value surfaces or iso-value lines
drawn through voxels. The scalar animation has
primitive type int and is the index of an array of voxel
volumes that can be rendered in sequence for animation,
under user control. The scalars selector_i have any of
the primitive types (real, real2d, real3d, int or string)
and are indices of display contents. The display contents
change in response to user control of selector_i values,
providing a way for the display type to model abstract
user interactions with a graphical display.

2.1: Data types

Define T as the set of types for the data objects in an
algorithm. It is common for a programming language to
define a set of primitive types (e.g. int, real), and to
define a set of type constructors for building the types in
T from the primitive types. We modify this by
interposing a finite set S of scalar types between T and
the primitive types. We define the primitive types as:

The display type is defined by:

voxel color contour contour n= (, _ , . . . , _)1

display selector selector m= → →(_ .. . (_1
 ((_))).. .)animation xyz volume voxel→ →PRIM={int, string, real, real2d, real3d}

Each voxel object includes a color value and a set of zero
or more contour_i values that are depicted by iso-level
contours. The number of contour_i values in the voxel
tuple is the number of scalars s S∈ such that
F(s)=contour, where the function F is part of the display
frame of reference described in Section 2.3. The voxel
objects are organized into a three-dimensional volume
array. An array of voxel volumes is used to model
animation, and nested arrays indexed by selector_i are
used to model user control over the display. The number
of selector_i indices in the display type is the number of
scalars s S∈ such that F(s)=selector.

where real2d and real3d are pairs and triples of real
numbers. An algorithm designer defines a finite set S of
scalar types, and binds them to the primitive types by a
function P S PRIM: → . An infinite set T of types can be
defined from S by:

S T⊂
(, . . . , .) (, . . . ,)for i n t T t t Ti n= ∈ ⇒ ∈1 1

() ()s S t T s t T∈ ∧ ∈ ⇒ → ∈

where (t1,...,tn) is a tuple type constructor with element
types ti, and ()s t→ is an array type constructor with
value type t and index type s.

2.3: Display frame of referenceEvery primitive value, including an array index value,
occurring in a data object of type t T∈ , has a scalar type
in S. This is the key to providing a simple user interface
for controlling the display of all algorithm data objects.
By defining mappings from the scalar types into a type
model of a graphical display, the user can control the way
that all data types are displayed.

Types in T are defined in terms of the scalar types S,
and the display type used to model a graphical display is
defined in terms of the display scalar types DS.
Mappings from S to DS create a frame of reference for
generating graphical depictions of data objects with types
in T. A display frame of reference is defined by
functions:2.2: Model of a graphical display as a data type

F S DS nil: { }→ ∪
We model a graphical display by defining a special

display data type. The contents of the display, including
the way its contents change in response to user controls,
form the value of a data object of type display.

FD s D s D F s(): () (())→ for s S∈

where D(t) is the set of data objects a type t. If F(s)=nil
then FD(s) is undefined and the values of s are ignored in
the display. The function FD determines how display
scalar values are computed from scalar values. The
function:

The display type is defined in terms of a set DS of
display scalars:

DS={x_axis, y_axis, z_axis, xy_plane, xz_plane,
 yz_plane, xyz_volume, color, contour_1, ..., DISPLAY F FD t D t D display(, ,): () ()→
 contour_n, animation, selector_1, ..., selector_m}

is derived from F and FD, and produces data objects of
the display type from data objects of any type t T∈ . The
functions F and FD provide a simple way for the user to
control the DISPLAY function, and therefore to control
the display of data objects.

The scalar xyz_volume has primitive type real3d and is a
three-dimensional voxel coordinate. The scalars x_axis,
y_axis, z_axis, xy_plane, xz_plane and yz_plane are real
and real2d Cartesian factors of xyz_volume. The three-
dimensional array of voxels is projected onto the two-
dimensional display screen, and the projection can be
interactively rotated, panned and zoomed under user
control. The scalar color has primitive type real3d and
is the color value of a voxel. The scalars contour_i have

3: The VIS-AD system

The scalar mapping technique is implemented in the
VIS-AD system [5], which has been used to demonstrate

2

the effectiveness of the technique for supporting
experiments with a variety of algorithms, including an
algorithm for discriminating clouds in multi-spectral
satellite images.

indexed by image_region values. A data object of type
visir_set_sequence is a time sequence of partitioned
images. The vvi_image and vvi_set types are similar to
the visir_image and visir_set types, with temperature,
variance and brightness values at each image pixel. The
var_image and var_set types are also similar to the
visir_image and visir_set types, with only a variance
value at each image pixel. A histogram data object
attaches a frequency count to a set of temperature values,
and a histogram_set object contains a histogram and an
earth_location value for each image_region value.

The VIS-AD system provides a simple syntax for
defining the set S of scalar types and the function
P S PRIM: → . The following are examples of scalar
types defined for the cloud discrimination algorithm:

type brightness = real;
type temperature = real;
type variance = real; The VIS-AD system provides a simple syntax for

specifying a display frame of reference. An example of a
frame of reference definition is:

type earth_location = real2d;
type image_region = int;
type time = real;
type count = int; map earth_location to xz_plane;

map temperature to y_axis;
Here brightness and temperature are the visible and
infrared radiance values of pixels in satellite images,
variance is derived from temperature, earth_location is a
pair of values for the latitude and longitude of pixel
locations, image_region is an index into rectangular sub-
images, time is an index for image sequences, and count
is used for histograms.

map brightness to color;
map variance to y_axis;
map time to animation;
map count to x_axis;
map image_region to selector;

Each of these map statements defines the value of the
function F for a single scalar type in S. Map statements
can also specify values for the FD function; these
examples specify none so defaults are used. F(s)=nil for
any s S∈ that does not occur in a map statement.

The VIS-AD system also provides a simple syntax for
defining types in T using the tuple and array type
constructors. The keyword structure is used for the tuple
constructor. The following are examples of complex
types defined for the cloud discrimination algorithm:

type visir_image =
 array [earth_location] of
 structure {
 .visir_ir = temperature;
 .visir_vis = brightness;
 };
type visir_set= array [image_region] of visir_image;
type visir_set_sequence = array [time] of visir_set;
type vvi_image =
 array [earth_location] of
 structure {
 .vvi_ir = temperature;
 .vvi_var = variance;
 .vvi_vis = brightness;
 };
type vvi_set = array [image_region] of vvi_image;
type var_image = array [earth_location] of variance;
type var_set = array [image_region] of var_image; Figure 1: Cloud discrimination algorithm input.
type histogram = array [temperature] of count;
type histogram_set = Using this frame of reference, the lower-right window

of Figure 1 shows a top-south view of a data object of
type visir_set_sequence. This data object is the input to
the cloud discrimination algorithm. The text editor
window on the left shows a section of the cloud
discrimination algorithm coded in a language similar to
C. A data object is selected for display by placing the
cursor over any occurrence of its name in this window
and clicking a mouse button. Any combination of data
objects may be selected for display, and all occurrences of
their names are highlighted in reverse video. Execution

 array [image_region] of
 structure {
 .hist_location = earth_location;
 .hist_histogram = histogram;
 };

Data objects of type visir_image are two-dimensional
images of temperature and brightness values, indexed by
earth_location values. The cloud discrimination
algorithm partitions images into regions, and a data
object of type visir_set is an image with partitions

3

breakpoints are set and cleared using the mouse in this
window, and the next program statement to be executed
is highlighted. The small text editor window at the top
of the screen contains the display frame of reference.
The widgets in the upper-right corner of the screen are
used to control animation, to select ranges for scalars
mapped to selector, to adjust color look-up tables for real
scalars mapped to color, and to select iso-levels for
scalars mapped to contour.

var_set object by setting those pixels whose variance is
greater than the value depicted by the purple sphere to a
special missing value; these missing pixels are invisible
in the display. Only a single value of image_region is
selected in Figure 2, so the depictions of the
histogram_set and var_set objects are restricted to single
histogram and var_image sub-objects.

Since F(time)=animation in the frame of reference
example, only a single visir_set sub-object is displayed in
Figure 1. Toggling the ANIMATE widget causes the
display to sequence through the object's visir_set sub-
objects. Since F(image_region)=selector, two slider
widgets in the upper-right corner are used to select a
range of values for image_region; all visir_image sub-
objects are selected in Figure 1. Since F(brightness)=
color, the pixel colors are functions of their brightness
values, according to the color widget in the upper-right
corner of the screen. Since F(earth_location)=xz_plane,
the pixels are laid out horizontally. Since
F(temperature)=y_axis, the temperature values of pixels
determine their height in the display. The object
depiction may be interactively rotated, zoomed and
translated in 3-D with simple mouse controls.

Figure 3: The discriminated clouds.

Figure 3 shows an object of type visir_set_sequence
that is the output of the cloud discrimination algorithm.
It is identical to the object in Figure 1, except that the
values of pixels judged by the algorithm not to be in
clouds have been set to the missing value.

Figure 2: A step in discriminating clouds.

Objects are depicted in monochrome when no object
component is mapped to color. When several
monochrome objects are displayed simultaneously, each
object has a different color. Figure 2 shows a south-west
view of five monochrome data objects. The tall white
graph is an object of type histogram_set. The small blue
and yellow spheres indicate the values of scalar objects of
type temperature, calculated by the cloud discrimination
algorithm as the 10th and 90th percentiles of the
histogram. The purple sphere indicates the value of a
scalar object of type variance, calculated from the
temperature percentiles. The blue-green object near the
bottom has type var_set, and is calculated from another

Figure 4: A 3-D scatter diagram of an image.

4

A second frame of reference example is: map brightness to color;
map variance to y_axis;

map temperature to x_axis; map time to animation;
map brightness to z_axis; map count to x_axis;
map variance to y_axis; map image_region to selector;
map count to y_axis;
map image_region to selector; Figure 6 shows the visir_set_sequence object from Figure

1 in this frame of reference. Since F(temperature)=color
and F(brightness)=color, the color at each pixel is the
average of the colors defined by the look-up tables for
temperature and brightness. The color map widgets
show red intensity proportional to temperature and blue-
green intensity proportional to brightness. This way of
looking at multi-spectral data is familiar to earth
scientists.

map time to animation;

Since earth_location does not occur in these map
statements, F(earth_location)=nil and earth_location
values are ignored in the display. Using this frame of
reference, Figure 4 shows an object of type vvi_set as a
three-dimensional scatter diagram. The view in Figure 4
shows temperature along the horizontal axis and
variance along the vertical axis, and is restricted to a
single vvi_image sub-object.

The mappings of temperature and time in the first
frame of reference example can be edited to get:

map earth_location to xz_plane;
map temperature to selector;
map brightness to color;
map variance to y_axis;
map time to y_axis;
map count to x_axis;
map image_region to selector;

Figure 5 shows the visir_set_sequence object from Figure
1 in this frame of reference. Since
F(temperature)=selector, two slider widgets in the upper-
right corner of the screen are used to select a range of
values for temperature, and the display is restricted to
those pixels whose temperature values are within the
selected range. Since F(time)=y_axis, the object's four
visir_set sub-objects are stacked along the y_axis,
showing the motion of cloud features.

Figure 6: Looking at multiple spectra with color.

The essential feature of the VIS-AD system is its
ability to generate displays of any combination of
algorithm data objects, in a variety of frames of
reference. Editing the algorithm, editing the frame of
reference definitions, setting execution breakpoints,
starting, stopping and single stepping algorithm
execution, and displaying various combinations of data
objects, can all be done highly interactively in an
integrated environment. Data objects may be displayed
in multiple frames of reference simultaneously. If a data
object is enabled for display while the algorithm is
executing, every time the object is modified it will be
flagged for re-display. Thus VIS-AD can be used to
produce animations of running algorithms.

4: Data semantics and data display

4.1: Data semantics

Figure 5: A time sequence image object. The DISPLAY function was defined in Section 2.3 as
a function from the domain D(t) of data objects of a type
t T∈ to the domain D(display), so we will describe these
domains. The domains of scalar types are determined
from the domains of their primitive types, by

The frame of reference can be edited again to get:

map earth_location to xz_plane;
map temperature to color;

5

D(s)=D(P(s)). The domain of the primitive type int is the
union of a set of finite sub-domains, each an interval of
integers, as follows:

domains of D(real2d) and D(real), so that raw satellite
images can be accessed directly in terms of latitude,
longitude and temperature. An expression like
image[location] is evaluated by resampling the value of
location to the nearest index value of the image array;
the expression evaluates to missing if location is outside
the range of index values of image. Furthermore,
arithmetic expressions evaluate to missing if any operand
is missing. Thus algorithms can combine data from
multiple sources without the need for detailed logic for
resampling, for checking data boundaries, and for
checking for missing data. Although VIS-AD
implements simple resampling for access to arrays with
real, real2d and real3d indices, it would be possible to
implement one or more interpolation schemes.

D k i k ji j(int) { | }, = ≤ ≤
D missing D i ji j(int) { } (int),= ∪ ≤

�

where i, j and k are integers and the missing value
indicates the lack of information (the use of special
"missing data" codes is common in remote sensing
algorithms). The domain of the primitive type real is the
union of a set of finite sub-domains, each a set of half-
open intervals, as follows:

D real f k f k i k jf i j n
n n() {[(/), (() /))| }, , , = + ≤ ≤2 1 2

D real missing D real f i j ni j nf F d() { } (), , ,,= ∪ ≤ ≥∈ 01 ��
4.2: The DISPLAY function

where i, j, k and n are integers and F1d is a set of
increasing continuous bijections from R (the set of real
numbers) to R; the functions in F1d provide non-uniform
sampling of real values. The domains D(real2d),
D(real3d) and D(string) are similarly defined as the
unions of finite sub-domains.

There are two equivalent formulations of the
DISPLAY function. One formulation composes the
DISPLAY function from a sequence of basic type
transformations [4]. The other is in terms of a tree
structure defined for data objects, and is described here.
The tree structure TR(o) for objects o is defined
recursively as follows:

D s t(())→ is defined as the union of a set of function
spaces, rather than as the single space of functions from
D(s) to D(t), as follows:

1. If o is an array containing value objects oi, i=1,...,n,
with corresponding scalar index values vi, then TR(o)
is a branch node with sub-nodes TR(oi), and the value
vi is attached to TR(oi). If o has the missing value,
then TR(o) is a leaf node and the missing value is
attached to TR(o).

D s t missing D s D tsubssubs(()) { } () ())(→ = ∪ →
�

where subs ranges over the finite sub-domains of the
scalar domain D(s), and (() ())D s D tsubs → denotes the
set of all functions from the set D(ssubs) to the set D(t).
Every array object in D s t(())→ contains a finite set of
values from D(t), indexed by values from one of the finite
sub-domains of D(s).

2. If o is a tuple containing scalar element objects vi,
i=1,...,m, and non-scalar element objects oi, i=1,...,n,
then TR(o) is a branch node with sub-nodes TR(oi),
and all the values vi are attached to each TR(oi). If
n=0 (o has only scalar elements) then TR(o) is a leaf
node, and the values vi are attached to that node. If
o has the missing value, then TR(o) is a leaf node and
the missing value is attached to TR(o).

The domains of tuple types are defined by:

D t t missing D t D tn n((, . . . ,)) { } () . . . ()1 1= ∪ × ×

Each domain D(t) has a lattice structure [8], with the
missing value as its least element. The half-open
intervals in D(real) are approximations to values in R
and are ordered by the inverse of set inclusion; that is, in
the lattice structure, an interval is "less" than its sub-
intervals. Values in D(real2d) and D(real3d) form
similar lattices and are approximations to values in R2

and R3. The lattice structure can be extended to array
and tuple types.

3. If o is a scalar not occurring as a tuple element, then
TR(o) is a leaf node and the value of o is attached to
TR(o).

Define PATH(o) as the set of paths in TR(o) from the
root node to any leaf node. For any p PATH o∈ () define
V(p)=v1v2...vn as the string of scalar values attached to
nodes along the path p. Then a string of display scalar
values is calculated from V(p) as:

The lattice structure of domains, and the definition of
array domains as unions of function spaces, provide a
formal basis for interpreting array data objects whose
indices have primitive types real, real2d or real3d as
finite samplings of functions over R, R2 or R3. For
example, a satellite image is a finite sampling of a
continuous radiance field. The VIS-AD programming
language allows arrays to be indexed by real, real2d and
real3d values. Navigation (earth alignment) and
calibration (radiance normalization) for satellite images
can be implemented by appropriately defined sub-

VD(p)=FD(s1)(v1)...FD(sn)(vn)

where v D si i∈ () and where any spatial coordinate
display scalar values among the FD(si)(vi) are factored
into x_axis, y_axis and z_axis values in VD(p).

The DISPLAY function is computed as:

DISPLAY F FD t o(, ,)() =

6

COMPOSITE DISP VD p p PATH o({ (())| ()})∈ that, for example, the histogram in Figure 2 is positioned
over the appropriate image region.

where DISP(VD(p)) is a display object computed from
the string of display scalar values VD(p), and the
COMPOSITE function computes a single object in
D(display) from a set of such objects.

The COMPOSITE function computes an object in
D(display) from a set of such objects. This computation
is done independently for each voxel sub-object (i.e. for
each combination of selector_i, animation and spatial
values indexing a voxel sub-object). The color value of a
voxel is computed as the mean of the non-missing color
values of the corresponding voxel sub-objects of the set of
objects, and similarly for contour_i values. The
COMPOSITE function is also used to combine depictions
of multiple objects into a single display.

If the leaf node of the path p is generated from an
object with the missing value, then
DISP(VD(p))=missing. Otherwise the DISP function is
computed as follows. Given a string VD(p), for each
s DS∈ define Ns as the number of values of type s that
occur in VD(p). Compute a voxel object vox=
(wcolor, wcontour_1, ..., wcontour_n) as follows:

4.3: Discussion of data displayif Ncolor=0 and for i=1,...,n. Ncontour_i=0
then vox=(SPECIALcolor , missing, ..., missing)

Although the spatial coordinate display scalar
xyz_volume is factored into the one- and two-dimensional
Cartesian factors x_axis, y_axis, z_axis, xy_plane,
xz_plane and yz_plane, the generated displays need not
conform to Cartesian coordinate systems. Two- and
three-dimensional scalars may be mapped to spatial
display scalars, and the FD functions for those scalars
may include mathematical coordinate transformations
into non-Cartesian coordinate systems. Similarly, three-
dimensional scalars may be mapped to the color display
scalar, and the FD functions for those scalars may
include mathematical color transformations into color
systems other than RGB (Red, Green and Blue).

else
 for s=color, contour_1, ..., contour_n
 if Ns=0 then ws=missing else ws=(u1+...+uN)/Ns

where SPECIALcolor is the monochrome color value
described in Section 3, and the ui are the values of type s
occurring in VD(p). For s=x_axis, y_axis and z_axis,
compute ws as follows:

if Ns=0 then ws=SPECIALs else ws=u1+...+uN

where SPECIALs is the spatial coordinate of a
distinguished plane perpendicular to the s axis, and the ui
are the values of type s occurring in VD(p). For
s=animation and selector_i, compute ws as follows: The scalar mappings provide a flexible tool for

projection pursuit for data sets in many dimensions.
Given a higher dimensional data set, the user can map
different dimensions of the data set to three spatial
coordinates, three color dimensions, animation, and a
variable number of selector dimensions.

If Ns=0 then ws=D(s) else ws=uN

where ws=D(s) indicates that all values in D(s) are used
for ws, and uN is the value of type s occurring farthest
from the root in VD(p).

Now the display object d=DISP(VD(p)) is computed
as follows:

It is certainly possible for the user to define a display
frame of reference that produces depictions that poorly
communicate the information content of data objects.
However, the interactivity of the system allows the user to
experiment with the scalar mappings, in order to
understand how the mappings work and to find effective
object depictions.

d[wselector_1]...[wselector_m][wanimation]
[wx_axis][wy_axis][wz_axis]=vox

If ws=D(s) was selected for s=animation or selector_i,
then the equation above applies for all values of ws in
D(s). All other voxel sub-objects of d are set to missing.

Since interactive response times are important, the
VIS-AD implementation of the DISPLAY function uses
shared-memory parallelism and is optimized for
vectorization. It traverses paths in an object's tree
structure in parallel. It divides the ranges of values of
array indices into sections, and the paths through each
section are traversed by a different processor. Also, the
internal storage format for data objects has been designed
to allow efficient vector processing of arrays of scalars
and arrays of tuples of scalars. Running on an SGI 340
VGX, the DISPLAY function generated each of the
figures in this paper in less than one second. This
performance permits interactive visualization of data
objects large enough for real scientific algorithms, and
smooth animations of the behavior of some algorithms.

Thus, if the string VD(p) contains exactly one value
for each display scalar, then the color and contour_i
values of VD(p) are set in a single non-missing voxel sub-
object of DISP(VD(p)), indexed by the spatial, animation
and selector_i values of VD(p). However, undefined and
multiply-defined display scalar values are more complex,
and the DISP function handles them in a way that varies
between display scalars. If the value of a spatial
coordinate is undefined in VD(p), the depiction of p is
embedded in a distinguished plane. However, if the
value of s=animation or selector_i is undefined in VD(p),
sets of voxel sub-objects in DISP(VD(p)) are set to vox so
that the depiction of p is invariant to user control of s.
Multiply-defined color and contour_i values are
composited by taking their mean, but multiply-defined
spatial coordinates are combined by taking their sum, so

Because of the nested arrays in the display type, a
display data object may be very large. The VIS-AD

7

implementation of the DISPLAY function minimizes this
size by:

trace points. Similarly, algorithm behavior over an
ensemble of invocations can be studied by deriving a new
array type of values of a selected algorithm data object,
indexed by a scalar for a parameter that varies between
algorithm invocations (this may be a string scalar for the
name of an input data set that varies between
invocations). The system would invoke the algorithm for
each value of the parameter and save the final value of
the selected object in the derived array. By mapping the
index scalar of the derived array to a display scalar, the
user will be able to generate flexible displays of an
execution trace or of the way algorithm behavior varies
over an ensemble of invocations.

1. computing values for only those sub-objects of a
display object that affect visible screen contents, and
re-applying the DISPLAY function to data objects as
animation and selector indices change.

2. Splitting the display type into two arrays, one for
contour values and the other for color values.

3. Limiting the sampling resolution of xyz_volume for
the array of contour values.

4. Using sparse representations for the array of color
values; texture maps are used for voxels lying on the
distinguished 2-D planes determined by the values
SPECIALx_axis, SPECIALy_axis and SPECIALz_axis,
and lists of non-missing voxels are used outside of the
distinguished planes.

Acknowledgment

We would like to thank James Dodge and Gregory
Wilson for their support. This work was funded by
NASA/MSFC (NAG8-828) and NSF (IRI-9022608).When data objects are transformed into dense sets of

non-missing voxels it is impossible to see all the voxels,
so VIS-AD provides a user-controlled clipping plane for
creating a cut-away view of the display.

References

[1] Brown, M., and R. Sedgewick, 1984; A system for
algorithm animation; Computer Graphics 18(3), 177-
186.

5: Plans for further development
[2] Dyer, D., 1990; A dataflow toolkit for visualization;

Computer Graphics and Applications, 10(4), 60-69.
We are generating a library of standard image

analysis and remote sensing functions callable by
VIS-AD programs. We are also adapting VIS-AD for
distributed execution, enabling programs to call functions
on remote computers.

[3] Haeberli, P., 1988; ConMan: A visual programming
language for interactive graphics; Computer Graphics
22(4), 103-111.

[4] Hibbard, W. and C. Dyer, 1991; Automated display of
geometric data types. UW Computer Sciences
Technical Report #1015.

We plan to extend the definition of the display type
by including real display scalars for transparency and
reflectivity, and a real3d display scalar for vector, in the
voxel tuple. Scalars mapped to these new display scalars
would be depicted by complex volume rendering and
flow rendering techniques.

[5] Hibbard, W., C. Dyer and B. Paul, 1992; A
development environment for data analysis
algorithms. Preprints, Conf. Interactive Information
and Processing Systems for Meteorology,
Oceanography, and Hydrology. Atlanta, American
Meteorology Society. 101-107.

We plan to extend the set T of data types by adding
type constructors for lists, trees and other complex linked
structures. We will extend the DISPLAY function to
generate diagrams of linked structures, and to provide
interaction mechanisms that allow the user to traverse
linked structures. In order to do this, linked structures
will probably be included in an extended definition of the
display type.

[6] McConnell, C. and D. Lawton, 1988; IU software
environments; Proc. IUW, 666-677.

[7] Rasure, J., D. Argiro, T. Sauer, and C. Williams,
1990; A visual language and software development
environment for image processing; International J. of
Imaging Systems and Technology, Vol. 2, 183-199.We plan to extend the parallel algorithm for the

DISPLAY function to a scalable algorithm running on
large numbers of processors, in order to increase
interactivity for large data objects.

[8] Schmidt, D. A., 1986; Denotational Semantics. Wm.
C. Brown Publishers.

[9] Upson, C., T. Faulhaber, Jr., D. Kamins, D. Laidlaw,
D. Schlegel, J. Vroom, R. Gurwitz, A. van Dam,
1989; The application visualization system: a
computational environment for scientific
visualization; Computer Graphics and Applications,
9(4), 30-42.

We plan to adapt VIS-AD to generate graphical
execution traces of algorithm data objects, and graphical
depictions of the way that algorithm behavior varies with
respect to varying algorithm parameters and varying
input data sets. These functions are possible because of
the flexibility to define arrays of any data type. The
system can trace a data object during execution by
deriving a new array type of values of the data object,
indexed by a scalar for algorithm step number. The
system will execute the algorithm and store the value of
the selected object in the derived array at user-declared

8

