
VISUALIZING SCIENTIFIC COMPUTATIONS: A SYSTEM BASED ON LATTICE-STRUCTURED

DATA AND DISPLAY MODELS

by

WILLIAM LOUIS HIBBARD

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN-MADISON

1995

VISUALIZING SCIENTIFIC COMPUTATIONS: A SYSTEM BASED ON LATTICE-STRUCTURED

DATA AND DISPLAY MODELS

William Louis Hibbard

Under the supervision of Professor Charles R. Dyer

At the University of Wisconsin-Madison

Abstract

In this thesis we develop a system that makes scientific computations visible and enables physical

scientists to perform visual experiments with their computations. Our approach is unique in the way it

integrates visualization with a scientific programming language. Data objects of any user-defined data type

can be displayed, and can be displayed in any way that satisfies broad analytic conditions, without

requiring graphics expertise from the user. Furthermore, the system is highly interactive.

In order to achieve generality in our architecture, we first analyze the nature of scientific data and

displays, and the visualization mappings between them. Scientific data and displays are usually

approximations to mathematical objects (i.e., variables, vectors and functions) and this provides a natural

way to define a mathematical lattice structure on data models and display models. Lattice-structured

models provide a basis for integrating certain forms of scientific metadata into the computational and

display semantics of data, and also provide a rigorous interpretation of certain expressiveness conditions on

the visualization mapping from data to displays. Visualization mappings satisfying these expressiveness

conditions are lattice isomorphisms. Applied to the data types of a scientific programming language, this

implies that visualization mappings from data aggregates to display aggregates can always be decomposed

into mappings of data primitives to display primitives.

These results provide very flexible data and display models, and provide the basis for flexible and

easy-to-use visualization of data objects occurring in scientific computations.

Charles R. Dyer, Professor, Computer Sciences, University of Wisconsin - Madison

ii

Abstract

In this thesis we develop a system that makes scientific computations visible and enables physical

scientists to perform visual experiments with their computations. Our approach is unique in the way it

integrates visualization with a scientific programming language. Data objects of any user-defined data type

can be displayed, and can be displayed in any way that satisfies broad analytic conditions, without

requiring graphics expertise from the user. Furthermore, the system is highly interactive.

In order to achieve generality in our architecture, we first analyze the nature of scientific data and

displays, and the visualization mappings between them. Scientific data and displays are usually

approximations to mathematical objects (i.e., variables, vectors and functions) and this provides a natural

way to define a mathematical lattice structure on data models and display models. Lattice-structured

models provide a basis for integrating certain forms of scientific metadata into the computational and

display semantics of data, and also provide a rigorous interpretation of certain expressiveness conditions on

the visualization mapping from data to displays. Visualization mappings satisfying these expressiveness

conditions are lattice isomorphisms. Applied to the data types of a scientific programming language, this

implies that visualization mappings from data aggregates to display aggregates can always be decomposed

into mappings of data primitives to display primitives.

These results provide very flexible data and display models, and provide the basis for flexible and

easy-to-use visualization of data objects occurring in scientific computations.

iii

Acknowledgments

I am greatly indebted to my advisor, Chuck Dyer, for showing me a different way of thinking

about Computer Science problems, and for his consistent good nature.

Special thanks are due to Amir Assadi, Miron Livny, Tom Reps and Greg Tripoli for taking the

time to review this work as members of my thesis committee, and to Tom DeFanti for his input as a guest

committee member.

I want to thank Larry Landweber for suggesting that I pursue a doctorate and for introducing me

to Chuck Dyer, long after I thought graduate school was behind me forever. I also want to thank Francis

Bretherton, Bob Fox and John Anderson, the directors of the Space Science and Engineering Center where

I am employed, for their support and encouragement. I especially want to thank Verner Suomi, the founder

of the Space Science and Engineering Center, for his profound positive influence on my life over a period

of many years.

Special thanks are due to Brian Paul, my principal collaborator in system development, and to

Andre Battaiola, Dave Santek and Marie-Francoise Voidrot-Martinez for their collaboration in systems

development.

I am indebted to Bob Rabin, Roland Stull, Bob Aune, Wilt Sanders, Dick Edgar, Mike Botts,

Chris Crosiar, and all the other users of our systems for their helpful suggestions for improving our

systems.

Marriage to AJ is the best thing that has happened in my life. The real work of this thesis was

done at our home, and thus was always pleasant. Thanks to my sweet mother for always encouraging

education and to my father for teaching me to figure things out for myself. This thesis is dedicated to

Laura and Tommy - thanks to Jeannie and John for bringing them into the world.

iv

Contents

Abstract ii

Acknowledgments iii

1. Introduction 1

1.1 Goals for Scientific Visualization 3

1.2 State of the Art in Scientific Visualization 10

1.2.1 The Data Flow and Object-Oriented Approaches 10

1.2.2 Data Models 13

1.2.3 Display Models 16

1.2.4 Automating the Design of Data Displays 18

1.3 Major Contributions 22

1.4 Thesis Outline 24

2. System Design for Visualizing Scientific Computations 25

2.1 A Scientific Computing Environment 25

2.2 Scientific Data 31

2.3 Scientific Displays 35

2.4 Mapping Data to Displays 37

3. An Analysis of Mappings from Data to Displays 40

3.1 An Analytic Approach Based on Lattices 41

v

3.1.1 Basic Definitions for Ordered Sets 42

3.1.2 Scientific Data Objects as Approximations of Mathematical Objects44

3.1.3 A Mathematical Structure Based on the Precision of Scientific data 46

3.1.4 Data Display as a Mapping Between Lattices 56

3.2 A Scientific Data Model 59

3.2.1 Interpreting the Data Model as a Lattice 64

3.2.2 Defining the Lattice Structure 66

3.2.3 Embedding Scientific Data Types in the Data Lattice 70

3.2.4 A Finite Representation of Data Objects 74

3.3 A Scientific Display Model 75

3.4 Scalar Mapping Functions 79

3.4.1 Structure of Display Functions 79

3.4.2 Behavior of Display Functions on Continuous Scalars 82

3.4.3 Characterizing Display Functions 85

3.4.4 Properties of Scalar Mapping Functions 87

3.5 Principles for Scientific Visualization 91

4. Applying the Lattice Model to the Design of Visualization Systems 94

4.1 Integrating Metadata with a Scientific Data Model 96

4.2 Interacting with Scientific Displays 105

4.3 Visualizing Scientific Computations 123

4.4 System Organization 144

vi

5. Applying the Lattice Model to Recursive Data Type Definitions 148

5.1 Recursive Data Type Definitions 148

5.2 The Inverse Limit Construction 149

5.3 Universal Domains 151

5.4 Display of Recursively Defined Data Types 153

6. Conclusions 155

6.1 Main Contributions and Limitations 155

6.2 Future Directions 158

A. Definitions for Ordered Sets 161

B. Proofs for Section 3.1.4 165

C. Proofs for Section 3.2.2 170

D. Proofs for Section 3.2.3 178

E. Proofs for Section 3.2.4 186

F. Proofs for Section 3.4.1 190

G. Proofs for Section 3.4.2 204

H. Proofs for Section 3.4.3 215

I. Proofs for Section 3.4.4 223

Bibliography 232

vii

List of Figures

1.1. Image data displayed in four different ways. 6

1.2. Interactive display of the output of a numerical weather model. 8

1.3. The place of visualization in the computational process. 10

1.4. A simple rendering pipeline for three-dimensional graphics. 11

1.5. Bertin’s display model. 17

2.1 The place of visualization in the computational process. 27

2.2. A snapshot of an executing shallow fluid simulation model. 29

3.1. Order relation of a continuous scalar. 48

3.2. Approximating real functions by arrays. 49

3.3. Order relation of arrays. 50

3.4. Least precise image in sequence of four. 51

3.5. Second image in sequence of four, ordered by precision. 52

3.6. Third image in sequence of four, ordered by precision. 53

3.7. Most precise image in sequence of four. 54

3.8. Meaning of the expressiveness conditions. 58

3.9. Order relation of a discrete scalar. 60

3.10. Order relation of tuples. 62

3.11. Embedding a tuple type into a lattice of sets of tuples. 65

3.12. Embedding an array type into a lattice of sets of tuples. 66

3.13. Defining an order relation on sets of tuples. 70

3.14. The roles of display scalars in a display model. 77

3.15. Mappings from scalars to display scalars. 82

viii

3.16. The behavior of a display function on a continuous scalar. 85

4.1. An image displayed in a Cartesian coordinate system. 102

4.2. An image displayed in a spherical Earth coordinate system. 103

4.3. Three-dimensional radar data. 104

4.4. X-ray events from interstellar gas. 106

4.5. A goes_sequence object displayed as a terrain. 111

4.6. A goes_sequence object displayed in four different ways. 115

4.7. Three views of chaos. 120

4.8. Visualizing the computations of a bubble sort algorithm. 126

4.9. Visually experimenting with algorithms. 127

4.10. Visually tracing back to the causes of computational errors. 128

4.11. A close-up view of two regions of a goes_partition object. 132

4.12. A close-up view restricted to "cloudy" pixels. 133

4.13. Three ir_image_partition objects displayed as terrains. 134

4.14. Three histogram objects displayed as graphs. 135

4.15. A two-dimensional histogram of X-ray events. 140

4.16. Visualizing the three criteria used to select cumulus clouds. 143

4.17. VisAD system organization. 147

5.1. A type construction operator represented by a function. 151

94

94

Chapter 1

Introduction

Physical scientists observe nature, formulate laws to fit the observations, and predict future

observations in order to test their laws. Mathematics is the language of observations, laws and predictions,

but the complexity of modern science demands that mathematical calculations be automated using

computers. The number of observations of nature dictates that they are analyzed by computer algorithms,

and the number of computations required to predict nature dictates that predictions are made by numerical

simulation models running on computers. Thus computers have become essential tools for scientists for

both observing and simulating nature.

In spite of their essential role, computers are also barriers to scientific understanding. Unlike hand

calculations, automated computations are invisible, and, because of the enormous numbers of individual

operations in automated computations, the relation between an algorithm’s input and output is often not

intuitive. This problem was discussed in a report to the National Science Foundation (McCormack,

DeFanti and Brown, 1987) and is illustrated by the behavior of meteorologists responsible for forecasting

weather. Even in this age of computers, many meteorologists manually plot weather observations on maps

and then draw iso-level curves of temperature, pressure and other fields by hand (special pads of maps are

printed for just this purpose). Similarly, radiologists use computers to collect medical data, but are

notoriously reluctant to apply image processing algorithms to those data. To these scientists with life and

death responsibilities, computer algorithms are black boxes that increase rather than reduce risk.

The barrier between scientists and their computations is being bridged by scientific visualization

techniques that make computations visible. Scientific visualization is itself a computational process that

transforms the data objects of scientific computations into visible images on a computer display screen.

Scientific visualization is difficult because of the variety and complexity of scientific data, because the

95

95

variety of scientific problems implies that scientists need to see the same data in many different ways, and

because scientists need tools that are easy to use so that they can concentrate on understanding their

computations rather than understanding their visualization tools.

The size of scientific data sets is often used to justify the development of scientific visualization,

and it is true that scientists need to be able to see large data sets. However, the more important motive for

visualization is the invisibility of automated computations. To see this, consider the volumes of satellite

images of the Earth. A pair of GOES (Geostationary Operation Environmental Satellite) located at East

and West stations over the U.S. generate one 1024 by 1024 image every four seconds. NASA’s Earth

Observing System, as planned, will generate about five 1024 by 1024 images per second. These data

volumes are so large that they will overwhelm any scientist trying to look at them all. Furthermore, these

images are quantitative measurements rather than just pictures. The real value of these images must be

extracted by automated computations that can process the images faster than a person can coherently look

at them. Thus the work of Earth scientists is to develop algorithms for this automated processing, and the

proper role of visualization is helping scientists to understand how their algorithms work and how to

improve them.

96

96

1.1 Goals for Scientific Visualization

Scientific data exist in a wide variety of structures. A few examples include two-dimensional

images:

type image = array [row] of array [column] of radiance;

three-dimensional grids:

type grid = array [row] of array [column] of array [level] of temperature;

time sequences of images and grids:

type image_sequence = array [time] of image;

type grid_sequence = array [time] of grid;

images and grids with multiple values per pixel:

type multi_image = array [row] of array [column] of

structure {ir_radiance; vis_radiance};

type multi_grid = array [row] of array [column] of array [level] of

structure {pressure; temperature; humidity};

irregularly located data such as observations made by ships or aircraft:

type observations = array [index] of structure {latitude; longitude; altitude; pressure};

97

97

one-dimensional and multi-dimensional histograms derived from other data:

type histogram_1d = array [temperature] of count;

type histogram_2d = array [temperature] of array [pressure] of count;

and partitions of images and grids into spatial regions:

type image_partition = array [region] of image;

type grid_partition = array [region] of grid;

Furthermore, physical systems are observed by collections of instruments so the observed state of a

physical system is a complex combination of data sensed by different types of instruments. Similarly,

simulations generate complex combinations of data describing interacting physical systems (e.g.,

atmospheric physics and chemistry, ocean physics and chemistry, and land and ocean surface processes).

Scientific data are made more complex because of scientists’ need to precisely document where, when and

how they were obtained (this documentation is a form of metadata, and must be considered as part of

scientific data). The first goal of this thesis is to develop visualization techniques that

1. Can be applied to the data of a wide variety of scientific applications.

Scientists need to see the same data displayed in different ways, depending on what kinds of

information they are looking at. For example, Figure 1.1 shows a time sequence of multi-variate image

data displayed in four different ways. The upper-left window shows radiance values as colors, which is

appropriate for seeing spatial patterns and textures. The upper-right window shows infrared radiances as a

98

98

terrain (colored by visible radiances), appropriate for seeing slopes. The time sequence can be animated in

the upper-right and upper-left windows, which is appropriate for seeing motion. Alternatively, the time

sequence is stacked up along the vertical axis in the lower-right window, which is appropriate for looking

closely at rates of motion and changes in shape and intensity. Information about the spatial locations of

pixels is not shown in the lower-left window, producing a colored three-dimensional scatter diagram which

is appropriate for seeing correlations among infrared radiance, visible radiance, variance and texture

(variance and texture are derived from infrared radiance). Each of the four views presented in Figure 1.1 is

appropriate for seeing a different aspect of the same data. More generally, the primary reason scientists use

scientific visualization is to find unexpected patterns in data, since expected patterns can just be measured

and characterized by statistical calculations applied to data. And flexibility in the ways that data are

displayed is critical in the search for unexpected patterns. Thus the second goal of this thesis is to develop

visualization techniques that

2. Can produce a wide variety of different visualizations of data appropriate for different needs.

99

99

Figure 1.1. A time sequence of multi-variate image data displayed in four different ways. (color

original)

100

100

Because of the large volumes of scientific data it is often impossible to display a data object in a

single image or even a single animation sequence. Instead, scientists need to interactively explore large

data objects. For example, Figure 1.2 shows a snapshot of an interactive animated display of the output of

a numerical weather model. The white object is a balloon seven kilometers high in the shape of a squat

chimney that floats in the air above a patch of tropical ocean. The purpose of the numerical simulation is to

verify that, once air starts rising in the chimney, the motion will be self-sustaining and create a perpetual

rainstorm. The vertical color slice shows the distribution of heat (and when animated shows the flow of

heat), the yellow streamers show the corresponding flow of air up through the chimney, and the blue iso-

surface shows the precipitated cloud ice (a cloud water iso-surface would obscure the view down the

chimney, so it is not shown in this snapshot). Viewers of this visualization can interactively move the color

slice in the three-dimensional box of atmosphere, can interactively release new streamers in the air flow,

can interactively change the value of the cloud ice iso-surface, and can rotate and zoom the box in three

dimensions. They can choose different combinations of fields to display, and can choose the ways that

each field is depicted (e.g., color slice, iso-surface, contour slice). Such interactivity is critical for allowing

scientists to search through large

amounts of data for unexpected patterns. Hence, the third goal of this thesis is to develop visualization

techniques that

3. Enable users to interactively alter the ways data are viewed.

101

101

Figure 1.2. A snapshot of an interactive animated display of the output of a numerical weather

model. (color original)

102

102

Because visualization is used for communicating results of observations and computations to

scientists, they need to be able to control it themselves (that is, they cannot delegate expertise with

visualization to support staff). In order not to distract scientists from the difficult task of understanding

data, visualization must be easy to control. Thus the fourth goal of this thesis is to develop visualization

techniques that

4. Require minimal effort by scientists.

As stated at the start of this section, the rationale for visualization is scientists’ need to see the

results of computations. Thus visualization is intimately connected with computation. Just as the

complexity of data requires that the visualization process should be interactive, the complexity of

computation requires that the overall computational process, which includes visualization, should be

interactive. Figure 1.3 illustrates the interactive cycle of the computation process. If these three activities

are done in separate software systems, then scientists must repeatedly switch between systems and manage

the movement of information between these systems. This user overhead can be reduced by integrating all

three activities in one system. Furthermore, visualization can be especially useful during program

execution, allowing users to dynamically monitor intermediate results of computations and respond by

immediately adjusting parameters of those computations. This is sometimes called computational steering.

The fifth goal of this thesis is to develop visualization techniques that

5. Can be integrated with a scientific programming environment.

103

103

Run Computation

Visualize Results

Change Algorithm or

Computational Parameters

Figure 1.3. The place of visualization in the computational process.

1.2 State of the Art in Scientific Visualization

Here we consider the state of the art in scientific visualization and how well current techniques

achieve our goals.

1.2.1 The Data Flow and Object-Oriented Approaches

Visualization research has focused primarily on developing specialized visualization techniques

suited to specific types of data. However, some research has sought common patterns in the ways that

displays are computed. For example, the rendering pipeline is a widely applicable abstraction for the ways

that data are transformed into displays. Figure 1.4 illustrates a simple rendering pipeline:

104

104

Generate 3-D Primitives from Data

Transform Coordinates to 3-D View Space

Clip 3-D Primitives to View Boundaries

Rasterize 3-D Primitives to 2-D Pixels

Remove Hidden Surfaces via Z-Buffer

Calculate Colors of Pixels on Screen

Figure 1.4. A simple rendering pipeline for three-dimensional graphics.

The FRAMES system abstracted the rendering pipeline to let users specify display processes as

sequences of UNIX filters (Potmesil and Hoffert, 1987). The GRAPE system introduced branching into

these data transformations and let users define display processes as acyclic graphs of modules (Nadas and

Fournier, 1987). The ConMan system provided a graphical user interface for specifying display processes

as networks of modules (Haeberli, 1988). This idea has been adopted as the basis of several widely-used

data flow visualization systems, such as AVS (Upson et al., 1989) and Khoros (Rasure et al., 1990). These

data flow systems provide large libraries of modules that implement basic computational and display

operations, and also provide graphical user interfaces for synthesizing complex visualization algorithms

from these module libraries.

The recognition that different kinds of displays are generated by similar sets of operations also led

to the object-oriented approach to synthesizing visualization mappings. The object-oriented approach uses

105

105

inheritance and polymorphism to exploit the common properties and natural hierarchy of data displays.

The Powervision system, for example, used an object-oriented language to support interactive development

of image processing algorithms (McConnell and Lawton, 1988). The system defined a set of primitive

generic functions for accessing data objects (for example, for iterating over parts of objects, for checking

boundary conditions, etc.). Algorithms for synthesizing displays were expressed in terms of these generic

functions. As users defined new object classes they could apply existing display algorithms to those

classes as long as the new classes included definitions for the generic functions for accessing data objects.

The SuperGlue system was developed as a programming environment for developing scientific

visualization applications based on Scheme, C and the GNU Emacs editor (Hultquist and Raible, 1992). It

defined a class hierarchy for various types of scientific data objects and displays. User extensions to this

class hierarchy could take advantage of inheritance and polymorphism to simplify their definition.

The VISAGE system implemented a hierarchy of over 500 classes for both process objects and

data objects (Schroeder, Lorenson, Mantanaro and Volpe, 1992). The process objects implemented the

visualization process as data flow networks of simpler processes. The data objects implemented a variety

of scientific data organizations and a variety of display organizations.

While these systems have been useful to scientists, their approach to generality is through the

enumeration of data types and the enumeration of display techniques. Thus these systems have become

very large and complex. Furthermore, scientists must spend considerable effort to produce visualizations

using these systems. While scientists could explore different ways of displaying data by interactively

changing the data flow networks that transform data into displays, in practice they do not. Rather, support

staff design data flow networks and scientists use them to generate fixed types of displays from data.

Similarly for the object-oriented systems. The developers of the VISAGE system described one

visualization application of their system that required 12,000 lines of code specific to the application.

Scientists need visualization techniques that let them change the way that they look at data without

understanding complex programs or data flow networks.

106

106

1.2.2 Data Models

Rather than approaching generality by enumerating data types and display techniques, we can

achieve generality through the abstraction of data and displays. That is, by developing broadly applicable

abstract models of scientific data and displays, we can systematically study the ways that visualization

processes transform data into displays. A data model defines a set of data objects, the way data objects are

organized in the set, and operations on the data objects (often by reference to their internal structures).

Data models have been the subject of several recent workshops and publications (Treinish, 1991; Haber,

1991; Robertson et al., 1994, Lee and Grinstein, 1994). Display models are similar to data models and are

discussed in the next section.

The requirements for a scientific data model can be understood in terms of the role of data in

science. Scientists design mathematical models of nature. These models identify numerical variables (e.g.,

time, altitude, temperature) and functional relations between these variables (e.g., temperature as a

function of time). These models define the states of nature as vectors of variables and functions. For

example, the state of a point in the atmosphere is a vector of variables such as temperature, pressure,

humidity and wind velocity, and the state of the entire atmosphere is a vector of functions. We use the term

mathematical objects to denote the numbers, functions and vectors of mathematical models. When

scientists want to use their mathematical models to analyze a set of observations, or to simulate a physical

system, they implement their models as computer programs. Mathematical objects are represented by

scientific data objects in these implementations, and therefore a scientific data model should reflect the

ways that scientific data objects represent mathematical objects. There are many ways to define scientific

data models. However, any scientific data model will incorporate the following components:

1. The types of primitive values occurring in data objects. These represent primitive variables defined

in mathematical models of nature. Thus a data model may define a floating-point type to represent

107

107

real variables such as time and temperature, may define an integer type to represent integer

variables such as an event_count, and may define a string type to represent names such as city or

state names. A rigorous data model specifies the relations and operations defined on values of

primitive types. The definition of a type of primitive value may include arithmetical operations,

string operations, an order relation, a metric or a topology.

2. The ways that primitive values are aggregated into data objects. These aggregates represent complex

mathematical objects, such as vectors, functions, vectors of functions, and so on. There are a

variety of approaches to defining data aggregates. In the C programming language, vectors can be

represented by structures, functions can be represented by arrays, and pointers can be used to

define complex networks of values. Most programming languages provide a few simple data

structuring rules that can be combined to define a wide variety of data aggregates. On the other

hand, most scientific analysis and visualization systems support specific types of aggregates based

on particular application needs. These may include two-dimensional images (as generated by

satellites and other observing systems), three-dimensional grids (as generated by numerical

simulations and some observing systems), and vector and polygon lists (generated by applying

visualization operators to images and grids, and by map makers).

3. Metadata about the relation between data and the physical things they represent. For example, given

a meteorological temperature value, metadata includes the fact that it is a temperature, its scale

(Fahrenheit, Kelvin, etc.), its spatial and temporal location in the Earth’s atmosphere, and whether it

is a point sample or an average over space and time. Temperature values have limited accuracy,

whether sensed by an instrument or computed by a weather model, and an estimate of accuracy is

another form of metadata. Because instruments and observing systems are fallible, an expected data

value may not be defined at all, so missing data indicators are a form of metadata. If a temperature

108

108

is observed by an instrument, there may be metadata about the instrument (for example, aperture,

pointing direction, filters, etc.). If a temperature is computed from other values, there may be

metadata about the algorithm used to compute it and the source of the algorithm’s inputs.

The term metadata has several different meanings. It is sometimes denotes information about the

organization of data, in which case it may be called syntactic metadata. Here it denotes information about

the meaning of data, and may be called semantic metadata. We can think of metadata as secondary data

that are critical to the usefulness of primary data. For example, while a satellite image may primarily

consist of an array of pixel radiance values, those data are scientifically useless without other arrays that

specify the Earth locations of pixels, how pixel values correspond to physical radiances, and so on.

1.2.3 Display Models

Just as we can define systematic models of scientific data, we can define systematic models of

scientific displays. In particular, it is useful to note that computer programs generate displays in the form

of data objects. Bertin’s detailed display model, first published in 1967, illustrates how a display model

addresses the issues of primitives and aggregates (Bertin, 1983). Bertin defined a display as an aggregate

of graphical marks, and identified eight primitive variables of a graphical mark: two spatial coordinates of

the mark in a graphical plane (he restricted his attention to static two-dimensional graphics), plus the

mark’s size, value, texture, color, orientation, and shape. Bertin defined diagrams, networks and maps as

spatial aggregates of graphical marks. Figure 1.5 illustrates Bertin’s display model.

109

109

A two-dimensional region filled with graphical marks

graphical marks are characterized

by their two spatial coordinates and

by six other primitive variables:

(size, value, texture, color, orientation, shape)

.

Figure 1.5. Bertin’s display model. He modeled displays as sets of graphical marks in a two-

dimensional spatial region.

Bertin’s display model was limited to static two-dimensional displays. This corresponds to what

can be physically displayed on a two-dimensional screen at one time. However, computer-generated

displays generate the illusion of three dimensions and show motion by changing screen contents at short

intervals. We can even regard various forms of user interaction as an integral part of the display. Thus we

distinguish between physical and logical display models. We let V’ denote the set of physical displays,

which are two-dimensional and static, and we let V denote the set of logical displays, which are

three-dimensional, animated and interactive. The mapping RENDER : V → V’ includes traditional graphics

operations such as iso-surface generation, volume rendering, projection from three to two dimensions

(rotate, zoom and translate), clipping, hidden-surface removal, shading, compositing, and animation (these

operations could be implemented in a rendering pipeline, as illustrated in Figure 1.4). A changing set of

mappings, RENDER : V → V’, expresses the three-dimensional, animated, interactive nature of logical

displays in V.

110

110

Visualization is a process that maps data objects to displays. We let U’ denote a set of

mathematical objects, and we let U denote a set of data objects used to represent them. Then the overall

visualization process may be viewed as a sequence of mappings

U’ → U → V → V’. The mapping from U’ to U expresses the way that scientists implement their

mathematics on computers, and the mapping from V to V’ is the generally well understood physical display

generation process (Foley and Van Dam, 1982; Lorensen and Cline, 1987). Thus we will concentrate our

interest on the mapping D : U → V. In order to optimize the generality of visualization techniques to

different scientific applications, we seek scientific data models U whose primitive values are defined in

terms of abstract mathematical properties, whose aggregates are constructed using a few simple rules that

can be combined in complex ways, and that integrate a variety of metadata. We also seek display models V

that are abstract and that include interactive displays.

While the proper abstractions for U and V are necessary for display techniques that are flexible

and easy to use, the proper abstraction for the mapping D is also necessary. In the next section we describe

efforts to automate the choice of this mapping.

1.2.4 Automating the Design of Data Displays

As described in Section 1.2.1, the object-oriented and data flow approaches define natural

methodologies for designing programs (or data flow diagrams) for transforming data into displays, but they

still require considerable programming effort from their users. In response to scientists’ need for

visualization techniques that are easy to use, there have been a variety of efforts to automate the design of

algorithms for producing data displays. This goal is often called automating the design of data displays,

since the research focuses on automating the choice among the many different ways of displaying the same

data.

Mackinlay sought to automate the design of displays for data from relational database systems

(Mackinlay, 1986). His technique combined a relational data model with Bertin’s display model. A

111

111

relation is a set of tuples of values. Sets of primitive values called domains are defined for each position in

a relation’s tuples. Mackinlay classified domains as nominal (without an order relation), ordinal (with an

order relation but without a metric or arithmetical operations) or quantitative (with a metric and

arithmetical operations). These primitive values are aggregated into sets of tuples to form relations.

Mackinlay’s data model also allowed functional dependencies to be defined between the domains of a

relation (these are restrictions on the sets of tuples that may form relations).

Mackinlay modeled displays as sentences in a graphical language. Sentences were sets of 2-

tuples, where each tuple pairs a graphical mark with a two-dimensional screen location. He also attached

attributes to graphical marks for specifying their size, color, orientation, etc. The values of these attributes

are similar to the primitive values Bertin used for graphical marks. Thus, in Mackinlay’s model a display

could be interpreted as a set of tuples, where each tuple contains two screen coordinates and the values of

the various attributes of a graphical mark.

Mackinlay defined expressiveness and effectiveness criteria for the mapping from data relations to

display sentences. The expressiveness criteria require that a display sentence:

1. Encodes all the facts in a set (that is, the set of facts about a data relation), and

2. Encodes only the facts in a set.

The effectiveness criteria provide a way to choose between different display sentences that satisfy the

expressiveness criteria. For example, an effectiveness criterion may specify that quantitative information is

easier to perceive when encoded as spatial position rather than as color. Mackinlay also solicited

visualization goals from the user. Effectiveness criteria and visualization goals were expressed formally in

terms of predicates and functions applied to relational data and display sentences. These were used as the

basis for a backtracking search for an optimal display.

112

112

Mackinlay’s display model was static and two-dimensional and therefore too limiting for scientific

visualization. Furthermore, while the relational model can, in theory, be used for scientific data, it does not

naturally fit the ways that scientific data are aggregated. Robertson (Robertson, 1991), Senay and Ignatius

(Senay and Ignatius, 1991; Senay and Ignatius, 1994), and Beshers and Feiner (Beshers and Feiner, 1992)

all sought automated techniques for designing displays for scientific data.

Robertson’s data model classified primitive values as either nominal or ordinal. Nominal values

were further classified as single or multiple valued (that is, sets of values) and ordinal values were

classified as discrete or continuous (this is a classification of the topology of primitive value sets).

Primitive values were aggregated as distributions over an n-dimensional space. Robertson modeled

displays as two-dimensional and three-dimensional surfaces and their attributes (for example, color and

texture). His methodology solicited a set of visualization goals from the user, in terms of the scales of the

user’s interest (that is, point, local or global) in different variables, and in terms of the user’s interest in

correlations between various pairs of variables. Data displays were generated by matching data attributes

and relations to display attributes and relations, according to the user’s visualization goals.

Senay and Ignatius’ data model classified primitive values as qualitative or quantitative, and

aggregated primitive values as functional dependencies between variables. Their data model included

metadata for coordinate systems and data sampling. Senay and Ignatius modeled displays using Bertin’s

graphical marks, and using specific aggregates of marks (for example, icons and iso-surfaces). These were

further classified as to whether they encoded a single variable or multiple variables. Displays were

generated by applying production rules for matching data characteristics with display characteristics.

Beshers and Feiner’s data model consisted of functions from one set of real variables to another.

Their display model sought to overcome the limitation to three spatial axes by embedding small spatial

coordinate systems (that is, small sets of graphical axes) within larger spatial coordinate systems. Their

display model formalized interactive exploration of data by allowing the user to move small coordinate

113

113

systems around within larger coordinate systems. Their technique searched through a large set of possible

designs, evaluating them based on a set of user-defined visualization tasks.

While all of these efforts sought to automate the design of displays, their display models were

limited to specific types of displays and they enumerated specific display techniques as the search spaces

for their automated techniques. That is, their focus was to automate the user’s task of choosing among

enumerated sets of visualization techniques. In the next section we describe an alternative approach that

defines certain general analytic conditions on the mapping from data to displays, and then derives

visualization mappings that satisfy those conditions.

In each of the previous automated approaches described above, displays were designed based on

information about visualization goals provided by the user. Obviously, some form of user input is

necessary for users to be able to control display design. However, user interface issues are notoriously

complex and it is not obvious that an encoding or parameterization of visualization goals is the most

effective way for users to control visualization systems. It may be most effective to allow users to make

their own translation from their goals to some other form of controls over visualization. In particular, an

interactive system that lets users experiment with various ways of displaying their data may be more

effective than an automated system. An interactive system enables users to experiment with small changes

to their display controls and to see the effect of those changes on the way that their data are displayed.

Such experimentation is also often the fastest way for scientists to learn how a visualization system works.

1.3 Major Contributions

The main contributions of this thesis can be summarized as follows:

1. Development of a system for scientific visualization that enables a wide variety of visual experiments

with scientific computations. This system integrates visualization with a scientific programming

language that can be used to express scientific computations. This programming language supports

114

114

a wide variety of scientific data types and integrates common forms of scientific metadata into the

computational and display semantics of data. Any data object defined in a program in this language

can be visualized in a wide variety of ways during and after program execution. The controls for

data display are simple and independent of data type. Displays are controlled by a set of simple

mappings rather than program logic. These mappings are independent of data type and separate

from a user’s scientific programs, which is a clear distinction from previous visualization systems

that require scientists to embed calls to visualization functions in their programs. Furthermore,

computation and visualization are highly interactive. In particular, the selection of data objects for

display and the controls for how they are displayed are treated like any other interactive display

control (e.g., interactive rotation). Previous visualization systems require a user to alter his program

in order to make such changes. The generality, integration, interactivity and ease-of-use of this

system all enhance the user’s ability to perform visual experiments with their algorithms.

2. Introduction of a systematic approach to analyzing visualization based on lattices. We define a set

U of data objects and a set V of displays and show how a lattice structure on U and V expresses a

fundamental property of scientific data and displays (namely that they are approximations to the

physical world). The visualization repertoire of a system can be defined as a set of mappings of the

form D : U → V. It is common to define a system’s visualization repertoire by enumerating such a

set of functions. However, an enumerated repertoire is justified only by the tastes and experience of

the people who decide what functions to include in the set. In contrast, we interpret certain well-

known expressiveness conditions on the visualization mapping D : U → V in terms of a lattice

structure, and define a visualization repertoire as the set of functions that satisfy those conditions.

Such a repertoire is justified by the generality of the expressiveness conditions. We show that

visualization mappings satisfy these conditions if and only if they are lattice isomorphisms. Lattice

115

115

structures can be defined for a wide variety of data and display models, so this result can be applied

to analyze visualization repertoires in a wide variety of situations.

3. Demonstration of a specific lattice structure that unifies data objects of many different scientific

types in a data model U, and demonstration that the same lattice structure can express interactive,

animated, three-dimensional displays in a display model V. These models integrate certain kinds of

scientific metadata into the computational and display semantics of data. In the context of these

scientific data and display models, we show that the expressiveness conditions imply that mappings

of data aggregates to display aggregates can always be factored into mappings of data primitives to

display primitives. We show that our display mappings are complete, in the sense that we

characterize all mappings satisfying the expressiveness conditions.

1.4 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2 we describe the architecture of a

system for scientific visualization based on the goals described in Section 1.1. As described in Section 1.2,

current visualization systems approach the goals for flexibility by enumerating different data types and

different types of displays. In Chapter 3 we develop an alternate approach to flexibility based on defining

very general conditions on the mapping from data to displays, and we analyze the repertoire of functions

that satisfy those conditions. We summarize the results of this analysis in terms of a set of principles for

visualization. In Chapter 4 we continue the presentation of our visualization system architecture based on

those principles. In Chapter 5 we discuss how the analysis of Chapter 3 might be extended to data and

display models appropriate for general programming languages. Chapter 6 summarizes the conclusions of

this thesis.

Chapter 2

116

116

System Design for Visualizing Scientific Computations

In Section 1.1 we defined five broad goals for scientific visualization. Specifically, we seek

visualization techniques that

1. Can be applied to the data of a wide variety of scientific applications.

2. Can produce a wide variety of different visualizations of data appropriate for different needs.

3. Enable users to interactively alter the ways data are viewed.

4. Require minimal effort by scientists.

5. Can be integrated with a scientific programming environment.

In this chapter we develop a system architecture for visualizing scientific computations based on

these goals. This architecture is implemented in a system called VisAD (Visualization for Algorithm

Development).

2.1 A Scientific Computing Environment

The purpose of scientific visualization is to make invisible computations visible. Thus, for

example, Figure 1.2 is a visualization of a simulation of the Earth’s atmosphere. This image includes

depictions of heat (the red and green vertical slice), air flow (the yellow ribbons), precipitated cloud ice

(the blue-green iso-surface), and a chimney-shaped balloon (the white object) floating over a patch of

117

117

tropical ocean (the blue square). This image shows just one instant from the sequence of changing

atmospheric states produced by the simulation. The total volume of data produced by this simulation is

enormous, and would be impossible to understand without such visualizations.

In order to make such complex computations visible, our fifth goal was to develop visualization

techniques that "Can be integrated with a scientific programming environment." Our design meets this

goal by including a scientific programming language as part of the visualization system. This goal could

be met in other ways, for example by providing a library of functions for displaying data that is callable

from common scientific programming languages. However, the size and complexity of scientific

computations and data motivated our third goal that visualization techniques "Enable users to interactively

alter the ways data are viewed." In particular we noted in Section 1.1 that the user feedback cycle

illustrated in Figure 2.1 may be applied interactively to running computations. This argues for a system

architecture that can flexibly and intimately integrate the user interfaces for programming, computation and

display. This can best be achieved by integrating a scientific programming language with a visualization

system.

Run Computation

Visualize Results

Change Algorithm or

Computational Parameters

118

118

Figure 2.1 The place of visualization in the computational process (this is a copy of Figure 1.3).

Robert Aune’s simulation of a two-dimensional shallow fluid (Haltiner and Williams, 1980)

illustrates how the integration of visualization with a programming language enables the feedback loop in

Figure 2.1 to be applied to running computations. The VisAD implementation of the shallow fluid model

is described by the following pseudo-code:

119

119

loop over model time steps {

/* get the user’s interactive controls of the model */

parameter1 = slider("name1", low1, high1, default1);

. . .

parameterN = slider("nameN", lowN, highN, defaultN);

/* compute the next state of the model */

new = shalstep(oldest, old, parameter1, ..., parameterN);

oldest = old; /* save previous model state */

old = new;

} /* end of loop for simulation time steps */

Figure 2.2 shows a screen snapshot of the VisAD system running this program. The system

generates the icons seen in the lower-left corner of the screen based on the calls to the slider function. As

the program runs, the user is free to set values on these icons, which are returned by the calls to the slider

function. These values are passed to the Fortran function shalstep, which computes a new fluid state from

the states for the previous two time steps. The window in the lower-right corner of the screen is a

visualization of the current state of the simulated fluid. Together, slider icons and this visualization enable

the user feedback loop illustrated in Figure 2.1 to be applied to the running shallow fluid simulation.

120

120

Figure 2.2. A snapshot of an executing shallow fluid simulation model. Part of a VisAD program

is seen in the text window on the left, slider icons used to interact with the simulation are seen in

the lower-left, and a visualization of the data object new is seen in the lower-right window. (color

original)

121

121

Figure 2.2 also illustrates the integration of user interfaces for programming, computation and

display. The white window on the left side of the screen contains the text of the fluid simulation program.

The long dark horizontal bar highlights the program statement currently being executed, and the short dark

horizontal bars highlight occurrences of the name of the data object being displayed (in this case, the name

is new). The user selects data objects for display by picking their names in this text window (i.e., pointing

and clicking at their names with the mouse). The user similarly sets program execution breakpoints by

picking program statements in this window.

Our visualization system design provides an interactive interpreted language in order to let

scientists perform visual experiments with their algorithms and computations. However, an interpreted

language is relatively inefficient. Furthermore, scientists may already have large amounts of software

written in Fortran and C. Thus the VisAD system supports dynamic linking between its interpreted

language and these common compiled languages.

We considered a visual programming language for our system, similar to those used in data flow

visualization systems. Such languages provide a graphical user interface for designing the data and control

flow of programs. However, we chose a text based user interface for an interpreted language because it is

more familiar to scientists and can express large and complex algorithms more compactly. Our choice is

supported by the relative popularity of the IDL (Interactive Data Language) system among physical

scientists, compared to the data flow visualization systems. In fact, if the source code of the IDL system

was freely available we would have strongly considered using it as the scientific programming environment

integrated for the VisAD system.

One powerful effect of integrating visualization with a scientific programming language is the

ability to visually trace computations by watching displays of many different data objects. If an algorithm

is not producing correct results, such integration allows users to step through their computations, visually

comparing the inputs and outputs of short segments of code in order to find a bug. This capability requires

that visualization be applied to any selected data object occurring in a program, and thus provides

122

122

additional motivation for our first goal that scientific visualization techniques "Can be applied to the data

of a wide variety of scientific applications." Thus in the next section we study the nature of scientific data.

2.2 Scientific Data

Physical scientists formulate mathematical models of nature to simulate complex events and to

analyze observations. Models of the Earth’s atmosphere and oceans provide one good class of examples.

Temperatures, pressures, latitudes, altitudes and times are expressed as numbers. The primitive elements

of mathematical models are numerical variables used to represent such physical quantities. These primitive

variables are then combined in various ways to build the complex objects of mathematical models. For

example, the state of a infinitesimal parcel of air may be described by the vector:

parcel = {temperature, pressure, water-concentration,

 wind-velocity-x, wind-velocity-y, wind-velocity-z}

The values of temperature and other primitive variables vary over space, and may be described by the

functions:

temperature = temperature-field(latitude, longitude, altitude)

pressure = pressure-field(latitude, longitude, altitude)

water-concentration = water-concentration-field(latitude, longitude, altitude)

wind-velocity-x = wind-velocity-x-field(latitude, longitude, altitude)

wind-velocity-y = wind-velocity-y-field(latitude, longitude, altitude)

wind-velocity-z = wind-velocity-z-field(latitude, longitude, altitude)

The state of the atmosphere may be described by the vector of functions:

123

123

state = {temperature-field(latitude, longitude, altitude),

 pressure-field(latitude, longitude, altitude),

 water-concentration-field(latitude, longitude, altitude),

 wind-velocity-x-field(latitude, longitude, altitude),

 wind-velocity-y-field(latitude, longitude, altitude),

 wind-velocity-z-field(latitude, longitude, altitude)}

Finally, the state of the atmosphere varies over time, and a history of the atmosphere may be described by

the function:

state = state-history(time)

We refer to these mathematical variables, vectors and functions as mathematical objects. The dynamics of

the Earth’s atmosphere may be modeled by sets of (partial differential) equations involving these

mathematical objects, and, in general, physical scientists’ mathematical models are expressed in terms of

such mathematical objects.

Recording and analyzing actual observations and predicting actual events require implementations

of mathematical models by hand or automated computations. Whereas mathematical models include

infinite precision real numbers and functions with infinite domains, computer memories are finite. Thus

computer implementations of mathematical models are approximations. For example, real numbers are

usually approximated by floating point numbers, and functions are usually approximated by finite arrays.

That is, values in the infinite set of real numbers are commonly approximated by values taken from a finite

set of roughly 2 ^ 32 values between -10 ^ 38 and +10 ^ 38 (the set of 32-bit floating point values) and the

infinite sets of values of functions are commonly approximated by finite subsets of those values (for

124

124

example, atmospheric models usually define discrete values for temperature, pressure and other state

variables at finite grids of locations within the atmosphere).

Thus we interpret data objects as representing mathematical objects. There are a variety of

mathematical types (for example, primitive variables, vectors, functions, vectors of functions, and so on) so

we define a variety of types of data objects appropriate for representing mathematical objects. Specifically,

we define primitive data types for representing primitive mathematical variables - these could be integer or

floating point types. We define vector types for representing mathematical vectors - these are called

records, structures or tuples in different programming languages. We define array types for representing

mathematical functions - these are finite sets of samples of function values. We use these as the data types

of the scientific programming language that is integrated with our visualization system.

As an example, we define the following data types for representing the mathematical types

defined earlier. These types could be used for an implementation of an atmospheric model in the VisAD

programming language.

125

125

type temperature = real;

type pressure = real;

type water-concentration = real;

type wind-velocity-x = real;

type wind-velocity-y = real;

type wind-velocity-z = real;

type parcel = structure{temperature; pressure; water-concentration;

wind-velocity-x; wind-velocity-y; wind-velocity-z;}

type latitude = real;

type longitude = real;

type altitude = real;

type temperature-field =

array [latitude] of array [longitude] of array [altitude] of temperature;

type pressure-field =

array [latitude] of array [longitude] of array [altitude] of pressure;

type water-concentration-field =

array [latitude] of array [longitude] of array [altitude] of water-concentration;

type wind-velocity-x-field =

array [latitude] of array [longitude] of array [altitude] of wind-velocity-x;

type wind-velocity-y-field =

array [latitude] of array [longitude] of array [altitude] of wind-velocity-y;

126

126

type wind-velocity-z-field =

array [latitude] of array [longitude] of array [altitude] of wind-velocity-z;

type state =

structure {temperature-field; pressure-field; water-concentration-field;

wind-velocity-x-field; wind-velocity-y-field; wind-velocity-z-field;}

type time = real;

type state-history = array [time] of state;

These examples illustrate the ways that data types are defined in the VisAD programming language.

As in Section 1.2.3, we let U denote the set of data objects used to represent mathematical objects

in U’. Scientific displays can be viewed as a special kind of data object so, as in Section 1.2.3, we let V

denote a set of display objects. Next we consider the nature of scientific displays.

2.3 Scientific Displays

The same data may be visualized in many different ways, as illustrated in Figure 1.1. Thus our

second goal was to develop visualization techniques that "Can produce a wide variety of different

visualizations of data appropriate for different needs." In order to satisfy this goal, our visualization

system should include a flexible and general display model.

Bertin’s display model was limited to static two-dimensional images. While his model was

adequate as a description of the instantaneous contents of a workstation screen, it fails to express the

dynamic, three-dimensional and interactive character of scientific displays. Thus we distinguish between a

set V’ of static two-dimensional images (i.e., physical displays) and a set V of logical displays. For a given

127

127

physical display device, V’ is a finite and fixed set of static two-dimensional images (for example, it may be

the set of 1024 by 1024 arrays of pixels with 8 bits of intensity for each of red, green and blue). Because V’

is finite, a visualization mapping D : U → V’ cannot be injective (i.e., one to one). This would be a severe

constraint on any effort to analyze mappings from data to displays. On the other hand, we can define a

infinite set V of logical displays that

1. Are three-dimensional.

2. Are animated.

3. Have infinite extents in space and time.

4. Have varying resolution in space and time.

5. Are generated by a variety of rendering techniques.

The meaning of logical displays in V is defined by a function RENDER : V → V’. The RENDER

function projects three-dimensional displays onto a two-dimensional screen, removes hidden objects during

this projection process, clips displays to finite screen boundaries, simulates scene lighting, simulates

transparency and reflection, animates sequences of static images, and so on. The logical display model

may include generic scalar and vector fields, in which case the RENDER function may implement the

calculation of iso-surfaces and plane slices to represent scalar fields, and of arrows and streamlines to

represent vector fields. We note that there are many possible functions RENDER : V → V’, depending on

parameters of the projection from three to two dimensions, on parameters of simulated lighting, on the

place in an animation sequence, and so on. By giving users control over these parameters, and thus control

128

128

over the choice of the function RENDER : V → V’, we define the interactive nature of logical displays in V.

For example, control over the projection from three to two dimensions lets users interactively rotate, pan

and zoom logical displays.

The RENDER function implements the traditional operations of computer graphics which have

been extensively studied (Foley and Van Dam, 1982; Wyvill, McPheeters and Wyvill, 1986; Lorensen and

Cline, 1987).

2.4 Mapping Data to Displays

We have described a scientific data model U containing data objects of various types, and a

display model V containing interactive, animated, three-dimensional displays. Visualization is a

computational process that transforms data into displays and can be described as a function of the form D :

U → V. The visualization repertoire of our system can be described as a set of functions of this form. In

order to satisfy the goal of developing visualization techniques that "Can produce a wide variety of

different visualizations of data appropriate for different needs" we seek to define a broad visualization

repertoire. As described in Section 1.2, current systems define visualization repertoires by enumerating

such sets of functions. However, with an enumerated repertoire there is no way to be sure that it includes

all useful ways of displaying data. An enumerated repertoire is justified only by the tastes and experience

of those who decide what functions to include in the enumeration.

In contrast, we seek to define a visualization repertoire as the set of all functions satisfying

Mackinlay’s expressiveness conditions (Mackinlay, 1986). These conditions say that displays express all

facts about data objects, and only those facts. In the next chapter we show how these conditions can be

rigorously interpreted in terms of lattice structures defined on data and display models. We have noted that

scientific data objects are approximate representations of mathematical objects. We define a lattice

structure on our data model U based on a way of comparing how data objects approximate mathematical

objects, and define a similar lattice structure on our display model V. We then define our system’s

129

129

visualization repertoire as the set of visualization functions D : U → V that satisfy the expressiveness

conditions, as interpreted in the lattice structure.

This approach to defining a visualization repertoire has a number of advantages, including:

1. The repertoire is complete, in the sense that it includes all visualization functions satisfying the

expressiveness conditions.

2. A single function D : U → V can be applied to display data objects of any type in the unified data

model U, simplifying the user interface for controlling displays. That is, one set of display controls

can be applied to display any data object defined in a program. Because display controls are

independent of data type, they are naturally separate from a user’s scientific algorithms. This is a

clear distinction from previous visualization systems that require calls to visualization functions to

be embedded into scientific programs. In Chapter 3 we show that selection of a function satisfying

the expressiveness conditions can be controlled by a conceptually simple user interface.

3. Lattice structures can be defined for a wide variety of data and display models, so our approach can

easily be extended to other scientific data and display models. In Chapter 5 we outline how the

approach may even be extended to a data model appropriate for a general-purpose programming

language.

4. A lattice-structured data model provides a natural way to integrate various forms of scientific

metadata into the computational and display semantics of scientific data. This reduces the user’s

need to explicitly manage the relation between data and associated metadata.

Chapter 3

130

130

An Analysis of Mappings from Data to Displays

Current scientific visualization systems enumerate different ways of displaying data, or require

users to write programs (possibly as data flow diagrams or in object-oriented programming languages) to

control how data are displayed. These approaches either lack flexibility or require significant effort from

users. In contrast, we take a more systematic approach, analyzing the ways that data can be displayed from

basic principles.

In this chapter we describe our approach to scientific visualization, based not only on an abstract

view of data and displays, but also an abstract view of the visualization mapping between them. First, we

recognize that visualization is a computational process that defines a mapping from a large set of data

objects to a large set of displays. Thus, rather than analyzing visualization in terms of the way an

individual data object is displayed, we analyze visualization in terms of its effect on sets of data objects.

(In fact, it is arguable that data objects only have meaning in relation to other data objects, just as the

significance of the number pi can be explained only in relation to other mathematical objects). Thus we let

the symbol U represent a set of data objects, let the symbol V represent a set of displays, and let D : U → V

represent the mapping from data to displays. We define a visualization repertoire as the set of all such

visualization mappings that satisfy certain analytic conditions.

The simplest example of an analytic condition on D expresses the uniqueness requirement that

different data objects have different displays, so that users can distinguish different data objects from their

displays. This is just the condition that D be injective (one to one). It can be expressed as follows:

(3.1) ∀u, u’ ∈ U. u = u’ ⇔ D(u) = D(u’)

131

131

Eq. (3.1) is a very weak condition on D. For example, if U is a set of two-dimensional images and

if V = U (that is, the display model V is also a set of two-dimensional images), then any permutation of

images satisfies Eq. (3.1). However, it is easy to construct a permutation D of images such that the display

D(u) generally does a poor job of communicating information about the data object u to users. Thus we

seek stronger conditions on D.

In general, any condition on D must be defined in terms of mathematical structures on U and V.

For example, Eq. (3.1) expresses a condition in terms of the mathematical structure of equality on U and V.

The advantage of Eq. (3.1) is that it can be applied very broadly to visualization because all data and

display models include an equality relation. Therefore we also seek to define stronger conditions on D that

express fundamental properties of scientific data objects and displays.

3.1 An Analytic Approach Based on Lattices

In this thesis we focus on the observation that, for most scientific computations, computer data

objects and displays are finite approximations to mathematical models of nature. That is, real numbers

have infinite precision and functions of real variables have infinite domains, whereas the computer data

objects that represent these mathematical objects are finite and therefore approximate. Because scientific

data objects and displays are approximations, we can define an order relation between them based on the

precision of approximation (for example, a high resolution image is more precise than a low resolution

image as an approximation to a radiance field). This order relation allows us to define lattice structures on

data and display models, and to define analytic conditions on visualization mappings based on the lattice

structures.

3.1.1 Basic Definitions for Ordered Sets

Since our analytic approach to visualization draws on the theory of ordered sets, we first review

some basic definitions from this theory (Davey and Priestly, 1990; Gierz, et al., 1980; Gunter and Scott,

132

132

1990; Schmidt, 1986; Scott, 1971; Scott, 1976; Scott, 1982). Appendix A contains a more complete list of

definitions.

Def. A partially ordered set (poset) is a set D with a binary relation ≤ on D such that, ∀x, y, z ∈ D

(a) x ≤ x "reflexive"

(b) x ≤ y & y ≤ x ⇒ x = y "anti-symmetric"

(c) x ≤ y & y ≤ z ⇒ x ≤ z "transitive"

Def. An upper bound for a set M ⊆ D is an element x D∈ such that

∀y ∈ M. y ≤ x.

Def. The least upper bound of a set M ⊆ D, if it exists, is an upper bound x for M such that if y is

another upper bound for M, then x ≤ y. The least upper bound of M is denoted sup M or \/M. sup{x,y} is

written x ∨ y.

Def. A lower bound for a set M ⊆ D is an element x D∈ such that ∀y ∈ M. x ≤ y.

Def. The greatest lower bound of a set M ⊆ D, if it exists, is a lower bound x for M such that if y

is another lower bound for M, then y ≤ x. The greatest lower bound of M is denoted inf M or /\M. inf{x,y}

is written x ∧ y.

Def. A subset M ⊆ D is a down set if ∀x ∈ M.∀y ∈ D. y ≤ x ⇒ y ∈ M. Given

M ⊆ D, define ↓M = {y ∈ D | ∃x ∈ M. y ≤ x}, and given x ∈ D, define

↓x = {y ∈ D | y ≤ x}.

133

133

Def. A subset M ⊆ D is an up set if ∀x ∈ M. ∀y ∈ D. x ≤ y ⇒ y ∈ M. Given

M ⊆ D, define ↑M = {y ∈ D | ∃x ∈ M. x ≤ y}, and given x ∈ D, define

↑x = {y ∈ D | x ≤ y}.

Def. A subset M ⊆ D is directed if, for every finite subset A ⊆ M, there is an

x ∈ M such that ∀y ∈ A. y ≤ x.

Def. If D and E are posets, we use the notation (D → E) to denote the set of all functions from D

to E.

Def. If D and E are posets, a function f:D→E is monotone if

∀x, y ∈ D. x ≤ y ⇒ f(x) ≤ f(y). We use the notation MON(D → E) to denote the set of all monotone

functions from D to E.

Def. If D and E are posets, a function f:D→E is an order embedding if

∀x, y ∈ D. x ≤ y ⇔ f(x) ≤ f(y).

Def. Given posets D and E, a function f:D→E, and a set M ⊆ D, we use the notation f(M) to

denote {f(d) | d ∈ M}.

Def. A poset D is a lattice if for all x, y ∈ D, x ∨ y and x ∧ y exist in D.

Def. A poset D is a complete lattice if for all M ⊆ D, \/M and /\M exist in D.

134

134

Def. If D and E are lattices, a function f:D→E is a lattice homomorphism if for all x, y ∈ D, f(x ∧

y) = f(x) ∧ f(y) and f(x ∨ y) = f(x) ∨ f(y). If f:D→E is also a bijection then it is a lattice isomorphism.

3.1.2 Scientific Data Objects as Approximations of Mathematical Objects

In Section 2.2 we described the nature of scientific data as representing mathematical objects. We

noted that data objects are usually approximations to mathematical objects, as for example floating point

numbers approximate real numbers and arrays are finite samplings of functions of a real variable.

The importance of the approximate nature of scientific data is reflected in the common use of

semantic metadata to document the how scientific data approximate mathematical variables and functions.

For example, in Section 2.2 we defined a data type:

type temperature-field =

array [latitude] of array [longitude] of array [altitude] of temperature;

Data objects of type temperature-field are approximate representations of the mathematical function:

temperature = temperature-field(latitude, longitude, altitude)

One important form of scientific metadata describes the locations of samples of temperature-field arrays.

Furthermore, temperature values in the array are represented by finite numbers of bits, and another

important form of metadata describes the correspondence between finite bit patterns and real numbers.

Such metadata may be implicit in the specification of a floating point number standard, but may also be

explicit, as in the case of coded 8-bit or 10-bit satellite radiances. Metadata may describe how data values

are spatial or temporal averages of physical variables; this metadata quantifies how data values

approximate mathematical values. Metadata may explicitly document numerical precision by providing

135

135

error bounds for values that approximate real numbers. Metadata may define missing data codes used to

indicate failures of observing instruments or numerical exceptions; we view such missing data codes as

documenting values that have the least possible precision.

Other metadata provide indirect information about how precisely data objects approximate

mathematical objects. Values produced by simulations may include metadata about the name and version

number of the model that produced them, about the data used to initialize the model, about parameter

settings of the model, and so on. Values produced by observations may include metadata about which

sensors produced them, and may also include, for example, observations of the instruments themselves for

calibration, sensor temperatures, angles to the sun or other navigation landmarks, and so on. These detailed

metadata are often the basis of complex computations for estimating sampling and accuracy characteristics

of values.

The approximate nature of scientific data is a fundamental property of that data that can serve as

the basis for a mathematical order structure on a scientific data model. As explained in the next section,

data objects can be ordered based on how precisely they approximate mathematical objects. This order

relation provides us with a mathematical structure on data and display models that can be used as the basis

for defining analytic conditions on visualization mappings.

3.1.3 A Mathematical Structure Based on the Precision of Scientific Data

We assume a set U’ of mathematical objects and a set U of data objects. There are only a

countable number of data objects (objects that can be stored inside a computer are limited to finite strings

over finite alphabets) but an uncountable number of mathematical objects. Thus each data object generally

represents a large set of mathematical objects. Given a data object u ∈ U, let math(u) ⊆ U’ be the set of

mathematical objects represented by u. Given two data objects u and u’, if math(u’) ⊆ math(u) then u’

represents a more restricted set of mathematical objects than u does and we can say that u’ is more precise

than u. Thus we define an order relation on U by:

136

136

(3.2) u ≤ u’ ⇔ math(u’) ⊆ math(u)

For example, a missing value (which we indicate by the symbol ⊥) can represent (i.e., is consistent with) all

mathematical values, so ⊥ ≤ x where x is any data value.

Similar order relations have been defined for reasoning about partial information in data base

management systems (Read, Fussell and Silberschatz, 1993) and in the study of programming language

semantics (Scott, 1971). There is no algorithmic way to separate non-terminating programs from

terminating programs, so the set of meanings of programs must include an undefined value for non-

terminating programs. This value is less precise than any of the values that a program would produce if it

did terminate so it is natural to define an order relation between program meanings where undefined ≤ x for

all program values x. In order to define a correspondence between the ways that programs are constructed,

and the sets of meanings of programs, Scott elaborated this order relation into an elegant lattice theory for

the meanings of programs (Scott, 1982). He equated

"x ≤ y" with "x approximates y."

Thus Scott’s order relation is similar to the order relation defined by Eq. (3.2), and the undefined

value in programming language semantics is analogous with the missing value used in scientific

computations. (We note that the source of undefined values is non-terminating computations whereas the

sources of missing values are sensor failures and numerical exceptions). There are many other examples of

how the order relation defined in Eq. (3.2) may be applied. Metadata about accuracy often take the form of

error bars, which are intervals around values. Real intervals have been studied as a computational data

model for real numbers (Moore, 1966), and have been applied to computer graphics (Duff, 1992; Snyder,

1992). An interval represents any real number it contains, so Eq. (3.2) indicates that smaller intervals are

"greater than" containing intervals. We can combine the missing value and real intervals in a simple data

model for approximations of real numbers. The order relation on this data model is illustrated in Figure

137

137

3.1. Note that the set of real intervals is not countable, but an implementation of the real interval data

model could be restricted to the set of rational intervals. From now on we will not require that U be

countable, but will recognize that an actual implementation of U can only include a countable number of

data objects.

⊥

[0.0, 1.0]

[0.0, 0.1] [0.9, 1.0]

[0.0, 0.01]

[0.0, 0.0] [0.01, 0.01]

[0.93, 0.95]

[0.5, 0.5] [0.945, 0.945]

[0.94, 0.97]

Figure 3.1. Order relation of a continuous scalar. Closed real intervals are used as approximate

representations of real numbers, ordered by the inverse of containment (that is, containing

intervals are "less than" contained intervals). We also include a least element ⊥ that corresponds

to a missing data indicator. This figure shows a few intervals, plus the order relations among

those intervals. The intervals in the top row are all maximal, since they contain no smaller

interval.

We can extend the data model in Figure 3.1 to real functions by defining array data objects that

are sets of pairs of real intervals. The first interval in a pair represents a domain value of the function, and

the second interval represents the corresponding range value. The two intervals define a rectangle that

contains at least one sample from the graph of the represented function. For example, the set of pairs

(3.3) {([1.1, 1.6], [3.1, 3.4]), ([3.6, 4.1], [5.0, 5.2]), ([6.1, 6.4], [6.2, 6.5])}

138

138

contains three samples of a function. The domain value of a sample lies in the first interval of a pair and its

range value lies in the second interval of a pair, as illustrated in Figure 3.2.

[1.1, 1.6] [3.6, 4.1] [6.1, 6.4]

[3.1, 3.4]

[5.0,5.2]

[6.2, 6.5]

Figure 3.2. Approximating real functions by arrays.

An array represents any function whose graph contains a point in each of the rectangles defined by

its pairs. Adding more samples to an array restricts the set of functions that the array can represent.

Similarly, replacing pairs of intervals by pairs of more precise intervals restricts the set of functions that the

array can represent. Thus we can define an order relation between arrays, as illustrated in Figure 3.3. Note

that the empty set is the least value of this data model since it can represent any real function.

139

139

{([1.1, 1.6], [3.1, 3.4]),

([3.6, 4.1], [5.0, 5.2]),

([6.1, 6.4], [6.2, 6.5])}

([3.6, 4.1], [5.0, 5.2]),

{([1.1, 1.6], ⊥),

([6.1, 6.4],⊥)}

{([1.33, 1.40], [3.21, 3.24]),

([3.72, 3.73], [5.09, 5.12]),

([6.21, 6.23], [6.31, 6.35])}

{([1.1, 1.6], [3.1, 3.4]),

([3.6, 4.1], [5.0, 5.2]),

([6.1, 6.4], [6.2, 6.5]),

([7.3, 7.5], [8.1, 8.4])}

φ (the empty set)

Figure 3.3. Order relation of arrays.

The sequence of satellite images in Figures 3.4 through 3.7 provides a practical illustration of an

order relation based on precision. Each of these images contains a finite number of pixels that are samples

of a continuous Earth radiance field. The higher resolution images are more precise approximations to the

radiance field, and the sequence of images form an ascending chain in the order relation.

140

140

Figure 3.4. Least precise image in sequence of four. (color original)

141

141

Figure 3.5. Second image in sequence of four, ordered by precision. (color original)

142

142

Figure 3.6. Third image in sequence of four, ordered by precision. (color original)

143

143

Figure 3.7. Most precise image in sequence of four. (color original)

144

144

These examples of data models for approximating two simple types of mathematical objects, real

numbers and real functions, show how Eq. (3.2) can be used to define order relations. In these examples

we defined different sets of data objects to represent different mathematical types. However, a scientific

application may include many data types, and it is impractical to provide a separate data model U and a

separate analysis of visualization functions D : U → V for each different data type. Thus it is desirable to

define data models that include many different data types.

In the study of programming language semantics, objects of many different types have been

embedded in lattices called universal domains (Scott, 1976). In Section 3.2 we will show how scientific

data objects of many different types can be embedded in a single lattice. Thus we assume that our data

model U is a lattice. We further assume that U is a complete lattice. Any ordered set can be embedded in a

complete lattice by the Dedekind-MacNeille completion (Davey and Priestly, 1990), so this is not a very

strong assumption. Scott showed how to define a topology on ordered sets (Gunter and Scott, 1990) and in

this topology least upper bounds play a role analogous to limits. Thus we can think of the assumption that

U is complete as meaning that it contains the mathematical objects that are the limits of sets of

approximating finite data objects. Complete lattices are a convenient mathematical context for studying

visualization functions, as long as we remember that actual implementations of data models are restricted

to countable subsets of U.

The notion of precision of approximation also applies to displays. Displays have finite resolution

in space, color and time (that is, animation). Two-dimensional images and three-dimensional volume

renderings are composed of finite numbers of pixels and voxels, each implemented with a finite number of

bits, and changing in discrete steps over time. Computer displays are finite approximations to idealized

mathematical displays (that is, displays defined in terms of real-valued functions) and it is possible to

define an order relation between displays based on the precision of these approximations. Thus we assume

that our display model V is also a complete lattice.

145

145

3.1.4 Data Display as a Mapping Between Lattices

Data objects provide information about mathematical objects, and Eq. (3.2) says that the order

relations on U and V provide measures of the information in data objects and displays (that is, how

precisely they specify mathematical objects). The purpose of visualization is to communicate information

about data objects, and we will express this purpose as conditions on D : U → V defined in terms of the

order relations on U and V. In order to define conditions on D we draw on the work of Mackinlay

(Mackinlay, 1986). He studied the problem of automatically generating displays of relational information

and defined expressiveness conditions on the mapping from relational data to displays. His conditions

specify that a display expresses a set of facts (that is, an instance of a set of relations) if the display encodes

all the facts in the set, and encodes only those facts.

In order to interpret the expressiveness conditions we define a fact about data objects as a logical

predicate applied to U (that is, a function of the form

P : U → {false, true}). However, since data objects are approximations to mathematical objects, we limit

facts about data objects to approximations of facts about mathematical objects. In particular, we would like

to avoid predicates that define inconsistent information about mathematical objects. For example, if u1 ≤

u2 then u1 and u2 are approximations to the same mathematical object (or objects), so we will disallow

any predicates that define P(u1) = true and P(u2) = false. We can do this by restricting our interpretations

of facts about data objects to monotone predicates of the form

P: U → {undefined, false, true}, where undefined < false and undefined < true. Furthermore, a monotone

predicate of the form P: U → {undefined, false, true} can be expressed in terms of two monotone

predicates of the form P: U → {undefined, true}, so we will limit facts about data objects to monotone

predicates of the form

P: U → {undefined, true}.

The first part of the expressiveness conditions says that every fact about data objects is encoded

by a fact about their displays. We interpret this as follows:

146

146

Condition 1. For every monotone predicate P: U → {undefined, true}, there is a monotone

predicate Q: V → {undefined, true} such that P(u) = Q(D(u)) for each u ∈ U.

This requires that D be injective [if u1 ≠ u2 then there are P such that P(u1) ≠ P(u2), but if D(u1)

= D(u2) then Q(D(u1)) = Q(D(u2)) for all Q, so we must have D(u1) ≠ D(u2)].

The second part of the expressiveness conditions says that every fact about displays encodes a fact

about data objects. We interpret this as follows:

Condition 2. For every monotone predicate Q: V → {undefined, true}, there is a monotone

predicate P: U → {undefined, true} such that Q(v) = P(D-1(v)) for each v ∈ V.

We show in Appendix B that Condition 2 implies that D is a monotone bijection (that is, one-to-

one and onto) from U onto V. Thus Condition 2 is too strong since it requires that every display in V is the

display of some data object in U, under D. Since U is a complete lattice it contains a maximal data object

X (the least upper bound of all members of U). For all data objects u ∈ U, u ≤ X. Since D is monotone this

implies

D(u) ≤ D(X). We use the notation ↓D(X) for the set of all displays less than D(X). ↓D(X) is itself a

complete lattice and for all data objects u ∈ U, D(u) ∈ ↓D(X). Hence we can replace V by ↓D(X) in

Condition 2 in order to not require that every v ∈ V is the display of some data object. We modify

Condition 2 as follows:

Condition 2’. For every monotone predicate Q: ↓D(X) → {undefined, true}, there is a monotone

predicate P: U → {undefined, true} such that Q(v) = P(D-1(v)) for each v ∈ ↓D(X).

147

147

u4

u3

u2

u1

v4

v3

v2

v1

DP Q

⊥

⊥

true

true

⊥

⊥

true

true

VU ⊥ , true{ }⊥ , true{ }

Figure 3.8. The expressiveness conditions specify that D : U → V defines a correspondence

between monotone predicates on U and V.

These two conditions quantify the relation between the information in data objects and the

information in their displays. Figure 3.8 shows D mapping the chain u1 < u2 < u3 < u4 in U to the chain

v1 < v2 < v3 < v4 in V, and shows the values of the monotone predicates P and Q on these chains. The

expressiveness conditions define a correspondence between such predicates. We now use them to define a

class of functions.

Definition. A function D: U → V is a display function if it satisfies Conditions 1 and 2’.

In Appendix B we prove the following result about the class of display functions:

Prop. B.3. A function D: U → V is a display function if and only if it is a lattice isomorphism

from U onto ↓D(X).

148

148

This result may be applied to any complete lattice model of data and displays. In the rest of this

chapter we will explore its consequences in a more specific setting.

3.2 A Scientific Data Model

The scientific data model developed in Section 2.2 defined a set of data types for representing

mathematical types. We define scalar types for representing variables, tuple types for representing vectors,

and array types for representing functions. Based on the ideas developed in Section 3.1.3, metadata that

describe how precisely data objects approximate the mathematical objects that they represent are integrated

into this data model.

The data model defines two kinds of primitive values, one appropriate for representing real

numbers and the other appropriate for representing integers or text strings. We call these two kinds of

primitive values continuous scalars and discrete scalars. A continuous scalar takes the set of closed real

intervals as values, ordered by the inverse of containment. Figure 3.1 illustrated the order relations

between values of a continuous scalar. A discrete scalar takes any countable (possible finite) set as values,

without any order relation between them (since no integer is more precise than any other). Figure 3.9

illustrates the order relations between values of a discrete scalar. The value sets of continuous and discrete

scalars also always include a minimal value ⊥ corresponding to a missing data indicator.

⊥

0 1 2 3 . . .-1-2-3. . .

Figure 3.9. Order relation of a discrete scalar.

149

149

The data model does not specify a particular set of scalars. Rather the data model can be adapted

to a particular scientific application by defining a finite set S of scalar types to represent the mathematical

variables of the application (for example, time, latitude, temperature, pressure). These scalar types are

aggregated into a set T of complex data types according to three rules:

1. Any continuous or discrete scalar in S is a data type in T.

2. If t1, ..., tn are types in T defined from disjoint sets of scalars, then struct{t1;...;tn} is a tuple type in

T with element types ti. Data objects of tuple types (that is, data types constructed as tuples) contain

one data object of each of their element types.

3. If w is a scalar type in S and r is a type in T such that w does not occur in the definition of r, then

(array [w] of r) is an array type with domain type w and range type r. Data objects of array types

(that is, data types constructed as arrays) are finite samplings of functions from the primitive

variable represented by their domain type w to the set of values represented by their range type r.

That is, a data object of an array type is a set of data objects of its range type, indexed by values of

its domain type.

Each data type in T defines a set of data objects. Continuous and discrete scalars define sets of

values as described previously. The set of objects of a tuple type is the cross product of the sets of objects

of its element types. A tuple of data objects represents a tuple of mathematical objects, and the precision of

the approximation depends on the precision of each element of the tuple. One tuple is more precise than

another if each element is more precise. That is, (x1, ..., xn) ≤ (y1, ..., yn) if xi ≤ yi for each i. Figure 3.10

illustrates the order relations between tuples.

150

150

(⊥, ⊥)

([0.3, 0.4], [2.3, 2.4])

([0.0, 0.9], [2.3, 2.4]) ([0.3, 0.4], [2.0, 2.9])

([0.0, 0.9], [2.0, 2.9])(⊥, [2.3, 2.4]) ([0.3, 0.4], ⊥)

([0.0, 0.9], ⊥)(⊥, [2.0, 2.9])

Figure 3.10. Order relation of tuples. Tuples are members of cross products. This figure shows a

few elements in a cross product of two sets of continuous scalar values, plus the order relations

among those elements. In a cross product, the least element is the tuple of least elements of the

factor sets.

The set of objects of an array type is similar to a function space. However, an array’s domain type

generally defines an infinite set of values, whereas arrays are limited to finite subsets of domain values.

For each finite subset of domain values, define the space of functions from this finite set to the set of

objects of the array’s range type. Then the set of objects of an array type is the union of such function

spaces taken over all finite subsets of the domain’s value set. We will make this definition rigorous in

Section 3.2.3. The order relation between array objects was illustrated in Figure 3.3 and is precisely

defined in Section 3.2.3.

151

151

While the development of this data model is complex, it offers several advantages over more

commonly used data models. First, a wide variety of scientific data can be expressed in this data model by

building hierarchies of tuples and arrays. Thus a system based on this data model can be applied to a wide

variety of scientific applications and can be used to combine data from different sources. This is a

significant advantage over most existing scientific visualization systems.

Second, this data model integrates several forms of scientific metadata, including:

1. Each scalar type is identified by the name of the primitive mathematical variable that it represents.

2. An array data object is a finite sampling of a mathematical function, and contains a set of objects of

the array’s range type, indexed by values of the array’s domain scalar type. These index values

specify how the array samples the function being represented.

3. The interval values of continuous scalars are approximations to real numbers in a mathematical

model, and the sizes of these intervals provide accuracy metadata about the approximations.

4. Any scalar object may take the value ⊥, corresponding to a missing data indicator.

Most previous systems require users to store such metadata in separate data objects and to manage the

relation between data and metadata explicitly in their programs. A system based on this data model can

integrate metadata into the computation and display semantics of data, and thus reduce the burden on users.

In the next three sections we show how to define a lattice structure for this data model. This

lattice structure can be used to analyze visualization mappings from this data model to a lattice-structured

display model and thus define a repertoire of visualization functions for a system based on this data model.

152

152

3.2.1 Interpreting the Data Model as a Lattice

We treat the visualization process as a function from a set of data objects to a set of display

objects. Our data model defines a different set of data objects for each different data type, suggesting that a

different visualization function must be defined for each different data type. However, we can define a

lattice of data objects and natural embeddings of data objects of all data types into this lattice. This lattice

provides us with a unified data model U for data objects of all data types in T. Thus a visualization

function D : U → V applies to all data types in T and our analysis of the properties of these visualization

functions will be independent of particular data types.

In Section 1.2 we saw that many current visualization techniques achieve generality by

enumerating sets of data types and display techniques. The lattice U provides an alternative to this

approach by defining a unified data model and enabling a unified analysis of visualization functions for

different data types.

Define a tuple space X as the cross product of the sets of values of the scalar types in S, and define

a member of the data lattice as a subset of the tuple space X. In Section 3.2.2 we show how to define an

order relation on this lattice, and in Section 3.2.3 we show how the data objects of our scientific data model

are embedded in this lattice.

To get an intuition of how the embedding works, consider a data lattice U defined from the three

scalars time, temperature and pressure. Objects in the lattice U are sets of tuples of the form (time,

temperature, pressure). Consider the tuple data type struct{temperature; pressure}. Data objects of this

type are tuples of the form (temperature, pressure), and we can embed them in the lattice U as illustrated in

Figure 3.11.

153

153

(temp1, pres1) ⊥{(, temp1, pres1)}

an element of the tuple type
(temperature, pressure)

a member of the lattice of sets of tuples
of the form (time, temperature, pressure)

embedding of a tuple type
into a lattice

Figure 3.11. Embedding a tuple type into a lattice of sets of tuples.

Similarly, we can embed array data types in the data lattice. For example, consider the same

lattice U defined from the three scalars time, temperature and pressure, and consider an array data type

(array [time] of temperature). A data object of this type is a set of pairs of the form (time, temperature).

We can embed such data objects into the lattice U as illustrated in Figure 3.12.

The basic ideas presented in Figures 3.11 and 3.12 can be combined to embed complex data types,

defined as hierarchies of tuples and arrays, in data lattices. This will be formalized in Section 3.2.3. These

embeddings enable a unified, lattice-structured data model so that visualization mappings apply to data

objects of all data types. This is important for a visualization system based on this lattice model because it

implies that the user interface for controlling how data are displayed is independent of data type.

time1: temp1

time2: temp2

time3: temp3

timeN: tempN

.

.

.

array of temperature values
indexed by time values

⊥{(time1, temp1,),

⊥ (time2, temp2,),

⊥ (time3, temp3,),

⊥ (timeN, tempN,)}

. . .

embedding of an
array type into
a lattice

set of tuples with ⊥ pressure values
and with no two time values equal

Figure 3.12. Embedding an array type into a lattice of sets of tuples.

154

154

3.2.2 Defining the Lattice Structure

Now we can develop a rigorous definition of our lattice model for scientific data. We will define

lattices of data objects and displays in terms of scalar types. We use the symbol R to denote the real

numbers. A scalar type s is either discrete or continuous and defines a set Is of values of type s.

Def. A discrete scalar s defines a countable value set Is that includes a least element ⊥ and that

has discrete order. That is, ∀x, y ∈ Is. (x ≤ y ⇒ x = ⊥). Figure 3.9 illustrates the order relation on Is.

Def. A continuous scalar s defines a value set

Is = {⊥} ∪ {[x, y] | x, y ∈ R & x ≤ y} (that is, the set of closed real intervals, plus ⊥) with the order defined

by: ⊥ < [x, y] and [u, v] ⊆ [x, y] ⇔ [x, y] ≤ [u, v]. Figure 3.1 illustrates the order relation on Is.

Given a continuous scalar s, the closed real intervals in Is represent real numbers with limited

accuracy. A real interval is "less than" its sub-intervals since sub-intervals give more precise information.

Given a set A of closed real intervals, if the intersection

IA is non-empty then \/A is equal to that intersection (it is a closed interval), otherwise \/A is undefined.

/\A is the smallest closed interval containing the union UA, or ⊥ if the union is unbounded.

It is interesting to note that, given a continuous scalar s, the order relation on Is encodes

information about the ordering and topology of real numbers through the containment structure of intervals.

We use the notation XA for the cross product of members of the set A. We can now define an

ordered set of tuples of scalar values, as follows:

Def. Let S be a finite set of scalars. Then the cross product X = X{Is | s ∈ S} is the set of tuples

with an element from each Is. Let as denote the s component of a tuple

155

155

a ∈ X. Define an order relation on X by: for a, b ∈ X, a ≤ b if ∀s ∈ S. as ≤ bs. Figure 3.10 illustrates this

order relation on tuples.

Let POWER(X) = {A | A ⊆ X} denote the power set of X (that is, the set of all subsets of X). As

discussed briefly in Section 3.2.1, we use the sets of tuples in POWER(X) as models for scientific data

objects. It is well known that it is difficult to define an order relation on POWER(X) that is consistent with

the order relation on X and is consistent with set inclusion (Schmidt, 1986). For example, if a, b ∈ X and a

< b, we would expect that {a} < {b}. Thus we might define an order relation between subsets of X by:

(3.4) ∀A, B ⊆ X. (A ≤ B ⇔ ∀a ∈ A. ∃b ∈ B. a ≤ b)

However, given a < b, Eq. (3.4) implies that {b} ≤ {a, b} and {a, b} ≤ {b} are both true, which contradicts

{b} ≠ {a, b}. As explained by Schmidt, this problem can be resolved by defining an equivalence relation

on POWER(X). The equivalence relation is defined in terms of the Scott topology, which defines open and

closed sets as follows:

Def. A set A ⊆ X is open if ↑A ⊆ A and, for all directed subsets

C ⊆ X, \/C ∈ A ⇒ C ∩ A ≠ φ.

Def. A set A ⊆ X is closed if ↓A ⊆ A and, for all directed subsets C ⊆ A, \/C ∈ A. We use CL(X)

to denote the set of all closed subsets of X.

Note that the complement of an open set is closed, and vice versa. Also, X and φ are both open

and closed.

156

156

Def. Define a relation ≤R on POWER(X) as: A ≤R B if for all open C ⊆ X,

A ∩ C ≠ φ ⇒ B ∩ C ≠ φ. Also define a relation ≡R on POWER(X) as: A ≡R B if A ≤R B and B ≤R A.

As we show in Appendix C, ≡R is an equivalence relation. Clearly, if A ≡R B and C ≡R D, then

A ≤R C ⇔ B ≤R D, so the equivalence classes of ≡R are ordered by ≤R. In Appendix C we also show that

the equivalence classes of ≡R form a complete lattice, ordered by ≤R. These equivalence classes are our

models for data objects. However, it is not necessary to work directly with equivalence classes. Given an

equivalence class E of the ≡R relation, let ME = UE. As shown in Appendix C, ME is closed and E ↔

ME defines a one-to-one correspondence between equivalence classes of ≡R and closed sets. Thus we use

U = CL(X) as our data lattice. The following proposition from Appendix C explains how sups and infs are

calculated in this lattice.

Prop. C.8. If W is a set of equivalence classes of the ≡R relation, then /\W is defined and equals E

such that ME = I{Mw | w ∈ W}. Similarly \/W is defined and equals E such that ME is the smallest

closed set containing U{Mw | w ∈ W}. Thus the equivalence classes of the ≡R relation form a complete

lattice and, equivalently, CL(X) is a complete lattice. If W is finite and E = \/W, then ME = U{Mw | w ∈

W}.

To summarize, U = CL(X) is a complete lattice whose members are in one to one correspondence

with the equivalence classes of ≡R. The lattice U is our data model. Figure 3.13 illustrates the order

relation on CL(X). In the next section we show that the data types of a scientific programming language

can be naturally embedded in U.

157

157

⊥= the empty set (also denoted by

{(⊥, ⊥, ⊥)}

{(Α, ⊥, ⊥), (⊥, ⊥, ⊥)} {(⊥, Β, ⊥), (⊥, ⊥, ⊥)}

{(Α, ⊥, ⊥), (⊥, Β, ⊥), (⊥, ⊥, ⊥)}

{(Α, Β, ⊥), (Α, ⊥, ⊥), (⊥, Β, ⊥), (⊥, ⊥, ⊥)}

φ)

Figure 3.13. Defining an order relation on sets of tuples. The sets are all down sets and are

ordered by set containment. We assume that the three scalars that define these tuples are

discrete, so that the down sets in this figure are all finite.

3.2.3 Embedding Scientific Data Types in the Data Lattice

In this section we formalize the data model presented in Section 3.2.1.

Def. A set T of data types can be defined from the set S of scalars as follows. Two functions, SC :

T → POWER(S) and DOM : T → POWER(S), are defined with T, as follows:

(3.5) s ∈ S ⇒ s ∈ T (that is, S ⊂ T)

SC(s) = {s}

DOM(s) = φ.

158

158

(3.6) (for i = 1,...,n. ti ∈ T) & (i ≠ j ⇒ SC(ti) ∩ SC(tj) = φ) ⇒ struct{t1;...;tn} ∈ T

SC(struct{t1;...;tn}) = UiSC(ti)

DOM(struct{t1;...;tn}) = UiDOM(ti)

(3.7) w ∈ S & r ∈ T & w ∉ SC(r) ⇒ (array [w] of r) ∈ T

SC((array [w] of r)) = {w} ∪ SC(r)

DOM((array [w] of r)) = {w} ∪ DOM(r)

The type struct{t1;...;tn} is a tuple with element types ti, and the type

(array [w] of r) is an array with domain type w and range type r. SC(t) is the set of scalars occurring in t,

and DOM(t) is the set of scalars occurring as array domains in t. Note that each scalar in S may occur at

most once in a type in T.

In an actual implementation of a programming language, data objects must be represented as finite

strings over finite alphabets, so only a countable number of data objects can be defined. Thus we define

countable sets of values for scalar types and complex data types.

Def. For each scalar s ∈ S, define a countable set Hs ⊆ Is such that, for all

a, b ∈ Hs, a ∧ b ∈ Hs, a ∨ b ∈ Is ⇒ a ∨ b ∈ Hs, and for all a ∈ Is there exists A ⊆ Hs such that a = \/A

(that is, Hs is closed under infs and under sups that belong to Is, and any member of Is is a sup of a set of

members of Hs). For discrete s this implies that Hs = Is (recall that we defined discrete scalars as having

countable value sets). For continuous s, Hs may be the set of rational intervals plus ⊥. Note that, for

continuous s, Hs cannot be a cpo.

We can use the sets Hs to define countable sets of finite data objects of all types. We define a

tuple data object as a set containing one object of each of its element types. We define an array data object

159

159

as a function from a finite set of data objects of its domain type (which is a scalar type), to the set of data

objects of its range type. Now we define countable sets of data objects of each type in T, and define

functions that embed these data objects into the lattice U.

Def. Given a scalar w, let

FIN(Hw) = {A ⊆ Hw\{⊥} | A finite and ∀a, b ∈ A. ¬(a ≤ b)}.

If w is a discrete scalar, then a member of FIN(Hw) is any finite subset of Hw not containing ⊥. If

w is a continuous scalar, then a member of FIN(Hw) is any finite set of closed real intervals such that no

interval contains another.

Def. For complex types t ∈ T define Ht by:

(3.8) t = struct{t1;...;tn} ⇒ Ht = H Ht tn1
× ×...

(3.9) t = (array [w] of r) ⇒ Ht = U{(A → Hr) | A ∈ FIN(Hw)}

Def. Define an embedding Et : Ht → U by:

(3.10) t ∈ S ⇒ Et(a) = ↓(⊥,...,a,...,⊥)

(3.11) t = struct{t1;...;tn} ⇒ Et((a1,...,an)) = {b1∨...∨bn | ∀i. bi ∈ Eti
(ai)}

(3.12) t = (array [w] of r) ⇒

[a ∈ (A → Hr) ⇒ Et(a) = {b∨c | x ∈ A & b ∈ Ew(x) & c ∈ Er(a(x))}]

Def. For t ∈ T define Ft = Et(Ht).

160

160

In Appendix D we show that Et does indeed map members of Ht to members of U, and that this

mapping is injective.

Recall that we use the notation as for the s scalar component of a tuple

a ∈ X{Is | s ∈ S}. Now X{Is | s ∈ S} is not a lattice, so it is not obvious that b1∨...∨bn in Eq. (3.11) and

b∨c in Eq. (3.12) exist. However, as shown in Appendix D, for all a ∈ Ht and for all b ∈ Et(a), bs = ⊥

unless s ∈ SC(t). Thus b1∨...∨bn in Eq. (3.11) exists since the types ti in Eq. (3.11) are defined from

disjoint sets of scalars, and b∨c in Eq. (3.12) exists since the scalar w does not occur in the type r.

Because Et : Ht → U is injective, we can define an order relation between the members of Ht

simply by assuming that Et is an order embedding. (If Et were not injective, it would map a pair of

members of Ht to the same member of U, and the assumption that Et is an order embedding would imply

that the order relation on Ht is not symmetric.)

Def. Given a, b ∈ Ht, we say that a ≤ b if and only if Et(a) ≤ Et(b).

Appendix D shows that the order relations on the sets Ht implied by this definition have simple

and intuitive structure. If t is a scalar, then this is the same as the order relation on It. If t = struct{t1;...;tn}

and if (a1,...,an), (b1,...,bn) ∈ Ht, then (a1,...,an) ≤ (b1,...,bn) if ∀i. ai ≤ bi (that is, the order relation

between tuples is defined element-wise). If t = (array [w] of r), if a, b ∈ Ht and if a ∈ (A → Hr) and b ∈

(B → Hr), then

a ≤ b if ∀x ∈ A. Er(a(x)) ≤ \/{Er(b(y)) | y ∈ B & x ≤ y} (that is, an array a is less than an array b if the

embedding of the value of a at any sample x is less than the sup of the embeddings of the set of values of b

at its samples greater than x).

In summary, in this section we have shown that data types appropriate for a scientific

programming language can be embedded in our data model U. Thus, results about displaying data objects

in U can be applied to the display of data objects of scientific algorithms.

161

161

3.2.4 A Finite Representation of Data Objects

If S contains any continuous scalars, then most elements of U = CL(X) contain infinite numbers of

tuples. However, a closed set of tuples is only one member of an equivalence class of ≡R as defined in

Section 3.2.2. We can define an alternate representation of a data object as the set of maximal elements of

a closed set, as follows:

Def. Given A ∈ U, define MAX(A) = {a ∈ A | ∀b ∈ A. ¬(a < b)}. That is, MAX(A) consists of the

maximal elements of A.

The following proposition from Appendix E tells us that the equivalence relation

≡R defines a one-to-one correspondence between the closed sets in U and the sets of their maximal

elements.

Prop. E.3. ∀A ∈ U. A ≡R MAX(A).

Thus, data objects in our data model can either be represented by closed sets, or by the sets of maximal

elements of closed sets. As the following proposition from Appendix E shows, if t is a data type in T, and

if A ∈ Ft is the embedding in U of a data object of type t, then MAX(A) is finite.

Prop. E.5. For all types t ∈ T and all A ∈ Ft, MAX(A) is finite.

Our lattice model of data is motivated by the observation that data objects are approximations to

mathematical objects that may contain infinite amounts of information. Since our data lattice is complete it

contains objects, definable as limits of objects of types in T, that are models for mathematical objects

162

162

containing infinite amounts of information. The sets of maximal tuples in these objects are generally not

finite, so we cannot make the assumption that MAX(A) is finite when we apply Prop. B.3 to our scientific

data model in Section 3.4. Thus working with sets of maximal tuples offers no real advantage over

working with closed sets.

3.3 A Scientific Display Model

For our scientific display model we start with Bertin’s analysis of static two-dimensional displays

(Bertin, 1983). He modeled displays as sets of graphical marks, where each mark was described by an 8-

tuple of graphical primitive values (that is, two screen coordinates, size, value, texture, color, orientation

and shape). His idea of modeling a display as a set of tuple values is quite similar to the way we

constructed the data lattice U. Therefore we define a finite set DS of display scalars to represent graphical

primitives, we define Y = X{Id | d ∈ DS} as the cross product of the value sets of the display scalars in DS,

and we define V as the complete lattice of all closed subsets of Y. We interpret the maximal tuples of

members of V as representing graphical marks (we show in Section 3.4.4 that for any type t ∈ T and any

data object a ∈ Ht, the display D(a) contains a finite number of maximal tuples), and we interpret the

display scalar values in these maximal tuples as defining the graphical primitives of those graphical marks.

Bertin first published his display model in 1967, and it is limited to static two-dimensional

displays. However, we can define a specific lattice V to model animated three-dimensional displays in

terms of a set of seven continuous display scalars:

(3.13) DS = {x, y, z, red, green, blue, time}

A tuple of values of these display scalars represents a graphical mark. The interval values of x, y and z

represent the locations and sizes of graphical marks in the volume, the interval values of red, green and

163

163

blue represent the ranges of colors of marks, and the interval values of time represent the duration of marks

in an animation sequence, as illustrated in Figure 3.14.

set of animation steps:

(time, x, y, z, red, green, blue)

red green blue

tuple of display
scalar values
for a graphical
mark

location and size
of mark in volume

interval that mark
persists during
animation

x

z

y

ranges of values
of mark’s color
components

Figure 3.14. The roles of seven continuous display scalars (x, y, z, red, green, blue, time) in an

animated three-dimensional display model.

The display lattice illustrated in Figure 3.14 models volume rendering and animation. Displays in

V are interactive in the sense that users control parameters to choose a function RENDER : V → V’ that

maps logical displays to physical displays (this function is described in Section 2.3). For the display lattice

illustrated in Figure 3.14, users control the projection from three dimensions to two dimensions, and

control animation sequencing. We can add more display scalars to DS to model other rendering techniques

164

164

and other user interaction techniques. For example, consider the display model defined by the following

set of display scalars (where n and m are parameters of the display model):

(3.14) DS = {red, green, blue, transparency, reflectivity, vectorx, vectory, vectorz,

contour1, ..., contourn, x, y, z, animation, selector1, ..., selectorm}

The transparency and reflectivity display scalars model parameters of volume rendering techniques. The

vectorx, vectory and vectorz, display scalars model flow rendering techniques, and possibly interactive

placement of seed points for tracing and rendering flow trajectories (a three-dimensional flow field is

defined by the values of these display scalars attached to graphical marks). The contour1, ..., contourn

display scalars model iso-surface rendering techniques (iso-surfaces are rendered through the three-

dimensional field defined by the values of these display scalars attached to graphical marks). The

selector1, ..., selectorm display scalars explicitly model a user interaction technique. That is, a user

interactively selects sets of values for each selectori (for i between 1 and m) and graphical marks are

displayed only if their values for selectori overlap the user-selected set of values.

Display scalars can be defined for a wide variety of attributes of graphical marks, and need not be

limited to such primitive values as spatial coordinates, color components and animation indices. For

example, we may define a display model whose displays consist of sets of graphical icons (i.e., graphical

shapes) distributed at various locations in a display screen. This display model could be defined using

three display scalars: horizontal screen coordinate, vertical screen coordinate, and an icon identifier. In this

display model a single value of the icon identifier display scalar would represent the potentially complex

shape of a graphical icon. We could define another display model in which a set of display scalars form the

parameters of two-dimensional ellipses. This display model would include five display scalars that

represent the two-dimensional center coordinates, the orientations, and the lengths of major and minor axes

of the ellipses.

165

165

The possibility that logical displays may be interactive suggests that we have great flexibility in

the way we define a logical display model V, as long as we can define a family of mappings RENDER : V

→ V’ parameterized by user controls. For example, we can build a display lattice V that models Beshers

and Feiner’s "worlds within worlds" visualization technique (Beshers and Feiner, 1992). This technique is

an attempt to overcome the limitation to three spatial dimensions by nesting small coordinate systems

within larger coordinate systems. Data are plotted as a set of small graphs, each including a small set of

three axes. The location of the origin of a small coordinate system within a containing coordinate system

determines the values of the containing coordinates for the plotted data. Users can interactively move the

small graphs within the containing coordinate systems to see how plotted values change with respect to

changes in the values of the containing coordinates. We can model this technique by defining a display

lattice V in terms of two or more sets of three-dimensional graphics locations. The mapping RENDER : V

→ V’ would be paramterized by the user’s controls over the locations of small graphs.

The examples described above indicate that it is possible to define a wide variety of display

models in terms of tuples of display scalars. Thus we do not focus on any particular display model.

Rather, we just assume that there is a set DS of display scalars, and that our display model V consists of

displays that are sets of maximal tuples of values of these display scalars.

The important point here is that the lattice model and its theoretical results are easily extensible to

a wide variety of different display models. If a user can express rendering and interaction techniques in

terms of a set of display scalars and user controls for the choice of the mapping RENDER : V → V’, then

our lattice results are applicable to that model.

3.4 Scalar Mapping Functions

So far, we have defined a particular lattice structure appropriate for scientific data and displays.

Now we apply the results of Section 3.1.4 to that structure.

166

166

3.4.1 Structure of Display Functions

Display functions are lattice isomorphisms. However, in the context of particular data and display

models defined in the previous sections there is much more that we can say about them. Data objects of

scalar types can be naturally embedded in the lattice U (as we saw in Sections 3.3.2 and 3.3.3), and we can

define similar embeddings of display scalar types in the lattice V. These embeddings can be defined as:

Def. For each scalar s ∈ S, define an embedding Es:Is → U by:

∀b ∈ Is. Es(b) = ↓(⊥,...,b,...,⊥) (this notation indicates that all components of the tuple are ⊥ except b).

Also define Us = Es(Is) ⊆ U.

Def. For each display scalar d ∈ DS, define an embedding Ed:Id → V by:

∀b ∈ Id. Ed(b) = ↓(⊥,...,b,...,⊥). Also define Vd = Ed(Id) ⊆ V.

These embedded scalars play a special role in the structure of display functions. As shown in

Appendix F, a display function maps embedded scalar objects to embedded display scalar objects.

Furthermore, the values of a display function on all of U are determined by the values of the embedded

scalar objects. The results of Appendix F are summarized by the following theorem about mappings from

scalars to display scalars:

Theorem. F.14. If D : U → V is a display function, then we can define a mapping MAPD : S →

POWER(DS) such that for all scalars s ∈ S and for all a ∈ Us, there is

d ∈ MAPD(s) such that D(a) ∈ Vd. The values of D on all of U are determined by the values of D on the

scalar embeddings Us. Furthermore,

(a) If s is discrete and d ∈ MAPD(s) then d is discrete.

(b) If s is continuous then MAPD(s) contains a single continuous display scalar.

167

167

(c) If s ≠ s’ then MAPD(s) ∩ MAPD(s’) = φ.

This theorem tells us that mappings of data aggregates to display aggregates can always be

factored into mappings of data primitives (e.g., time and temperature) to display primitives (e.g., screen

axes and color components). This has been accepted as intuitively true, as, for example, a time series of

temperatures may be displayed by mapping time to one axis and temperature to another. However,

Proposition F.14 tells us that all mappings that satisfy the expressiveness conditions must factor in this

way. In Section 3.4.3 we present a precise statement of how such a factorization is a complete

characterization of visualization mappings satisfying the expressiveness conditions.

Figure 3.15 provides examples of mappings from scalars to display scalars. The upper-right

window of Figure 1.1 shows a display defined by these mappings. In this figure, time is mapped to

animation so that the time sequence of images will be represented by animation (as opposed to being

stacked up along a display axis, for example). Line and element are mapped to the x and z display axes and

ir is mapped to the y axis, so that an image in the time sequence is displayed as a terrain (i.e., as a surface

with y as a function of x and z). vis is mapped to green, so that this image terrain is colored green with

intensity as a function of visible radiance.

x

z

y

red green blue

a
n
i
m
a
t
i
o
n

s
t
e
p
s

type image_sequence =

array [time] of array [line] of array [elem] of structure {ir; vis}

168

168

Figure 3.15. Mappings from scalars to display scalars.

3.4.2 Behavior of Display Functions on Continuous Scalars

In the previous section we saw that display functions map embedded continuous scalar objects to

embedded continuous display scalar objects. Continuous scalar values are real intervals, so the values of

display functions restricted to embedded continuous scalars can be analyzed in terms of their behavior as

functions of real numbers. First, we define the values of display functions on embedded continuous scalars

in terms of functions of real numbers.

Def. Given a display function D:U → V and a continuous scalar s ∈ S, by Prop. F.14 there is a

continuous d ∈ DS such that values in Us are mapped to values in Vd. Define functions gs : R × R → R

and hs : R × R → R by:

∀↓(⊥,...,[x, y],...,⊥) ∈ Us, D(↓(⊥,...,[x, y],...,⊥)) = ↓(⊥,...,[gs(x, y), hs(x, y)],...,⊥) ∈ Vd.

Since D({(⊥,...,⊥)}) = {(⊥,...,⊥)} and D is injective, D maps intervals in Is to intervals in Id, so gs(x, y) and

hs(x, y) are defined for all z. Also define functions g’s : R → R and

h’s : R → R by g’s(z) = gs(z, z) and h’s(z) = hs(z, z).

As shown in Appendix G, the functions gs and hs can be defined in terms of the functions g’s and

h’s, as follows. Given a display function D:U → V, a continuous scalar

s ∈ S, and [x, y] ∈ Is, then

(3.15) gs(x, y) = inf{g’s(z) | x ≤ z ≤ y} and

(3.16) hs(x, y) = sup{h’s(z) | x ≤ z ≤ y}.

169

169

In Appendix G we also show that the overall behavior of a display function on a continuous scalar

must fall into one of two categories. Specifically, given a display function D:U → V and a continuous

scalar s ∈ S, then either

(3.17) ∀x, y, z ∈ R. x < y < z implies that gs(x, z) = gs(x, y) & hs(x, y) < hs(x, z) and that

gs(x, z) < gs(y, z) & hs(y, z) = hs(x, z),

or

(3.18) ∀x, y, z ∈ R. x < y < z implies that gs(x, z) < gs(x, y) & hs(x, y) = hs(x, z) and that

gs(x, z) = gs(y, z) & hs(y, z) < hs(x, z).

If Eq. (3.17) applies, we say that D is increasing on s. If Eq. (3.18) applies, we say that D is

decreasing on s.

Appendix G shows that these categories also apply to the functions g’s and h’s. Given a display

function D:U → V, a continuous scalar s ∈ S, and z < z’, if D is increasing on s then g’s(z) < g’s(z’) and

h’s(z) < h’s(z’), and if D is decreasing on s then g’s(z) > g’s(z’) and h’s(z) > h’s(z’).

These categories enable us to prove (see Appendix G) that the functions g’s and h’s must be

continuous (in terms of the topology of the real numbers), and that they satisfy a number of other

conditions, summarized in the following definition.

Def. A pair of functions g’s:R → R and h’s:R → R is called a continuous display pair if:

(a) g’s has no lower bound and h’s has no upper bound,

(b) ∀z ∈ R. g’s(z) ≤ h’s(z), and

(c) g’s and h’s are continuous,

170

170

(d) either g’s and h’s are increasing:

∀z, z’ ∈ R. z < z’ ⇒ g’s(z) < g’s(z’) & h’s(z) < h’s(z’),

or g’s and h’s are decreasing:

∀z, z’ ∈ R. z < z’ ⇒ g’s(z) > g’s(z’) & h’s(z) > h’s(z’).

Given a display function D:U → V and a continuous scalar s ∈ S, then g’s and h’s are a continuous

display pair. If we draw the graphs of the functions g’s and h’s, these conditions tell us that their graphs

must be smooth, both slanted up or both slanted down, with the graph of h’s above the graph of g’s, no

upper bound on the graph of h’s, and no lower bound on the graph of g’s. A display function maps closed

real intervals in a continuous scalar to closed real intervals in a continuous display scalar, and the graphs of

functions g’s and h’s can be used to determine this mapping of intervals by applying Eqs. (3.15) and (3.16).

The behavior of g’s and h’s is illustrated in Figure 3.16.

g’s

sh’

no upper bound

no lower bound

interval in a
continuous scalar

interval in a
continuous
display scalar
determined by

andsh’ g’s

corresponding

abovesh’ g’s

andsh’ g’s both smooth

and increasing (could both
be decreasing)

171

171

Figure 3.16. The behavior of a display function D on a continuous scalar interpreted in terms of

the behavior of functions h’s and g’s.

3.4.3 Characterizing Display Functions

The results of the last two sections describe a variety of necessary conditions on display functions.

Here we summarize those conditions, and show that they are also sufficient conditions for display

functions.

Def. Given a finite set S of scalars, a finite set DS of display scalars,

X = X{Is | s ∈ S}, Y = X{Id | d ∈ DS}, U = CL(X), and V = CL(Y), then a function

D:U → V is a scalar mapping function if

(a) there is a function MAPD : S → POWER(DS) such that

∀s, s’ ∈ S. MAPD(s) ∩ MAPD(s’) = φ,

(b) for all continuous s ∈ S, MAPD(s) contains a single continuous d ∈ DS,

(c) for all discrete s ∈ S, all d ∈ MAPD(s) are discrete,

(d) D(φ) = φ and D({(⊥,...,⊥)}) = {(⊥,...,⊥)},

(e) for all continuous s ∈ S, g’s and h’s are a continuous display pair,

for all [u, v] ∈ Is, gs(u, v) = inf{g’s(z) | u ≤ z ≤ v} and

hs(u, v) = sup{h’s(z) | u ≤ z ≤ v},

and, given {d} = MAPD(s), then for all [u, v] ∈ Is\{⊥},

D(↓(⊥,...,[u, v],...,⊥)) = ↓(⊥,...,[gs(u, v), hs(u, v)],...,⊥) ∈ Vd,

(f) for all discrete s ∈ S, for all a ∈ Is\{⊥},

D(↓(⊥,...,a,...,⊥)) = b ∈ Vd for some d ∈ MAPD(s), where b ≠ {(⊥,...,⊥)},

and, for all a, a’ ∈ Is\{⊥}, a ≠ a’ ⇒ D(↓(⊥,...,a,...,⊥)) ≠ D(↓(⊥,...,a’,...,⊥))

(g) for all x ∈ X, D(↓x) = ↓\/{y | ∃s ∈ S. xs ≠ ⊥ & ↓y = D(↓(⊥,...,xs,...,⊥))},

172

172

where xs represents tuple components of x, and using the values for D defined

in (e) and (f), and

(h) for all u ∈ U, D(u) = \/{D(↓x) | x ∈ u}, using the values for D defined in (g).

This definition contains a variety of expressions for the value of D on various subsets of U.

Appendix H shows that these expressions are consistent where the subsets of U overlap, and shows that D

is monotone. This definition says that scalar mapping functions factor into mappings from scalars (data

primitives) to display scalars (primitives), and that the factor mappings on continuous scalars are

continuous real functions. In Appendix H we also prove the following characterization of display

functions:

Theorem H.8. D : U → V is a display function if and only if it is a scalar mapping function.

Appendix H also shows that the values of a scalar mapping function D can be expressed in terms

of an auxiliary function D’ from X to Y. Specifically, for all u ∈ U,

(3.19) D(u) = {D’(x) | x ∈ u}.

where D’ is defined by

(3.20) D’(x) = \/{(⊥,...,ad,...,⊥) | s ∈ S & xs ≠ ⊥ & D(↓(⊥,...,xs,...,⊥)) =

↓(⊥,...,ad,...,⊥)}

173

173

This decomposition can be used as a basis for implementing scalar mapping functions, and scalar

mapping functions can be used as the basis of a user interface for controlling the display process. We will

describe this further in Section 3.4.4.

Theorem H.8 can also be used as a precise definition of the search space of display functions for

algorithms that attempt to automate the design of displays.

3.4.4 Properties of Scalar Mapping Functions

There is a problem with the interpretation of display objects in a display lattice. Closed sets

generally contain infinite numbers of tuples, so we cannot interpret each tuple as a graphical mark.

However, as described in Section 3.2.4, a closed set is just one member of an equivalence class of the ≡R

relation. A closed set v ∈ V and its set of maximal tuples, MAX(v), are both members of the same

equivalence class and thus either can represent a display object. As shown in Appendix I, if D is a display

function and if

v ∈ D(Ft) for some data type t ∈ T, then MAX(v) contains a finite number of tuples. Thus, in order to

physically render a display object v ∈ V, we interpret the finite set of tuples in MAX(v) as graphical marks,

rather than the possibly infinite set of tuples of v. Clearly, it is necessary for an implementation of the

function RENDER : V → V’ to assume a finite number of input tuples.

In order to compute values of scalar mapping functions we use the auxiliary function D’ from X to

Y defined in Section 3.4.3. The values of D’ are determined by the function MAPD, by the values of the

functions g’s and h’s for continuous scalars s ∈ S, and by the values of D on Us for discrete scalars s ∈ S.

As shown in Appendix I, given

t ∈ T and a data object A ∈ Ft, maximal tuples of D(A) can be computed directly from the maximal tuples

of A by

(3.21) MAX(D(A)) = {D’(a) | a ∈ MAX(A)}

174

174

As shown in Appendix D, the maximal tuples of data objects of type t ∈ T are computed by

(3.22) t ∈ S & A = ↓(⊥,...,a,...,⊥) ∈ Ft ⇒

MAX(A) = {(⊥,...,a,...,⊥)}

(3.23) t = struct{t1;...;tn} ∈ T & A = {(a1∨...∨an) | ∀i. ai ∈ Ai} ∈ Ft ⇒

MAX(A) = {(a1∨...∨an) | ∀i. ai ∈ MAX(Ai)}

(3.24) t = (array [w] of r) ∈ T & A = {a1∨a2 | g∈G & a1∈Ew(g) & a2∈Er(a(g))} ∈ Ft

⇒ MAX(A) = {a1 ∨ a2 | g∈G & a1∈MAX(Ew(g)) & a2∈MAX(Er(a(g)))}

These expressions for sets of maximal tuples and the auxiliary function D’ provide a basis for

implementing scalar mapping functions. Given a data object A, Eqs. (3.22) through (3.24) define a

recursive procedure for calculating the maximal tuples of A, and Eq. (3.21) says that the function D’ maps

maximal tuples of A to maximal tuples of D(A).

In Section 3.3 we described displays as sets of graphical marks. However, we can also think of

displays as defining functional relations from graphical space and time to color. That is, the color of a

screen point is a function of its location on the screen and its place in an animation sequence. These two

views of displays, as sets of graphical marks and as functions, are not consistent. For example, consider

the display lattice illustrated in Figure 3.14. If a display in this lattice includes two tuples (time, x, y, z,

red1, green1, blue1) and (time, x, y, z, red2, green2, blue2) where red1 ≠ red2, green1 ≠ green2 or blue1 ≠

blue2, then these two tuples do not define a consistent function from space and time to color. In order to

analyze the circumstances under which these two views are consistent, we divide display scalars into two

groups: those that take the role of dependent variables in this functional relation and those that take the role

of independent variables. For example, the set DS defined in Eq. (3.14) can be divided as follows:

175

175

Independent variables: x, y, z, animation, selector1, ..., selectorm

Dependent variables: red, green, blue, transparency, reflectivity, vectorx, vectory,

vectorz, contour1, ..., contourn,

Thus we can ask whether a display function generates displays that define functional relations

between independent and dependent variables in DS. Define a subset Vdisplay ⊆ V consisting of those

display objects that do not contain multiple tuples with the same combination of values of independent

variables. We will study the conditions under which displays of data objects are members of Vdisplay.

First, define DOMDS = the independent variables in DS, and define

YDOMDS = X{Id | d ∈ DOMDS} and Y = X{Id | d ∈ DS}. Let PDOMDS :Y → YDOMDS be the

natural projection from Y onto YD (that is, if a ∈ Y and b = PDOMDS(a), then for all d ∈ DOMDS, bd =

ad). Then we can define Vdisplay as follows:

Def. Vdisplay = {A ∈ V | ∀b, c ∈ MAX(A). PDOMDS(b) = PDOMDS(c) ⇒ b = c}. That is, if A

is an object in Vdisplay, then multiple tuples in A do not share the same combinations of values for display

scalars in DOMDS.

Appendix I defines conditions on t and D that ensure that displays of data objects of type t are in

Vdisplay. Specifically, D maps all data objects of type t to displays in Vdisplay if D maps all scalars in

DOM(t) to display scalars in DOMDS. Symbolically, MAPD(DOM(t)) ⊆ DOMDS ⇒ D(Ft) ⊆ Vdisplay.

The inverse of this relation is almost true - we only need to disallow degenerate cases. Details are

given in Appendix I.

In summary, in this section we have shown that the number of tuples in a display may be infinite,

but that the number of maximal tuples is finite. We concluded that only maximal tuples should be

176

176

interpreted as graphical marks in an actual implementation. We have also described a recursive procedure

for computing the set of maximal tuples in a data object and described how maximal tuples of displays are

computed from maximal tuples of data objects. This provides a basis for implementing display functions.

We have also demonstrated conditions on data types and display functions so that display objects

are consistent with a functional view of displays. An implementation could enforce these conditions on

scalar mappings defined by users. We note, however, that the VisAD implementation described in Chapter

4 does not enforce these conditions. Rather, multiple tuples that are inconsistent with a functional view of

display (i.e., occurring at the same location and time) are merged using a compositing operation (that is, the

system computes the average colors of multiple tuples at the same location and time).

3.5 Principles for Scientific Visualization

In this chapter we analyzed the repertoire of visualization mappings from a lattice-structured data

model to a lattice-structured display model. In this section we summarize the results of this analysis as a

set of basic principles for visualization.

We showed how a lattice structure can express metadata about the ways that scientific data objects

are approximate representations of mathematical objects. We also showed that this idea can be applied to

scientific displays. Our first basic principle is that

1. Lattice-structured data models provide a natural way to integrate common forms of scientific

metadata as part of data objects.

We gave an example of how a lattice-structured data model includes data objects of many

different types, and we will describe another example in Chapter 5. Our second basic principle is that

177

177

2. Data objects of many different types can be unified into a single lattice-structured data model, so

that visualization mappings (to a display model) are inherently polymorphic.

We have shown how lattice-structured data and display models can be adapted very generally by

applying Eq. (3.2). We have shown that Mackinlay’s expressiveness conditions on the visualization

mapping can be interpreted in terms of such models and that these conditions imply that visualization

mappings are lattice isomorphisms. Our third basic principle is that

3. Lattice-structured data models and display models may be defined in a very general set of scientific

situations, and the lattice isomorphism result can be broadly applied to analyze the repertoire of

visualization mappings between them.

We have shown how to define a lattice-structured data model that allows data aggregates to be

defined as hierarchies of tuples and arrays. We have shown how a similar lattice structure can define a

model for interactive, animated, three-dimensional displays. By applying the lattice isomorphism result in

this context, we have established our fourth basic principle that

4. Mappings from data aggregates to display aggregates can be factored into mappings from data

primitives to display primitives.

While our fourth principle has been accepted as intuitive in the past, here we have shown that it

completely characterizes all visualization mappings that satisfy the expressiveness conditions.

Chapter 4

178

178

Applying the Lattice Model to the Design of Visualization Systems

In Chapter 2 we developed the following design components for the VisAD system for visualizing

scientific computations:

1. That it is integrated with a scientific programming language. The system has an integrated user

interface for programming, computation and display.

2. That the data types of that programming language are constructed as tuples and arrays from a set of

scalar types. Data objects of these types represent mathematical variables, vectors and functions.

3. That its displays are interactive, animated and three-dimensional. These logical displays are

mapped to physical displays by a variety of familiar rendering operations.

In this chapter we will continue that development, guided by the broad goals defined in Section

1.1, by the analysis of visualization repertoires in Chapter 3, and by the basic principles defined in Section

3.5. To review, our goals are to develop visualization techniques that

1. Can be applied to the data of a wide variety of scientific applications.

2. Can produce a wide variety of different visualizations of data appropriate for different needs.

3. Enable users to interactively alter the ways data are viewed.

4. Require minimal effort by scientists.

179

179

5. Can be integrated with a scientific programming environment.

The basic principles are

1. Lattice-structured data models provide a natural way to integrate common forms of scientific

metadata as part of data objects.

2. Data objects of many different types can be unified into a single lattice-structured data model, so

that visualization mappings (to a display model) are inherently polymorphic.

3. Lattice-structured data models and display models may be defined in a very general set of scientific

situations, and the lattice isomorphism result can be broadly applied to analyze the repertoire of

visualization mappings between them.

4. Mappings from data aggregates to display aggregates can be factored into mappings from data

primitives to display primitives.

4.1 Integrating Metadata with a Scientific Data Model

Our first goal developed in Section 1.1 was that scientific visualization techniques "Can be

applied to the data of a wide variety of scientific applications." Thus in Section 2.2 we developed a

flexible way to define data types based on the assumption that data objects represent mathematical objects.

However, as we described in Section 1.2.2, scientific data includes metadata as well as data types. The first

principle of Chapter 3 tells us that a lattice-structured data model provides a natural way to integrate

180

180

common forms of scientific metadata as part of data objects, and thus handle a greater variety of data. In

this section we describe the ways that our visualization design integrates metadata.

The VisAD system allows data types to be defined as tuple and array aggregates of named scalar

types. Scalar types may be defined with any of the following primitive types:

1. Integers.

2. Text strings.

3. Real numbers (these values are always taken from a specified finite sampling of real numbers, and

intervals around these values are implicit in the spacing between samples).

4. Pairs of real numbers (these values are always taken from a finite sampling of R2 and rectangles

around values are implicit in the spacing between samples).

5. Triples of real numbers (these values are always taken from a finite sampling of R3 and rectangular

solids around values are implicit in the spacing between samples).

These types of primitive values do not precisely correspond to the scalar types defined in Chapter 3.

Integer and text string primitives do correspond to discrete scalars. Real number primitives correspond to

the continuous scalars of Chapter 3, except that the intervals around values are implicit. They are included

in our system as a compromise between the computational efficiency of real numbers and the explicit

accuracy information of real intervals. Primitives for pairs and triples of real numbers do not correspond to

the scalars of Chapter 3. They are included in our system because they occur commonly in scientific data

and can be handled more efficiently as primitives. Furthermore, metadata are integrated at the level of

181

181

primitive values, so handling two- and three-dimensional real values as primitives enables the system to

integrate a wider variety of metadata. Specifically, these primitives allow samplings of R2 and R3 that are

not Cartesian products of samplings of R.

The system integrates the following forms of metadata:

1. Sampling information: Every value in a data object is taken from a finite sampling of primitive

values. That is, the system includes internal structures that specify finite samplings of the five

primitive types, and associates every primitive value with one of these structures. For array index

values, this finite sampling determines the way the array samples a function’s domain, and thus

determines the size of the array.

2. Accuracy information: This is implicit in the resolution of samplings, rather than the explicit

intervals described in Chapter 3.

3. Missing data indicators: Any value or sub-object in a data object may take the special value missing

(indicating the lack of information).

4. Names for values: Every primitive value occurring in a data object has a scalar type, and hence a

name (that is, the name of the scalar type).

The integration of metadata into data objects has important consequences for computational

semantics. For example, consider the following data types appropriate for satellite images:

type radiance = real;

type earth_location = real2d;

182

182

type image = array [earth_location] of radiance;

and the following declarations of data objects:

earth_location loc;

image goes_east, goes_west, goes_diff;

The scalar data object loc will take a pair of real numbers as a value - the latitude and longitude of a

location on the Earth. The array data object goes_east contains a finite set of samples of an Earth radiance

field, indexed by {latitude, longitude} pairs. The value of the expression goes_east[loc] is an estimate of

the value of this radiance field at the Earth location in loc. There are a variety of interpolation methods for

making this estimate - the VisAD implementation simply takes the value of the sample in goes_east nearest

to loc. If loc falls outside the range of samples of goes_east, the expression evaluates to missing.

Now consider the program fragment:

sample(goes_diff) = goes_east;

foreach (loc in goes_east) {

goes_diff[loc] = goes_east[loc] - goes_west[loc];

}

The first line specifies that goes_diff will have the same sampling of array index values (that is, of pixel

locations) that goes_east has. The foreach statement provides a way to iterate over the elements of an

array. In this case it iterates loc over the pixel locations of the goes_east image. The expression

goes_east[loc] - goes_west[loc] is evaluated by estimating the value of (the radiance field represented by)

goes_west at loc, and then subtracting this value from goes_east[loc]. Any arithmetic operation with a

183

183

missing operand evaluates to missing, so goes_diff[loc] is set to missing if goes_west[loc] evaluates to

missing. (Note that missing data are natural values for undefined arithmetic operations such as division by

zero.)

The VisAD implementation provides vector operations, so this computation may also be

expressed as:

goes_diff = goes_east - goes_west;

All the semantics of the previous program fragment are implicit in this statement.

Satellite images are finite arrays of pixels. Pixel radiances are typically represented by coded 8-

bit or 10-bit values. The most important metadata accompanying satellite images are called navigation,

which defines the Earth locations of pixels, and calibration, which defines the radiance values associated

with coded pixel values. Missing data indicators are also important for satellite data since telemetry

failures are common. Our visualization design can integrate all of these forms of metadata. Satellite

navigation metadata can be integrated as the samplings associated with the real2d indices of image arrays,

satellite calibration metadata can be integrated as the samplings associated with real radiance values in

image arrays, and missing data are integrated with any data type. These forms of metadata are implicit in

the computational semantics of the VisAD programming language. In Section 1.1 our fourth goal was that

visualization techniques should "Require minimal effort by scientists." The programming example above

shows that the integration of metadata into data objects relieves scientific programmers of the need to:

1. Keep track of missing data.

2. Manage the mapping, including interpolation, from array index values to physical values (such as

Earth latitude and longitude).

184

184

3. Check bounds on array accesses.

The integration of metadata into data objects also affects their display semantics. For example,

Figures 4.1 shows satellite image data displayed in a Cartesian Earth coordinate system defined by latitude

and longitude. The system geographically registers this image data object using the integrated satellite

navigation metadata, relieving the user of the need to manage the association between images and their

navigation information when images are displayed. Figure 4.2 shows an image generated by a polar

orbiting satellite, displayed in an Earth-centered spherical coordinate system.

The integration of missing data also affects display semantics. Figure 4.3 is a nearly edge-on view

of a three-dimensional array of radar echoes. It is traditional to treat the lack of echoes as missing rather

than zero, since information about spectrum and polarity is not available where there are no echoes. The

missing values are simply invisible in Figure 4.3.

185

185

Figure 4.1. A satellite image displayed in a Cartesian Latitude / Longitude coordinate system.

(color original)

186

186

Figure 4.2. An image from a polar orbiting satellite displayed in a three-dimensional Earth

coordinate system. (color original)

187

187

Figure 4.3. Three-dimensional radar data. (color original)

188

188

The VisAD system integrates accuracy information with its data objects only implicitly as the

resolution of value samplings. However, our system design could easily integrate this form of metadata

explicitly by using real intervals as described in Section 3.2. Interval arithmetic could be used for the

computational semantics of interval values (Moore, 1966), including the use of two and three-dimensional

rectangles as values for two and three-dimensional real primitives.

The samplings associated with values can be exploited for a simple form of data compression. If a

variable takes a value from a set of 255 samples plus missing, then that variable can be stored in a single

byte. Thus programs can written as if satellite radiances are real numbers, but they may be stored as 8-bit

codes in bytes.

4.2 Interacting with Scientific Displays

In Section 3.3 we discussed how a lattice-structured display model V can be defined in terms of a

set of display scalars (i.e., graphical primitives). The graphical primitives of Bertin’s display model were

2-D location, size, value, texture, color, orientation, and shape. Shape and texture are different from

Bertin’s other primitives in the sense that they can be composed as graphical aggregates. Thus we do not

treat them as primitives in the VisAD display model. The fourth principle of Section 3.5 tells us that

mappings from data aggregates to display aggregates can be factored into mappings from data primitives to

display primitives. Thus shapes and textures in VisAD’s displays represent shapes and textures in data

according to this principle. For example, in Figure 4.4 an aggregate of primitive points form a complex

shape. Each point corresponds to an individual observation of an X-ray emanating from interstellar gas.

The overall shape of these points communicates a great deal about the functioning of the instrument that

made these observations.

189

189

Figure 4.4. X-ray events from interstellar gas. (color original)

190

190

Bertin restricted his model to physical displays: static two-dimensional arrays of color. As

discussed in Section 2.3, our design uses logical displays that may are animated, three-dimensional and

interactive. We distinguish between a set V’ of physical displays and a set of logical displays V. We define

a mapping RENDER : V → V’ that implements the traditional graphics pipeline for iso-surface extraction,

projection from three to two dimensions, clipping, animation, and so on. The VisAD system’s display

model is defined in terms of the following display scalars:

(4.1) DS = {color, contour1, ..., contourn, x, y, z, animation, selector1, ..., selectorm}

Using the terminology of Chapter 3, a maximal tuple in Y = X{Id | d ∈ DS} represents a graphical

mark in a display. Given a maximal tuple, its x, y and z values specify the corresponding graphical mark’s

location and size in a virtual three-dimensional graphics space, its color value specifies the mark’s color,

and its animation value specifies the mark’s place and duration in an animated sequence of images, as

illustrated in Figure 3.14. The contouri display scalars are similar to color in that they help determine how

a mark appears, rather than where or when it appears. For each i, the contouri values in tuples are

resampled to a value field distributed over a three-dimensional voxel array. These fields are depicted by

iso-level surfaces and curves rendered through the voxel array. The selectori display scalars are similar to

animation in that they help determine when a mark appears, rather than where or how it appears. The user

selects a set of values for each selectori, and only those tuples whose selectori interval values overlap with

this set are included in the display. Note that just as the VisAD data model includes two- and three-

dimensional real primitives, the display model includes the three-dimensional real primitive color, includes

two- and three-dimensional real primitives for various combinations of graphical location (e.g., xy_plane),

and allows selector scalars to take the dimensionality of the scalars mapped to them.

In Chapter 3 we developed a detailed analysis of the repertoire of visualization mappings from

lattice-structured data models to lattice-structured display models. The data and display models of the

191

191

VisAD system do not precisely conform to the assumptions in Theorem H.8, so it cannot be applied to

VisAD in exact form. However, the VisAD system does implement the essential structure of scalar

mapping functions. Visualization mappings of aggregate data objects are factored into continuous

functions from scalar types to display scalar types. VisAD deviates from the scalar mapping functions of

Theorem H.8 by including continuous functions of two- and three-dimensional real scalars. Users control

how data are displayed by defining a set of mappings from scalar types to display scalar types.

We can illustrate the way that mappings from scalar types to display scalar types control data

displays by an example. The following data types are defined for a time sequence of satellite images:

192

192

type earth_location = real2d;

type ir_radiance = real;

type vis_radiance = real;

type variance = real;

type texture = real;

type time = real;

type image_region = integer;

type image =

array [earth_location] of

structure {

ir_radiance;

vis_radiance;

variance;

texture;

}

type image_partition = array [image_region] of image;

type image_sequence = array [time] of image_partition;

Each image pixel contains infrared and visible radiances, and variance and texture values derived from

infrared radiances. An image_sequence is a time sequence of images, each partitioned into rectangular

regions (which are indexed by image_region). These types include seven scalars, so users control the way

that data objects are displayed by defining mappings from these seven scalars to seven display scalars. In

the VisAD system these mappings are defined using a simple text editor. Figure 4.5 shows a data object of

the image_sequence type displayed as a colored terrain, after specifying the following mappings:

193

193

map earth_location to xy_plane;

map ir_radiance to z_axis;

map vis_radiance to color;

map variance to selector;

map texture to selector;

map image_region to selector;

map time to animation;

The user can use the same display scalar name selector in more than one mapping since the system

differentiates multiple occurrences of selector into selector1, selector2, etc.

Note that the VisAD system supplies default continuous functions from scalars to display scalars

when they are not included in the specification of scalar mappings (as they are not included in the above

mappings). The default functions are linear from the range of samplings of the scalar values to the range of

display scalar values. In practice these defaults almost always work well and make the user’s task easier.

194

194

Figure 4.5. A goes_sequence object displayed as a terrain (i.e., a height function), with ir

radiance mapped to terrain height (the y axis) and vis radiance mapped to color. All sixteen

image region values are selected for display. The time sequence may be animated. (color

original)

195

195

The second and fourth goals developed in Section 1.1 state that visualization techniques "Can

produce a wide variety of different visualizations of data appropriate for different needs" and "Require

minimal effort by scientists." The scalar mapping functions used in VisAD are effective at realizing these

goals, and this effectiveness can be explained in terms of the basic principles developed in Section 3.5.

The fourth principle tells us that mappings from data aggregates to display aggregates can be factored into

mappings from data primitives to display primitives. Thus any way of displaying data that satisfies the

effectiveness conditions can be specified by a set of mappings from scalars to display scalars. The second

principle tells us that, because of the way that data objects of many different types are unified into a single

lattice-structured data model, visualization mappings are inherently polymorphic. The fact that a single

display mapping D : U → V applies to data objects of many types in U has a beneficial impact on the

VisAD system’s user interface: a single set of scalar mappings control how all data objects in a user’s

program are displayed. Once a user defines a set of scalar mappings, he can select any data object for

display merely by graphically picking its name. Display controls are separate from a user’s scientific

programs, unlike previous visualization systems that require calls to visualization functions to be embedded

in programs.

In Section 3.4 we noted that our lattice-structured display model was inconsistent with a

functional view of display (i.e., the view that a display defines a functional relation from location and time

to color). We developed a set of constraints on scalar mapping functions (these constraints also depend on

the type of the data object being displayed) that guarantee that they generate only displays that are

consistent with a functional view of display. However, we have chosen not to enforce these constraints in

the VisAD system. We use the VisAD system for experimenting with visualization ideas, and have

generally opted against restrictions on what users may do.

For example, we have even used VisAD to experiment with visualization mappings that do not

satisfy the expressiveness conditions. For example, we experimented with a way of mapping more than

one scalar to a display scalar (display scalar values were calculated as the sum of values they would have

196

196

from each scalar alone). While this feature did produce some interesting images, we generally found that it

was not used by scientists. This experience tends to confirm the value of the expressiveness conditions.

The third goal developed in Section 1.1 states that visualization techniques "Enable users to

interactively alter the ways data are viewed." The VisAD design realizes this goals by making the

specification of the mappings from data primitives to display primitives easily edited to change the way

data are displayed. Figure 4.6 shows the goes_sequence data object from Figure 4.5 displayed according to

four different sets of mappings. In the top-right window it is displayed according to the same seven

mappings used in Figure 4.5, which are:

map earth_location to xy_plane;

map ir_radiance to z_axis;

map vis_radiance to color;

map variance to selector;

map texture to selector;

map image_region to selector;

map time to animation;

The display in the top-left window of Figure 4.6 can be generated by the following two changes to the

above mappings:

map ir_radiance to color; /* red */

map vis_radiance to color; /* blue-green */

197

197

Notice that more than one data primitive can be mapped to color since it is a three-dimensional primitive.

The user determines how color is factored into components using interactive color map icons like those

shown in Figures 2.2 and 4.3.

Next, the display in the bottom-right window of Figure 4.6 can be generated by the following

additional changes to the mappings:

map ir_radiance to selector;

map vis_radiance to color;

map time to z_axis;

Finally, the display in the bottom-left window of Figure 4.6 can be generated by the following changes to

six of the seven mappings:

map earth_location to selector;

map ir_radiance to x_axis;

map vis_radiance to y_axis;

map variance to z_axis;

map texture to color;

map time to animation;

Actually, the VisAD system allows data objects to be displayed according to four different sets mappings

simultaneously, and this was capability used to generate Figure 4.6.

198

198

Figure 4.6. A goes_sequence object displayed according to four different sets of mappings. The

top-right is the same as Figure 4.5, the top-left maps ir (red) and vis (blue-green) to color, the

bottom-right maps ir to selector and time to the y axis, and the bottom-left maps ir, vis and

variance to the x, y and z axes, maps texture to color, and maps lat_lon to selector. (color

original)

199

199

Flexibility in the ways that data are displayed can be useful for comparing data objects of different

types, as illustrated by the following example. In 1963 E. N. Lorenz developed a set of differential

equations that exhibit turbulence in a very simple two-dimensional atmosphere (Lorenz, 1963). Roland

Stull of the Atmospheric and Oceanic Sciences Department of the University of Wisconsin-Madison

teaches an Atmospheric Turbulence course and has applied the VisAD system to an algorithm that

integrates Lorenz’s equations in order to illustrate turbulence to students in his course. The data types

defined for this algorithm are:

type atmos_location = real2d;

type temperature = real;

type stream_function = real;

type atmos = array [atmos_location] of

structure {

temperature;

stream_function;

}

type phase_x = real;

type phase_y = real;

type phase_z = real;

type time = real;

200

200

type phase_point =

structure {

phase_x;

phase_y;

phase_z;

}

type phase_history = array [time] of phase_point;

The Lorenz equations describe temperature and air flow in a rectangular cell of a two-dimensional

atmosphere. The algorithm integrates the Lorenz equations as a path through a three-dimensional phase

space, recorded in a data object of type phase_history. This object is displayed in both the lower-left and

upper-left windows in Figure 4.7. The lower-left window is defined by the mappings:

map atmos_location to selector;

map temperature to selector;

map stream_function to selector;

map phase_x to x_axis;

map phase_y to y_axis;

map phase_z to z_axis;

map time to selector;

The lower-left window shows two data objects displayed in different colors: red and blue-green (the system

automatically picks a different solid color for displays of data objects that don’t include any scalar values

mapped to color). The phase_history object, displayed as a path of red points, winds chaotically between

two lobes (this three-dimensional shape is called the Lorenz attractor). A data object of type phase_point is

201

201

also displayed in this window as a single blue-green point, marking the point on the phase space path

corresponding to the rectangular cell of the two-dimensional atmosphere displayed in the right window in

Figure 4.7. That window shows a data object of type atmos displayed using the mappings:

map atmos_location to xy_plane;

map temperature to color;

map stream_function to contour;

map phase_x to selector;

map phase_y to selector;

map phase_z to selector;

map time to selector;

The color field indicates temperature, where warm areas are red and cool areas are blue. The contours of

the stream_function are parallel to air motion, and their spacing indicates wind speed. The direction of air

flow can be inferred from the knowledge that warm air rises. As the program executes, this window shows

the changing dynamics of the cell of atmosphere, and the lower-left window shows the motion of the

corresponding phase space point. This animation makes it clear that the two lobes of the Lorenz attractor

in phase space correspond to clockwise and counterclockwise rotation in the two-dimensional atmosphere

cell.

The upper-left window in Figure 4.7 shows the phase_history object displayed using the

mappings:

map atmos_location to selector;

map temperature to selector;

map stream_function to selector;

202

202

map phase_x to x_axis;

map phase_y to y_axis;

map phase_z to selector;

map time to z_axis;

In the upper-left window two dimensions of the winding path in phase space are plotted against time,

illustrating the apparently random (that is, chaotic) temporal distribution of alternations between the two

phase space lobes.

203

203

Figure 4.7. Three views of chaos. The right window shows temperatures and wind stream lines

in a cell of a two-dimensional atmosphere. The bottom-left window shows the trajectory of

atmospheric dynamics through a three-dimensional phase space. The top-left window shows this

trajectory in two phase space dimensions versus time. (color original)

204

204

The third goal developed in Section 1.1 states that visualization techniques "Enable users to

interactively alter the ways data are viewed." Achieving this goal depends not only on the ease with which

users can control displays, but also on how quickly the system can generate displays. The transformation

of data objects into physical displays is factored into the two mappings D : U → V and RENDER : V → V’,

where V is a logical display model and V’ is a physical display model. Logical displays in V are sets of

tuples of display scalar values, and physical displays in V’ are two-dimensional arrays of colored pixels.

The RENDER function can be computed quickly since it is essentially the traditional graphics pipeline

whose operations are commonly implemented in hardware. Thus we have focused our optimizations on the

function D.

The function D is specified by a set of mappings from scalars to display scalars. Based on the

embedding of data objects in the lattice U described in Section 3.2, a data object u is interpreted as a set of

tuples of scalar values. Each tuple in u is transformed to a tuple in D(u) according to the mappings from

scalars to display scalars. The VisAD implementation of D exploits both parallel and vector techniques in

order to achieve interactive response times. First, the tuples belonging to a data object can be processed

independently and thus are partitioned among M processes which execute in parallel. (These execute in a

shared memory model, which is common on modern workstations and relatively easy to port.) Second, the

important branches in the algorithm for processing tuples depend on data types rather than data values.

Thus large sets of tuples take the same path through the algorithm and can be processed in groups of N,

allowing computations to be optimized in tight loops over vectors of values for entire groups. Typical

values are M = 4 and N = 256. While such parallelization and vectorization techniques are not novel, they

are quite effective in producing a fast implementation of the function D.

As discussed in Section 1.2.3, display objects in V are inherently interactive. Users have the

following interactive controls over the mapping RENDER : V → V’:

205

205

1. Control over the projection from a three-dimensional space to a two-dimensional display screen (i.e.,

rotate, pan and zoom in three dimensions).

2. Control over time sequencing for scalars mapped to animation.

3. Control over color maps for scalars mapped to color.

4. Control over the iso-levels of scalars mapped to the contouri scalars.

5. Control over the selected sets of values for scalars mapped to the selectori scalars.

Users also have the following interactive controls over the mapping D : U → V and the selection

of data objects:

1. Control over the way that data are displayed, by selecting, for each scalar, which display scalar it is

mapped to.

2. Control over the mathematical mapping from scalar values to display scalar values. This is

particularly useful for scalars mapped to spatial coordinates (i.e., x, y and z) and to color.

3. Control over which data objects are displayed. (Note that multiple data objects can be displayed

simultaneously. Ultimately, display objects in V are transformed into lists of three-dimensional

vectors and triangles for rendering, and multiple data objects are combined merely by merging their

sets of vectors and triangles.)

206

206

A key to design of the VisAD system is that it treats the definition of scalar mappings (items 1 and

2 above) and the selection of data objects for display (item 3 above) like any other interactive display

control. This is in contrast to the automated techniques of Mackinlay (Mackinlay, 1986), Robertson

(Robertson, 1991), and Senay and Ignatius (Senay and Ignatius, 1991; Senay and Ignatius, 1994). They

each solicited a set of visualization goals from the user, and then searched for a display design that satisfied

these goals. The automated approach is motivated by the desire to minimize the user’s effort to generate

data displays. However, a set of scalar mappings is no more complex than a set of visualization goals.

Furthermore, the scalar mappings control how data are displayed in a direct and intuitive way, whereas the

way that a display-design algorithm interprets the user’s visualization goals may not be intuitively obvious.

By making control over scalar mappings interactive, we enable users to explore a variety of different ways

of displaying the data objects in their algorithms. We believe that this interactive exploration is likely to be

more useful than displays generated by intelligent display generation algorithms.

4.3 Visualizing Scientific Computations

In this chapter and in Chapter 2 we have developed a visualization system approach based on the

five goals listed in Section 1.1. Our visualization approach can be directly applied to visualize executing

programs because it is interactive and integrated with a scientific programming language. This enables

scientists to perform visual experiments with their computations. Any data object defined in a scientific

computation can be visualized, and can be visualized in a wide variety of different ways. This enables

scientists to find high-level problems with their algorithms in the same way that interactive debuggers

enable them to find low-level bugs. Just as with a debugger, scientists can control execution and set

breakpoints. However, VisAD enables scientists to visualize large and complex data objects and thus to

understand high-level problems in their algorithms. This visualization does not interfere with scientific

algorithms, since there is no need to embed calls to display functions in programs, and it does not distract

scientists, since they do not need to write display programs. Thus the VisAD system is easy to use.

207

207

At the simplest level, visualization serves to make data objects visible. We can think of

visualization like a microscope - making an invisible world visible. Further, the visualization of data

objects provides understanding of computational processes involving those data objects. For example,

consider a bubble sort algorithm written in the VisAD programming language:

type time = real;

type temperature = real;

type temperature_series = array [time] of temperature;

sort(temperature_series temperatures; time n;)

{

time outer, inner;

temperature swap;

/* A bubble sort is organized as two nested loops */

for (outer=n; outer>1; outer=outer-1) {

for (inner=1; inner<outer; inner=inner+1) {

/* compare adjacent elements */

if (temperatures[inner-1] > temperatures[inner]) {

/* adjacent elements are out of order, so exchange them */

swap = temperatures[inner];

temperatures[inner] = temperatures[inner-1];

temperatures[inner-1] = swap;

}

}

208

208

}

}

Five data objects are declared in this program. The array being sorted is named temperatures and has type

temperature_series. It is an array of temperatures indexed by time. The inner and outer loop indices into

this array have type time, as does the size n of the array. The swap variable of type temperature is used to

exchange elements of the array. Figure 4.8 shows this program running under VisAD, and four of these

data objects are displayed in the window on the right (the size n is not displayed since it does not change as

the program runs). They are displayed using the mappings:

map time to x_axis;

map temperature to y_axis;

209

209

Figure 4.8. Visualizing the computations of a bubble sort algorithm. (color original)

210

210

The text that defines these mappings can be seen in the small window at the top of the screen. The

temperatures array is displayed as a graph (the set of white points) of temperature versus time. The outer

index is displayed as a small green sphere on the lower horizontal axis. Note that the white points to the

right of the green sphere are

sorted. The inner index is displayed as a small red sphere. It marks the horizontal position of the current

maximum value bubbling up through the temperatures array. The small blue sphere on the left hand

vertical axis depicts the swap variable. This display changes as the algorithm runs, providing a clear

depiction of how the bubble sort works. This is sometimes called algorithm animation (Brown and

Sedgewick, 1984). VisAD’s displays are generally asynchronous with computations, but may be

synchronized with calls to the built-in function sync.

Run Computation

Visualize Results

Change Algorithm or

Computational Parameters

Figure 4.9. Visually experimenting with algorithms (this is a copy of Figure 1.3).

The ability to make computations visible can be used to find problems with algorithms, to

experiment with different algorithms, and to tune algorithm parameters. Each of these places a slightly

211

211

different emphasis on the system-user feedback loop shown in Figure 4.9. The time around the feedback

loop in Figure 4.9 may be less than a second when the user is tuning an algorithm, whereas minutes may be

required for the user to edit a program to experiment with algorithm structure. Figure 4.10 illustrates the

system-user feedback loop for finding the causes of problems with algorithms.

Run Computation and Save

Intermediate Data Objects

Use Visualization to Search

For Incorrect Final Results

Visually Compare Incorrect Data Objects to

Preceding Data Objects in the Computation

Stop When the Comparison of Consecutive

Data Reveals an Incorrect Computational Step

Step Back Through

Computation

Figure 4.10. Visually tracing back to the causes of computational errors.

An algorithm for detecting clouds in GOES images provides a good example of using VisAD for

finding high-level problems with algorithms. Some of the data types defined for this algorithm are:

type earth_location = real2d;

212

212

type ir_radiance = real;

type vis_radiance = real;

type ir_image = array [earth_location] of ir_radiance;

type image =

array [earth_location] of

structure {

ir_radiance;

vis_radiance;

}

type image_region = integer;

type ir_image_partition = array [image_region] of ir_image;

type image_partition = array [image_region] of image;

type count = integer;

type histogram = array [ir_radiance] of count;

The input to the algorithm is a data object of type image_partition; Figure 4.11 shows an input data object

displayed using the mappings:

map earth_location to xy_plane;

map ir_radiance to z_axis;

map vis_radiance to color;

map image_region to selector;

map count to selector;

213

213

The algorithm partitions images into rectangular regions and processes each region independently. Two

regions are selected in Figure 4.11. The small bump straddling the two image regions on the left is a cloud.

The output of the algorithm is another data object of type image_partition where the values of non-cloud

pixels are set to missing. Figure 4.12 shows the output generated from Figure 4.11 with the same two

image regions selected. The small cloud in Figure 4.11 is not seen, so its pixels have been marked as non-

cloud. This is clearly an error.

We can find the cause of this error by visually comparing data objects at different stages of the

algorithm’s computations. Figure 4.13 shows three data objects of type ir_image_partition. Each data

object is displayed in a different color: white, red and green. The white ir_image_partition data object

includes all pixels but is overlaid by the red and green data objects. The algorithm selects cloud pixels as

subsets of the non-missing pixels in the red and green ir_image_partition data objects. Since the bump on

the left is white rather than red or green, the error in the computation must have been made before the

calculation of the ir_image_partition data objects colored red and green. Pixels are selected for these two

data objects according to whether their ir_radiance values lie in clusters of certain histograms. Three data

objects of type histogram are shown in Figure 4.14 displayed using the mappings:

map earth_location to selector;

map ir_radiance to x_axis;

map vis_radiance to selector;

map image_region to selector;

map count to y_axis;

The white histogram data object includes all ir_radiance values but again these are overlaid by the red and

green histogram data objects. The red and green histogram objects include only those ir_radiance values

214

214

lying in clusters. The ranges of ir_radiance defined by these red and green histogram objects are used to

select pixels for the red and green ir_image_partition objects seen in Figure 4.13. The white histogram

object is generated from the population of pixels within one image region pictured in Figure 4.11. Thus

Figure 4.14 makes it clear that the little bump cloud on the left in Figure 4.11 is not large enough to

generate a detectable cluster in the histogram object in Figure 4.14, possibly because this population is

evenly divided between two image regions. Thus we have found the ultimate cause of the error in this

computation.

215

215

Figure 4.11. A close-up view of two regions of a goes_sequence object displayed as a terrain.

Note the small bump, undoubtedly a cloud, straddling the regions on the left. (color original)

216

216

Figure 4.12. A close-up view restricted to the "cloudy" pixels in two regions of a goes_sequence

object displayed as a terrain. The small cloud seen on the left in Figure 4.11 is not detected as a

cloud in this figure. (color original)

217

217

Figure 4.13. Three goes_sequence objects displayed as terrains, with ir radiance mapped to

terrain height (the y axis) but without vis radiance mapped to color. (color original)

218

218

Figure 4.14. Three histogram objects displayed as graphs. The algorithm judges red and green

points to lie in clusters - these define ranges of ir_radiance values that define the red and green

pixels seen in Figure 4.13. (color original)

219

219

An algorithm for detecting valid observations of interstellar X-rays provides a good example of

using the VisAD system for experimenting with algorithms. The Diffuse X-ray Spectrometer sensed

several million distinct events during its January 1993 flight on the Space Shuttle (Sanders et al., 1993),

each potentially an observation of an X-ray emanating from interstellar gas. However, most of these events

were not valid, so Wilton Sanders and Richard Edgar of the University of Wisconsin-Madison needed to

develop an algorithm for detecting valid events. Some of the data types defined for this algorithm are:

type time = real;

type wavelength = real;

type longitude = real;

type pulse_height = real;

type position_bin = real;

type goodness_of_fit = real;

type occulted flag = int;

type xray_event =

structure {

time;

wavelength;

longitude;

pulse_height;

position_bin;

goodness_of_fit;

occulted flag;

}

type event_number = int;

220

220

type count = int;

type count2 = int;

type event_list = array [event_number] of xray_event;

type histogram_2d = array [longitude] of

array [wavelength] of

structure {

count;

count2;

}

Figure 4.4 shows a data object of type event_list displayed using the following scalar mappings:

map longitude to x_axis;

map wavelength to y_axis;

map time to z_axis;

map pulse_height to color;

map position_bin to selector;

map goodness_of_fit to selector;

map occulted_flag to selector;

map event_number to selector;

map count to selector;

map count2 to selector;

In Figure 4.4 each X-ray event is displayed as a colored dot. Slider icons in the upper-right corner

were used to select a range of values for each event field mapped to selector, and only those events whose

221

221

field values fall in the selected ranges are displayed. This provides an easy way to experiment with event

selection criteria. During the development of the event selection algorithm, a large number of different sets

of mappings were defined in order to experiment with selections based on different combinations of event

fields and thus to help Sanders and Edgar to understand the mechanisms that produced invalid events.

Figure 4.15 shows a data object of type histogram_2d in a frame of reference defined by:

map longitude to y_axis;

map wavelength to x_axis;

map count to z_axis;

map count2 to color;

map time to selector;

map pulse_height to selector;

map position_bin to selector;

map goodness_of_fit to selector;

map occulted_flag to selector;

map event_number to selector;

This histogram_2d object contains frequency counts of X-ray events in bins of wavelength and longitude.

The count2 values are redundant with the count values. Both are included so that one may be mapped to

the x_axis and the other mapped to color. The display of this object is seen from an oblique angle so that it

appears as a series of short colored graphs, one for each longitude bin. Each colored graph shows count as

a function of wavelength, and thus provides a spectrum of X-rays in a longitude bin. Some types of

spurious events showed up as spikes in one-dimensional and two-dimensional histograms (i.e., these

spurious events had similar values in one or two event fields) and this provided insight into how to remove

222

222

these events. Displays of histograms of populations of events selected by various algorithms provided

insight into what further selection criteria were needed.

223

223

Figure 4.15. A two-dimensional histogram of X-ray events, with 10 degree longitude bins along

the vertical axis and small wavelength bins along the horizontal axis. Viewed from an oblique

angle, this object appears as a series of short graphs showing the X-ray spectrum in each

longitude bin. (color original)

224

224

An algorithm for detecting cumulus clouds in GOES images provides a good example of using

VisAD for tuning parameters of algorithms. Robert Rabin (Rabin et. al., 1990) of the National Severe

Storms Laboratory, working at the University of Wisconsin-Madison, developed an algorithm for detecting

cumulus clouds based on infrared radiance, visible radiance, and contrast (a quantity derived from visible

radiance). Some of the data types defined for this algorithm are:

type earth_location = real2d;

type ir_radiance = real;

type vis_radiance = real;

type contrast = real;

type ir_image = array [earth_location] of ir_radiance;

type vis_image = array [earth_location] of vis_radiance;

type contrast_image = array [earth_location] of contrast;

Separate selection criteria were defined for each of ir_radiance, vis_radiance and contrast, and

Figure 4.16 shows data objects of types ir_image, vis_image and contrast_image displayed according to

the mappings:

map earth_location to xy_plane;

map ir_radiance to color;

map vis_radiance to color;

map contrast to color;

The visualization in Figure 4.16 was used to tune the cumulus cloud selection algorithm. In the displayed

data objects, ir_radiance, vis_radiance and contrast values that do not satisfy the selection criteria have

225

225

been set to missing and are invisible. The color maps have been adjusted so that any non-missing

ir_radiance is displayed as red, any non-missing vis_radiance is displayed as blue, and any non-missing

contrast is displayed as green. Thus each pixel in the image takes one of eight colors, indicating the two ×

two × two combinations of selections by these three criteria. Only those pixels colored white are selected

by all three criteria as cumulus cloud pixels (because white = red + blue + green). We were able to

interactively adjust these selection criteria using slider icons (similar to those seen in Figure 2.2), to see

how the selection of cumulus cloud pixels changed in response to those adjustments, and to understand

from their colors which criteria cause pixels to fail to be selected.

226

226

Figure 4.16. Visualizing the three criteria used to select cumulus clouds. Pixels satisfying the

infrared criterion are colored red, pixels satisfying the visible criterion are colored blue, and pixels

satisfying the contrast criterion are colored green. Combinations of these colors indicate pixels

satisfying more than one of the criteria. Pixels selected as cumulus clouds are colored white.

(color original)

227

227

4.4 System Organization

We have described our system design in stages, explaining how it is motivated by the goals of

Section 1.1 and the principles of Chapter 3. In this section we present on overview of the way the system

integrates scientific data, computation and display.

Figure 4.17 illustrates the overall organization of the VisAD system. The system’s computing

components occupy the left side of this diagram and its display components occupy the right side, linked

only through the data component. Furthermore, information from the system’s display component does not

flow into its data or computation components, emphasizing that the system’s display functions do not

intrude on a user’s science programs.

Figure 4.17 also shows how the user interface is divided into five different components, two

relating to computation and three relating to display. The computational user interface divides into

1. An editor for defining and editing programs. This editor is also used for defining data types, since

they are part of the text of programs.

2. Controls over program execution. These include controls for starting and stopping execution, for

executing single program statements, and for setting values on slider icons that are read by calls to

the intrinsic function slider (as illustrated in Figure 2.2). Execution breakpoints are set (and

cleared) by graphically picking program statements in the program text editor, and are indicated by

highlighting statements in the program text.

The display user interface divides into

1. An editor for defining mappings from data scalar types to display scalar types. These mappings

control the transformation of data into logical displays. Data objects are selected (and de-selected)

228

228

for display by graphically picking their names in the program text editor, and are indicated by

highlighting their names in the program text.

2. Controls over the rendering transformation from logical to physical displays (i.e., the RENDER

function). These include controls over animation, over color maps, over selecting ranges of values

(for scalars mapped to selector), over contour levels, and over the projection from three to two

dimensions (i.e., rotate, pan and zoom).

3. Physical displays visible to the user.

Note that there are two deviations from the clean separation of user interface functions and that

both involve graphically picking and highlighting text segments in the program text editor. Specifically,

program statements are selected as breakpoints and data objects are selected for display in this way. While

we have not used a graphical user interface for designing the data and control flow of programs in our

system, we have adopted these two graphical picking functions because they can be naturally integrated

with a text based programming interface.

The overall system organization shown in Figure 4.17 is consistent with a variety of possible

future system extensions. In particular, the display model could be extended by adding more display

scalars, and a module could be added to design default scalar mappings appropriate for various aggregate

data types. These would require changes to the system source code but would not be particularly difficult.

However, based on the goals developed in Section 1.1, the system is designed to make it easy for users to

define their own data types, displays and programs. By building such generality into our system’s user

interface we seek to reduce the need for changes to the system itself.

The system diagram shows the connection to external functions through a socket interface. This

allows VisAD programs to link to functions written in C or Fortran and possibly running remotely (i.e., on

229

229

another computer connected via a network). The ability to define such links to compiled functions is

important for the robustness of scientific computing environments. Mature scientific programming

environments typically include hundreds of user-defined functions.

The ways that scalar values can sample one-, two- and three-dimensional real values is also

extensible. The system supports a variety of built-in samplings for two-dimensional map projections and

for geographically registering common meteorological satellites. While it is easy to define new built-in

sampling functions, the system also provides a way for users to define one-, two- and three-dimensional

samplings within the programming language.

Our system design defines a few simple capabilities that users can flexibly combine to produce

complex applications. Users can define complex data types as hierarchies of scalars, tuples and arrays,

they can express complex metadata by samplings and missing data, they can define complex algorithms in

a general scientific programming language, and they can define a complete set of data displays by

mappings from data primitives to display primitives.

1

PROGRAM TEXT

program compiler

PROGRAM CODE

interpreter

EXECUTION CONTROLS

user interface

USER

USER

editor

DATA TYPES

OBJECT PROTOCOL

external functions

socket interface

MAPPING TEXT

mapping compiler

SCALAR MAPPINGS

display algorithm

LOGICAL DISPLAYS

rendering

USER

USER

editor

RENDERING PARAMETERS

user interface

AND OBJECTS

Figure 4.17. VisAD system organization.

Chapter 5

Applying the Lattice Model to Recursive Data Type Definitions

In Section 3.1 we showed that a function D : U→V satisfying the expressiveness conditions must

be a lattice isomorphism. In Section 3.4 we applied this result to specific lattice structures defined for

scientific data and display models. However, this result can be applied to any complete lattices and it is

2

natural to apply this result to other lattice structures for data and display models. The motive for new

lattice structures must be new data models, since display models are themselves motivated by the need to

visualize data. The data model defined in Section 3.2 includes tuples and arrays as ways of aggregating

data, but does not include linked list structures defined in terms of pointers. In this chapter we describe

several issues in extending our lattice theory to data types appropriate for handling objects with pointers.

5.1 Recursive Data Types Definitions

The denotational semantics of programming languages provides techniques for defining ordered

sets whose members are the values of programming language expressions (Gunter and Scott, 1990;

Schmidt, 1986; Scott, 1971; Scott, 1982). An important topic of denotational semantics is the study of

recursive domain equations, which define cpos recursively (cpo is defined in Appendix A).

Consider the following example of a recursive domain equation from (Schmidt, 1986). A data

type for a binary tree may be defined by

(5.1) Bintree = (Data + (Data × Bintree × Bintree))⊥

Here "+", "×" and "(.)⊥" are type construction operators similar to the tuple and array operators defined in

Section 3.2.3. The "+" operator denotes a type that is a choice between two other types (this is similar to

"union" in the C language), "×" denotes a type that is a cross product of other types (this is essentially the

same as our tuple operator, so that (Data × Bintree × Bintree) is a 3-tuple), and the "⊥" subscript indicates a

type that adds a new least element, ⊥, to the set of values of another type. Eq. (5.1) defines a data type

called Bintree, and says that a Bintree object is either ⊥, a data object of type Data, or a 3-tuple consisting

of a data object of type Data and two data objects of type Bintree. Intuitively, a data object of type Bintree

is either missing, a leaf node with a data value, or a non-leaf node with a data value and two child nodes.

3

The obvious way to implement binary trees is to define a record or structure for a node of the tree,

and to include two pointers to other nodes in that record or structure. In general, self references in

recursive type definitions are implemented using pointers.

5.2 The Inverse Limit Construction

The equality in a recursive domain equation is really an isomorphism. As explained by Schmidt,

these equation may be solved by the inverse limit construction. For the Bintree example this construction

starts with Bintree0 = {⊥}, and then applies Eq. (5.1) repeatedly to get:

(5.2) Bintree1 = (Data + (Data × Bintree0 × Bintree0))⊥

Bintree2 = (Data + (Data × Bintree1 × Bintree1))⊥

etc.

The construction also specifies a retraction pair (gi, fi):Bintreei ↔ Bintreei+1 for all i, such that gi embeds

Bintreei into Bintreei+1 and fi projects Bintreei+1 onto Bintreei (retraction pair is defined in Appendix

A). Then Bintree is the set of all infinite tuples of the form (t0, t1, t2, ...) such that ti = fi(ti+1) for all i. It

can be shown that Bintree is isomorphic with (Data + (Data × Bintree × Bintree))⊥, and thus "solves" the

recursive domain equation. The order relation on the infinite tuples in Bintree is defined element-wise, just

like the order relation on finite tuples defined in Section 3.2, and Bintree is a cpo. We note that the inverse

limit construction can also be applied to solve sets of simultaneous domain equations.

The cpos defined by the inverse limit construction are generally not lattices. In order to apply

Prop. C.3 to these cpos they must be embedded in complete lattices. However, the Dedekind-MacNeille

completion shows that for any partially ordered set A, there is always a complete lattice U such that there is

an order embedding of A into U (Davey and Priestley, 1990).

4

The set of Bintree objects defined by the inverse limit construction includes infinite trees.

Denotational semantics must include values for non-terminating computations, and non-terminating

computations may produce infinite trees as their values. Since our result that display functions are lattice

isomorphisms depends on the assumption that data and display lattices are complete, it is likely that any

data lattice we define that includes solutions of recursive domain equations must include infinite data

objects.

The inverse limit construction defines the set of data objects of a particular data type that solves a

particular recursive domain equation. However, our approach in Section 3.2 was to define a large lattice

that contained data objects of many different data types. It would be useful to continue this approach, by

defining a lattice that includes all data types that can be constructed from scalar types as tuples, arrays, and

solutions of recursive domain equations. This is the subject of Section 5.3.

5.3 Universal Domains

A fundamental result of the theory of ordered sets is the fixed point theorem, which says that, for

any cpo D and any continuous function f:D → D, there is fix(f) ∈ D such that f(fix(f)) = fix(f) (that is, fix(f)

is a fixed point of f) and such that fix(f) is less than any other fixed point of f.

Scott developed an elegant way to solve recursive domain equations by applying the fixed point

theorem (Scott, 1976; Gunter and Scott, 1990). The idea is that the solution of a recursive domain equation

is just a fixed point of a function that operates on cpos. Scott first defined a universal domain U and a set

W of retracts of U. W may be the set of all retracts on U, the set of projections, the set of finitary

projections, the set of closures, or the set of finitary closures (these terms are defined in Appendix A).

Then he showed that a set OP of type construction operators (these operators build cpo’s from other cpo’s)

can be represented by continuous functions over W, in the sense that for op ∈ OP there is a continuous

function f on W that makes the diagram in Figure 5.1 commute.

5

cpo’s cpo’s
op

W W

f

im im

Figure 5.1. The type construction operator op is represented by function f.

Note that im(w) = {w(u) | u ∈ U}. For unary op ∈ OP this is im(f(w)) = op(im(w)). Similar commuting

expressions hold for multiary operators in OP. Then, for any recursive domain equation D = O(D) where O

is composed from operators in OP, there is a continuous function F:W → W that represents O. By the fixed

point theorem, F will have a least fixed point fix(F), and O(im(fix(F))) = im(F(fix(F))) = im(fix(F)), so

im(fix(F)) is a cpo satisfying the recursive domain equation D = O(D). The solution of any domain

equation (or any set of simultaneous domain equations) involving the type construction operators in OP

will be a cpo that is a subset of the universal domain U. Thus this approach is similar to the way that we

embedded data types in a complete lattice (coincidentally denoted by U) in Section 3.2.3. Universal

domains and representations have been defined for sets OP that include most of the type constructors used

in denotational semantics, including "+", "×", "→", and "(.)⊥".

A common example of a universal domain is the complete lattice POWER(N), which is just the set

of all subsets of the natural numbers N. In general, the embeddings of data types into universal domains, as

defined by papers in denotational semantics, are not suitable for our display theory. For example, a single

integer (that is, an object of type N), and a function from the integers to the integers (that is, an object of

type N → N), may be embedded to the same member of POWER(N). A display function applied to the

lattice POWER(N), with these embeddings, would produce the same display for the integer and the function

from the integers to integers. Such displays cannot effectively communicate information about data

objects, so other embeddings of types into universal domains must be developed.

6

5.4 Display of Recursively Defined Data Types

Since the goal of visualization is to communicate information about data to people, an extension

of our theory must focus on the data lattice U. However, since a display function D is a lattice

isomorphism of U onto a sublattice V, we should be able to say something about the structure of V. If a

subset A ⊆ U is the solution of a recursive domain equation (that is, A is the set of data objects of some

recursively defined data type), then D(A) ⊆ V is isomorphic to A and must itself be the solution of the

recursive domain equation.

For example, if the set A is the solution of Eq. (5.1) for Bintree, then the set D(A) must also solve

this equation. The isomorphism D provides a definition of the operators "+", "×" and "(.)⊥" in D(A) and

thus also defines a relation between "tree" objects and their "subtree" objects in D(A). The isomorphism

does not tell us how to interpret these operators and relations in a graphical display, but it does tell us that

such a logical structure exists. Given the complexity of this structure, it is seems likely that display objects

in D(A) will be interpreted using some graphical equivalent of the pointers that are used to implement data

objects in A.

Two graphical analogs of pointers are commonly used in displays:

1. Diagrams. Here icons represent nodes in data objects, and lines between icons represent pointers.

2. Hypertext links. Here the visible contents of a display screen represents one or more nodes in a data

object, and an icon embedded in that display screen represents an interactive link to another node or

set of nodes. That is, if the user selects the icon (say by a mouse point and click), new display

screen contents appear depicting the display object (and possibly other objects) referenced by the

icon.

7

In order to extend our display theory to data types defined with recursive domain equations, we need to

extend our display lattice V to include these graphical interpretations of pointers. A difficult open problem

is to find a way to do this that produces a display lattice complex enough to be isomorphic to a universal

domain as described in Section 5.3.

8

Chapter 6

Conclusions

This thesis was motivated by physical scientists’ need for visualization techniques that can be

applied to the data of a wide variety of scientific applications, that can produce a wide variety of different

visualizations of data appropriate for different needs, that are as interactive as possible, that require

minimal effort by scientists to use, and that can be integrated with a scientific programming environment.

Our approach has been to achieve generality and simplicity by developing appropriate abstractions for

scientific data, for scientific displays, and for the visualization mapping from data to displays.

6.1 Main Contributions and Limitations

The main contributions of this thesis can be summarized as follows:

1. Development of a system for scientific visualization that enables a wide variety of visual experiments

with scientific computations. This system integrates visualization with a scientific programming

language that can be used to express scientific computations. This programming language supports

a wide variety of scientific data types and integrates common forms of scientific metadata into the

computational and display semantics of data. Any data object defined in a program in this language

can be visualized in a wide variety of ways during and after program execution. Displays are

controlled by a set of simple mappings rather than program logic. These mappings are independent

of data type and separate from a user’s scientific programs, which is a clear distinction from

previous visualization systems that require scientists to embed calls to visualization functions in

their programs. Furthermore, computation and visualization are highly interactive. In particular, the

selection of data objects for display and the controls for how they are displayed are treated like any

9

other interactive display control (e.g., interactive rotation). Previous visualization systems require a

user to alter his program in order to make such changes. The generality, integration, interactivity

and ease-of-use of this system all enhance the user’s ability to perform visual experiments with their

algorithms.

2. Introduction of a systematic approach to analyzing visualization based on lattices. We defined a set

U of data objects and a set V of displays and showed how a lattice structure on U and V expresses a

fundamental property of scientific data and displays (namely that they are approximations to the

physical world). The visualization repertoire of a system can be defined as a set of mappings of the

form D : U → V. It is common to define a system’s visualization repertoire by enumerating such a

set of functions. However, an enumerated repertoire is justified only by the tastes and experience of

the people who decide what functions to include in the set. In contrast, we interpreted certain well-

known expressiveness conditions on the visualization mapping D : U → V in terms of a lattice

structure, and defined a visualization repertoire as the set of functions that satisfy those conditions.

Such a repertoire is justified by the generality of the expressiveness conditions. We showed that

visualization mappings satisfy these conditions if and only if they are lattice isomorphisms. Lattice

structures can be defined for a wide variety of data and display models, so this result can be applied

to analyze visualization repertoires in a wide variety of situations.

3. Demonstration of a specific lattice structure that unifies data objects of many different scientific

types in a data model U, and demonstration that the same lattice structure can express interactive,

animated, three-dimensional displays in a display model V. These models integrate certain kinds of

scientific metadata into the computational and display semantics of data. In the context of these

scientific data and display models, we showed that the expressiveness conditions imply that

mappings of data aggregates to display aggregates can always be factored into mappings of data

10

primitives to display primitives. We showed that our display mappings are complete, in the sense

that we characterized all mappings satisfying the expressiveness conditions.

These results have several limitations. Foremost, they do not include data objects with pointers.

Thus our visualization techniques are not applicable to the data objects of general programming languages.

This thesis developed a single lattice-structured scientific data model in which real numbers are

approximated by intervals and functions are approximated by finite sets of samples of their values.

However, there are other ways to approximate numbers and functions based on Eq. (3.2) and these may

serve as the basis for other lattice-structured models for scientific data. The display model developed in

this thesis models the ways that computers generate displays, but does not model the ways that people

perceive displays. Finally, this thesis only considered conditions on visualization mappings based on

lattice structures, and did not consider conditions based on other kinds of mathematical structures.

11

6.2 Future Directions

The work presented in this thesis can be extended to other lattice-structured models for data and

displays, and to analytic conditions on visualization functions based on types of mathematical structures

other than lattices. Specific future directions include:

1. Extend the VisAD system’s display model to include more display scalars, such as transparency,

reflectivity and flow vectors. These would be interpreted by including volume and flow rendering

techniques in the mapping RENDER : V → V’.

2. Extending the VisAD system to supply default mappings for controlling the displays of data objects.

This could be accomplished by integrating VisAD with others’ work on automating the design of

displays (Robertson, 1991; Senay and Ignatius, 1991; Senay and Ignatius, 1994; Beshers and Feiner,

1992).

3. Extending the lattice results to data objects with pointers (i.e., data objects of recursively-defined

data types). In Chapter 3 we showed how to embed scientific data objects of many different data

types in a lattice. In Chapter 5 we showed how this might be extended by describing Scott’s

technique for embedding data objects of many different recursively-defined data types in a lattice.

We also described graphical analogs of data objects with pointers. However, we described why

Scott’s embeddings are not suitable for visualization. Thus, finding ways to extend Scott’s

embeddings to a form suitable for visualization is an important next step. This would enable us to

extend the VisAD system to a general programming language rather than a scientific programming

language.

12

4. Defining lattice structures based on forms of approximations to numbers and functions other than

intervals and finite samplings. Whenever data objects can be identified with sets of mathematical

objects we can apply Eq. (3.2) (i.e., u ≤ u’ ⇔ math(u’) ⊆ math(u)) to define a lattice structure on a

data model. For example, functions may be approximated by finite sets of Fourier coefficients

rather than finite sets of function values.

5. The analytic approach has great potential for making the study of visualization more rigorous and

systematic. It is difficult to explicitly identify all of the assumptions of a synthetic approach to

visualization, whereas assumptions must be explicit in an analytic approach. Analytic conditions on

visualization mappings must be based on some mathematical structures defined on data and display

models. In this thesis we have explored the consequences of a single set of conditions defined in

terms of lattice structures. However, the full potential of the analytic approach can only be realized

by exploring a much wider set of conditions based on a variety of mathematical structures. Data

and display models may also have topological structures, metric structures, symmetry structures,

structures based on arithmetic operations, and type hierarchy structures. Each of these kinds of

structures can be used to define conditions on visualization mappings. Such conditions may be able

to express a wide range of visualization goals, and mathematical analysis of visualization mappings

satisfying various conditions may provide a rigorous foundation for visualization.

6. Defining structures on display models that express principles of human perception. For example, a

metric can be defined for the perceived distance between displays (as measured by psychology

experiments or predicted by psychological models). Alternatively, perception of displays may be

invariant to certain operations (e.g., time translation or spatial translation), which may be expressed

by defining symmetry groups on sets of displays.

13

Appendix A

Definitions for Ordered Sets

The appendices contain all the formal definitions, propositions and proofs for developing a model

of the display process based on lattices. Here we list some basic definitions from the theory of ordered sets.

Def. A partially ordered set (poset) is a set D with a binary relation ≤ on D such that, ∀x, y, z ∈ D

(a) x ≤ x "reflexive"

(b) x ≤ y & y ≤ x ⇒ x = y "anti-symmetric"

(c) x ≤ y & y ≤ z ⇒ x ≤ z "transitive"

Def. An upper bound for a set M ⊆ D is an element x D∈ such that

∀y ∈ M. y ≤ x.

Def. The least upper bound of a set M ⊆ D, if it exists, is an upper bound x for M such that if y is

another upper bound for M, then x ≤ y. The least upper bound of M is denoted sup M or \/M. sup{x,y} is

written x ∨ y.

Def. A lower bound for a set M ⊆ D is an element x D∈ such that ∀y ∈ M. x ≤ y.

Def. The greatest lower bound of a set M ⊆ D, if it exists, is a lower bound x for M such that if y is

another lower bound for M, then y ≤ x. The greatest lower bound of M is denoted inf M or /\M. inf{x,y} is

written x ∧ y.

14

Def. A subset M ⊆ D is a down set if ∀x ∈ M.∀y ∈ D. y ≤ x ⇒ y ∈ M. Given

M ⊆ D, define ↓M = {y ∈ D | ∃x ∈ M. y ≤ x}, and given x ∈ D, define

↓x = {y ∈ D | y ≤ x}.

Def. A subset M ⊆ D is an up set if ∀x ∈ M. ∀y ∈ D. x ≤ y ⇒ y ∈ M. Given

M ⊆ D, define ↑M = {y ∈ D | ∃x ∈ M. x ≤ y}, and given x ∈ D, define

↑x = {y ∈ D | x ≤ y}.

Def. A subset M ⊆ D is a chain if, for all x, y ∈ M, either y ≤ x or x ≤ y.

Def. A subset M ⊆ D is directed if, for every finite subset A ⊆ M, there is an

x ∈ M such that ∀y ∈ A. y ≤ x.

Def. A poset D is complete (and called a cpo) if every directed subset M ⊆ D has a least upper

bound \/M and if there is a least element ⊥ ∈ D (that is, ∀y ∈ D. ⊥ ≤ y).

Def. If D and E are posets, we use the notation (D → E) to denote the set of all functions from D

to E.

Def. If D and E are posets, a function f:D→E is strict if f(⊥) = ⊥.

Def. If D and E are posets, a function f:D→E is monotone if

∀x, y ∈ D. x ≤ y ⇒ f(x) ≤ f(y). We use the notation MON(D → E) to denote the set of all monotone

functions from D to E.

15

Def. If D and E are posets, a function f:D→E is an order embedding if

∀x, y ∈ D. x ≤ y ⇔ f(x) ≤ f(y).

Def. Given posets D and E, a function f:D→E, and a set M ⊆ D, we use the notation f(M) to

denote {f(d) | d ∈ M}.

Def. If D and E are cpos, a function f:D→E is continuous if it is monotone and if

f(\/M) = \/f(M) for directed M ⊆ D.

Def. If D is a cpo, then x ∈ D is compact if, for all directed M ⊆ D,

x ≤ \/M ⇒ ∃y ∈ M. x ≤ y.

Def. A cpo D is algebraic if for all x ∈ D, M = {y ∈ D | y ≤ x & y compact} is directed and x =

\/M.

Def. A cpo D is a domain if D is algebraic and if D contains a countable number of compact

elements.

Most of the ordered sets used in programming language semantics are domains.

Def. A poset D is a lattice if for all x, y ∈ D, x ∨ y and x ∧ y exist in D.

Def. A poset D is a complete lattice if for all M ⊆ D, \/M and /\M exist in D.

16

Def. If D and E are lattices, a function f:D→E is a lattice homomorphism if for all x, y ∈ D, f(x ∧

y) = f(x) ∧ f(y) and f(x ∨ y) = f(x) ∨ f(y). If f:D→E is also a bijection then it is a lattice isomorphism.

Def. A binary relation ≡ on a set D is an equivalence relation if ∀x, y, z ∈ D

(a) x ≡ x "reflexive"

(b) x ≡ y ⇔ y ≡ x "symmetric"

(c) x ≡ y & y ≡ z ⇒ x ≡ z "transitive"

Def. idD denotes the identity function on D. Given a function f:D→D,

im(f) = {f(d) | d ∈ D}.

Def. If D is a cpo, a continuous function f:D→D is a retraction of D if f = f o f. A retraction f:D

→D is a projection if f ≤ idD and a finitetary projection if in addition im(f) is a domain. A retraction f:D→

D is a closure if f ≥ idD and a finitetary closure if in addition im(f) is a domain.

Def. If D and E are cpos, a pair of continuous functions f:D→E and g:E→D are a retraction pair if

g o f ≤ idD and f o g = idE. The function g is called an embedding, and f is called a projection.

17

Appendix B

Proofs for Section 3.1.4

Here we present the technical details for Section 3.1.4. We can interpret Mackinlay’s

expressiveness conditions as follows:

Condition 1. ∀P ∈ MON(U → {⊥ , 1}). ∃Q ∈ MON(V → {⊥ , 1}).

∀u ∈ U. P(u) = Q(D(u)).

Condition 2. ∀Q ∈ MON(V → {⊥ , 1}). ∃P ∈ MON(U → {⊥ , 1}).

∀v ∈ V. Q(v) = P(D-1(v)).

Prop. B.1. If D:U → V satisfies Condition 2 then D is a monotone bijection from U onto V.

Proof. D is a function from U to V, and Condition 2 requires that D-1 is a functon from V to U, so

Conditon 2 requires that D is a bijection from U onto V. Next, assume that x ≤ y, and let Qx = λv ∈ V. (if (v

≥ D(x)) then 1 else ⊥). Then by Condition 2 there is a monotone function Px such that ∀v ∈ V. Qx(v) =

Px(D-1(v)). Since D is a bijection, this is equivalent to ∀u ∈ U. Qx(D(u)) = Px(u). Hence, Qx(D(y)) =

Px(y) ≥ Px(x) = Qx(D(x)) = 1 so Qx(D(y)) = 1 and D(y) ≥ D(x). Thus D is monotone. n

By Prop. B.1, Conditon 2 is too strong since it requires that every display in V is the display of

some data object under D. Since U is a complete lattice it contains a maximal data object X (the least upper

bound of all members of U). For all data objects

u ∈ U, u ≤ X. Since D is monotone this implies D(u) ≤ D(X). We use the notation ↓D(X) for the set of all

displays less than D(X). ↓D(X) is a complete lattice and for all data objects u ∈ U, D(u) ∈ ↓D(X). Hence

18

we can replace V by ↓D(X) in Condition 2 in order to not require that every v ∈ V is the display of some

data object. We modify Condition 2 as follows:

Condition 2’. ∀Q ∈ MON(↓D(X) → {⊥ , 1}). ∃P ∈ MON(U → {⊥ , 1}).

∀v ∈ ↓D(X). Q(v) = P(D-1(v)).

Def. A function D:U → V is a display function if it satisfies Conditions 1 and 2’.

The next two propositions demonstrate the consequences of this definition.

Prop. B.2. If D:U→V is a display function then:

(a) D is a bijective order embedding from U onto ↓D(X)

(b) ∀v ∈ V. (∃u’ ∈ U. v ≤ D(u’) ⇒ ∃u ∈ U. v = D(u))

(c) ∀M ⊆ U. \/D(M) = D(\/M) and ∀M ⊆ U. /\D(M) = D(/\M).

Proof. For part (1), D is a function from U to V, and Condition 2’ requires that D-1 is a functon

from ↓D(X) to U, so D is a bijection from U onto ↓D(X).

To show that D is an order embedding, assume that D(x) ≤ D(y), and let

Px = λu ∈ U. (if (u ≥ x) then 1 else ⊥). Then by Condition 1 there is a monotone function Qx such that ∀u

∈ U. Qx(D(u)) = Px(u). Hence, Px(y) = Qx(D(y)) ≥ Qx(D(x)) = Px(x) = 1 so Px(y) = 1 and y ≥ x. Now

assume that x ≤ y, and let

19

Qx = λv ∈ V. (if (v ≥ D(x)) then 1 else ⊥). Then by Condition 2’ there is a monotone function Px such that

∀v ∈ V. Qx(v) = Px(D-1(v)). Since D is a bijection, this is equivalent to ∀u ∈ U. Qx(D(u)) = Px(u).

Hence, Qx(D(y)) = Px(y) ≥ Px(x) = Qx(D(x)) = 1 so Qx(D(y)) = 1 and D(y) ≥ D(x). Thus D is an order

embedding.

For part (b), note that if ∃u’ ∈ U. v ≤ D(u’), then v ≤ D(X) and v ∈ ↓D(X) so

∃u ∈ U. v = D(u).

For part (c), ∀m ∈ M. m ≤ \/M so ∀m ∈ M. D(m) ≤ D(\/M) and so

\/D(M) ≤ D(\/M). Thus, by part (2), ∃u ∈ U. D(u) = \/D(M), and ∀m ∈ M. D(m) ≤ D(u) so ∀m ∈ M. m ≤

u and thus \/M ≤ u. Therefore D(\/M) ≤ D(u) = \/D(M), and thus

D(\/M) = \/D(M).

Next, ∀m ∈ M. /\M ≤ m so ∀m ∈ M. D(/\M) ≤ D(m) and so D(/\M) ≤ /\D(M). For any m ∈ M,

/\D(M) ≤ D(m), so, by part (2), ∃u ∈ U. D(u) = /\D(M), and

∀m ∈ M. D(u) ≤ D(m) so ∀m ∈ M. u ≤ m and thus u ≤ /\M. Therefore

/\D(M) = D(u) ≤ D(/\M), and thus D(/\M) = /\D(M). n

As a corollary of Prop. B.2, next we show that display functions are lattice isomorphisms, and are

continuous in the sense defined by Scott.

Prop. B.3. D:U → V is a display function if and only if it is a lattice isomorphism of U onto ↓

D(X), which is a sublattice of V. Furthermore, a display function D is continuous.

Proof. Assume D:U → V is a display function. For any x, y ∈ U, let M = {x, y}. Then, by Prop.

B.2, D(x ∨ y) = D(x) ∨ D(y) and D(x ∧ y) = D(x) ∧ D(y), so D is a lattice homomorphism. Next, a, b ∈ ↓

D(X) ⇒ a, b ≤ D(X) ⇒ a ∨ b, a ∧ b ≤ D(X) ⇒

D(a ∨ b), D(a ∧ b) ∈ ↓D(X), so ↓D(X) is a sublattice of V. By Prop. B.2, D is bijective, so it is a lattice

isomorphism.

20

Assume D:U→↓D(X) is a lattice isomorphism. If x ≤ y then D(y) = D(x ∨ y) =

D(x) ∨ D(y) ≥ D(x). If D(x) ≤ D(y) then y = D-1(D(y)) = D-1(D(x) ∨ D(y)) =

D-1(D(x ∨ y)) = x ∨ y ≥ x. Thus D is an order embedding. Hence it is injective

[that is D(x) = D(y) ⇒ D(x) ≤ D(y) ⇒ x ≤ y and D(x) = D(y) ⇒ D(y) ≤ D(x) ⇒ y ≤ x, so D(x) = D(y) ⇒ x =

y]

so D-1 is defined on D(U) ⊆ V. Given P ∈ MON(U → {⊥ , 1}), define

Q = λv ∈ V. \/{P(D-1(v’)) | v’ ≤ v & v’ ∈ D(U)}. The set of v’ such that v’ ≤ v and

v’ ∈ D(U) always includes D(⊥), so Q is defined for all v ∈ V. Q is a function from V to

{⊥ , 1}, and Q is monotone since

v1 ≤ v2 ⇒ {v’ | v’ ≤ v1 & v’ ∈ D(U)} ⊆ {v’ | v’ ≤ v2 & v’ ∈ D(U)}. Then, for all u ∈ U,

Q(D(u)) = \/{P(D-1(v’)) | v’ ≤ D(u) & v’ ∈ D(U)} =

P(D-1(D(u))) ∨ \/{P(D-1(v’)) | v’ < D(u) & v’ ∈ D(U)} =

[since P and D-1 are both monotone, v’ < D(u) ⇒ P(D-1(v’)) ≤ P(D-1(D(u)))]

P(D-1(D(u))) = P(u).

This is equivalent to P = Q o D. Thus D satisfies Condition 1.

Given Q ∈ MON(V → {⊥ , 1}), define P = λu ∈ U. Q(D(u)). P is a function from U to {⊥ , 1},

and P is monotone since Q and D are monotone. Clearly

∀u ∈ U. Q(D(u)) = P(u). Since D is a lattice isomorphism it is a bijection from U onto

↓D(X) so this is equivalent to ∀v∈↓D(X). Q(v) = P(D-1(v)). Thus D satisfies Condition 2’ and is a display

function.

A display function D is an order embedding and thus monotone. For any directed set M ⊆ U,

\/D(M) = D(\/M) by Prop. B.2, so D is continuous. n

21

Appendix C

Proofs for Section 3.2.2

Here we present the technical details for Section 3.2.2. Our lattices of data objects and of displays

are defined in terms of scalar types. Each scalar type defines a value set, which may be either discrete or

continuous, and which includes the undefined value ⊥. We use the symbol R to denote the set of real

numbers.

Def. A discrete scalar s defines a countable value set Is that includes a least element ⊥ and has

discrete order. That is, ∀x, y ∈ Is. (x < y ⇒ (x = ⊥ & y ≠ ⊥)).

Def. A continuous scalar s defines a value set

Is = {⊥} ∪ {[x, y] | x, y ∈ R & x ≤ y} (that is, the set of closed real intervals, plus ⊥) with the order defined

by: ⊥ < [x, y] and [x, y] ≤ [u, v] ⇔ [u, v] ⊆ [x, y].

Prop. C.1. Discrete and continuous scalars are cpos. Discrete scalars are domains. However, a

continuous scalar is not algebraic because its only compact element is ⊥, and hence it is not a domain.

Proof. A discrete scalar s is clearly complete. To show that a continuous scalar s is complete, let

M be a directed set in Is. We need to show that

\/M = I{[u, v] | [u, v] ∈ M} is an interval in Is. Set x = max{u | [u, v] ∈ M} and

y = min{v | [u, v] ∈ M}. If y < x, set a = x - y, y’ = y + a / 3 and x’ = x - a / 3 so y’ < x’. Then ∃[u1, v1] ∈ M.

v1 ≤ y’ and ∃[u2, v2] ∈ M. u2 ≥ x’, so [u1, v1] ∩ [u2, v2] = φ. But M directed implies that ∃[u3, v3] ∈ M.

[u3, v3] ⊆ [u1, v1] ∩ [u2, v2]. This is a contradiction, so x ≤ y and [x, y] = \/M.

Let s be continuous and pick [x, y] ∈ Is. To see if [x, y] is compact, set

22

An = [x - 2-n, y + 2-n]. Then [x, y] = \/nAn and {An} is a directed set, but

¬∃An. [x, y] ≤ An (that is, there is no interval An contained in [x, y]. Thus ⊥ is the only compact element in

Is (for s continuous). n

We define a tuple space as the cross product of a set of scalar value sets, and define a data lattice

whose members are sets of tuples. Note that we use the notation XA for the cross product of members of a

set A.

Def. Let S be a finite set of scalars, and let X = X{Is | s ∈ S} be the set of tuples with an element

from each Is. Let as denote the s component of a tuple a ∈ X. Define an order relation on X by: for a, b ∈

X, a ≤ b if ∀s ∈ S. as ≤ bs.

Prop. C.2. Let A ⊆ X. If bs = \/{as | a ∈ A} is defined for all s ∈ S then b = \/A. If cs = /\{as | a

∈ A} for all s ∈ S then c = /\A (that is, sups and infs over X are taken componentwise). Thus, X is a cpo.

Proof. ∀s ∈ S. ∀a ∈ A. as ≤ bs, so b is an upper bound for A. If e is another upper bound for A,

then ∀s ∈ S. bs ≤ es (since bs is the least upper bound of {as | a ∈ A}). Thus, b ≤ e, so b is the least upper

bound of A. The argument that c = /\A is similar.

Let A ⊆ X be a directed set, and let As = {as | a ∈ A}. If {ais | i} is a finite subset of As, then {ai |

i} is a finite subset of A, so ∃e ∈ A. ∀i. ai ≤ e. Then for each s ∈ S,

es ∈ As and ∀i. ais ≤ es, so As is a directed set, and thus bs = \/As ∈ Is. As we just showed, b = \/A ∈ X,

so X is complete. n

Def. We use POWER(X) = {A | A ⊆ X} to denote the set of all subsets of X.

23

As explained in Section 3.2.2, POWER(X) is not appropriate for a lattice structure, so we define

equivalence classes on POWER(X) using the Scott topology. The Scott topology defines open and closed

sets as follows.

Def. A set A ⊆ X is open if ↑A ⊆ A and, for all directed subsets

C ⊆ X, \/C ∈ A ⇒ C ∩ A ≠ φ.

Def. A set A ⊆ X is closed if ↓A ⊆ A and, for all directed subsets C ⊆ A, \/C ∈ A. We use CL(X)

to denote the set of all closed subsets of X.

Def. Define a relation ≤R on POWER(X) as follows: A ≤R B if for all open

C ⊆ X, A ∩ C ≠ φ ⇒ B ∩ C ≠ φ. Also define a relation ≡R on POWER(X) as follows:

A ≡R B if A ≤R B and B ≤R A.

Prop. C.3. The relation ≡R is an equivalence relation.

Proof. Clearly ∀A.A ≤R A and thus ∀A.A ≡R A. And

A ≡R B ⇔ A ≤R B & B ≤R A ⇔ B ≡R A. If A ≤R B and B ≤R C then for all open E ⊆ X,

A ∩ E ≠ φ ⇒ B ∩ E ≠ φ and B ∩ E ≠ φ ⇒ C ∩ E ≠ φ, so A ∩ E ≠ φ ⇒ C ∩ E ≠ φ, and thus A ≤R C. So ≡R

is reflexive, symmetric and transitive, and therefore an equivalence relation. n

24

If A ≡R B and C ≡R D, then A ≤R C ⇔ B ≤R D. Thus the equivalence classes of

≡R are ordered by ≤R. Now we show that the closed sets of the Scott topology can be used in place of the

equivalence classes.

Def. Given an equivalence class E of the ≡R relation, let ME = UE.

Prop. C.4. Given an equivalence class E of the ≡R relation, then ME ∈ E.

Proof. Pick some A ∈ E. Then A ⊆ ME so A ≤R ME. For all open C ⊆ X, we have ME ∩ C ≠ φ

⇒ ∃B ∈ E. B ∩ C ≠ φ (since ME = UE), but B ∩ C ≠ φ ⇒ A ∩ C ≠ φ (since B ≤R A). Thus ME ≤R A and

ME ≡R A so ME ∈ E. n

Prop. C.5. Given an equivalence class E of the ≡R relation, then ME ∈ CL(X).

Proof. Given a ∈ ME and b ≤ a, we need to show that ME ≡R ME ∪ {b} and hence that b ∈ ME.

Clearly ME ≤R ME ∪ {b}. For all open C ⊆ X, if b ∈ C then a ∈ C (since b ≤ a) so ME ∩ C ≠ φ. Thus

ME ∪ {b} ≤R ME and b ∈ ME.

Next, given a directed set D ⊆ ME, let b = \/D. Clearly ME ≤R ME ∪ {b}. For all open C ⊆ X, if

b ∈ C then ∃c ∈ D. c ∈ C so c ∈ ME ∩ C. Thus ME ∪ {b} ≤R ME and

b ∈ ME.

This shows that ME is closed. n

Prop. C.6. Given equivalence classes E and E’ of the ≡R relation, then

E ≤R E’ ⇔ ME ⊆ ME’ and E = E’ ⇔ ME = ME’. If A ⊆ X is a closed set, then for some equivalence class

E, A = ME.

Proof. Note that E ≤R E’ ⇔ ME ≤R ME’. If ME ⊆ ME’ then for all C ⊆ X (whether C is open

or not), ME ∩ C ≠ φ ⇒ ME’ ∩ C ≠ φ and thus ME ≤R ME’. If

25

¬ME ⊆ ME’ then there is a ∈ ME such that a ∉ ME’. The complement of ME’, denoted

X \ ME’, is open, and a ∈ ME ∩ (X \ ME’) but ME’ ∩ (X \ ME’) = φ, so ¬ME ≤R ME’.

E = E’ ⇒ ME = UE = UE’ = ME’. Conversely,

ME = ME’ ⇒ ME ≤R ME’ & ME’ ≤R ME ⇒ E ≤R E’ & E ≤R E’ ⇒ E = E’. Thus E ↔ ME is a one-to-

one correspondence between closed sets and equivalence classes of ≡R.

If A ⊆ X is a closed set, then A belongs to some equivalence class E so A ⊆ ME and A ≡R ME. If

A ≠ ME then there is a ∈ ME such that a ∉ A. X \ A is open and

a ∈ ME ∩ (X \ A) but A ∩ (X \ A) = φ, so ¬ME ≤R A. This contradicts A ≡R ME so

A = ME. n

The last proposition showed that there is a one to one correspondence between the equivalence

classes of ≡R and CL(X). Next, we show that these closed sets obey the usual laws governing intersections

and unions of closed sets in a topology.

Prop. C.7. If L is a set of closed subsets of X, then IL is closed. If L is finite, then UL is closed.

Furthermore, for all x ∈ X, ↓x ∈ CL(X).

Proof. If x ∈ IL and y ≤ x, then for all A ∈ L, x ∈ A and ↓A ⊆ A, so y ∈ A and so

y ∈ IL. Thus ↓IL ⊆ IL. If C is a directed subset C ⊆ IL, then for all A ∈ L, C ⊆ A and \/C ∈ A. Thus

\/C ∈ IL and IL is closed.

Now assume L is finite. If x ∈ UL and y ≤ x, then for some A ∈ L, x ∈ A and

↓A ⊆ A, so y ∈ A and so y ∈ UL. Thus ↓UL ⊆ UL. Let C be a directed subset C ⊆ UL and assume that

\/C ∉ UL. Then ∀A ∈ L. \/C ∉ A so, since all A ∈ L are closed,

∀A ∈ L. ¬C ⊆ A. Thus ∀A ∈ L. ∃cA ∈ C. cA ∉ A. Now, {cA | A ∈ L} is finite, so

∃c ∈ C. ∀A ∈ L. cA ≤ c. But ∀A ∈ L. cA ∉ A ⇒ c ∉ A (since A ∈ L are down sets), so

c ∉ UL. This contradicts C ⊆ UL so we must have \/C ∈ UL. Thus UL is closed.

26

Clearly ↓(↓x) ⊆ ↓x. If C ⊆ ↓x is a directed set (or any subset of ↓x), then

∀c ∈ C. c ≤ x so \/C ≤ x and thus \/C ∈ ↓x. Therefore ↓x is closed. n

Now we show that the equivalence classes of the ≡R relation, and equivalently CL(X), form a

complete lattice.

Prop. C.8. If W is a set of equivalence classes of the ≡R relation, and then /\W is defined and /\W

= E such that ME = I{Mw | w ∈ W}. Similarly, \/W is defined and \/W = E such that ME is the smallest

closed set containing U{Mw | w ∈ W}. Thus the equivalence classes of the ≡R relation form a complete

lattice, and equivalently CL(X) is a complete lattice. If W is finite and E = \/W, then ME = U{Mw | w ∈

W}.

Proof. By Prop. C.7, I{Mw | w ∈ W} is closed and, by Prop. C.6, must be ME for some

equivalence class E. Now, ∀w ∈ W. ME ⊆ Mw so ∀w ∈ W. ME ≤R Mw and

∀w ∈ W. E ≤R w. If E’ is an equivalence class such that ∀w ∈ W. E’ ≤R w, then

∀w ∈ W. ME’ ⊆ Mw, so ME’ ⊆ ME and E’ ≤R E. Thus E = \/W.

By Prop. C.7, the intersection of all closed sets containing U{Mw | w ∈ W} must be a closed set

and, by Prop. C.6, must be ME for some equivalence class E. Now,

∀w ∈ W. Mw ⊆ ME so ∀w ∈ W. Mw ≤R ME and ∀w ∈ W. w ≤R E.

If E’ is an equivalence class such that ∀w ∈ W. w ≤R E’, then ∀w ∈ W. Mw ⊆ ME’, so ME’ contains U

{Mw | w ∈ W}. Thus ME ⊆ ME’ and E ≤R E’. Therefore E = \/W.

If W is finite, then U{Mw | w ∈ W} is closed and equal to ME, where E = \/W. n

Now we prove two propositions that will be useful for determining when sets of tuples are closed.

Prop. C.9. If a ∈ X, B ⊆ X and a ≤ \/B then a = \/{a ∧ b | b ∈ B}.

27

Proof. Let as and bs denote the tuple components of a and b. The order relation, sups and infs of

a cross product are taken componentwise, so it is sufficient to prove the proposition for each tuple

component. That is, we will show that

∀s ∈ S. as ≤ \/{as ∧ bs | b ∈ B}.

For discrete s, Is has the discrete order. If \/{bs | b ∈ B} = ⊥ then as = ⊥ and

∀s ∈ S. bs = ⊥, and the conclusion is clearly true. Otherwise, let cs = \/{bs | b ∈ B}. Then ∀b ∈ B. (bs =

⊥ or bs = cs). If as = ⊥ then ∀b ∈ B. as ∧ bs = ⊥ and

as = ⊥ = \/{as ∧ bs | b ∈ B}. Otherwise as = cs and ∀b ∈ B. as ∧ bs = bs and

as = cs = \/{bs | b ∈ B} = \/{as ∧ bs | b ∈ B}.

For continuous s, the members of Is are real intervals, or are ⊥. Let as = [xs, ys] and bs = [x(bs),

y(bs)], where we use x = -∞ and y = +∞ for as = ⊥ or bs = ⊥. The order relation on Is corresponds to the

inverse of interval containment, sup corresponds to intersection of intervals, and inf corresponds to the

smallest interval containing the union of intervals. First, note that ∀b ∈ B. a ∧ b ≤ a and thus \/{a ∧ b | b

∈ B} ≤ a. So, it is only necessary to show that a ≤ \/{a ∧ b | b ∈ B}, or, in other words, that the

intersection of the intervals [min{xs, x(bs)}, max{ys, y(bs)}] for all b ∈ B is contained in the interval [xs,

ys]. This intersection of intervals is

[c, d] = [max{min{xs, x(bs)}| b ∈ B}, min{max{ys, y(bs)}| b ∈ B}]. Now,

as ≤ \/{bs | b ∈ B} says that xs ≤ max{x(bs) | b ∈ B} and min{x(bs) | b ∈ B} ≤ ys. So for at least one b ∈

B, xs ≤ x(bs) and min{xs, x(bs)} = xs, and thus

c = max{min{xs, x(bs)}| b ∈ B} ≥ xs. Similarly d ≤ ys, and so [c, d] ⊆ [xs, ys], showing the needed

containment. n

28

Prop. C.10. If Y ⊆ CL(X) then B = {\/M | M ⊆ UY & M directed} is closed.

Proof. First, we show that B is a down set. By Prop. C.9,

a ≤ \/M ⇒ a = \/{a ∧ m | m ∈ M}, so we need to show that \/{a ∧ m | m ∈ M} is directed when M is.

Given a finite set {a ∧ bi | bi ∈ M} there is c in M such that ∀i. bi ≤ c, and thus \/ibi ≤ c. Now ∀i. bi ≤

\/ibi ⇒ ∀i. a ∧ bi ≤ a ∧ \/ibi ⇒ \/i(a ∧ bi) ≤ a ∧ \/ibi ≤

a ∧ c. However a ∧ c ∈ \/{a ∧ m | m ∈ M}, so {a ∧ m | m ∈ M} is directed, a ∈ B and B is a down set.

Next, we show that B is closed under sups. Let M be a directed subset of B and we will show that

a = \/M ∈ B. For each m ∈ M there is a directed set Q(m) ⊆ UY such that m = \/Q(m). Define Q’ = U

{Q(m) | m ∈ M} and Q = {\/C | C ⊆ Q’ & C finite}. Note that \/Q’ exists (and = a) so \/C exists. For each

finite C ⊆ Q’, each c ∈ C belongs to a member of Y. Thus C is a subset of a finite union of members of Y,

which is a closed set, so \/C must belong to this same closed set and therefore belongs to UY. Thus Q ⊆ U

Y. Pick a finite set {qi} ⊆ Q. Each qi is the sup of a finite subset Ci ⊆ Q’, and \/iqi is the sup of the finite

subset UiCi of Q’. Thus \/iqi ∈ Q so Q is a directed subset of UY with

a = \/Q = \/Q’, so a is a member of B. Thus B is closed under sups, and is a closed set. n

29

Appendix D

Proofs for Section 3.2.3

Here we present the technical details for Section 3.2.3.

Def. A set T of data types can be defined from the set S of scalars. Two functions, SC and DOM

are defined with T, such that ∀t∈T. SC(t) ⊆ S & DOM(t) ⊆ S.

T, SC and DOM are defined as follows:

(D.1) s ∈ S ⇒ s ∈ T (that is, S ⊂ T)

SC(s) = {s}

DOM(s) = φ.

(D.2) (for i = 1,...,n. ti ∈ T) & (i ≠ j ⇒ SC(ti) ∩ SC(tj) = φ) ⇒ struct{t1;...;tn} ∈ T

SC(struct{t1;...;tn}) = UiSC(ti)

DOM(struct{t1;...;tn}) = UiDOM(ti)

(D.3) w ∈ S & r ∈ T & w ∉ SC(r) ⇒ (array [w] of r) ∈ T

SC((array [w] of r)) = {w} ∪ SC(r)

DOM((array [w] of r)) = {w} ∪ DOM(r)

30

The type struct{t1;...;tn} is a tuple with element types ti, and the type

(array [w] of r) is an array with domain type w and range type r. SC(t) is the set of scalars occurring in t,

and DOM(t) is the set of scalars occurring as array domains in t. Note that each scalar in S may occur at

most once in a type in T.

Def. For each scalar s ∈ S, define a countable set Hs ⊆ Is such that for all

a, b ∈ Hs, a ∧ b ∈ Hs, a ∨ b ∈ Is ⇒ a ∨ b ∈ Hs, and such that ∀a ∈ Is. ∃A ⊆ Hs. a = \/A (that is, Hs is

closed under infs and sups, and any member of Is is a sup of a set of members of Hs). For discrete s this

implies that Hs = Is (recall that we defined discrete scalars as having countable value sets). Also note that,

for continuous s, Hs cannot be a cpo.

Def. Given a scalar w, let

FIN(Hw) = {A ⊆ Hw\{⊥} | A finite & ∀a, b ∈ A. ¬(a ≤ b)}.

Def. Extend the definition of Ht to t ∈ T by:

(D.4) t = struct{t1;...;tn} ⇒ Ht = H Ht tn1
× ×...

(D.5) t = (array [w] of r) ⇒ Ht = U{(A → Hr) | A ∈ FIN(Hw)}

Def. Define an embedding Et:Ht → U by:

(D.6) t ∈ S ⇒ Et(a) = ↓(⊥,...,a,...,⊥)

(D.7) t = struct{t1;...;tn} ⇒ Et((a1,...,an)) = {b1∨...∨bn | ∀i. bi ∈ Eti
(ai)}

31

(D.8) t = (array [w] of r) ⇒

[a ∈ (A → Hr) ⇒ Et(a) = {b∨c | x ∈ A & b ∈ Ew(x) & c ∈ Er(a(x))}]

The notation ↓(⊥,...,a,...,⊥) in Eq. (D.6) indicates the closed set of all tuples less than (⊥,...,a,...,⊥).

As we will show in Prop. D.1, for all a ∈ Ht and for all b ∈ Et(a),

bs = ⊥ unless s ∈ SC(t). Thus b1∨...∨bn in Eq. (D.7) is the tuple that merges the non-⊥ components of the

tuples b1, ..., bn., since the types ti in Eq. (D.7) are defined from disjoint sets of scalars. Similarly, b∨c in

Eq. (D.8) is the tuple that merges the non-⊥ components of the tuples b and c, since the scalar w does not

occur in the type r. Prop. D.2 will show that Et does indeed map members of Ht to members of U.

Def. For t ∈ T define Ft = Et(Ht).

Prop. D.1. Given t ∈ T and A ∈ Ft, for all tuples b ∈ A,

∀s ∈ S. (s ∉ SC(t) ⇒ bs = ⊥).

Proof. We prove this by induction on the structure of t. This is clearly true for

t ∈ S. For t = struct{t1;...;tn} pick b = b1∨...∨bn ∈ A ∈ Ft, where bi ∈ Bi ∈Fti . Then

bs = b1s∨...∨bns. By induction, ∀i. ∀s. s ∉ SC(ti) ⇒ bis = ⊥, so

∀s. (∀i. s ∉ SC(ti)) ⇒ bs = ⊥, and so ∀s. s ∉ UiSC(ti) ⇒ bs = ⊥. But SC(t) = UiSC(ti).

For t = (array [w] of r) pick a = b ∨ c ∈ A ∈ Ft, where b ∈ B ∈ Fw and

c ∈ C ∈ Fr. Then as = bs ∨ cs. By induction, s ≠ w ⇒ bs = ⊥ and s ∉ SC(r)) ⇒ cs = ⊥, so ∀s. s ∉ {w} ∪

SC(r) ⇒ bs = ⊥. But SC(t) = {w} ∪ SC(r). n

The following propositions show that Et maps members of Ht to closed sets, and that this mapping

is injective.

32

Prop. D.2. For all a ∈ Ht, Et(a) is a closed set.

Proof. We prove this by induction on the structure of t. For t ∈ S,

Et(a) = ↓(⊥,...,a,...,⊥) is closed, by Prop. C.7. For t = struct{t1;...;tn}, we need to show that Et(a) = {b1∨...

∨bn | ∀i. bi ∈Eti (ai)} is closed, where a = (a1,...,an). To show that Et(a) is a down-set, pick b ≤ b1∨...∨

bn ∈ Et(a). Then ∀i. b ∧ bi ≤ bi and hence

∀i. b ∧ bi ∈Eti (ai) (since these are down sets). Thus, by Prop. C.9,

b = (b ∧ b1)∨...∨(b ∧ bn) ∈ Et(a). To show that Et(a) is closed under sups of directed sets, pick a directed

set C ⊆ Et(a) and for all c ∈ C let c = b1(c)∨...∨bn(c) where

∀i. bi(c) ∈Eti (ai). We need to show that Ci = {bi(c) | c ∈ C} is a directed set. Pick a finite subset {bi(cj)

| j} ⊆ Ci. Since C is directed, there is m ∈ C such that ∀j. cj ≤ m. Note that m = b1(m)∨...∨bn(m) where ∀

i. bi(m) ∈ Ci. Since the ti have disjoint sets of non-⊥ components, ∀i. ∀j. bi(cj) ≤ bi(m). Thus Ci is

directed, and \/Ci ∈Eti
(ai). Hence \/C = \/C1∨...∨\/Cn ∈ Et(a), and thus Et(a) is closed under sups of

directed sets.

For t = (array [w] of r), we need to show that

Et(a) = {b∨c | x ∈ A & b ∈ Ew(x) & c ∈ Er(a(x))} is closed, where a ∈ (A → Hr). Define Et(a)x = {b∨c | b

∈ Ew(x) & c ∈ Er(a(x))}. Note that Et(a)x =

Estruct{w;r}((a, a(x))) [where struct{w; r} is a tuple type and (a, a(x)) ∈ Hstruct{w;r}] and thus, by the

argument above for tuple types, Et(a)x is closed. Also note that Et(a) =

U{Et(a)x | x ∈ A}. However, A is finite, so Et(a) is a union of a finite number of closed sets, and thus is

itself closed. n

33

Prop. D.3. The embedding Et : Ht → U is injective.

Proof. We prove this by induction on the structure of t.

Let t be a scalar and a ≠ b. Then ¬(a ≤ b) or ¬(b ≤ a). Assume without loss of generality that ¬(a

≤ b). Then (⊥,...,a,...,⊥) ∈ ↓(⊥,...,a,...,⊥) = Et(a) but

(⊥,...,a,...,⊥) ∉ ↓(⊥,...,b,...,⊥) = Et(b), so Et(a) ≠ Et(b).

Let t = struct{t1;...;tn} and a = (a1,...,an) ≠ (b1,...,bn) = b. Then ∃k. ak ≠ bk and, by the inductive

hypothesis, Etk
(ak) ≠ Etk

(bk). Assume without loss of generality that

∃ck ∈ Etk
(ak). ck ∉Etk

(bk), and for all i ≠ k pick ci ∈Eti (ai). Then

c1∨...∨cn ∈ Et((a1,...,an)), but, since ck ∉Etk
(bk) and since

∀s ∈ S.∀i ≠ k. cks ≠ ⊥ ⇒ cis = ⊥, c1∨...∨cn ∉ Et((b1,...,bn)). Thus

Et((a1,...,an)) ≠ Et((b1,...,bn)).

Let t = (array [w] of r) and a ≠ b where a ∈ (A → Hr) and b ∈ (B → Hr). Then either A ≠ B or A

= B & ∃x ∈ A. a(x) ≠ b(x). In the first case (that is, A ≠ B), assume without loss of generality that ∃x ∈ A. x

∉ B. If ∃y ∈ B. x ≤ y then ¬∃z ∈ A. y ≤ z (otherwise x ∈ A & z ∈ A & x ≤ z). Thus either ∃x ∈ A. ¬(∃y ∈

B. x ≤ y) or

∃y ∈ B. ¬(∃z ∈ A. y ≤ z). Assume without loss of generality that

∃x ∈ A. ¬(∃y ∈ B. x ≤ y). Then e = (⊥,...,x,...,⊥) ∈ Ew(x) and ¬(∃y ∈ B. e ∈ Ew(y)). Pick f ∈ Er(a(x)).

Then e∨f ∈ Et(a) but e∨f ∉ Et(b), so Et(a) ≠ Et(b). In the second case (that is, A = B & ∃x ∈ A. a(x) ≠

b(x)), by the inductive hypothesis, Er(a(x)) ≠ Er(b(x)). Assume without loss of generality that ∃x ∈ A. ∃f ∈

Er(a(x)). f ∉ Er(b(x)). Pick e ∈ Ew(x). Then e∨f ∈ Et(a) but e∨f ∉ Et(b), so Et(a) ≠ Et(b). n

Because Et : Ht → U is injective, we can define an order relation between the members of Ht

simply by assuming that Et is an order embedding. If Et were not injective, it would map a pair of

members of Ht to the same member of U, and induce an anti-symmetric relation on Ht.

34

Def. Given a, b ∈ Ht, we say that a ≤ b if and only if Et(a) ≤ Et(b).

The order that Et induces on Ht has a simple and intuitive structure, as the following proposition

shows.

Prop. D.4. If t is a scalar and a, b ∈ Ht then Et(a) ≤ Et(b) if and only if a ≤ b in It.

If t = struct{t1;...;tn} then Et((a1,...,an)) ≤ Et((b1,...,bn)) if and only if

∀i. Eti (ai) ≤ Eti (bi) (that is, the order relation between tuples is defined element-wise).

If t = (array [w] of r), if a, b ∈ Ht and if a ∈ (A → Hr) and b ∈ (B → Hr), then

Et(a) ≤ Et(b) if and only if ∀x ∈ A. Er(a(x)) ≤ \/{Er(b(y)) | y ∈ B & Ew(x) ≤ Ew(y)} (that is, an array a is

less than an array b if the embedding of the value of a at any sample x is less than the sup of the

embeddings of the set of values of b at its samples greater than x).

Proof. Recall that members of U are closed sets ordered by set inclusion, so

Et(a) ≤ Et(b) ⇔ Et(a) ⊆ Et(b). Let t be a scalar. If a ≤ b in It then

Et(a) = ↓(⊥,...,a,...,⊥) = {(⊥,...,c,...,⊥) | c ≤ a} ⊆

{(⊥,...,c,...,⊥) | c ≤ b} = ↓(⊥,...,b,...,⊥) = Et(b).

Now assume that Et(a) ≤ Et(b). Then

Et(a) = ↓(⊥,...,a,...,⊥) = {(⊥,...,c,...,⊥) | c ≤ a} ⊆

{(⊥,...,c,...,⊥) | c ≤ b} = ↓(⊥,...,b,...,⊥) = Et(b)

so (⊥,...,a,...,⊥) ∈ {(⊥,...,c,...,⊥) | c ≤ b} so a ≤ b in It.

35

Let t = struct{t1;...;tn}. If ∀i.Eti
(ai) ⊆ Eti

(bi) then

Et((a1,...,an)) = {c1∨...∨cn | ∀i. ci ∈Eti
(ai)} ⊆

{c1∨...∨cn | ∀i. ci ∈ Eti (bi)} = Et((b1,...,bn)).

Now assume that Et((a1,...,an)) ≤ Et((b1,...,bn)). Then

Et((a1,...,an)) = {c1∨...∨cn | ∀i. ci ∈Eti
(ai)} ⊆

{c1∨...∨cn | ∀i. ci ∈ Eti (bi)} = Et((b1,...,bn)).

[Parenthetical argument: assume that ck ∉Etk
(bk), ci ∈Eti

(ai) for i ≠ k, and

c1∨...∨cn ∈ Et((b1,...,bn)). Then there are di ∈ Eti
(bi) such that c1∨...∨cn = d1∨...∨dn. However, i ≠ j

⇒ SC(ti) ∩ SC(tj) = φ so, by Prop. D.1, dis = ⊥ for s ∈ SC(tk) and i ≠ k. Thus cks = dks for s ∈ SC(tk) and

so ck = dk. This is impossible, so

c1∨...∨cn ∈ Et((b1,...,bn)) and ci ∈Eti
(ai) for i ≠ k ⇒ ck ∈Etk

(bk).]

Thus ∀i. (ci ∈Eti
(ai) ⇒ ci ∈ Eti

(bi)), or in other words, ∀i.Eti
(ai) ⊆ Eti

(bi).

Let t = (array [w] of r), a, b ∈ Ht and a ∈ (A → Hr) and b ∈ (B → Hr). Assume that ∀x ∈ A.

Er(a(x)) ≤ \/{Er(b(y)) | y ∈ B & Ew(x) ≤ Ew(y)}. Then

∀x ∈ A. Er(a(x)) ⊆ U{Er(b(y)) | y ∈ B & Ew(x) ≤ Ew(y)}.

Et(a) = {e ∨ f | x∈A & e∈Ew(x) & f∈Er(a(x))} =

U{{e ∨ f | e∈Ew(x) & f∈Er(a(x))} | x∈A}.

Now, f ∈ Er(a(x)) ⇒ ∃y ∈ B. Ew(x) ≤ Ew(y) & f ∈ Er(b(y)) and

e ∈ Ew(x) & Ew(x) ≤ Ew(y) ⇒ e ∈ Ew(y), so (continuing the chain)

36

U{{e ∨ f | e∈Ew(x) & f∈Er(a(x))} | x∈A} ⊆

U{{e ∨ f | e∈Ew(y) & f∈Er(b(y)) & Ew(x) ≤ Ew(y) & y ∈ B} | x∈A} ⊆

U{{e ∨ f | e∈Ew(y) & f∈Er(b(y))} | y ∈ B} =

{e ∨ f | y∈B & e∈Ew(y) & f∈Er(b(y))} = Et(b).

Thus Et(a) ≤ Et(b).

Now assume that Et(a) ≤ Et(b). That is,

Et(a) = {e ∨ f | x∈A & e∈Ew(x) & f∈Er(a(x))} ⊆

U{{e ∨ f | e∈Ew(y) & f∈Er(b(y))} | y ∈ B} = Et(b).

Since w ∉ SC(r), e∈Ew(x) & f∈Er(a(x)) & e∨f ∈ Et(b) ⇒ ∃y∈B. e∈Ew(y) & f∈Er(b(y))

[this is a result of the parenthetical argument in the tuple case of this proof]. Pick x ∈ A and f ∈ Er(a(x)),

and define e = (⊥,...,x,...,⊥). Then ∃y∈B. e∈Ew(y) & f∈Er(b(y)). Now e ∈ Ew(y) ⇒ x ≤ y ⇒ Ew(x) ≤

Ew(y) so f ∈ U{Er(b(y)) | y ∈ B & Ew(x) ≤ Ew(y)} =

\/{Er(b(y)) | y ∈ B & Ew(x) ≤ Ew(y)}. Thus

∀x ∈ A. Er(a(x)) ≤ \/{Er(b(y)) | y ∈ B & Ew(x) ≤ Ew(y)}. n

Appendix E

Proofs for Section 3.2.4

Here we present the technical details for Section 3.2.4.

37

Def. Given A ∈ U, define MAX(A) = {a ∈ A | ∀b ∈ A. ¬(a < b)}. That is, MAX(A) consists of the

maximal elements of A.

Zorn’s Lemma. Let P be a non-empty ordered set in which every chain has an upper bound.

Then P has a maximal element.

Prop. E.1. ∀A ∈ U. A ⊆ ↓MAX(A), and hence A = ↓MAX(A).

Proof. Pick A ∈ U and a ∈ A and define Pa = {x ∈ A | a ≤ x}. For all chains

C ⊆ Pa, C is a directed set and C ⊆ A, so b = \/C ∈ A (since A is closed). If C is not empty, then a ≤ b so b

∈ Pa. Thus, every chain in Pa has an upper bound in Pa, so by Zorn’s Lemma, Pa has a maximal element

d. If there is any c ∈ A such that d < c then

a < c so c ∈ Pa, contradicting the maximality of d in Pa. Thus d ∈ MAX(A) and

a ∈ ↓MAX(A). Therefore A ⊆ ↓MAX(A). Clearly MAX(A) ⊆ A, and, since A is closed,

↓MAX(A) ⊆ ↓A ⊆ A and so A = ↓MAX(A). n

Prop. E.2. ∀A, B ∈ U. A = B ⇔ MAX(A) = MAX(B).

Proof. Assume A and B are in U. Clearly, A = B ⇒ MAX(A) = MAX(B). To show the converse,

assume A ≠ B and, without loss of generality, that a ∈ A & a ∉ B. Since

A ⊆ ↓MAX(A), there must be c ∈ MAX(A) with a ≤ c. However, since B is a down-set,

c ∉ B, and hence c ∉ MAX(B). Thus MAX(A) ≠ MAX(B). n

Prop. E.3. ∀A ∈ U. A ≡R MAX(A).

Proof. First, MAX(A) ≤R A, since MAX(A) ⊆ A. Now, if A ∩ C ≠ φ for C ⊆ X open then ∃a ∈ A ∩

C. Now, A ⊆ ↓MAX(A) so ∃b ∈ MAX(A). a ≤ b. However, since C is open b ∈ C so b ∈ A ∩ C and

MAX(A) ∩ C ≠ φ. Thus A ≤R MAX(A) and

38

A ≡R MAX(A). n

Prop. E.4. Given a tuple type t = struct{t1;...;tn} ∈ T, A ∈ Ft and

a = a1∨...∨an ∈ A, where ∀i . ai ∈ Ai ∈ Fti , then a ∈ MAX(A) ⇔ ∀i. ai ∈ MAX(Ai).

Proof. Note that a and the ai are tuples, and the sup of tuples is taken componentwise, so ∀s ∈ S.

as = a1s∨...∨ans. Also note that

i ≠ j ⇒ SC(ti) ∩ SC(ti) = φ. If there is some i such that ai ∉ MAX(Ai), then

∃bi ∈ Ai. ai < bi so b = a1∨...∨bi∨...∨an ∈ A. Now, ai < bi ⇒ ∃s ∈ S. ais < bis and (since j ≠ i ⇒ ajs = ⊥

= bjs) as = ais and bs = bis, so a < b. Thus a ∉ MAX(A). Conversely, if a ∉ MAX(A) then ∃b ∈ A. a < b

with a = a1∨...∨an, b = b1∨...∨bn, and

∀i. ai,bi ∈ Ai. For some s ∈ S, as < bs. Thus bs > ⊥ so ∃j. s ∈ SC(tj), and so

as < bs ⇒ aj < bj (since as = ajs and bs = bjs). Thus aj ∉ MAX(Aj). n

Prop. E.5. For all types t ∈ T and all A ∈ Ft, MAX(A) is finite. If t ∈ S and

A = ↓(⊥,...,a,...,⊥) ∈ Ft then MAX(A) = {(⊥,...,a,...,⊥)}. If t = struct{t1;...;tn} ∈ T and

A = {(a1∨...∨an) | ∀i. ai ∈ Ai} ∈ Ft then MAX(A) = {(a1∨...∨an) | ∀i. ai ∈ MAX(Ai)}. If t = (array [w] of

r) ∈ T and A = {a1∨a2 | g∈G & a1∈Ew(g) & a2∈Er(a(g))} ∈ Ft then

MAX(A) = {a1 ∨ a2 | g∈G & a1 ∈ MAX(Ew(g)) & a2 ∈ MAX(Er(a(g)))}.

Proof. We will demonstrate this proposition by induction on the structure of t. Let t ∈ S and let A

∈ Ft. Then ∃a ∈ Is. A = ↓(⊥,...,a,...,⊥), so MAX(A) = {(⊥,...,a,...,⊥)}. MAX(A) has a single member and is

thus finite.

Let t = struct{t1;...;tn} ∈ T and let A ∈ Ft. By Prop. E.4,

MAX(A) = {(a1∨...∨an) | ∀i. ai ∈ MAX(Ai)}. By the inductive hypothesis, the MAX(Ai) are finite, so

MAX(A) is finite.

39

Let t = (array [w] of r) ∈ T and let A ∈ Ft. There is a finite set G ∈ FIN(Hw) and a function a ∈

(G → Hr) such that

A = {a1∨a2 | g∈G & a1∈Ew(g) & a2∈Er(a(g))} =

U{{a1∨a2 | a1∈Ew(g) & a2∈Er(a(g))} | g∈G} = U{Ag | g∈G}

where we define Ag = {a1∨a2 | a1∈Ew(g) & a2∈Er(a(g))}. Each Ag is an object in

Fstruct{w; r} for the tuple type struct{w; r}. By Prop. E.4,

MAX(Ag) = {a1 ∨ a2 | a1 ∈ MAX(Ew(g)) & a2 ∈ MAX(Er(a(g)))} =

{(⊥,...,g,...,⊥) ∨ a2 | a2 ∈ MAX(Er(a(g)))}

Pick g ≠ g’ in G, and b ∈ MAX(Ag) and b’ ∈ MAX(Ag’). Then there are

b2 ∈ MAX(Er(a(g))) and b2’ ∈ MAX(Er(a(g’))) such that b = (⊥,...,g,...,⊥) ∨ b2 and

b’ = (⊥,...,g’,...,⊥) ∨ b2’. If b > b’ then g > g’ since b2w = b2w’ = ⊥. However, this contradicts the defintion

of FIN(Hw). Thus no b ∈ MAX(Ag) is larger than any

b’ ∈ MAX(Ag’) for g ≠ g’ in G. Thus

40

MAX(A) = MAX(U{Ag | g∈G}) = U{MAX(Ag) | g∈G} =

 U{{a1 ∨ a2 | a1 ∈ MAX(Ew(g)) & a2 ∈ MAX(Er(a(g)))} | g∈G} =

{a1 ∨ a2 | g∈G & a1 ∈ MAX(Ew(g)) & a2 ∈ MAX(Er(a(g)))}.

G is finite, and by the inductive hypothesis, MAX(Ew(g)) and MAX(Er(a(g))) are finite, so MAX(A) is finite.

n

41

Appendix F

Proofs for Section 3.4.1

Here we present the technical details for Section 3.4.1. First, two definitions are given to provide

the context for the work in this and subsequent appendices.

Def. Let S denote a finite set of scalars, let X = X{Is | s ∈ S} denote a set of tuples, and let U =

CL(X) denote the lattice of data objects consisting of closed sets of tuples whose primitive values are taken

from the scalars in S.

Def. Let DS denote a finite set of display scalars, let Y = X{Id | d ∈ DS} denote a set of tuples,

and let V = CL(Y) denote the lattice of displays consisting of closed sets of tuples whose primitive values

are taken from the display scalars in DS.

Now we prove four propositions that we will use as lemmas in other proofs.

Prop. F.1. For all A, B ∈ U, ↓A ∧ ↓B = ↓(A ∧ B).

Proof. ↓A ∧ ↓B = ↓A ∩ ↓B = {C | C ≤ A} ∩ {C | C ≤ B} = {C | C ≤ A & C ≤ B} = {C | C ≤ A ∧ B}

= ↓(A ∧ B). n

Prop. F.2. D(φ) = φ and D({(⊥,...,⊥)}) = {(⊥,...,⊥)}.

Proof. First, note that ∀u ∈ U. φ ≤ u and ∀u ∈ U. u ≠ φ ⇒ {(⊥,...,⊥)} ≤ u. That is, φ is the least

element in U, and {(⊥,...,⊥)} is the next largest element in U. If

42

D(φ) = v > φ, then ∃u ∈ U. D(u) = φ and u < φ, which is impossible. Thus D(φ) = φ. Similarly, if D({(⊥,...,

⊥)}) = v > {(⊥,...,⊥)}, then ∃u ∈ U. D(u) = {(⊥,...,⊥)} and

u < {(⊥,...,⊥)}. However, the only u < {(⊥,...,⊥)} is φ, and D(φ) = φ, so

D({(⊥,...,⊥)}) = {(⊥,...,⊥)}. n

Prop. F.3. If D:U → V is a display function, then its inverse D-1 is a continuous function from

D(U) to U.

Proof. First, D-1 is a function since D is injective, and D-1 is monotone since D is an order

embedding. D-1 is continuous if for all directed M ⊆ D(U), \/D-1(M) = D-1(\/M). However, since D is a

homomorphism, D-1(M) is a directed set in U. Thus, since D is continuous, \/D(D-1(M)) = D(\/D-1(M)),

and so D-1(\/D(D-1(M))) = D-1(D(\/D-1(M))). This simplifies to D-1(\/M) = \/D-1(M), showing that D-

1 is continuous. n

Prop. F.4. If D:U → V is a display function, then

∀M ⊆ D(U). \/D-1(M) = D-1(\/M).

Proof. Given M ⊆ D(U) let N = D-1(M) ⊆ U. By Prop. B.2, \/D(N) = D(\/N), which is equivalent

to \/M = D(\/D-1(M)), and applying D-1 to both sides of this, we get

D-1(\/M) = D-1(D(\/D-1(M))) = \/D-1(M). n

Now we define an open neighborhood of a tuple in X, and prove two more lemmas. Note that in

the following we will use the notation as to indicate the s component of a tuple a ∈ X{Is | s ∈ S}.

Def. Given a tuple a ∈ X{Is | s ∈ S} such that as ≠ [x, x] for continuous s, define neighbor(a) as

the set of tuples b such that:

s discrete ⇒ bs ≥ as

43

s continuous and as = ⊥ ⇒ bs ≥ as

s continuous and as ≠ ⊥ ⇒ bs > as

(that is as = [x, y] and bs = [u, v] ⇒ x < u and v < y).

Prop. F.5. For a ∈ X{Is | s ∈ S}, the set neighbor(a) is open (in the Scott topology).

Proof. Clearly neighbor(a) is an up set. Let C be a directed set in X{Is | s ∈ S} such that d = \/C

belongs to neighbor(a). The sup is taken componentwise, so

ds = \/{cs | c ∈ C} for each s. If s is discrete, then ∃cs ∈ C. cs
s = ds > as. If s is continuous and as = ⊥,

then for any c ∈ C, cs ≥ as. If s is continuous and as ≠ ⊥, then as and ds are intervals such that ds = [u, v]

⊂ [x, y] = as, with x < u and v < y. Here

u = max{p | ∃c ∈ C. [p, q] = cs} and v = min{q | ∃c ∈ C. [p, q] = cs} so there exist

cs
1 , cs

2 ∈ C such that cs
1s = [p1, q1] and cs

2s = [p2, q2] with x < p1 and q2 < y. Since C is directed,

there must be cs ∈ C such that cs ≥ cs
1 ∨ cs

2 , so cs
s > as. For each s ∈ S we have shown that there is cs ∈

C such that cs
s ≥ as. Since S is finite, and C is directed, there is c ∈ C such that c ≥ \/{cs | s ∈ S} ≥ a and c

∈ neighbor(a). Thus neighbor(a) is an open set. n

Prop. F.6. Given a set C ⊆ U, B = \/C and an open set A in X{Is | s ∈ S}, then

A ∩ B ≠ φ ⇒ ∃c ∈ C. A ∩ c ≠ φ.

Proof. B and all c ∈ C are closed, so B is the smallest closed set containing UC. All the c ∈ C are

down sets, so UC is also a down set. Thus, by Prop. C.10,

{\/M | M ⊆ UC & M directed} is closed and hence equal to B. We are given that there is a y ∈ A ∩ B, so

there must be a directed set M in UC such that y = \/M. However, since A is open, there must be m ∈ M ∩

A, and since M ⊆ UC, there is c ∈ C such that

m ∈ c ∩ A. n

44

Now we define the embeddings of scalar objects and display scalar objects in the lattices U and V.

Def. For each scalar s ∈ S, define an embedding Es:Is → U by:

∀b ∈ Is. Es(b) = ↓(⊥,...,b,...,⊥) (this notation indicates that all elements of the tuple are ⊥ except b). Also

define Us = Es(Is) ⊆ U.

Def. For each display scalar d ∈ DS, define an embedding Ed:Id → V by:

∀b ∈ Id. Ed(b) = ↓(⊥,...,b,...,⊥). Also define Vd = Ed(Id) ⊆ V.

Next, we use an argument involving open neighborhoods to show that a display function maps

embedded scalar objects to displays of the form ↓x, where x is a display tuple. Prop. F.8 will show that

these ↓x must be embedded display scalar objects.

Prop. F.7. If D:U → V is a display function, then for all s ∈ S,

∀b ∈ Is. ∃x ∈ X{Id | d ∈ DS}. D(↓(⊥,...,b,...,⊥)) = ↓x.

Proof. Given s ∈ S and b ∈ Is, let a = (⊥,...,b,...,⊥) and let z = D(↓a). Then

z = \/{↓y | y ∈ z}, and by Prop. F.4, ↓a = D-1(z) = \/{D-1(↓y) | y ∈ z} (note ↓y ≤ z so

D-1(↓y) exists).

45

Now we know that a ∈ \/{D-1(↓y) | y ∈ z}. If we could show that

\/{D-1(↓y) | y ∈ z} = U{D-1(↓y) | y ∈ z} then there must be x ∈ z such that a ∈ D-1(↓x). However, the

D-1(↓y) are closed sets, and, by Prop. C.8, we can only show that

\/{D-1(↓y) | y ∈ z} = U{D-1(↓y) | y ∈ z} if z is finite. Thus we need a more complex argument to

construct x ∈ z such that a ∈ D-1(↓x).

Define a sequence of tuples an in U, for n =1, 2, ..., by:

if s is continuous and b = as = [x, y] for some interval [x, y], then

ans = [x-1/n, y+1/n]

if s is continuous and b = as = ⊥, then ans = ⊥

if s is discrete, then ans = as

for all s’ ∈ S such that s’ ≠ s, ans’ = ⊥

Also define zn = D(↓an) ≤ D(↓a) = z, and note that ↓an = \/{D-1(↓x) | x ∈ zn}. Now neighbor(an-1) is

open and ↓an ∩ neighbor(an-1) ≠ φ, so by Prop. F.6 there must be

xn ∈ zn such that D-1(↓xn) ∩ neighbor(an-1) ≠ φ. Say y is in this intersection. Then

y ∈ neighbor(an-1) ⇒ an-1 ≤ y and y ∈ D-1(↓xn) ⇒ ↓y ≤ D-1(↓xn) so

↓an-1 ≤ ↓y ≤ D-1(↓xn). Furthermore, xn ∈ zn ⇒ D-1(↓xn) ≤ D-1(zn) = ↓an, so we have

↓an-1 ≤ D-1(↓xn) ≤ ↓an, or equivalently ↓xn-1 ≤ D(↓an-1) ≤ ↓xn. Thus xn-1 ≤ xn and the set {xn} is a

chain and thus a directed set. Since X{Id | d ∈ DS} is a cpo,

x = \/{xn} ∈ X{Id | d ∈ DS}. Since z ∈ U, z is a closed under sups and thus x ∈ z.

Now, ∀n. xn ≤ x so ∀n. ↓an ≤ D-1(↓xn+1) ≤ D-1(↓x). Thus ↓a = \/n↓an ≤

D-1(↓x) (note that a ∈ D-1(↓x)) and D(↓a) ≤ ↓x. On the other hand, x ∈ z ⇒ ↓x ≤ z = D(↓a), and so D(↓

a) = ↓x. n

46

Prop. F.7 showed that a display function maps embedded scalar objects to displays of the form ↓x,

where x is a display tuple. Now we show that these ↓x must be embedded display scalar objects, and that

embedded scalar objects are mapped to embedded display scalar objects of the same kind (that is, discrete

or continuous).

Prop. F.8. If D:U → V is a display function, then

∀s ∈ S. ∀a ∈ Us. ∃d ∈ DS. D(a) ∈ Vd.

Furthermore, if s is discrete, then d is discrete, and if s is continuous, then d is continuous.

Proof. A value u ∈ Us has the form u = ↓(⊥,...,a,...,⊥). If a = ⊥ then

D(u) = {(⊥,...,⊥)} which belongs to Vd for all d ∈ DS. Otherwise, by Prop. F.7,

∃v ∈ X{Id | d ∈ DS}. D(u) = ↓v and by Prop. F.2, ↓v > {(⊥,...,⊥)}. If ↓v is not in any Vd, then some

(...,e,...,f,...) ∈ ↓v with e ≠ ⊥ ≠ f. We consider the discrete and continuous cases separately.

First, consider s discrete. We have ↓(...,e,...,⊥,...) < ↓v and ∃u’ ∈ U such that

D(u’) = ↓(...,e,...,⊥,...) < ↓v = D(u), so u’ < u. But the only u’ less than u are φ and

{(⊥,...,⊥)}, and D does not carry them into ↓(...,e,...,⊥,...). Thus ↓v must be in some Vd.

Second, consider s continuous. Define wef = (⊥,...,e,...,f,...,⊥) (that is, e and f are the only

elements in this tuple that are not ⊥). Also define ve = ↓(⊥,...,e,...,⊥,...,⊥) and

vf = ↓(⊥,...,⊥,...,f,...,⊥). Then ve, vf < ↓wef ≤ ↓v = D(u) so

∃ue, uf < u. (D(ue) = ve & D(uf) = vf). Now, ve ≠ {(⊥,...,⊥)} so ue ≠ {(⊥,...,⊥)} and

∃ae ≠ ⊥. (⊥,...,ae,...,⊥) ∈ ue and hence ↓(⊥,...,ae,...,⊥) ≤ ue. Similarly,

∃af ≠ ⊥. ↓(⊥,...,af,...,⊥) ≤ uf. By Prop. F.1, ↓(⊥,...,ae ∧ af,...,⊥) ≤ ue ∧ uf. However, ae and af are real

intervals (since they belong to a continuous scalar and are not ⊥), so

ae ∧ af is the smallest interval containing both ae and af. Let ag be this interval. Then

ag = ae ∧ af ≠ ⊥, and ↓(⊥,...,ag,...,⊥) ≤ ue ∧ uf. Thus ue ∧ uf ≠ {(⊥,...,⊥)}. On the other hand, ve ∧ vf = {(

⊥,...,⊥)}. But this contradicts D(ue ∧ uf) = ve ∧ vf, so ↓v must be in some Vd.

47

Next we show that discrete scalar values map to discrete scalar values, and that continuous scalar

values map to continuous scalar values.

Let u = ↓(⊥,...,a,...,⊥) ∈ Us for discrete s with D(u) = v = ↓(⊥,...,b,...,⊥) ∈ Vd and b ≠ ⊥. If d is

continuous, then ∃b’. ⊥ < b’ < b such that

{(⊥,...,⊥)} < ↓(⊥,...,b’,...,⊥) = v’ < v. Thus ∃u’. D(u’) = v’ where

{(⊥,...,⊥)} < u’ < u = ↓(⊥,...,a,...,⊥). Thus u’ = ↓(⊥,...,a’,...,⊥) where a’ < a, which is impossible for discrete

s, so d must be discrete.

Let u = ↓(⊥,...,a,...,⊥) ∈ Us for continuous s with D(u) = v = ↓(⊥,...,b,...,⊥) ∈ Vd. Then ∃a’. ⊥ <

a’ < a and {(⊥,...,⊥)} < ↓(⊥,...,a’,...,⊥) = u’ < u, so

D({(⊥,...,⊥)}) = {(⊥,...,⊥)} < D(u’) = v’ < v. This is only possible if Vd is continuous. n

Next we show that embedded objects from different scalars are not mapped to the same display

scalar embedding.

Prop. F.9. If D:U → V is a display function, then for all s and s’ in S,

(s ≠ s’ & ua ∈ Us & ub ∈ Us’ & ua ≠ ⊥ ≠ ub & D(ua) ∈ Vd & D(ub) ∈ Vd’) ⇒ d ≠ d’.

Proof. Let va = D(ua) and vb = D(ub). Assume that va and vb are in the same Vd, and let

ua = ↓(⊥,...,a,...,⊥,...,⊥),

ub = ↓(⊥,...,⊥,...,b,...,⊥),

va = ↓(⊥,...,e,...,⊥) and

vb = ↓(⊥,...,f,...,⊥), where a ≠ ⊥ ≠ b and e ≠ ⊥ ≠ f.

This notation indicates that ua and ub are in different Us, and that va and vb are in the same Vd.

First, we treat the continuous case. ua ∧ ub = {(⊥,...,⊥)} and, by Prop. F.1,

va ∧ vb = ↓(⊥,...,e ∧ f,...,⊥). e and f are real intervals, and e ∧ f is the smallest interval containing both e

and f. Thus e ∧ f ≠ ⊥ so va ∧ vb ≠ {(⊥,...,⊥)}, which contradicts

48

D(ua ∧ ub) = va ∧ vb. Thus va and vb must be in the same Vd.

Second, treat the discrete case. Note that

ua ∨ ub = {(⊥,...,a,...,⊥,...,⊥), (⊥,...,⊥,...,b,...,⊥), (⊥,...,⊥)} and

D(ua ∨ ub) = va ∨ vb = {(⊥,...,e,...,⊥), (⊥,...,f,...,⊥), (⊥,...,⊥)}.

Let x = ↓(⊥,...,a,...,b,...,⊥) =

{(⊥,...,a,...,b,...,⊥), (⊥,...,a,...,⊥,...,⊥), (⊥,...,⊥,...,b,...,⊥), (⊥,...,⊥)} > ua ∨ ub.

Set y = D(x). Then y > va ∨ vb so there is (⊥,...,g,...,⊥) ∈ y (all elements of this tuple are ⊥ except g) such

that (⊥,...,e,...,⊥) ≠ (⊥,...,g,...,⊥) ≠ (⊥,...,f,...,⊥). [In fact (⊥,...,g,...,⊥) may not even be in the same Vd that (

⊥,...,e,...,⊥) and (⊥,...,f,...,⊥) are in.] Now if

↓(⊥,...,g,...,⊥) = y then e ≤ g and f ≤ g which is impossible in the discrete order of Id. Thus ↓(⊥,...,g,...,⊥) <

y and so ∃w < x. D(w) = ↓(⊥,...,g,...,⊥). However, the only w less than x are φ, {(⊥,...,⊥)}, ua , ub and ua ∨

ub. This contradicts g ≠ e and g ≠ f. Thus va and vb must be in the same Vd. n

As a corollary of Prop. F.9, we show that only embedded scalar objects are mapped to embedded

display scalar objects (that is, non-scalar objects must be mapped to non-display scalar objects).

Prop. F.10. If D:U → V is a display function, then

∀d ∈ DS. (D(u) ∈ Vd ⇒ ∃s ∈ S. u ∈ Us).

Proof. If u ∈ U is not in any scalar embedding, then ∃(...,e,...,f,...) ∈ u. e ≠ ⊥ ≠ f. Assume D(u) =

v ∈ Vd. Then (⊥,...,e,...,⊥,...,⊥) ∈ u and (⊥,...,⊥,...,f,...,⊥) ∈ u, so

↓(⊥,...,e,...,⊥,...,⊥) ≤ u and ↓(⊥,...,⊥,...,f,...,⊥) ≤ u, and thus D(↓(⊥,...,e,...,⊥,...,⊥)) ∈ Vd and D(↓(⊥,...,⊥

,...,f,...,⊥)) ∈ Vd. However ↓(⊥,...,e,...,⊥,...,⊥) and ↓(⊥,...,⊥,...,f,...,⊥) are in two different scalar

embeddings and, by Prop. F.9, cannot both be mapped to Vd. Thus D(u) cannot belong to any display

scalar embedding. n

49

Next, we show that all embedded objects from a continuous scalar are mapped to embedded

objects from the same display scalar. Note, however, that embedded objects from the same discrete scalar

may be mapped to embedded objects from different display scalars.

Prop. F.11. If D:U → V is a display function and if s is a continuous scalar, then

∀ua, ub ∈ Us. ((D(ua) ∈ Vd & D(ub) ∈ Vd’ & ua ≠ ⊥ ≠ ub) ⇒ d = d’).

Proof. Let va = D(ua) and vb = D(ub). Assume that s is continuous and that va and vb are in

different Vd. Let

ua = ↓(⊥,...,a,...,⊥),

ub = ↓(⊥,...,b,...,⊥),

va = ↓(⊥,...,e,...,⊥,...,⊥) and

vb = ↓(⊥,...,⊥,...,f,...,⊥), where a ≠ ⊥ ≠ b and e ≠ ⊥ ≠ f.

This notation indicates that ua and ub are in the same Us, and that va and vb are in different Vd. Now va ∧

vb = {(⊥,...,⊥)} and, by Prop. F.1, ua ∧ ub = ↓(⊥,...,a ∧ b,...,⊥). Since a and b are real intervals, a ∧ b is

the smallest interval containing both a and b, so

a ∧ b ≠ ⊥. However, this contradicts D(ua ∧ ub) = va ∧ vb. Thus, va and vb must be in the same Vd. n

Now we show that a display function maps objects of the form ↓a, for

a ∈ X{Is | s ∈ S}, to objects of the form ↓x, for x ∈ X{Id | d ∈ DS}, and conversely. Furthermore, the

values of display functions on objects of the form ↓a are determined by their values on embedded scalar

objects. Given this, it is an easy step in Prop. F.13 to show that the values of display functions on all of U

are determined by their values on embedded scalar objects.

50

Prop. F.12. If D:U → V is a display function and if a is a tuple in X{Is | s ∈ S} then there exists a

tuple x in X{Id | d ∈ DS} such that D(↓a) = ↓x. Conversely, if x is a tuple in X{Id | d ∈ DS} such that ∃A

∈ U. x ∈ D(A), then there exists a tuple a in

X{Is | s ∈ S} such that D(↓a) = ↓x. From Prop. F.8 we know that for all s ∈ S,

as ≠ ⊥ ⇒ ∃d ∈ DS. ∃yd ∈ Id. (yd ≠ ⊥ & ↓(⊥,...,yd,...,⊥) = D(↓(⊥,...,as,...,⊥))),

and similarly, from Prop. D.3 we know that for all d ∈ DS,

xd ≠ ⊥ ⇒ ∃s ∈ S. ∃bs ∈ Is. (bs ≠ ⊥ & ↓(⊥,...,xd,...,⊥) = D(↓(⊥,...,bs,...,⊥))),

Here we assert that for all s ∈ S, as ≠ ⊥ ⇒ as = bs, and for all d ∈ DS, xd ≠ ⊥ ⇒ xd = yd. That is, the tuple

elements of a determine the tuple elements of x, and vice versa, according to the values of D on the scalar

embeddings Us.

Proof. This is similar to the proof of Prop F.7. Given a ∈ X{Is | s ∈ S}, let

z = D(↓a). Then z = \/{↓y | y ∈ z}, and by Prop. F.4, ↓a = D-1(z) = \/{D-1(↓y) | y ∈ z} (note ↓y ≤ z so D-

1(↓y) exists).

Define a sequence of tuples an in U, for n =1, 2, ..., by:

51

s discrete ⇒ ans = as

s continuous and as = ⊥ ⇒ ans = as

s continuous and as = [x, y] ⇒ ans = [x-1/n, y+1/n].

Also define zn = D(↓an) ≤ D(↓a) = z, and note that ↓an = \/{D-1(↓x) | x ∈ zn}. Now neighbor(an-1) is

open and ↓an ∩ neighbor(an-1) ≠ φ. By Prop. F.6 there must be

xn ∈ zn such that D-1(↓xn) ∩ neighbor(an-1) ≠ φ. Say y is in this intersection. Then

y ∈ neighbor(an-1) ⇒ an-1 ≤ y and y ∈ D-1(↓xn) ⇒ ↓y ≤ D-1(↓xn) so

↓an-1 ≤ ↓y ≤ D-1(↓xn). Furthermore, xn ∈ zn ⇒ D-1(↓xn) ≤ D-1(↓zn) = ↓an, so we have ↓an-1 ≤ D-1(↓

xn) ≤ ↓an.

Now consider the tuple components of an and xn. Define xn’ by

↓(⊥,...,xnd ’,...,⊥) = D(↓(⊥,...,ans,...,⊥)), and set xnd ’ = ⊥ for those d not corresponding to any ans ≠ ⊥.

Also define an’ by ↓(⊥,...,xnd,...,⊥) = D(↓(⊥,...,ans’,...,⊥)) for those d such that xnd ≠ ⊥, and set ans’ = ⊥

for those s not corresponding to any xnd ≠ ⊥. Note that ↓(⊥,...,xnd,...,⊥) ≤ ↓xn so ∃w ∈ U. ↓(⊥,...,xnd,...,⊥)

= D(w), and, by Prop. D.3, w must have the form ↓(⊥,...,ans’,...,⊥), so ans’ exists for xnd ≠ ⊥. First, we use

D-1(↓xn) ≤ ↓an to show that:

(a) ↓(⊥,...,xnd,...,⊥) ≤ ↓xn ⇒

↓(⊥,...,ans’,...,⊥) = D-1(↓(⊥,...,xnd,...,⊥)) ≤ D-1(↓xn) ≤ ↓an ⇒

ans’ ≤ ans ⇒

↓(⊥,...,ans’,...,⊥) ≤ ↓(⊥,...,ans,...,⊥) ⇒

↓(⊥,...,xnd,...,⊥) = D(↓(⊥,...,ans’,...,⊥)) ≤

D(↓(⊥,...,ans,...,⊥)) = ↓(⊥,...,xnd ’,...,⊥) ⇒

xnd ≤ xnd ’

52

The transition from the fourth to the fifth line in (a) shows that if ans and ans’ are in the same scalar s, then

xnd and xnd ’ are in the same display scalar d. Next, we use

↓an ≤ D-1(↓xn+1) to show that:

(b) ↓(⊥,...,ans,...,⊥) ≤ ↓an ⇒

↓(⊥,...,xnd ’,...,⊥) = D(↓(⊥,...,ans,...,⊥)) ≤ D(↓an) ≤ ↓xn+1 ⇒

xnd ’ ≤ x(n+1)d ⇒

↓(⊥,...,xnd ’,...,⊥) ≤ ↓(⊥,...,x(n+1)d,...,⊥) ⇒

↓(⊥,...,ans,...,⊥) = D-1(↓(⊥,...,xnd ’,...,⊥)) ≤

D-1(↓(⊥,...,x(n+1)d,...,⊥)) = ↓(⊥,...,a(n+1)s’,...,⊥) ⇒

ans ≤ a(n+1)s’

The transition from the fourth to the fifth line in (b) shows that if xnd and x(n+1)d ’ are in the same display

scalar d, then ans and a(n+1)s’ are in the same scalar s.

Putting (a) and (b) together shows that ans’ ≤ ans ≤ a(n+1)s’ and xnd ≤ xnd ’ ≤ x(n+1)d for all s and

d. If d is a discrete display scalar, then there is an n such that

∀m ≥ n. xmd = xnd, and define xd = xnd. If d is a continuous display scalar, then there either all the xnd are

⊥ or there is an n such that

∀i, j ≥ n. i ≥ j ⇒ xid = [ui, vi] ⊆ [uj, vj] = xjd. In the first case, define xd = ⊥ and in the second case define

xd = [u, v] = I{[ui, vi] | i ≥ n}. In any case, xd = \/nxnd, and defining x as the tuple with components xd, x

= \/nxn. Since z is closed, {xn} is a directed set, and

∀n. xn ∈ z, then x ∈ z.

53

By definition, a = \/nan. We have already shown that ↓an-1 ≤ D-1(↓xn), so

an-1 ∈ D-1(↓xn) ⊆ D-1(↓x). Since D-1(↓x) is closed, a ∈ D-1(↓x) and thus ↓a ≤

D-1(↓x). However, x ∈ z, so D-1(↓x) ≤ ↓a and thus ↓a = D-1(↓x). Define x’ and a’ by

↓(⊥,...,xnd ’,...,⊥) = D(↓(⊥,...,ans,...,⊥)) and ↓(⊥,...,xnd,...,⊥) = D(↓(⊥,...,ans’,...,⊥)). Then we can apply the

logic of (a) and (b) (using ↓a ≤ D-1(↓x) ≤ ↓a) to show that

as’ ≤ as ≤ as’ and xd ≤ xd ’ ≤ xd, which is just as = as’ and xd = xd ’. Thus D takes the set of tuple

components of a into exactly the set of tuple components of x.

For the converse, we are given a tuple x in X{Id | d ∈ DS} such that

∃A ∈ U. x ∈ D(A). Then ↓x ≤ D(A) and ∃z ≤ A. ↓x = D(z) = \/{D(↓b) | b ∈ z}. After this, the argument for

the converse is identical, relying on properties of D that are shared by D-1. D-1 is a homomorphism from

D(U) to U, and Props. F.3 and F.4 show that D-1 is continuous and preserves arbitrary sups. In the

argument D-1 is only applied to members of V that are less than ↓x, where D-1 is guaranteed to be defined.

n

Proposition F.13 will show that the values of display functions on all of U are determined by their

values on the scalar embeddings Us, which is particularly interesting since most elements of U cannot be

expressed as sups of sets of elements of the scalar embeddings Us.

Prop. F.13. If D:U → V is a display function, then its values on U are determined by its values on

the scalar embeddings Us.

Proof. For all u ∈ U, u = \/{↓x | x ∈ u}. By Prop. B.2, D(u) = \/{D(↓x) | x ∈ u}. Now, each x ∈

u is a tuple so by Prop. F.12, D(↓x) is determined by the values of D applied to the tuple components of x.

Thus D(u) is determined by the values of D on the scalar embeddings Us. n

54

The propositions in Appendix F are combined in the following definition and theorem about

mappings from scalars to display scalars.

Def. Given a display function D, define a mapping MAPD: S → POWER(DS) by MAPD(s) = {d ∈

DS | ∃a ∈ Us. D(a) ∈ Vd}.

Theorem. F.14. Every display function D:U → V is an injective lattice homomorphism whose

values are determined by its values on the scalar embeddings Us. D maps values in the scalar embedding

Us to values in the display scalar embeddings Vd for d ∈ MAPD(s). Furthermore,

s discrete and d ∈ MAPD(s) ⇒ d discrete,

s continuous and d ∈ MAPD(s) ⇒ d continuous,

s ≠ s’ ⇒ MAPD(s) ∩ MAPD(s’) = φ,

s continuous ⇒ MAPD(s) contains a single display scalar.

Appendix G

Proofs for Section 3.4.2

Here we present the technical details for Section 3.4.2. First, we prove three lemmas that explore

the relation between closed real intervals in terms of the lattice structure.

Prop. G.1. Given a continuous scalar s ∈ S, and [x, y] ∈ Is, then

↓(⊥,...,[x, y],...,⊥) = I{↓(⊥,...,[z, z],...,⊥) | x ≤ z ≤ y}.

Proof. ↓(⊥,...,[z, z],...,⊥) = {[u, v] | u ≤ z ≤ v} so

I{↓(⊥,...,[z, z],...,⊥) | x ≤ z ≤ y} = {[u, v] | ∀z. (x ≤ z ≤ y ⇒ u ≤ z ≤ v)} =

55

{[u, v] | u ≤ x ≤ y ≤ v} = ↓(⊥,...,[x, y],...,⊥). n

Prop. G.2. Given a continuous scalar s ∈ S, and a set A ⊆ Is\{⊥} such that

∃u’. ∀[u, v] ∈ A. u’ ≤ u and ∃v’. ∀[u, v] ∈ A. v ≤ v’, then

↓(⊥,...,[inf{u | [u, v] ∈ A}, sup{v | [u, v] ∈ A}],...,⊥) =

I{↓(⊥,...,[u, v],...,⊥) | [u, v] ∈ A}.

Proof. Let x = inf{u | [u, v] ∈ A} and y = sup{v | [u, v] ∈ A}. This inf and sup exist since the

lower and upper bounds u’ and v’ exist. Then

(⊥,...,[a, b],...,⊥) ∈ ↓(⊥,...,[x, y],...,⊥) ⇔

a ≤ x ≤ y ≤ b ⇔

∀[u, v] ∈ A. a ≤ u ≤ v ≤ b ⇔

∀[u, v] ∈ A. (⊥,...,[a, b],...,⊥) ∈ ↓(⊥,...,[u, v],...,⊥) ⇔

(⊥,...,[a, b],...,⊥) ∈ I{↓(⊥,...,[u, v],...,⊥) | [u, v] ∈ A}.

Thus ↓(⊥,...,[x, y],...,⊥) = I{↓(⊥,...,[u, v],...,⊥) | [u, v] ∈ A}. n

Prop. G.3. Given a display function D:U → V, a continuous scalar s ∈ S, and

[x, y] ∈ Is, then D(↓(⊥,...,[x, y],...,⊥)) = I{D(↓(⊥,...,[z, z],...,⊥)) | x ≤ z ≤ y}.

Proof. x ≤ w ≤ y ⇒ /\{D(↓(⊥,...,[z, z],...,⊥)) | x ≤ z ≤ y} ≤ D(↓(⊥,...,[w, w],...,⊥)),

so there is A ∈ U such that D(A) = /\{D(↓(⊥,...,[z, z],...,⊥)) | x ≤ z ≤ y} =

I{D(↓(⊥,...,[z, z],...,⊥)) | x ≤ z ≤ y} (by Prop. C.8) and such that

x ≤ w ≤ y ⇒ A ≤ ↓(⊥,...,[w, w],...,⊥). Thus A ≤ /\{↓(⊥,...,[w, w],...,⊥) | x ≤ w ≤ y} =

I{↓(⊥,...,[w, w],...,⊥) | x ≤ w ≤ y} = ↓(⊥,...,[x, y],...,⊥) (by Prop. G.1).

On the other hand, x ≤ z ≤ y ⇒ ↓(⊥,...,[x, y],...,⊥) ≤ ↓(⊥,...,[z, z],...,⊥) ⇒

D(↓(⊥,...,[x, y],...,⊥)) ≤ D(↓(⊥,...,[z, z],...,⊥)), so D(↓(⊥,...,[x, y],...,⊥)) ≤ D(A) and thus

↓(⊥,...,[x, y],...,⊥) ≤ A. Therefore ↓(⊥,...,[x, y],...,⊥) = A so

56

D(↓(⊥,...,[x, y],...,⊥)) = D(A) = I{D(↓(⊥,...,[z, z],...,⊥)) | x ≤ z ≤ y}. n

Now we define the values of display functions on embedded continuous scalar objects in terms of

functions of real numbers.

Def. Given a display function D:U → V and a continuous scalar s ∈ S, by Prop. F.8 and Prop. F.11

there is a continuous d ∈ DS such that values in Us are mapped to values in Vd. Define functions gs:R × R

→ R and hs:R × R → R by:

∀↓(⊥,...,[x, y],...,⊥) ∈ Us, D(↓(⊥,...,[x, y],...,⊥)) = ↓(⊥,...,[gs(x, y), hs(x, y)],...,⊥) ∈ Vd.

Since D({(⊥,...,⊥)}) = {(⊥,...,⊥)} and D is injective, D maps intervals in Is to intervals in Id, so gs(x, y) and

hs(x, y) are defined for all z. Also define functions g’s:R → R and

h’s:R → R by g’s(z) = gs(z, z) and h’s(z) = hs(z, z).

In Prop. G.4 we show how the functions gs and hs can be defined in terms of the functions g’s and

h’s.

Prop. G.4. Given a display function D:U → V, a continuous scalar s ∈ S, and

[x, y] ∈ Is, then gs(x, y) = inf{g’s(z) | x ≤ z ≤ y} and hs(x, y) = sup{h’s(z) | x ≤ z ≤ y}.

Proof. By Prop. G.3, D(↓(⊥,...,[x, y],...,⊥)) =

I{D(↓(⊥,...,[z, z],...,⊥)) | x ≤ z ≤ y} = I{↓(⊥,...,[g’s(z), h’s(z)],...,⊥) | x ≤ z ≤ y}. By Prop. F.8 this is ↓(⊥

,...,[a, b],...,⊥) for some a, b ∈ R. Define

A = {[g’s(z), h’s(z)] | x ≤ z ≤ y}. Then ∀[g’s(z), h’s(z)] ∈ A. a ≤ g’s(z) and

∀[g’s(z), h’s(z)] ∈ A. h’s(z) ≤ b, and, by Prop. G.2,

D(↓(⊥,...,[x, y],...,⊥)) = ↓(⊥,...,[a, b],...,⊥) =

↓(⊥,...,[inf{g’s(z) | x ≤ z ≤ y}, sup{h’s(z) | x ≤ z ≤ y}],...,⊥). n

57

Next, we prove a two lemmas useful for studying the functions gs and hs.

Prop. G.5. Given a display function D:U → V, a continuous scalar s ∈ S, and a finite set A ⊆ Is\{

⊥}, then

gs(inf{u | [u, v] ∈ A}, sup{v | [u, v] ∈ A}) = inf{gs(u, v) | [u, v] ∈ A} and

hs(inf{u | [u, v] ∈ A}, sup{v | [u, v] ∈ A}) = sup{hs(u, v) | [u, v] ∈ A}.

Proof. Since A is finite, inf{u | [u, v] ∈ A} and sup{v | [u, v] ∈ A} exist, so, by Prop. G.2, ↓(⊥

,...,[inf{u | [u, v] ∈ A}, sup{v | [u, v] ∈ A}],...,⊥) =

I{↓(⊥,...,[u, v],...,⊥) | [u, v] ∈ A} = /\{↓(⊥,...,[u, v],...,⊥) | [u, v] ∈ A}. Let

a = gs(inf{u | [u, v] ∈ A}, sup{v | [u, v] ∈ A} and

b = hs(inf{u | [u, v] ∈ A}, sup{v | [u, v] ∈ A}). Then

↓(⊥,...,[a, b],...,⊥) =

D(↓(⊥,...,[inf{u | [u, v] ∈ A}, sup{v | [u, v] ∈ A}],...,⊥)) =

/\{D(↓(⊥,...,[u, v],...,⊥)) | [u, v] ∈ A} =

I{↓(⊥,...,[gs(u, v), hs(u, v)],...,⊥) | [u, v] ∈ A} = (by Prop. G.2)

↓(⊥,...,[inf{gs(u, v) | [u, v] ∈ A}, sup{hs(u, v) | [u, v] ∈ A}],...,⊥), so

a = inf{gs(u, v) | [u, v] ∈ A} and b = sup{hs(u, v) | [u, v] ∈ A}. n

Prop. G.6. Given a display function D:U → V and a continuous scalar s ∈ S, then

[a, b] ⊂ [x, y] ⇔ [gs(a, b), hs(a, b)] ⊂ [gs(x, y), hs(x, y)].

Proof. [a, b] ⊂ [x, y] ⇔ ↓[a, b] > ↓[x, y] ⇔

D(↓(⊥,...,[gs(a, b), hs(a, b)],...,⊥)) > D(↓(⊥,...,[gs(x, y), hs(x, y)],...,⊥)) ⇔

[gs(a, b), hs(a, b)] ⊂ [gs(x, y), hs(x, y)]. n

58

Now we show that the overall behavior of a display function on a continuous scalar must fall into

one of two categories.

Prop. G.7. Given a display function D:U → V and a continuous scalar s ∈ S, then either

(a) ∀x, y, z ∈ R. x < y < z implies that gs(x, z) = gs(x, y) & hs(x, y) < hs(x, z) and that

gs(x, z) < gs(y, z) & hs(y, z) = hs(x, z),

or

(b) ∀x, y, z ∈ R. x < y < z implies that gs(x, z) < gs(x, y) & hs(x, y) = hs(x, z) and that

gs(x, z) = gs(y, z) & hs(y, z) < hs(x, z).

Proof. Let x < y < z. Then, by Prop. G.5, gs(x, z) = min{gs(x, y), gs(y, z)} and

hs(x, z) = max{hs(x, y), hs(y, z)}. If gs(x, z) < gs(x, y) and hs(x, y) < hs(x, z) then

gs(y, z) = gs(x, z) and hs(y, z) = hs(x, z), so [gs(x, y), hs(x, y)] ⊂ [gs(y, z), hs(y, z)] and by Prop. G.6, [x, y] ⊂

[y, z], which is impossible. Thus either gs(x, y) = gs(x, z) or

hs(x, y) = hs(x, z). However, both equalities cannot hold, since

↓(⊥,...,[gs(x, y), hs(x, y)],...,⊥) = ↓(⊥,...,[gs(x, z), hs(x, z)],...,⊥) ⇒

↓(⊥,...,[x, y],...,⊥) = ↓(⊥,...,[x, z],...,⊥), which is impossible. Thus

gs(x, z) = gs(x, y) & hs(x, y) < hs(x, z) or gs(x, z) < gs(x, y) & hs(x, y) = hs(x, z). A similar argument applies

to the relation between [y, z] and [x, z], so

gs(x, z) = gs(y, z) & hs(y, z) < hs(x, z) or gs(x, z) < gs(y, z) & hs(y, z) = hs(x, z).

Since gs(x, z) = min{gs(x, y), gs(y, z)} and hs(x, z) = max{hs(x, y), hs(y, z)}, if

gs(x, z) = gs(x, y) then hs(x, y) < hs(x, z) so hs(x, z) = hs(y, z), and if gs(x, z) = gs(y, z) then hs(y, z) < hs(x, z)

so hs(x, z)=hs(x, y). Thus, for all x, y, z ∈ R, x < y < z implies that

(c) gs(x, z) = gs(x, y) & hs(x, y) < hs(x, z) and gs(x, z) < gs(y, z) & hs(y, z) = hs(x, z),

or

(d) gs(x, z) < gs(x, y) & hs(x, y) = hs(x, z) and gs(x, z) = gs(y, z) & hs(y, z) < hs(x, z).

59

We need to show that either (c) is true for all x < y < z, or that (d) is true for all x < y < z.

Now let x < y < z < w. Apply (c) and (d) to x < y < z and x < z < w, but assume that (c) applies in

one case and that (d) applies in the other case. That is, assume that

gs(x, w) = gs(x, z) < gs(x, y) and hs(x, y) = hs(x, z) < hs(x, w), or that

gs(x, w) < gs(x, z) = gs(x, y) and hs(x, y) < hs(x, z) = hs(x, w). Under both of these assumptions, gs(x, w) <

gs(x, y) and hs(x, y) < hs(x, w), which is impossible (applying the result of the previous paragraph to x < y <

w). Thus either (c) applies to both x < y < z and x < z < w, or (d) applies to both x < y < z and x < z < w.

Similarly, apply (c) and (d) to x < y < w and y < z < w, but assume that (c) applies in one case and

that (d) applies in the other case. That is, assume that

gs(x, w) < gs(y, w) = gs(z, w) and hs(z, w) < hs(y, w) = hs(x, w), or that

gs(x, w) = gs(y, w) < gs(z, w) and hs(z, w) = hs(y, w) < hs(x, w). Under both of these assumptions, gs(x, w)

< gs(z, w) and hs(z, w) < hs(x, w), which is impossible (applying the result of the previous paragraph to x <

z < w). Thus either (c) applies to both x < y < w and y < z < w, or (d) applies to both x < y < w and y < z <

w.

Now let x < y < z < x’ < y’ < z’. The results of the last two paragraphs can be applied to show that

(c) and (d) are applied consistently to the following chain of triples:

x < y < z

x < y < x’

x < x’ < y’

x < y’ < z’

y < y’ < z’

z < y’ < z’

x’ < y’ < z’.

Thus either (c) applies to both x < y < z and x’ < y’ < z’, or (d) applies to both x < y < z and x’ < y’ < z’.

Given any two triples x < y < z and x’ < y’ < z’, pick x" < y" < z" with z < x" and

60

z’ < x". Then x < y < z < x" < y" < z" and x’ < y’ < z’ < x" < y" < z" so either (c) or (d) applies uniformly to

the triples x < y < z, x" < y" < z" and x’ < y’ < z’. Thus either (c) or (d) applies uniformly to all triples,

proving the proposition. n

Next we define names for the two categories established in Prop. G.7.

Def. Given a display function D:U → V and a continuous scalar s ∈ S, by Prop. G.7, either (a) or

(b) is applies to all triples x < y < z. If (a) applies, say that D is increasing on s, and if (b) applies, say that

D is decreasing on s.

Prop. G.8 is useful for showing how the categories established in Prop. G.7 apply to the functions

g’s and h’s.

Prop. G.8. Given a display function D:U → V, a continuous scalar s ∈ S, z ∈ R, and a set A ⊆ Is\{

⊥} such that [z, z] = IA, then

g’s(a) = sup{gs(a, b) | [a, b] ∈ A} and

h’s(a) = inf{hs(a, b) | [a, b] ∈ A}.

Proof.

↓(⊥,...,[z, z],...,⊥) = {(⊥,...,[u, v],...,⊥) | u ≤ z ≤ v} =

{(⊥,...,[u, v],...,⊥) | ∃[a, b] ∈ A. u ≤ a ≤ b ≤ v} =

U{↓(⊥,...,[a, b],...,⊥) | [a, b] ∈ A}. This union of closed sets is closed (since it equals

↓(⊥,...,[z, z],...,⊥)), so, by Prop. C.8,

↓(⊥,...,[z, z],...,⊥) = \/{↓(⊥,...,[a, b],...,⊥) | [a, b] ∈ A}. Then, by Prop. B.3,

D(↓(⊥,...,[z, z],...,⊥)) = \/{D(↓(⊥,...,[a, b],...,⊥)) | [a, b] ∈ A} =

\/{↓(⊥,...,[gs(a, b), hs(a, b)],...,⊥) | [a, b] ∈ A}. Therefore

61

↓(⊥,...,[g’s(a), h’s(a)],...,⊥) = \/{↓(⊥,...,[gs(a, b), hs(a, b)],...,⊥) | [a, b] ∈ A}. Thus

∀[a, b] ∈ A. ↓(⊥,...,[gs(a, b), hs(a, b)],...,⊥) ≤ ↓(⊥,...,[g’s(a), h’s(a)],...,⊥), so

∀[a, b] ∈ A. gs(a, b) ≤ g’s(a) ≤ h’s(a) ≤ hs(a, b). Therefore

sup{gs(a, b) | [a, b] ∈ A} ≤ g’s(a) and h’s(a) ≤ inf{hs(a, b) | [a, b] ∈ A}.

Now assume that sup{gs(a, b) | [a, b] ∈ A} < g’s(a) and pick u such that

sup{gs(a, b) | [a, b] ∈ A} < u < g’s(a). Then for all [a, b] ∈ A, gs(a, b) < u so

↓(⊥,...,[gs(a, b), hs(a, b)],...,⊥) ≤ ↓(⊥,...,[u, h’s(a)],...,⊥). Therefore

\/{↓(⊥,...,[gs(a, b), hs(a, b)],...,⊥) | [a, b] ∈ A} ≤

↓(⊥,...,[u, h’s(a)],...,⊥) < ↓(⊥,...,[g’s(a), h’s(a)],...,⊥),

which contradicts

\/{↓(⊥,...,[gs(a, b), hs(a, b)],...,⊥) | [a, b] ∈ A} = ↓(⊥,...,[g’s(a), h’s(a)],...,⊥). Thus

g’s(a) = sup{gs(a, b) | [a, b] ∈ A}. A similar argument shows that

h’s(a) = inf{hs(a, b) | [a, b] ∈ A}. n

Now we show how the categories of behavior established in Prop. G.7 apply to the functions g’s

and h’s.

Prop. G.9. Given a display function D:U → V, a continuous scalar s ∈ S, and

z < z’, if D is increasing on s then g’s(z) < g’s(z’) and h’s(z) < h’s(z’), and if D is decreasing on s then g’s(z) >

g’s(z’) and h’s(z) > h’s(z’).

Proof. First assume that D is increasing on s. Then, by Prop. G.8,

g’s(z) = sup{gs(z, x) | z < x}. By Prop. G.7, ∀x > z. ∀y > z. gs(z, x) = gs(z, y), so

∀x > z. g’s(z) = gs(z, x). Similarly, ∀x > z’. g’s(z’) = gs(z’, x). Pick x > z’ > z. Then, by Prop. G.7, g’s(z) =

gs(z, x) < gs(z’, x) = g’s(z’).

By Prop. G.8, h’s(z) = inf{hs(x, z) | x < z}. By Prop. G.7,

62

∀x < z. ∀y < z. hs(x, z) = hs(y, z), so ∀x < z. h’s(z) = hs(x, z). Similarly,

∀x < z’. h’s(z’) = hs(x, z’). Pick x < z < z’. Then, by Prop. G.7,

h’s(z) = hs(x, z) < hs(x, z’) = h’s(z’).

Next assume that D is decreasing on s. Then, by Prop. G.8,

g’s(z) = sup{gs(x, z) | x < z}. By Prop. G.7, ∀x < z. ∀y < z. gs(x, z) = gs(y, z), so

∀x < z. g’s(z) = gs(x, z). Similarly, ∀x < z’. g’s(z’) = gs(x, z’). Pick x < z < z’. Then, by Prop. G.7, g’s(z) =

gs(x, z) > gs(x, z’) = g’s(z’).

By Prop. G.8, h’s(z) = inf{hs(z, x) | z < x}. By Prop. G.7,

∀x > z. ∀y > z. hs(z, x) = hs(z, y), so ∀x > z. h’s(z) = hs(z, x). Similarly,

∀x > z’. h’s(z’) = hs(z’, x). Pick x > z’ > z. Then, by Prop. G.7,

h’s(z) = hs(z, x) > hs(z’, x) = h’s(z’). n

Next we show that the functions g’s and h’s must be continuous functions of real variables. The

key idea is that g’s and h’s are either increasing or decreasing, so if they are discontinuous there must be a

gap in their values, which contradicts Prop. B.2.

Prop. G.10. Given a display function D:U → V and a continuous scalar s ∈ S, the functions g’s

and h’s are continuous (in the topological sense).

Proof. Assume that D is increasing on s. Then, by Prop. G.9, g’s and h’s are monotone increasing.

Now assume that g’s is discontinuous at z. Then

(a) ∃ε > 0. ∀δ > 0. ∃w.

z - δ < w < z & g’s(w) ≤ g’s(z) - ε or

z < w < z + δ & g’s(z) + ε ≤ g’s(w)

Fix ε satisfying (5). If

(b) ∃w-. (w- < z & g’s(z) - ε < g’s(w-))

63

then

(c) ∀w. w- < w < z ⇒ g’s(z) - ε < g’s(w) < g’s(z)

and if

(d) ∃w+. (z < w+ & g’s(w+) < g’s(z) + ε)

then

(e) ∀w. z < w < w+ ⇒ g’s(z) < g’s(w) < g’s(z) + ε.

Now, ((c) & (e)) contradicts (a), so (¬(b) or ¬(d)).

¬(b) ≡ ∀w. w < z ⇒ g’s(w) ≤ g’s(z) - ε

and

¬(d) ≡ ∀w. z < w ⇒ g’s(z) + ε ≤ g’s(w).

In the ¬(b) case, since z ≤ w ⇒ g’s(z) ≤ g’s(w), there is no w ∈ R such that

g’s(z) - ε < g’s(w) < g’s(z). Now, [g’s(z), h’s(z)] ⊂ [g’s(z) - ε/2, h’s(z)] so

↓(⊥,...,[g’s(z) - ε/2, h’s(z)],...,⊥) ≤ ↓(⊥,...,[g’s(z), h’s(z)],...,⊥). Thus, by Prop. B.2, there is u ∈ U such that

D(u) = ↓(⊥,...,[g’s(z) - ε/2, h’s(z)],...,⊥), and by Prop. F.9 and Prop. F.10, u ∈ Us. Let u = ↓(⊥,...,[a, b],...,⊥

). Then, by Prop. G.4,

g’s(z) - ε/2 = gs(a, b) = inf{g’s(w) | a ≤ w ≤ b}. However, since there is no w such that

g’s(z) - ε < g’s(w) < g’s(z), this is impossible. Thus g’s cannot be discontinuous at z.

In the ¬(d) case, since w ≤ z ⇒ g’s(w) ≤ g’s(z), there is no w ∈ R such that

g’s(z) < g’s(w) < g’s(z) + ε, and furthermore, z < z’ ⇒ g’s(z) < g’s(z’), so there is z’ such that g’s(z) + ε ≤

g’s(z’). Now, [g’s(z’), h’s(z’)] ⊂ [g’s(z) + ε/2, h’s(z’)] so

↓(⊥,...,[g’s(z) + ε/2, h’s(z’)],...,⊥) ≤ ↓(⊥,...,[g’s(z’), h’s(z’)],...,⊥). Thus, by Prop. B.2, there is u ∈ U such

that D(u) = ↓(⊥,...,[g’s(z) + ε/2, h’s(z’)],...,⊥), and by Prop. F.9 and Prop. F.10, u ∈ Us. Let u = ↓(⊥,...,[a,

b],...,⊥). Then, by Prop. G.4,

g’s(z) + ε/2 = gs(a, b) = inf{g’s(w) | a ≤ w ≤ b}. However, since there is no w such that

g’s(z) < g’s(w) < g’s(z) + ε, this is impossible. Thus g’s cannot be discontinuous at z.

64

The proof that h’s is continuous, and the proofs that g’s and h’s are continuous when D is

decreasing on s, are virtually identical to this. n

Prop. G.11 completes the list of conditions on the functions g’s and h’s that will allow us to define

necessary and sufficient conditions for display functions.

Prop. G.11. Given a display function D:U → V and a continuous scalar s ∈ S, then g’s has no

lower bound and h’s has no upper bound. Furthermore,

∀z ∈ R. g’s(z) ≤ h’s(z).

Proof. If ∃a. ∀z. g’s(z) > a then,

D(↓(⊥,...,[0, 0],...,⊥)) = ↓(⊥,...,[g’s(0), h’s(0)],...,⊥) ≥ ↓(⊥,...,[a-1, h’s(0)],...,⊥)

[since a-1 < a ≤ g’s(0)], so there must be u ∈ U such that

D(u) = ↓(⊥,...,[a-1, h’s(0)],...,⊥). By Prop. F.9 and Prop. F.10, u ∈ Us. However, by Prop. G.4, there is no

[x, y] ∈ Is such that

D(↓(⊥,...,[x, y],...,⊥)) = ↓(⊥,...,[a-1, h’s(0)],...,⊥). Thus g’s has no lower bound. The proof that h’s has no

upper bound is virtually identical.

If g’s(z) > h’s(z) then [g’s(z), h’s(z)] ∉ Is, which is impossible, so

∀z ∈ R. g’s(z) ≤ h’s(z). n

The results of this appendix can be summarized in the following definition.

Def. A pair of functions g’s:R → R and h’s:R → R are called a continuous display pair if:

(a) g’s has no lower bound and h’s has no upper bound,

(b) ∀z ∈ R. g’s(z) ≤ h’s(z), and

(c) g’s and h’s are continuous,

65

(d) either g’s and h’s are increasing:

∀z, z’ ∈ R. z < z’ ⇒ g’s(z) < g’s(z’) & h’s(z) < h’s(z’),

or g’s and h’s are decreasing:

∀z, z’ ∈ R. z < z’ ⇒ g’s(z) > g’s(z’) & h’s(z) > h’s(z’).

66

Appendix H

Proofs for Section 3.4.3

Here we present the technical details for Section 3.4.3.

Def. Given a finite set S of scalars, a finite set DS of display scalars,

X = X{Is | s ∈ S}, Y = X{Id | d ∈ DS}, U = CL(X), and V = CL(Y), then a function

D:U → V is a scalar mapping function if:

(a) there is a function MAPD: S → POWER(DS) such that

∀s, s’ ∈ S. MAPD(s) ∩ MAPD(s’) = φ,

(b) for all continuous s ∈ S, MAPD(s) contains a single continuous d ∈ DS,

(c) for all discrete s ∈ S, all d ∈ MAPD(s) are discrete,

(d) D(φ) = φ and D({(⊥,...,⊥)}) = {(⊥,...,⊥)},

(e) for all continuous s ∈ S, g’s and h’s are a continuous display pair,

for all [u, v] ∈ Is, gs(u, v) = inf{g’s(z) | u ≤ z ≤ v} and

hs(u, v) = sup{h’s(z) | u ≤ z ≤ v},

and, given {d} = MAPD(s), then for all [u, v] ∈ Is\{⊥},

D(↓(⊥,...,[u, v],...,⊥)) = ↓(⊥,...,[gs(u, v), hs(u, v)],...,⊥) ∈ Vd,

(f) for all discrete s ∈ S, for all a ∈ Is\{⊥},

D(↓(⊥,...,a,...,⊥)) = b ∈ Vd for some d ∈ MAPD(s), where b ≠ {(⊥,...,⊥)},

and, for all a, a’ ∈ Is\{⊥}, a ≠ a’ ⇒ D(↓(⊥,...,a,...,⊥)) ≠ D(↓(⊥,...,a’,...,⊥))

(g) for all x ∈ X, D(↓x) = ↓\/{y | ∃s ∈ S. xs ≠ ⊥ & ↓y = D(↓(⊥,...,xs,...,⊥))},

where xs represents tuple components of x, and using the values for D defined

in (e) and (f),

67

(h) for all u ∈ U, D(u) = \/{D(↓x) | x ∈ u}, using the values for D defined in (g).

This definition contains a variety of expressions for the value of D on various subsets of U. The

next proposition shows that these expressions are consistent where the subsets of U overlap. This involves

showing that D is monotone.

Prop. H.1. In the definition of scalar mapping functions, the values defined for D in (d), (e), (f),

(g) and (h) are consistent. Furthermore, D is monotone.

Proof. (e), (f), (g) and (h) do not apply to φ and thus do not conflict with the definition of D(φ) in

(d). (e) and (f) do not apply to {(⊥,...,⊥)} and thus do not conflict with the definition of D({(⊥,...,⊥)}) in

(d). The definition of D({(⊥,...,⊥)}) in (d) is consistent with (g) and (h) if the sup of an empty set of

objects is defined as (⊥,...,⊥). (e) and (f) apply to disjoint sets and thus do not conflict. For all s ∈ S, (g)

applies to objects

x ∈ Us, but defines D(↓x) as the sup of the singleton set containing the value of D(↓x) defined by (e) or (f),

and is thus consistent with that value. (h) applies to objects x ∈ Us, and is consistent with (e) and (f) if it is

consistent with (g) on these objects. Thus we need to show the consistency of (g) and (h).

If u = ↓y then (h) defines D(↓y) = \/{D(↓x) | x ∈ ↓y} = \/{D(↓x) | x ≤ y}. To Show consistency

with (g), it is necessary to show that x ≤ y ⇒ D(↓x) ≤ D(↓y) for the definition of D in (d), (e), (f) and (g)

(that is, that D is monotone). Clearly D in (d) is monotone, in itself and in relation to D in (e), (f) and (g).

If s ∈ S is discrete, then for all a, a’ ∈ Is\{⊥}, a ≠ a’ ⇒ ¬(a ≤ a’), so D in (f) is monotone by default. If s ∈

S is continuous then for all [u, v], [u’, v’] ∈ Is\{⊥},

↓(⊥,...,[u, v],...,⊥) ≤ ↓(⊥,...,[u’, v’],...,⊥) ⇒

[u’, v’] ⊆ [u, v] ⇒

[inf{g’s(z) | u’ ≤ z ≤ v’}, sup{h’s(z) | u’ ≤ z ≤ v’}] ⊆

[inf{g’s(z) | u ≤ z ≤ v}, sup{h’s(z) | u ≤ z ≤ v}] ⇒

68

D(↓(⊥,...,[u, v],...,⊥)) ≤ D(↓(⊥,...,[u’, v’],...,⊥)).

Thus D in (e) is monotone. For all x, x’ ∈ X,

x ≤ x’ ⇒

∀s ∈ S. xs ≤ xs’ ⇒ (since D in (e) and (f) is monotone)

∀s ∈ S. D(↓(⊥,...,xs,...,⊥)) ≤ D(↓(⊥,...,x’s,...,⊥)) ⇒

D(↓x) ≤ D(↓x’).

Thus D in (g) is monotone, so D is consistent in (g) and (h).

All that remains is to show that D in (h) is monotone. For all u, u’ ∈ U,

u ≤ u’ ⇒ u ⊆ u’ so \/{D(↓x) | x ∈ u} ≤ \/{D(↓x) | x ∈ u’}. Thus D is monotone. n

As we will show in Prop. H.5, the values of a scalar mapping function D can be decomposed into

the values of an auxiliary function D’ from X to Y. Now we define this auxiliary function, show that it is an

order embedding, and prove two lemmas that will be useful in the proof of Prop. H.5.

Def. Given a scalar mapping function D:U → V, define D’:X → Y by

D’(x) = \/{(⊥,...,ad,...,⊥) | s ∈ S & xs ≠ ⊥ & D(↓(⊥,...,xs,...,⊥)) = ↓(⊥,...,ad,...,⊥)}.

Prop. H.2. Given a scalar mapping function D:U → V, D’ is an order embedding.

Proof. Given x, x’ ∈ X, x ≤ x’ ⇔ ∀s ∈ S. xs ≤ x’s. Let

D’((⊥,...,xs,...,⊥)) = (⊥,...,ad,...,⊥) and D’((⊥,...,x’s,...,⊥)) = (⊥,...,a’d,...,⊥) where

d ∈ MAPD(s). Note that xs ≤ x’s ⇒ (⊥,...,xs,...,⊥) ≤ (⊥,...,x’s,...,⊥) ⇒

(⊥,...,ad,...,⊥) ≤ (⊥,...,a’d,...,⊥) (since a D is monotone) so ad and a’d are in the same Id.

For all s ∈ S, xs ≤ x’s ⇔ (⊥,...,xs,...,⊥) ≤ (⊥,...,x’s,...,⊥) ⇔

↓(⊥,...,ad,...,⊥) = D(↓(⊥,...,xs,...,⊥)) ≤ D(↓(⊥,...,x’s,...,⊥)) = ↓(⊥,...,a’d,...,⊥) ⇔

(⊥,...,ad,...,⊥) ≤ (⊥,...,a’d,...,⊥) ⇔ ad ≤ a’d. Thus

69

(∀s ∈ S. xs ≤ x’s) ⇔ (∀d ∈ DS. ad ≤ a’d). Since ∀s, s’ ∈ S. MAPD(s) ∩ MAPD(s’) = φ,

c = D’(x) ⇒ (∀d ∈ DS. cd ≠ ⊥ ⇒ ∃s ∈ S. D(↓(⊥,...,xs,...,⊥)) = ↓(⊥,...,cd,...,⊥))

(that is, cd = ad), and thus (∀d ∈ DS. ad ≤ a’d) ⇔ D’(x) ≤ D’(x’). Therefore, by a chain of logical

equivalences, x ≤ x’ ⇔ D’(x) ≤ D’(x’). n

Prop. H.3. Let D:U → V be a scalar mapping function. Then, for all u ∈ U,

x ∈ u and b ≤ D’(x) = a, there is y ≤ x such that b = D’(y).

Proof. For all d ∈ DS, bd ≠ ⊥ implies that

∃s ∈ S. D’((⊥,...,xs,...,⊥)) = (⊥,...,ad,...,⊥) and bd ≤ ad. For discrete s,

bd ≤ ad & bd ≠ ⊥ ⇒ bd = ad. Thus D’((⊥,...,xs,...,⊥)) = (⊥,...,bd,...,⊥). Let ys = xs.

For continuous s, let ad = [inf{g’s(z) | u ≤ z ≤ v}, sup{h’s(z) | u ≤ z ≤ v}] where

xs = [u, v]. There are e, f ∈ R such that bd = [e, f] where

e ≤ inf{g’s(z) | u ≤ z ≤ v} ≤ sup{h’s(z) | u ≤ z ≤ v} ≤ f.

Since g’s is continuous and has no lower bound, ∃u’. g’s(u’) = e, and since h’s is continuous and has no

upper bound, ∃v’. h’s(v’) = f. Now g’s and h’s are either increasing or decreasing.

If g’s and h’s are increasing then u’ ≤ u and v ≤ v’, so e = inf{g’s(z) | u’ ≤ z ≤ v’} [since u’ ≤ z ⇒

g’s(u’) ≤ g’s(z)] and f = sup{h’s(z) | u’ ≤ z ≤ v’} [since

z ≤ v’ ⇒ h’s(z) ≤ h’s(v’)]. Then

bd = [e, f] = [inf{g’s(z) | u’ ≤ z ≤ v’}, sup{h’s(z) | u’ ≤ z ≤ v’}] and

D’((⊥,...,[u’, v’],...,⊥)) = (⊥,...,bd,...,⊥). Let ys = [u’, v’].

If g’s and h’s are decreasing then v’ ≤ u and v ≤ u’, so e = inf{g’s(z) | v’ ≤ z ≤ u’} [since z ≤ u’ ⇒

g’s(u’) ≤ g’s(z)] and f = sup{h’s(z) | v’ ≤ z ≤ u’} [since

v’ ≤ z ⇒ h’s(z) ≤ h’s(v’)]. Then

bd = [e, f] = [inf{g’s(z) | v’ ≤ z ≤ u’}, sup{h’s(z) | v’ ≤ z ≤ u’}] and

D’((⊥,...,[v’, u’],...,⊥)) = (⊥,...,bd,...,⊥). Let ys = [v’, u’].

70

Thus for all d ∈ DS such that bd ≠ ⊥, there is ys ≤ xs such that

D’((⊥,...,ys,...,⊥)) = (⊥,...,bd,...,⊥). For any s ∈ S such that ys is not determined by any bd, set ys = ⊥. Then

D’(y) = b. n

Prop. H.4. Given a scalar mapping function D:U → V, and a directed set M ⊆ X,

D’(\/M) = \/D’(M).

Proof. Given a directed set M ⊆ X, let x = \/M and y = D’(x). Since D’ is an order embedding,

D’(M) is directed so z = \/D’(M) exists. Also, ∀m ∈ M. m ≤ x, so

∀m ∈ M. D’(m) ≤ y and thus z ≤ y. For all d ∈ DS, if yd ≠ ⊥ then there is s ∈ S such that

↓(⊥,...,yd,...,⊥) = D(↓(⊥,...,xs,...,⊥)), and so (⊥,...,yd,...,⊥) = D’((⊥,...,xs,...,⊥)). Since sups are taken

componentwise in X, xs = \/{ms | m ∈ M}.

If s is discrete, then ∃m ∈ M. xs = ms so

(⊥,...,yd,...,⊥) = D’((⊥,...,ms,...,⊥)) ≤ D’(m) ≤ z, and thus yd ≤ zd. Since z ≤ y, and thus

zd ≤ yd, this gives yd = zd.

If s is continuous, then xs = [u, v] and ms = [um, vm] are real intervals (we adopt the convention

that um = -∞ and vm = ∞ for ms = ⊥). Then [u, v] is the intersection of the

[um, vm], for all m ∈ M, so u = sup{um | m ∈ M} and v = inf{vm | m ∈ M} and thus

yd = [a, b] = [inf{g’s(z) | u ≤ z ≤ v}, sup{h’s(z) | u ≤ z ≤ v}]. Also let zd = [e, f].

Then, since MAPD(s) contains only d,

e = sup{inf{g’s(z) | um ≤ z ≤ vm } | m ∈ M} and

f = inf{sup{h’s(z) | um ≤ z ≤ vm} | m ∈ M}.

If g’s and h’s are increasing then, since they are continuous,

a = inf{g’s(z) | sup{um | m ∈ M} ≤ z ≤ inf{vm | m ∈ M}} = g’s(sup{um | m ∈ M}) =

sup{g’s(um) | m ∈ M} = sup{inf{g’s(z) | um ≤ z ≤ vm } | m ∈ M} = e and

b = sup{h’s(z) | sup{um | m ∈ M} ≤ z ≤ inf{vm | m ∈ M}} = h’s(inf{vm | m ∈ M}) =

71

inf{h’s(vm) | m ∈ M} = inf{sup{h’s(z) | um ≤ z ≤ vm} | m ∈ M} = f.

If g’s and h’s are decreasing then, since they are continuous,

a = inf{g’s(z) | sup{um | m ∈ M} ≤ z ≤ inf{vm | m ∈ M}} = g’s(inf{vm | m ∈ M}) =

sup{g’s(vm) | m ∈ M} = sup{inf{g’s(z) | um ≤ z ≤ vm } | m ∈ M} = e and

b = sup{h’s(z) | sup{um | m ∈ M} ≤ z ≤ inf{vm | m ∈ M}} = h’s(sup{um | m ∈ M}) =

inf{h’s(um) | m ∈ M} = inf{sup{h’s(z) | um ≤ z ≤ vm} | m ∈ M} = f.

In either case, yd = [a, b] = [e, f] = zd.

Thus yd = zd for all d ∈ DS such that yd ≠ ⊥. However, we also have z ≤ y so

zd = ⊥ whenever yd = ⊥, so yd = zd for all d ∈ DS and thus y = z. n

Now we show how a scalar mapping function D can be defined in terms of the auxiliary function

D’.

Prop. H.5. Given a scalar mapping function D:U → V, for all u ∈ U,

D(u) = {D’(x) | x ∈ u}.

Proof. First, we show that for all u ∈ U, u is closed ⇒ {D’(x) | x ∈ u} is closed.

Assume x ∈ u and b ≤ D’(x). Then, by Prop. H.3, ∃y ≤ x. b = D’(y). Further,

y ≤ x ⇒ y ∈ u so b ∈ {D’(x) | x ∈ u}. Now assume N ⊆ {D’(x) | x ∈ u} and N is directed. Then there is M

⊆ u such that N = D’(M), and, since D’ is an order embedding, M is directed. Thus \/M ∈ u and, by Prop.

H.4, \/N = D’(\/M) ∈ {D’(x) | x ∈ u}. Thus

{D’(x) | x ∈ u} is closed.

Second, we show that for all x ∈ X, D(↓x) = {D’(y) | y ≤ x}. By (g) in the definition of scalar

mapping functions, ∀y ∈ X. ∃b ∈ Y. D(↓y) = ↓b. Furthermore, comparing (g) with the definition of D’, ∀y

∈ X. D(↓y) = ↓b ⇔ D’(y) = b. Then, given

D(↓x) = ↓a, b ≤ a ⇔ ↓b ≤ ↓a ⇔ ∃y ≤ x. D(↓y) = ↓b ⇔ ∃y ≤ x. D’(y) = b. Thus

72

D(↓x) = ↓a = {b | b ≤ a} = {D’(y) | y ≤ x}.

By Prop. C.8, \/{D(↓x) | x ∈ u} is the smallest closed set containing

U{D(↓x) | x ∈ u}. However,

U{D(↓x) | x ∈ u} = U{{D’(y) | y ≤ x} | x ∈ u} = {D’(x) | x ∈ u}, which is closed, so

\/{D(↓x) | x ∈ u} = U{D(↓x) | x ∈ u}. Thus, for all u ∈ U,

D(u) = \/{D(↓x) | x ∈ u} = {D’(x) | x ∈ u}. n

The next two propositions show that a scalar mapping function satisfies the conditions of a display

function.

Prop. H.6. A scalar mapping function D:U → V is an order embedding (and thus injective).

Proof. By Prop. H.5, for all u ∈ U, D(u) = {D’(x) | x ∈ u}. Members of U are ordered by set

inclusion, so

u ≤ u’ ⇒ u ⊆ u’ ⇒ D(u) = {D’(x) | x ∈ u} ⊆ {D’(x) | x ∈ u’} = D(u’) ⇒ D(u) ≤ D(u’).

By Prop. H.2, D’ is an order embedding, and thus injective, so u = {(D’)-1(x) | x ∈ D(u)}.

Therefore D(u) ≤ D(u’) ⇒ D(u) ⊆ D(u’) ⇒

u = {(D’)-1(x) | x ∈ D(u)} ⊆ {(D’)-1(x) | x ∈ D(u’)} = u’ ⇒ u ≤ u’.

Thus D is an order embedding. n

Prop. H.7. A scalar mapping function D:U → V is a surjective function onto

↓D(X).

Proof. Assume that v’ < v = D(X). We need to show that there is u’ ∈ U such that

v’ = D(u’). As we saw in the proof of Prop. H.6, if there is such a u’, then

u’ = {(D’)-1(x) | x ∈ v’}. Thus let u’ = {(D’)-1(x) | x ∈ v’}, and we will show that this is a closed set, and

thus a member of U.

73

Assume that y ∈ u’ and b ≤ y. Then D’(b) ≤ D’(y), and since D’(y) ∈ v’ and v’ is closed, D’(b) ∈ v’

so b ∈ u’. Now assume that N ⊆ u’ and N is directed. Then

M = D’(N) ⊆ v’ is directed (since D’ is an order embedding), so \/M ∈ v’ and

(D’)-1(\/M) ∈ u’. By Prop. H.4, \/M = D’(\/N) so \/N = (D’)-1(\/M) ∈ u’. Thus u’ is closed. n

The results of the last three sections show that display functions are completely characterized as

scalar mapping functions. This is summarized by the following theorem.

Theorem H.8. D:U → V is a display function if and only if it is a scalar mapping function.

Proof. If D:U → V is a display function then Theorem F.14 shows that D satisfies conditions (a),

(b), (c) and (f) of the definition of scalar mapping functions. Theorem F.14, along with Props. G.4, G.9,

G.10 and G.11 show that D satisfies condition (e). Prop. F.2 shows that D satisfies condition (d). Prop.

F.12 shows that D satisfies condition (g), and the proof of Prop. F.13 shows that D satisfies condition (h).

Thus D is a scalar mapping function.

If D:U → V is a scalar mapping function then Props. H.6 and H.7 show that D is a display

function. n

Appendix I

Proofs for Section 3.4.4

Here we present the technical details for Section 3.4.4. Define a set of display scalars as follows:

DS = {red, green, blue, transparency, reflectivity, vectorx, vectory, vectorz,

contour1, ..., contourn, x, y, z, animation, selector1, ..., selectorm}

74

Also define a subset of display scalars

DOMDS = {x, y, z, animation, selector1, ..., selectorm} and define

YDOMDS = X{Id | d ∈ DOMDS} and Y = X{Id | d ∈ DS}. Let

PDOMDS :Y → YDOMDS be the natural projection from Y onto YD (that is, if a ∈ Y and

b = PDOMDS(a), then for all d ∈ DOMDS, bd = ad). Then we can define Vdisplay as follows.

Def. Vdisplay = {A ∈ V | ∀b, c ∈ MAX(A). PDOMDS(b) = PDOMDS(c) ⇒

b = c}. That is, if A is an object in Vdisplay, then different tuples in A cannot have the same set of values

for all display scalars in DOMDS.

In Prop. I.4 we will define conditions under which the displays of data objects are members of

Vdisplay. First, we prove three lemmas. Note that we use the notation ad for the d component of a tuple a

∈ X{Id | d ∈ DS}.

Prop. I.1. Given a type t ∈ T and A ∈ D(Ft), then, for all tuples a ∈ A,

∀d ∈ DS. (d ∉ MAPD(SC(t)) ⇒ ad = ⊥).

Proof. There is B ∈ Ft such that A = D(B). By Prop. F.12 for any a ∈ A there is

b ∈ U such that ↓a = D(↓b). Since ↓a ≤ A, ↓b ≤ B so b ∈ B. Furthermore, by Prop. F.12, if ad ≠ ⊥ then

there is s ∈ S and bs ≠ ⊥ such that

↓(⊥,...,ad,...,⊥) = D(↓(⊥,...,bs,...,⊥)) and d ∈ MAPD(s). By Prop. D.1,

∀s ∈ S. (bs ≠ ⊥ ⇒ s ∈ SC(t)). Thus ad ≠ ⊥ ⇒ d ∈ MAPD(SC(t)). n

Prop. I.2. Given a tuple type t = struct{t1;...;tn} ∈ T, A ∈ D(Ft) and

a = a1∨...∨an ∈ A, where ∀i . ai ∈ Ai ∈ D(Fti), then a ∈ MAX(A) ⇔ ∀i. ai ∈ MAX(Ai).

75

Proof. Note that a and the ai are tuples, and the sup of tuples is taken componentwise, so ∀d ∈

DS. ad = a1d∨...∨and. Also note that

i ≠ j ⇒ SC(ti) ∩ SC(ti) = φ, and, by Prop. F.9,

i ≠ j ⇒ MAPD(SC(ti)) ∩ MAPD(SC(ti)) = φ. If there is some i such that ai ∉ MAX(Ai), then ∃bi ∈ Ai. ai <

bi so b = a1∨...∨bi∨...∨an ∈ A. Now, ai < bi ⇒ ∃d ∈ DS. aid < bid and (since j ≠ i ⇒ ajd = ⊥ = bjd) ad =

aid and bd = bid, so a < b. Thus a ∉ MAX(A). Conversely, if a ∉ MAX(A) then ∃b ∈ A. a < b with a = a1∨

...∨an, b = b1∨...∨bn, and

∀i. ai,bi ∈ Ai. For some d ∈ DS, ad < bd. Thus bd > ⊥ so ∃j. d ∈ MAPD(SC(tj)), and so ad < bd ⇒ aj <

bj (since ad = ajd and bd = bjd). Thus aj ∉ MAX(Aj). n

Prop. I.3. Given a tuple type t = struct{t1;...;tn} ∈ T, and given B ti i
F∈ and

Ai = D(Bi) for i=1,..,n, then:

(a) if bi ∈ Bi and ↓ai = D(↓bi) for i=1,..,n, then ↓(a1∨...∨an) = D(↓(b1∨...∨bn))

(b) Ai = {ai | ∃bi ∈ Bi.↓ai = D(↓bi)}

(c) \/{↓(a1∨...∨an) | ∀i. ai ∈ Ai} = {a1∨...∨an | ∀i. ai ∈ Ai}

Proof. First we prove (a). Note that the ai and bi are tuples. By Prop. D.1,

∀i ≠ j. ∀s ∈ S. (bis = ⊥ or bjs = ⊥), so (b1∨...∨bn) exists. Also, by Prop. D.1 and by Prop. F.12, ∀d ∈ DS.

d ∉ MAPD(SC(ti)) ⇒ ad = ⊥, and by Prop. F.9,

∀i ≠ j. MAPD(SC(ti)) ∩ MAPD(SC(tj)) = φ, so ∀i ≠ j. ∀d ∈ DS. (aid = ⊥ or ajd = ⊥), and so (a1∨...∨an)

exists. Given ↓ai = D(↓bi) then by Prop. F.12, the components of bi determine the components of ai. If ↓x

= D(↓(b1∨...∨bn)) then the components of

(b1∨...∨bn) determine the components of x. Since ∀i ≠ j. ∀s ∈ S. (bis = ⊥ or bjs = ⊥), the components of

(b1∨...∨bn) are just the components of each of the bi, so x =

(a1∨...∨an), proving (a).

By Prop. F.12, for all bi ∈ Bi there is ai ∈ Ai = D(Bi) such that ↓ai = D(↓bi), so

76

Ai ⊇ {ai | ∃bi ∈ Bi.↓ai = D(↓bi)}. Conversely, by Prop. F.12, for all ai ∈ Ai there is

bi ∈ Bi such that ↓ai = D(↓bi), so Ai ⊆ {ai | ∃bi ∈ Bi.↓ai = D(↓bi)}. Together these prove (b).

Clearly, \/{↓(a1∨...∨an) | ∀i. ai ∈ Ai} ⊇ {a1∨...∨an | ∀i. ai ∈ Ai}. Pick

a ∈ \/{↓(a1∨...∨an) | ∀i. ai ∈ Ai}. By Prop. C.10, there is a directed set

M ⊆ U{↓(a1∨...∨an) | ∀i. ai ∈ Ai} such that a = \/M. However,

U{↓(a1∨...∨an) | ∀i. ai ∈ Ai} = {c | (∀i. ∃ai ∈ Ai). c ≤ (a1∨...∨an)}.

Now, for c ≤ (a1∨...∨an), by Prop. C.9, c = ((c∧a1)∨...∨(c∧an)) where (c∧ai) ∈ Ai, so

c ∈ {a1∨...∨an | ai ∈ Ai}. Thus M ⊆ {a1∨...∨an | ai ∈ Ai} such that a = \/M. For each

m ∈ M, let m = (m1∨...∨mn) where mi ∈ Ai. Then, since sups of tuples are taken componentwise and since

∀i ≠ j. ∀d ∈ DS. (mid = ⊥ or mjd = ⊥)),

a = \/M = {(\/m1)∨...∨(\/mn)) | m ∈ M}. However, (\/mi) ∈ Ai since Ai is closed, so

a ∈ {a1∨...∨an | ai ∈ Ai}. This proves (c). n

Now we show that MAX(A) is finite for data objects of types t ∈ T, and demonstrate conditions on

t and D that ensure that displays of data objects of type t are in Vdisplay.

Prop. I.4. If D is a display function, then for all types t ∈ T and all A ∈ D(Ft), MAX(A) is finite.

Furthermore, MAPD(DOM(t)) ⊆ DOMDS ⇒ D(Ft) ⊆ Vdisplay.

Proof. We will demonstrate both parts of this proposition by induction on the structure of t. Note

that if t’ is a subtype of t, then MAPD(DOM(t’)) ⊆ MAPD(DOM(t)). Thus, if t satisfies the hypothesis of

the second part, then its subtypes also satisfy the hypothesis of the second part.

Let t ∈ S (note that MAPD(DOM(t)) = φ ⊆ DOMDS) and let A ∈ D(Ft). Then, by the Theorem

F.14, ∃d ∈ MAPD(t). A ∈ Vd. Furthermore,

A ∈ Vd ⇒ ∃a ∈ Id. A = ↓(⊥,...,a,...,⊥), so MAX(A) = {(⊥,...,a,...,⊥)}. MAX(A) has a single member and is

thus finite. Therefore A ∈ Vdisplay and thus

77

t ∈ S ⇒ D(Ft) ⊆ Vdisplay.

Let t = struct{t1;...;tn} ∈ T. Given A ∈ D(Ft) there is B ∈ Ft such that A = D(B) and ∃B1 ∈Ft1
...

∃Bn ∈Ftn . B = {(b1∨...∨bn) | ∀i. bi ∈ Bi}. Also let Ai = D(Bi). Then

A = D(B) =

D(\/{↓b | b ∈ B}) = (by Prop. B.3)

\/{D(↓b) | b ∈ B} =

\/{D(↓(b1∨...∨bn)) | ∀i.bi ∈ Bi} = (by Prop. I.3 (a))

\/{↓(a1∨...∨an) | ∀i.↓ai = D(↓bi) & bi ∈ Bi} = (apply Prop. I.3 (b) to each i)

\/{↓(a1∨...∨an) | ∀i.ai ∈ Ai} = (by Prop. I.3 (c))

{(a1∨...∨an) | ∀i.ai ∈ Ai}

Thus A ∈ D(Ft) ⇒ ∃A1 ∈ D(Ft1
)... ∃An ∈ D(Ftn). A = {(a1∨...∨an) | ∀i. ai ∈ Ai} and by Prop. I.2,

MAX(A) = {(a1∨...∨an) | ∀i. ai ∈ MAX(Ai)}. By the inductive hypothesis, the MAX(Ai) are finite, so

MAX(A) is finite. Now assume that MAPD(DOM(t)) ⊆ DOMDS but that A ∉ Vdisplay (that is, assume that

the second part of the proposition is not true). Then ∃b, c ∈ MAX(A). PDOMDS(b) = PDOMDS(c) & b ≠ c.

Let b =

b1∨...∨bn and c = c1∨...∨cn where ∀i. bi, ci ∈ Ai. The sups are taken componentwise for the tuples b and

c, so for all d ∈ DS, bd = b1d∨...∨bnd and cd = c1d∨...∨cnd. Now

PDOMDS(b) = PDOMDS(c) ⇒ ∀d ∈ DOMDS. bd = cd. Pick d ∈ DOMDS, and we will show that ∀i. bid

= cid. If ∃i. d ∈ MAPD(SC(ti)) then ∀i’ ≠ i. d ∉ MAPD(SC(ti’)) and hence ∀i’ ≠ i. bi’d = ⊥ = ci’d so that

bid = bd = cd = cid, and hence ∀i. bid = cid. If

∀i. d ∉ MAPD(SC(ti)) then ∀i. bid = ⊥ = cid. Either way, PDOMDS(b) = PDOMDS(c) implies that ∀d ∈

DOMDS. ∀i. bid = cid and so ∀i. PDOMDS(bi) = PDOMDS(ci). On the other hand, b ≠ c ⇒ ∃e ∈ DS. be

≠ ce. However, e ∉ MAPD(SC(ti)) ⇒ bie = ⊥ = cie and ∀i. e ∉ MAPD(SC(ti)) would imply be = ⊥ = ce.

78

Thus ∃j. e ∈ MAPD(SC(tj)), and for this j, bje = be = ce = cje (since bie = ⊥ = cie for i ≠ j). And this

implies that, for this j, bj ≠ cj. However, by the inductive hypothesis, bj = cj, since we have already shown

that PDOMDS(bj) = PDOMDS(cj). Thus the assumption that A ∉ Vdisplay has led to a contradiction, so

D(Ft) ⊆ Vdisplay.

Let t = (array [w] of r) ∈ T. Given A ∈ D(Ft) there is

B ∈ Ft such that A = D(B), and there is a finite set G ∈ FIN(Hw) and a function

a ∈ (G → Hr) such that

B = {b1∨b2 | g∈G & b1∈Ew(g) & b2∈Er(a(g))} =

79

U{{b1∨b2 | b1∈Ew(g) & b2∈Er(a(g))} | g∈G}

Define Bw(g) = Ew(g)∈Fw, Br(g) = Er(a(g))∈Fr, Aw(g) = D(Bw(g))∈D(Fw) and

Ar(g) = D(Br(g))∈D(Fr). Then

B = U{{b1∨b2 | b1∈Bw(g) & b2∈Br(g)} | g∈G}

This is a finite union of objects in Fstruct{w; r} for the tuple type struct{w; r}. Thus, since the union of a

finte set of closed sets is the sup of those sets, and since D preserves sups,

A = D(B) = U{D({b1∨b2 | b1∈Bw(g) & b2∈Br(g)}) | g∈G}

which, as shown in the tuple case of this proof, is equal to

U{{a1∨a2 | a1∈Aw(g) & a2∈Ar(g)} | g∈G}

Recall that MAX(A) is the set of maximal elements of A, so it is clear that if A = A1 ∪ A2, then MAX(A) ⊆

MAX(A1) ∪ MAX(A2). Thus

MAX(A) ⊆ U{MAX({a1 ∨ a2 | a1 ∈ Aw(g) & a2 ∈ Ar(g)}) | g ∈ G}

and so, by Prop. I.2,

MAX(A) ⊆ U{{a1 ∨ a2 | a1 ∈ MAX(Aw(g)) & a2 ∈ MAX(Ar(g))} | g ∈ G}

80

G is finite, and by the inductive hypothesis, MAX(Aw(g)) and MAX(Ar(g)) are finite, so MAX(A) is finite.

Now assume that MAPD(DOM(t)) ⊆ DOMDS. As shown for scalars, MAX(Aw(g)) has a single

member, MAX(Aw(g)) = {a1(g)}. Applying Prop. F.12,

Aw(g) = ↓a1(g) = D(Ew(g)) = D(↓b1(g)) where b1(g) = (⊥,...,g,...,⊥). If g ≠ g’, then

b1(g) ≠ b1(g’) and a1(g) ≠ a1(g’). Also, given g, there is d ∈ MAPD(w) such that

a1(g) = (⊥,...,a1d(g),...,⊥). Since w ∈ DOM(t), then MAPD(w) ⊆ DOMDS and

d ∈ DOMDS. Thus g ≠ g’ ⇒ a1(g) ≠ a1(g’) ⇒ PDOMDS(a1(g)) ≠ PDOMDS(a1(g’)).

Now pick e, f ∈ MAX(A) and assume that PDOMDS(e) = PDOMDS(f). Let

e = e1∨e2 and f = f1∨f2 with e1 ∈ MAX(Aw(ge)), f1 ∈ MAX(Aw(gf)), e2 ∈ MAX(Ar(ge)) and f2 ∈

MAX(Aw(gf)). From what we have just seen,

ge ≠ gf ⇒ PDOMDS(e1) ≠ PDOMDS(f1). However, since w ∉ SC(r),

MAPD(w) ∩ MAPD(SC(r)) = φ so

PDOMDS(e1) ≠ PDOMDS(f1) ⇒ PDOMDS(e) ≠ PDOMDS(f). This contradicts our assumption, so we

must have ge = gf and, since MAX(Aw(g)) has a single member for each g, e1 = f1. Now e2, f2 ∈

MAX(Ar(ge)) and MAPD(w) ∩ MAPD(SC(r)) = φ implies that PDOMDS(e) = PDOMDS(f) ⇒

PDOMDS(e2) = PDOMDS(f2). By the inductive hypothesis, Ar(ge) ∈ Vdisplay, so PDOMDS(e2) =

PDOMDS(f2) ⇒ e2 = f2. Thus e = e1∨e2 = f1∨f2 = f, establishing that A ∈ Vdisplay and that D(Ft) ⊆

Vdisplay. n

The next proposition shows that the auxiliary function D’ provides a way to compute the maximal

tuples of display objects.

Prop. I.5. If D is a display function, if D’ is the auxiliary function defined in Appendix H, if t ∈ T

and if A ∈ Ft, then MAX(D(A)) = {D’(a) | a ∈ MAX(A)}

81

Proof. By Prop. H.5, D(A) = {D’(a) | a ∈ A}. By Prop. H.2, D’ is an order embedding, so, given a,

b ∈ A, ¬(a < b) ⇔ ¬(D’(a) < D’(b)). Thus

a ∈ MAX(A) ⇔ D’(a) ∈ MAX(D(A)). n

The inverse of the second part of Prop. I.4 is almost true. The next two propositions make this

precise.

Prop. I.6. If D is a display function, if t = (array [w] of r) ∈ T, and if

∃g1, g2 ∈ Hw. (g1 ≠ g2 & D(↓(⊥,...,g1,...,⊥)) = ↓b1 ∈ Vd1
 &

D(↓(⊥,...,g2,...,⊥)) = ↓b2 ∈ Vd2
 & d1, d2 ∉ DOMDS),

then ∃A ∈ D(Ft). A ∉ Vdisplay.

Proof. Let G = {g1, g2} ∈ FIN(Hw), pick C ∈ Hr, and define f ∈ (G→Hr) by

f(g1) = C and f(g2) = C. Pick c ∈ Er(C) such that D(↓c) = ↓a and a ∈ MAX(D(Er(C))). Then (⊥,...,g1,...,⊥

)∨c and (⊥,...,g1,...,⊥)∨c are both members of Et(f) ∈ Ft. Note that

D(↓((⊥,...,g1,...,⊥)∨c)) = ↓(a∨b1) and D(↓((⊥,...,g2,...,⊥)∨c)) = ↓(a∨b2), so a∨b1 and

a∨b2 are both members of D(Et(f)). Clearly b1 ∈ MAX(D(↓(⊥,...,g1,...,⊥))) and

b2 ∈ MAX(D(↓(⊥,...,g2,...,⊥))) (since b1 and b2 are maximal in ↓b1 and ↓b2). Furthermore, since w ∉

SC(r), d1 ∉ MAPD(SC(r)) and d2 ∉ MAPD(SC(r)), so a∨b1 and

a∨b2 are members of MAX(D(Et(f))). For all d ∈ DOMDS, b1d = ⊥ and b2d = ⊥, so

PDOMDS(a∨b1) = PDOMDS(a∨b2). Since w ∉ SC(r), d1 ∉ MAPD(SC(r)) and

d2 ∉ MAPD(SC(r)), so ad1
 = ⊥ and ad2

 = ⊥. However, g1 ≠ g2 so b1 ≠ b2 and hence

(a∨b1)d1
 ≠ (a∨b2)d1

 and (a∨b1)d2
 ≠ (a∨b2)d2

 (d1 and d2 may or may not be the same). Thus (a∨b1)

≠ (a∨b2), so D(Et(f)) ∉ Vdisplay. n

82

Prop. I.7. If D is a display function, if t ∈ T, and if t has a sub-type t’ such that

∃A’ ∈ D(Ft’). A’ ∉ Vdisplay, then ∃A ∈ D(Ft). A ∉ Vdisplay.

Proof. By an inductive argument, it is enough to prove this when t’ is an immediate sub-type of t.

First, let t be a tuple t = struct{t1;...;tn} where t’ = tk. Let Ak = A’ and pick

ak, ak’ ∈ MAX(Ak) such that PDOMDS(ak) = PDOMDS(ak’) and ak ≠ ak’. For i ≠ k, pick A D ti i
F∈ ()

and ai ∈ MAX(Ai). Then define A = {b1∨...∨bn | bi ∈ Ai} ∈ D(Ft). For i ≠ j, MAPD(SC(ti)) ∩

MAPD(SC(tj)) = φ so a = a1∨...∨ak∨...∨an ∈ MAX(A) and

a’ = a1∨...∨ak’∨...∨an ∈ MAX(A). Now

PDOMDS(a1∨...∨an) = PDOMDS(a1)∨...∨PDOMDS(an) and PDOMDS(ak) = PDOMDS(ak’) so

PDOMDS(a1∨...∨ak∨...∨an) = PDOMDS(a1∨...∨ak’∨...∨an). However, ak ≠ ak’ so a1∨...∨ak∨...∨an ≠ a1

∨...∨ak’∨...∨an. Thus A ∉ Vdisplay.

Next, let t be an array t = (array [w] of r). In the proof of Prop. I.4 we saw that MAX(B’) has only

a single member for any B’ ∈ D(Fw), and hence B’ ∈ Vdisplay. Thus

t’ = r and A’ ∈ D(Fr). Pick G = {g} ∈ FIN(Hw), pick b, c ∈ MAX(A’) such that

PDOMDS(b) = PDOMDS(c) and b ≠ c, and define f ∈ (G→Hr) by

f(g) = Er
-1(D-1(A’)) (A’∈D(Fr) implies that D-1(A’) exists, and D-1(A’) ∈ Fr implies that

Er
-1(D-1(A’)) exists). If D(↓(⊥,...,g,...,⊥)) = ↓a then a ∈ MAX(D(Ew(g))) and so a∨b and a∨c are

members of MAX(D(Et(f))) (since MAPD(w)∩MAPD(SC(r))=φ). However,

PDOMDS(a∨b) = PDOMDS(a∨c) but a∨b ≠ a∨c. Thus A ∉ Vdisplay. n

83

Bibliography

Avila, R., Taosong H., Lichan H., A. Kaufman, H. Pfister, C. Silva, L. Sobierakski, and S. Wang, 1994;
VolVis: a diversified volume visualization system. Proc. IEEE Visualization ’94, 31-38.

Bancroft, G. V., F. J. Merrit, T. C. Plessel, P. G. Kelaita, R. K. McCabe, and A. Globus, 1990; FAST: a
multi-processed environment for visualization of computational fluid dynamics. Proc. IEEE Visualization
’90, 14-27.

Bertin, J., 1983; Semiology of Graphics. W. J. Berg, Jr. University of Wisconsin Press.

Beshers, C., and S. Feiner, 1992; Automated design of virtual worlds for visualizing multivariate relations.
Proc. Visualization ’92, IEEE. 283-290.

Bier, E. A., M. C. Stone, K. Pier, W. Buxton, and T. Rose, 1994; Toolglass and magic lenses: the see-
through interface. Proc. ACM Siggraph, 73-80.

Brittain, D. L., J. Aller, M. Wilson, S-L. C. Wang, 1990; Design of an end-user data visualization system.
Proc. IEEE Visualization ’90, 323-328.

Brodlie, K., A. Poon, H. Wright, L. Brankin, G. Banecki, and A. Gay, 1993; GRASPARC - a problem
solving environment integrating computation and visualization. Proc. IEEE Visualization ’93, 102-109.

Brown, M. H., and R. Sedgewick, 1984; A System for algorithm animation. Computer Graphics 18(3), 177-
186.

Chen, M., S. J. Mountford, and A. Sellen, 1988; A study in interactive 3-D rotation using 2-D control
devices. Computer Graphics 22(4), 121-129.

Corrie, B., and P. Mackerras, 1993; Data shaders. Proc. IEEE Visualization ’93, 275-282.

Davey, B. A., and H. A. Priestly, 1990; Introduction to Lattices and Order. Cambridge University Press.

DeFanti, T. A., M. D. Brown, and B. H. McCormick, 1989; Visualization: expanding scientific and
engineering research opportunities. IEEE Computer 22(8), 12-25.

Domik, G. O., and B. Gutkauf, 1994; User modeling for adaptive visualization systems. Proc. IEEE
Visualization ’94, 217-223.

Duff, T., 1992; Interval arithmetic and recursive subdivision for implicit functions and constructive solid
geometry. Computer Graphics 26(2), 131-138.

Foley, J. D., and A. Van Dam, 1982; Fundamentals of Interactive Computer Graphics. Addison-Wesley.

Gierz, G., K. H. Hofmann, K. Keimal, J. D. Lawson, M. Mislove and D. Scott, 1980; A Compendium of
Continuous Lattices. Springer-Verlag.

Globus, A., C. Levit, and T. Lasinski, 1991; A tool for visualizing the topology of three-dimensional vector
fields. Proc. IEEE Visualization ’91, 33-40.

Green, N., and M. Kass, 1994; Error-bounded antialiased rendering of complex environments. Proc. ACM
Siggraph, 59-66.

84

Gunter, C. A., and D. S. Scott, 1990; Semantic domains. In the Handbook of Theoretical Computer
Science, Vol. B., J. van Leeuwen ed., The MIT Press/Elsevier, 633-674.

Haber, R. B., B. Lucas and N. Collins, 1991; A data model for scientific visualization with provisions for
regular and irregular grids. Proc. Visualization 91. IEEE. 298-305.

Haberli, P., 1988; ConMan: A visual programming language for interactive graphics. Computer Graphics
22(4), 103-111.

Haeberli, P., and K. Akeley, 1990; The accumulation buffer: hardware support for high-quality rendering.
Computer Graphics 24(4), 309-318.

Haltiner, G. J., and R. T. Williams, 1980; Numerical prediction and dynamic meteorology, second edition.
John Wiley & Sons, p. 40.

Hanrahan, P., and J. Lawson, 1990; A language for shading and lighting calculations. Computer Graphics
24(4), 289-298.

Hansen, C. D., and P. Hinker, 1992; Massively parallel isosurface extraction. Proc. IEEE Visualization ’92,
77-81.

Helman, J. L., and L. Hesselink, 1990; Surface representations of two- and three-dimensional fluid flow
topology. Proc. IEEE Visualization ’90, 6-13.

Hibbard, W., 1986; Computer generated imagery for 4-D meteorological data. Bull. Amer. Met. Soc., 67,
1362-1369.

Hibbard, W., 1986; 4-D display of meteorological data. Proceedings, 1986 Workshop on Interactive 3D
Graphics. Chapel Hill, Siggraph, 23-36.

Hibbard, W., and D. Santek, 1989; Interactivity is the key. Chapel Hill Workshop on Volume
Visualization, University of North Carolina, Chapel Hill, 39-43.

Hibbard, W., and D. Santek, 1989; Visualizing large data sets in the earth sciences. IEEE Computer 22(8),
53-57.

Hibbard, W., L. Uccellini, D. Santek, and K. Brill, 1989; Application of the 4-D McIDAS to a model
diagnostic study of the Presidents’ Day cyclone. Bull. Amer. Met. Soc., 70(11), 1394-1403.

Hibbard, W., and D. Santek, 1990; The VIS-5D system for easy interactive visualization. Proc.
Visualization ’90, IEEE. 28-35.

Hibbard, W., D. Santek, and G. Tripoli, 1991; Interactive atmospheric data access via high speed networks.
Computer Networks and ISDN Systems, 22, 103-109.

Hibbard, W., C. R. Dyer, and B. E. Paul, 1992; Display of scientific data structures for algorithm
visualization. Proc. IEEE Visualization ’92, 139-146.

Hibbard. W. L., C. R. Dyer, and B. E. Paul, 1994; A lattice model for data display. Proc. IEEE
Visualization ’94, 310-317.

85

Hibbard, W. L., B. E. Paul, A. L. Battaiola, D. A. Santek, M-F. Voidrot-Martinez and C. R. Dyer, 1994;
Interactive Visualization of Computations in the Earth and Space Sciences. IEEE Computer 27(7), 65-72.

Hultquist, J. P. M., and E. L. Raible, 1992; SuperGlue: A programming environment for scientific
visualization. Proc. Visualization ’92, IEEE. 243-250.

Itoh, T., and K. Koyamada, 1994; Isosurface generation by using extrema graphs. Proc. IEEE Visualization
’94, 77-83.

Kass, M., 1992; CONDOR: constraint-based dataflow. Computer Graphics 26(2), 321-330.

Kochevar, P., Z. Ahmed, J. Shade, and C. Sharp, 1993; Bridging the gap between visualization and data
management: a simple visualization management system. Proc. IEEE Visualization ’93, 94-101.

Lang, U., R. Lang, and R. Ruhle, 1991; Integration of visualization and scientific calculation in a software
system. Proc. IEEE Visualization ’91, 268-273.

Lee, J. P., and G. G. Grinstein, 1994; Database Issues for Data Visualization. Proc. of IEEE Visualization
’93 Workshop. Springer-Verlag.

Levkowitz, H., 1991; Color icons: merging color and texture perception for integrated visualization of
multiple parameters. Proc. IEEE Visualization ’91, 164-170.

Lischinski, D., B. Smits and D. P. Greenberg, 1994; Bounds and error estimates for radiosity. Proc. ACM
Siggraph, 67-74.

Lohse, J., H. Rueter, K. Biolsi, and N. Walker, 1990; Classifying visual knowledge representations: a
foundation for visualization research. Proc. IEEE Visualization ’90, 131-138.

Lorensen, W., and H. Cline, 1987; Marching cubes: a high-resolution 3D surface construction algorithm.
Computer Graphics, 21(4), 163-170.

Lorenz, E. N., 1963; Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130-141.

Lucas, B., G. D. Abrams, N. S. Collins, D. A. Epstein, D. L. Gresh, and K. P. McAuliffe, 1992; An
architecture for a scientific visualization system. Proc. IEEE Visualization ’92, 107-114.

Mackinlay, J., 1986; Automating the design of graphical presentations of relational information. ACM
Transactions on Graphics, 5(2), 110-141.

Matveyev, S. V., 1994; Approximation of isosurface in the marching cube: ambiguity problem. Proc. IEEE
Visualization ’94, 288-292.

McConnell, C., and D. Lawton, 1988; IU software environments. Proc. IUW, 666-677.

McCormick, B.H., T.A. DeFanti and M.D. Brown, eds., 1987; Visualization in scientific computing.
Computer Graphics, 21(6).

Montani, C., R. Scateni, and R. Scopigno, 1994; Discretized marching cubes. Proc. IEEE Visualization ’94,
281-287.

Moore, R. E., 1966; Interval Analysis. Prentice Hall.

86

Nadas, T., and A. Fournier, 1987; GRAPE: An environment to build display processes. Computer Graphics
21(4), 103-111.

Nielson, G. M., and B. Hamann, 1991; The asymptotic decider: resolving the ambiguity in marching cubes.
Proc. IEEE Visualization ’91, 83-91.

Ning, P., and L. Hesselink, 1993; Fast volume rendering of compressed data. Proc. IEEE Visualization ’93,
11-18.

Perlin, K., and D. Fox, 1993; Pad: an alternative approach to the computer interface. Proc. ACM Siggraph,
57-64.

Potmesil, M., and E. Hoffert, 1987; FRAMES: Software tools for modeling, animation and rendering of 3D
scenes. Computer Graphics 21(4), 75-84.

Rabin, R. M., S. Stadler, P. J. Wetzel, D. J. Stensrud, and M. Gregory, 1990; Observed effects of landscape
variability on convective clouds. Bull. Amer. Meteor. Soc., 71, 272-280.

Ranjan, V., and A. Fournier, 1994; Volume models for volumetric data. IEEE Computer, 27(7), 28-36.

Rasure, J., D. Argiro, T. Sauer, and C. Williams, 1990; A visual language and software development
environment for image processing. International J. of Imaging Systems and Technology, Vol. 2, 183-199.

Read, R. L., D. S. Fussell and A. Silberschatz, 1993; Algorithms for the sandbag: an approach to imprecise
set representation. Technical Report TR-93-12, Department of Computer Sciences, University of Texas at
Austin.

Robertson, P. K., 1990; A methodology for scientific data visualization: choosing representations based on
a natural scene paradigm. Proc. IEEE Visualization ’90, 114-123.

Robertson, P. K., 1991; A methodology for choosing data representations. Computer Graphics and
Applications, 11(3), 56-67.

Robertson, P. K., R. A. Earnshaw, D. Thalman, M. Grave, J. Gallup and E. M. De Jong, 1994; Research
issues in the foundations of visualization. Computer Graphics and Applications 14(2), 73-76.

Rogowitz, B. E., and L. A. Treinish, 1993; An architecture for rule-based visualization. Proc. IEEE
Visualization ’93, 236-243.

Rolf, J., and J. Helman, 1994. IRIS Performer: a high performance multiprocessing toolkit for real-time 3D
graphics. Proc. ACM Siggraph, 381-394.

Sanders, W. T., R. J. Edgar, M. Juda, W. L. Kraushaar, D. McCammon, S. L. Snowden, J. Zhang, M. A.
Skinner, K. Jahoda, R. Kelley, A. Smalle, C. Stahle, and A. Szymkowiak, 1993; Preliminary results from
the Diffuse X-ray Spectrometer. EUV, X-ray, and Gamma-ray Instrumentation for Astronomy IV. SPIE,
Vol. 2006, 221-232.

Schmidt, D. A., 1986; Denotational Semantics. Wm.C.Brown.

Schroeder, W. J., W. E. Lorenson, G. D. Montanaro and C. R. Volpe, 1992; VISAGE: An object-oriented
scientific visualization system. Proc. Visualization ’92, IEEE. 219-226.

87

Scott, D. S., 1971; The lattice of flow diagrams. In Symposium on Semantics of Algorithmic Languages, E.
Engler. ed. Springer-Verlag, 311-366.

Scott, D. S., 1976; Data types as lattices. Siam J. Comput., 5(3), 522-587.

Scott, D. S., 1982; Lectures on a mathematical theory of computation, in: M. Broy and G. Schmidt, eds.,
Theoretical Foundations of Programming Methodology, NATO Advanced Study Institutes Series (Reidel,
Dordrecht, 1982) 145-292.

Segal, M., 1990; Using tolerances to guarantee valid polyhedral modeling results. Computer Graphics
24(4), 105-114.

Senay, H., and E. Ignatius, 1991; Compositional analysis and synthesis of scientific data visualization
techniques. In Scientific Visualization of Physical Phenomena, N. M. Patrikalakis, ed. Springer-Verlag,
269-281.

Senay, H., and E. Ignatius, 1994; A knowledge-based system for visualization design. Computer Graphics
and Applications, 14(6), 36-47.

Snyder, J. M., 1992; Interval Analysis for computer graphics. Computer Graphics 26(2), 121-130.

Springmeyer, R. R., M. M. Blattner, and N. L. Max, 1992; A characterization of the scientific data analysis
process. Proc. IEEE Visualization ’92, 235-242.

Treinish, L. A., 1991; SIGGRAPH ’90 workshop report: data structure and access software for scientific
visualization. Computer Graphics 25(2), 104-118.

Tuchman, A., D. Jablonowski, and G. Cybenko, 1991; Run-time visualization of program data. Proc. IEEE
Visualization ’91, 255-261.

Twiddy, R., J. Cavallo, and S. M. Shiri, 1994; Restorer: a visualization technique for handling missing data.
Proc. IEEE Visualization ’94, 212-216.

Upson, C., T. Faulhaber, Jr., D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz, A. van Dam,
1989; The application visualization system: A computational environment for scientific visualization.
Computer Graphics and Applications, 9(4), 30-42.

Wehrend, S., and C. Lewis, 1990; A problem-oriented classification of visualization techniques. Proc.
IEEE Visualization ’90, 139-143.

Williams, C, J. Rasure, and C. Hansen, 1992; The state of the art of visual languages for visualization.
Proc. IEEE Visualization ’92, 202-209.

Wyvill, G., McPheeters, C., and B. Wyvill, 1986; Data structures for soft objects. Visual Computer 2(4),
227-234.

