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Abstract

In this thesis we develop a system that makes scientific computations visible and enables physical
scientists to perform visual experiments with their computations. Our approach is unique in the way it
integrates visualization with a scientific programming language. Data objects of any user-defined data type
can be displayed, and can be displayed in any way that satisfies broad analytic conditions, without
requiring graphics expertise from the user. Furthermore, the systemis highly interactive.

In order to achieve generality in our architecture, we first analyze the nature of scientific data and
displays, and the visualization mappings between them. Scientific data and displays are usually
approximations to mathematical objects (i.e., variables, vectors and functions) and this provides a natural
way to define a mathematical lattice structure on data models and display models. Lattice-structured
models provide a basis for integrating certain forms of scientific metadata into the computational and
display semantics of data, and also provide arigorous interpretation of certain expressiveness conditions on
the visualization mapping from datato displays. Visualization mappings satisfying these expressiveness
conditions are lattice isomorphisms. Applied to the data types of a scientific programming language, this
implies that visualization mappings from data aggregates to display aggregates can always be decomposed
into mappings of data primitivesto display primitives.

These results provide very flexible data and display models, and provide the basis for flexible and

easy-to-use visualization of data objects occurring in scientific computations.
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Chapter 1

| ntroduction

Physical scientists observe nature, formulate laws to fit the observations, and predict future
observationsin order to test their laws. Mathematics is the language of observations, laws and predictions,
but the complexity of modern science demands that mathematical calculations be automated using
computers. The number of observations of nature dictates that they are analyzed by computer algorithms,
and the number of computations required to predict nature dictates that predictions are made by numerical
simulation models running on computers. Thus computers have become essential tools for scientists for
both observing and simulating nature.

In spite of their essential role, computers are also barriers to scientific understanding. Unlike hand
calculations, automated computations are invisible, and, because of the enormous numbers of individual
operations in automated computations, the relation between an algorithm’s input and output is often not
intuitive. This problem was discussed in areport to the National Science Foundation (McCormack,
DeFanti and Brown, 1987) and isillustrated by the behavior of meteorologists responsible for forecasting
weather. Evenin thisage of computers, many meteorol ogists manually plot weather observations on maps
and then draw iso-level curves of temperature, pressure and other fields by hand (specia pads of maps are
printed for just this purpose). Similarly, radiologists use computers to collect medical data, but are
notorioudly reluctant to apply image processing algorithms to those data. To these scientists with life and
death responsibilities, computer algorithms are black boxes that increase rather than reduce risk.

The barrier between scientists and their computations is being bridged by scientific visualization
techniques that make computations visible. Scientific visualization isitself a computational process that
transforms the data objects of scientific computationsinto visible images on a computer display screen.

Scientific visualization is difficult because of the variety and complexity of scientific data, because the
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variety of scientific problemsimplies that scientists need to see the same datain many different ways, and
because scientists need tools that are easy to use so that they can concentrate on understanding their
computations rather than understanding their visualization tools.

The size of scientific data setsis often used to justify the development of scientific visualization,
and it istrue that scientists need to be able to see large data sets. However, the more important motive for
visualization is the invisibility of automated computations. To see this, consider the volumes of satellite
images of the Earth. A pair of GOES (Geostationary Operation Environmental Satellite) located at East
and West stations over the U.S. generate one 1024 by 1024 image every four seconds. NASA's Earth
Observing System, as planned, will generate about five 1024 by 1024 images per second. These data
volumes are so large that they will overwhelm any scientist trying to look at them all. Furthermore, these
images are quantitative measurements rather than just pictures. The real value of these images must be
extracted by automated computations that can process the images faster than a person can coherently look
at them. Thusthe work of Earth scientistsisto develop algorithms for this automated processing, and the
proper role of visualization is helping scientists to understand how their algorithms work and how to

improve them.
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1.1 Goalsfor Scientific Visualization

Scientific data exist in awide variety of structures. A few examplesinclude two-dimensiona

images:

type image = array [row] of array [column] of radiance;

three-dimensional grids:

type grid = array [row] of array [column] of array [level] of temperature;

time sequences of images and grids:

type image_sequence = array [time] of image;

type grid_sequence = array [time] of grid;

images and grids with multiple values per pixel:

type multi_image = array [row] of array [column] of

structure {ir_radiance; vis _radiance};

type multi_grid = array [row] of array [column] of array [level] of

structure { pressure; temperature; humidity} ;

irregularly located data such as observations made by ships or aircraft:

type observations = array [index] of structure {latitude; longitude; altitude; pressure} ;
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one-dimensional and multi-dimensional histograms derived from other data:

type histogram_1d = array [temperature] of count;

type histogram_2d = array [temperature] of array [pressure] of count;

and partitions of images and grids into spatial regions:

type image _partition = array [region] of image;

type grid_partition = array [region] of grid;

Furthermore, physical systems are observed by collections of instruments so the observed state of a
physical system isacomplex combination of data sensed by different types of instruments. Similarly,
simulations generate complex combinations of data describing interacting physical systems (e.g.,
atmospheric physics and chemistry, ocean physics and chemistry, and land and ocean surface processes).
Scientific data are made more complex because of scientists' need to precisely document where, when and
how they were obtained (this documentation is a form of metadata, and must be considered as part of

scientific data). Thefirst goal of thisthesisisto develop visualization techniques that

1. Can be applied to the data of a wide variety of scientific applications.

Scientists need to see the same data displayed in different ways, depending on what kinds of

information they are looking at. For example, Figure 1.1 shows a time sequence of multi-variate image

data displayed in four different ways. The upper-left window shows radiance values as colors, which is

appropriate for seeing spatial patterns and textures. The upper-right window shows infrared radiances as a
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terrain (colored by visible radiances), appropriate for seeing slopes. The time sequence can be animated in
the upper-right and upper-left windows, which is appropriate for seeing motion. Alternatively, the time
sequence is stacked up aong the vertical axisin the lower-right window, which is appropriate for looking
closely at rates of motion and changes in shape and intensity. Information about the spatial locations of
pixelsis not shown in the lower-left window, producing a colored three-dimensional scatter diagram which
is appropriate for seeing correlations among infrared radiance, visible radiance, variance and texture
(variance and texture are derived from infrared radiance). Each of the four views presented in Figure 1.1 is
appropriate for seeing a different aspect of the same data. More generaly, the primary reason scientists use
scientific visualization isto find unexpected patterns in data, since expected patterns can just be measured
and characterized by statistical calculations applied to data. And flexibility in the ways that data are
displayed is critical in the search for unexpected patterns. Thus the second goal of thisthesisisto develop

visualization techniques that

2. Can produce awide variety of different visualizations of data appropriate for different needs.
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Figure 1.1. A time sequence of multi-variate image data displayed in four different ways. (color

original)
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Because of the large volumes of scientific data it is often impossible to display adata object in a
single image or even a single animation sequence. Instead, scientists need to interactively explore large
data objects. For example, Figure 1.2 shows a snapshot of an interactive animated display of the output of
anumerical weather model. The white object is aballoon seven kilometers high in the shape of a squat
chimney that floats in the air above a patch of tropical ocean. The purpose of the numerical simulation isto
verify that, once air startsrising in the chimney, the motion will be self-sustaining and create a perpetual
rainstorm. The vertical color slice shows the distribution of heat (and when animated shows the flow of
heat), the yellow streamers show the corresponding flow of air up through the chimney, and the blue iso-
surface shows the precipitated cloud ice (a cloud water iso-surface would obscure the view down the
chimney, so it is not shown in this snapshot). Viewers of this visuaization can interactively move the color
dicein the three-dimensional box of atmosphere, can interactively release new streamersin the air flow,
can interactively change the value of the cloud ice iso-surface, and can rotate and zoom the box in three
dimensions. They can choose different combinations of fieldsto display, and can choose the ways that
each field is depicted (e.g., color dice, iso-surface, contour slice). Such interactivity is critical for allowing
scientists to search through large
amounts of data for unexpected patterns. Hence, the third goal of thisthesisisto develop visualization

techniques that

3. Enable usersto interactively alter the ways data are viewed.
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Figure 1.2. A snapshot of an interactive animated display of the output of a numerical weather

model. (color original)
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Because visualization is used for communicating results of observations and computationsto
scientists, they need to be able to control it themselves (that is, they cannot delegate expertise with
visualization to support staff). In order not to distract scientists from the difficult task of understanding
data, visualization must be easy to control. Thusthe fourth goa of thisthesisisto develop visuaization

techniques that

4. Require minimal effort by scientists.

As stated at the start of this section, the rationale for visualization is scientists' need to see the
results of computations. Thus visualization is intimately connected with computation. Just asthe
complexity of data requires that the visualization process should be interactive, the complexity of
computation requires that the overall computational process, which includes visualization, should be
interactive. Figure 1.3 illustrates the interactive cycle of the computation process. If these three activities
are done in separate software systems, then scientists must repeatedly switch between systems and manage
the movement of information between these systems. This user overhead can be reduced by integrating all
three activities in one system. Furthermore, visualization can be especially useful during program
execution, allowing users to dynamically monitor intermediate results of computations and respond by
immediately adjusting parameters of those computations. Thisis sometimes called computational steering.

Thefifth goal of thisthesisisto develop visualization techniques that

5. Can be integrated with a scientific programming environment.
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Run Computation

Visualize Results

Change Algorithm or
Computational Parameters

Figure 1.3. The place of visualization in the computational process.

1.2 State of the Art in Scientific Visualization
Here we consider the state of the art in scientific visualization and how well current techniques

achieve our goals.

1.2.1 The Data Flow and Object-Oriented Approaches

Visualization research has focused primarily on developing specialized visualization techniques
suited to specific types of data. However, some research has sought common patterns in the ways that
displays are computed. For example, the rendering pipeline is awidely applicable abstraction for the ways

that data are transformed into displays. Figure 1.4 illustrates a simple rendering pipeline:
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Generate 3-D Primitives from Data

Transform Coordinates to 3-D View Space

Clip 3-D Primitives to View Boundaries

Rasterize 3-D Primitives to 2-D Pixels

Remove Hidden Surfaces via Z-Buffer

Calculate Colors of Pixels on Screen

Figure 1.4. A simple rendering pipeline for three-dimensional graphics.

The FRAMES system abstracted the rendering pipeline to let users specify display processes as
sequences of UNIX filters (Potmesil and Hoffert, 1987). The GRAPE system introduced branching into
these data transformations and let users define display processes as acyclic graphs of modules (Nadas and
Fournier, 1987). The ConMan system provided agraphical user interface for specifying display processes
as networks of modules (Haeberli, 1988). This idea has been adopted as the basis of several widely-used
data flow visualization systems, such as AVS (Upson et al., 1989) and Khoros (Rasure et al., 1990). These
data flow systems provide large libraries of modules that implement basic computational and display
operations, and also provide graphical user interfaces for synthesizing complex visualization agorithms
from these module libraries.

The recognition that different kinds of displays are generated by similar sets of operations also led

to the object-oriented approach to synthesizing visualization mappings. The object-oriented approach uses
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inheritance and polymorphism to exploit the common properties and natural hierarchy of data displays.
The Powervision system, for example, used an object-oriented language to support interactive development
of image processing agorithms (McConnell and Lawton, 1988). The system defined a set of primitive
generic functions for accessing data objects (for example, for iterating over parts of objects, for checking
boundary conditions, etc.). Algorithms for synthesizing displays were expressed in terms of these generic
functions. As users defined new object classes they could apply existing display algorithms to those
classes as long as the new classes included definitions for the generic functions for accessing data objects.

The SuperGlue system was developed as a programming environment for developing scientific
visualization applications based on Scheme, C and the GNU Emacs editor (Hultquist and Raible, 1992). It
defined a class hierarchy for various types of scientific data objects and displays. User extensionsto this
class hierarchy could take advantage of inheritance and polymorphism to simplify their definition.

The VISAGE system implemented a hierarchy of over 500 classes for both process objects and
data objects (Schroeder, Lorenson, Mantanaro and Volpe, 1992). The process objects implemented the
visualization process as data flow networks of simpler processes. The data objects implemented a variety
of scientific data organizations and a variety of display organizations.

While these systems have been useful to scientists, their approach to generality is through the
enumeration of datatypes and the enumeration of display techniques. Thus these systems have become
very large and complex. Furthermore, scientists must spend considerable effort to produce visualizations
using these systems. While scientists could explore different ways of displaying data by interactively
changing the data flow networks that transform data into displays, in practice they do not. Rather, support
staff design data flow networks and scientists use them to generate fixed types of displays from data.
Similarly for the object-oriented systems. The developers of the VISAGE system described one
visualization application of their system that required 12,000 lines of code specific to the application.
Scientists need visualization techniques that Iet them change the way that they look at data without

understanding complex programs or data flow networks.
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1.2.2 Data M odels

Rather than approaching generality by enumerating data types and display techniques, we can
achieve generality through the abstraction of dataand displays. That is, by developing broadly applicable
abstract models of scientific data and displays, we can systematically study the ways that visualization
processes transform data into displays. A data model defines a set of data objects, the way data objects are
organized in the set, and operations on the data objects (often by reference to their internal structures).
Data models have been the subject of several recent workshops and publications (Treinish, 1991; Haber,
1991; Robertson et al., 1994, Lee and Grinstein, 1994). Display models are similar to data models and are
discussed in the next section.

The requirements for a scientific data model can be understood in terms of the role of datain
science. Scientists design mathematical models of nature. These modelsidentify numerical variables (e.g.,
time, altitude, temperature) and functional relations between these variables (e.g., temperature as a
function of time). These models define the states of nature as vectors of variables and functions. For
example, the state of a point in the atmosphere is a vector of variables such as temperature, pressure,
humidity and wind velocity, and the state of the entire atmosphere is a vector of functions. We use the term
mathematical objects to denote the numbers, functions and vectors of mathematical models. When
scientists want to use their mathematical models to analyze a set of observations, or to simulate a physical
system, they implement their models as computer programs. Mathematical objects are represented by
scientific data objects in these implementations, and therefore a scientific data model should reflect the
ways that scientific data objects represent mathematical objects. There are many ways to define scientific

data models. However, any scientific data model will incorporate the following components:

1. The types of primitive values occurring in data objects. These represent primitive variables defined

in mathematical models of nature. Thus a data model may define a floating-point type to represent
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real variables such as time and temperature, may define an integer type to represent integer
variables such as an event_count, and may define a string type to represent names such as city or
state names. A rigorous data model specifies the relations and operations defined on val ues of
primitive types. The definition of atype of primitive value may include arithmetical operations,

string operations, an order relation, a metric or atopology.

2. The ways that primitive values are aggregated into data objects. These aggregates represent complex
mathematical objects, such as vectors, functions, vectors of functions, and so on. Therearea
variety of approaches to defining data aggregates. In the C programming language, vectors can be
represented by structures, functions can be represented by arrays, and pointers can be used to
define complex networks of values. Most programming languages provide afew simple data
structuring rules that can be combined to define awide variety of data aggregates. On the other
hand, most scientific analysis and visualization systems support specific types of aggregates based
on particular application needs. These may include two-dimensional images (as generated by
satellites and other observing systems), three-dimensional grids (as generated by numerical
simulations and some observing systems), and vector and polygon lists (generated by applying

visualization operators to images and grids, and by map makers).

3. Metadata about the relation between data and the physical things they represent. For example, given
ameteorological temperature value, metadata includes the fact that it is atemperature, its scale
(Fahrenheit, Kelvin, etc.), its spatial and temporal location in the Earth's atmosphere, and whether it
isapoint sample or an average over space and time. Temperature values have limited accuracy,
whether sensed by an instrument or computed by a weather model, and an estimate of accuracy is
another form of metadata. Because instruments and observing systems are fallible, an expected data

value may not be defined at all, so missing dataindicators are aform of metadata. |f atemperature
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is observed by an instrument, there may be metadata about the instrument (for example, aperture,
pointing direction, filters, etc.). If atemperature is computed from other values, there may be

metadata about the algorithm used to compute it and the source of the algorithm’s inputs.

The term metadata has several different meanings. It is sometimes denotes information about the
organization of data, in which case it may be called syntactic metadata. Here it denotes information about
the meaning of data, and may be called semantic metadata. We can think of metadata as secondary data
that are critical to the usefulness of primary data. For example, while a satellite image may primarily
consist of an array of pixel radiance values, those data are scientifically useless without other arrays that

specify the Earth locations of pixels, how pixel values correspond to physical radiances, and so on.

1.2.3 Display M odels

Just as we can define systematic models of scientific data, we can define systematic models of
scientific displays. In particular, it is useful to note that computer programs generate displays in the form
of dataobjects. Bertin's detailed display model, first published in 1967, illustrates how a display model
addresses the issues of primitives and aggregates (Bertin, 1983). Bertin defined adisplay as an aggregate
of graphical marks, and identified eight primitive variables of a graphical mark: two spatial coordinates of
the mark in agraphical plane (he restricted his attention to static two-dimensional graphics), plusthe
mark’s size, value, texture, color, orientation, and shape. Bertin defined diagrams, networks and maps as

spatial aggregates of graphical marks. Figure 1.5 illustrates Bertin's display model.

108



109

graphical marks are characterized
N < by their two spatial coordinates and
I by six other primitive variables:
B <
. (size, value, texture, color, orientation, shape)

%/

A two-dimensional region filled with graphical marks

Figure 1.5. Bertin’s display model. He modeled displays as sets of graphical marks in a two-

dimensional spatial region.

Bertin's display model was limited to static two-dimensional displays. This corresponds to what
can be physically displayed on atwo-dimensional screen at one time. However, computer-generated
displays generate the illusion of three dimensions and show motion by changing screen contents at short
intervals. We can even regard various forms of user interaction as an integral part of the display. Thuswe
distinguish between physical and logical display models. We let V' denote the set of physical displays,
which are two-dimensional and static, and we let V denote the set of logical displays, which are
three-dimensional, animated and interactive. The mapping RENDER : V - V' includes traditional graphics
operations such as iso-surface generation, volume rendering, projection from three to two dimensions
(rotate, zoom and trandate), clipping, hidden-surface removal, shading, compositing, and animation (these
operations could be implemented in a rendering pipeline, asillustrated in Figure 1.4). A changing set of
mappings, RENDER : V - V', expresses the three-dimensional, animated, interactive nature of logical

displaysin V.
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Visualization is a process that maps data objectsto displays. Welet U’ denote a set of
mathematical objects, and we let U denote a set of data objects used to represent them. Then the overall
visualization process may be viewed as a sequence of mappings
U - U - V5 V. Themapping from U’ to U expresses the way that scientists implement their
mathematics on computers, and the mapping from V to V' is the generally well understood physical display
generation process (Foley and Van Dam, 1982; Lorensen and Cline, 1987). Thus we will concentrate our
interest on the mapping D : U — V. Inorder to optimize the generality of visualization techniques to
different scientific applications, we seek scientific data models U whose primitive values are defined in
terms of abstract mathematical properties, whose aggregates are constructed using afew simple rules that
can be combined in complex ways, and that integrate a variety of metadata. We also seek display models V
that are abstract and that include interactive displays.

While the proper abstractions for U and V are necessary for display techniques that are flexible
and easy to use, the proper abstraction for the mapping D is also necessary. In the next section we describe

efforts to automate the choice of this mapping.

1.2.4 Automating the Design of Data Displays

Asdescribed in Section 1.2.1, the object-oriented and data flow approaches define natural
methodologies for designing programs (or data flow diagrams) for transforming data into displays, but they
till require considerable programming effort from their users. In response to scientists' need for
visualization techniques that are easy to use, there have been a variety of efforts to automate the design of
algorithms for producing data displays. Thisgoal is often called automating the design of data displays,
since the research focuses on automating the choice among the many different ways of displaying the same
data

Mackinlay sought to automate the design of displays for data from relational database systems

(Mackinlay, 1986). His technique combined arelational data model with Bertin's display model. A

110



111

relation isaset of tuples of values. Sets of primitive values called domains are defined for each position in
arelation’stuples. Mackinlay classified domains as nominal (without an order relation), ordinal (with an
order relation but without a metric or arithmetical operations) or quantitative (with a metric and
arithmetical operations). These primitive values are aggregated into sets of tuplesto form relations.
Mackinlay’s data model also allowed functional dependencies to be defined between the domains of a
relation (these are restrictions on the sets of tuples that may form relations).

Mackinlay modeled displays as sentencesin a graphical language. Sentences were sets of 2-
tuples, where each tuple pairs a graphical mark with atwo-dimensional screen location. He also attached
attributes to graphical marks for specifying their size, color, orientation, etc. The values of these attributes
are similar to the primitive values Bertin used for graphical marks. Thus, in Mackinlay's model a display
could be interpreted as a set of tuples, where each tuple contains two screen coordinates and the values of
the various attributes of a graphical mark.

Mackinlay defined expressiveness and effectiveness criteria for the mapping from data relationsto

display sentences. The expressiveness criteriarequire that a display sentence:

1. Encodes dl the factsin aset (that is, the set of facts about a datarelation), and

2. Encodes only the factsin a set.

The effectiveness criteria provide a way to choose between different display sentences that satisfy the
expressiveness criteria. For example, an effectiveness criterion may specify that quantitative information is
easier to perceive when encoded as spatial position rather than as color. Mackinlay also solicited
visualization goals from the user. Effectiveness criteriaand visualization goals were expressed formally in
terms of predicates and functions applied to relational data and display sentences. These were used as the

basis for a backtracking search for an optimal display.
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Mackinlay’s display model was static and two-dimensional and therefore too limiting for scientific
visualization. Furthermore, while the relational model can, in theory, be used for scientific data, it does not
naturally fit the ways that scientific data are aggregated. Robertson (Robertson, 1991), Senay and Ignatius
(Senay and Ignatius, 1991; Senay and Ignatius, 1994), and Beshers and Feiner (Beshers and Feiner, 1992)
all sought automated techniques for designing displays for scientific data.

Robertson’s data model classified primitive values as either nominal or ordinal. Nominal values
were further classified as single or multiple valued (that is, sets of values) and ordinal values were
classified as discrete or continuous (thisis a classification of the topology of primitive value sets).
Primitive values were aggregated as distributions over an n-dimensional space. Robertson modeled
displays as two-dimensional and three-dimensional surfaces and their attributes (for example, color and
texture). His methodology solicited a set of visualization goals from the user, in terms of the scales of the
user'sinterest (that is, point, local or global) in different variables, and in terms of the user'sinterest in
correlations between various pairs of variables. Data displays were generated by matching data attributes
and relations to display attributes and relations, according to the user’s visualization goals.

Senay and Ignatius' data model classified primitive values as qualitative or quantitative, and
aggregated primitive values as functional dependencies between variables. Their data model included
metadata for coordinate systems and data sampling. Senay and Ignatius modeled displays using Bertin's
graphical marks, and using specific aggregates of marks (for example, icons and iso-surfaces). These were
further classified as to whether they encoded a single variable or multiple variables. Displays were
generated by applying production rules for matching data characteristics with display characteristics.

Beshers and Feiner’s data model consisted of functions from one set of real variablesto another.
Their display model sought to overcome the limitation to three spatial axes by embedding small spatial
coordinate systems (that is, small sets of graphical axes) within larger spatial coordinate systems. Their

display model formalized interactive exploration of data by allowing the user to move small coordinate
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systems around within larger coordinate systems. Their technique searched through a large set of possible
designs, evaluating them based on a set of user-defined visualization tasks.

While all of these efforts sought to automate the design of displays, their display models were
limited to specific types of displays and they enumerated specific display techniques as the search spaces
for their automated techniques. That is, their focus was to automate the user’s task of choosing among
enumerated sets of visualization techniques. In the next section we describe an aternative approach that
defines certain general analytic conditions on the mapping from data to displays, and then derives
visualization mappings that satisfy those conditions.

In each of the previous automated approaches described above, displays were designed based on
information about visualization goals provided by the user. Obviously, some form of user input is
necessary for users to be able to control display design. However, user interface issues are notoriously
complex and it is not obvious that an encoding or parameterization of visualization goalsis the most
effective way for usersto control visualization systems. It may be most effective to allow users to make
their own trandlation from their goals to some other form of controls over visualization. In particular, an
interactive system that lets users experiment with various ways of displaying their data may be more
effective than an automated system. An interactive system enables users to experiment with small changes
to their display controls and to see the effect of those changes on the way that their data are displayed.

Such experimentation is also often the fastest way for scientiststo learn how a visualization system works.

1.3Major Contributions

The main contributions of this thesis can be summarized as follows:

1. Development of a system for scientific visualization that enables a wide variety of visual experiments

with scientific computations. This system integrates visualization with a scientific programming

language that can be used to express scientific computations. This programming language supports
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awide variety of scientific data types and integrates common forms of scientific metadata into the
computational and display semantics of data. Any data object defined in a program in this language
can be visualized in awide variety of ways during and after program execution. The controls for
data display are simple and independent of datatype. Displays are controlled by a set of simple
mappings rather than program logic. These mappings are independent of data type and separate
from a user’s scientific programs, which is a clear distinction from previous visualization systems
that require scientists to embed calls to visualization functions in their programs. Furthermore,
computation and visualization are highly interactive. In particular, the selection of data objects for
display and the controls for how they are displayed are treated like any other interactive display
control (e.g., interactive rotation). Previous visualization systems require a user to alter his program
in order to make such changes. The generality, integration, interactivity and ease-of-use of this

system al enhance the user’s ability to perform visual experiments with their algorithms.

. Introduction of a systematic approach to analyzing visualization based on lattices. We define a set
U of dataobjectsand a set V of displays and show how alattice structure on U and V expresses a
fundamental property of scientific data and displays (namely that they are approximations to the
physical world). The visualization repertoire of a system can be defined as a set of mappings of the
form D: U - V. Itiscommon to define a system’s visualization repertoire by enumerating such a
set of functions. However, an enumerated repertoire is justified only by the tastes and experience of
the people who decide what functionsto include in the set. In contrast, we interpret certain well-
known expressiveness conditions on the visualization mapping D : U - Vintermsof alattice
structure, and define a visualization repertoire as the set of functions that satisfy those conditions.
Such arepertoireisjustified by the generality of the expressiveness conditions. We show that

visualization mappings satisfy these conditionsif and only if they are lattice isomorphisms. Lattice
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structures can be defined for awide variety of data and display models, so thisresult can be applied

to analyze visualization repertoiresin awide variety of situations.

3. Demonstration of a specific lattice structure that unifies data objects of many different scientific
typesin adata model U, and demonstration that the same lattice structure can express interactive,
animated, three-dimensional displaysin adisplay model V. These models integrate certain kinds of
scientific metadata into the computational and display semantics of data. In the context of these
scientific data and display models, we show that the expressiveness conditions imply that mappings
of data aggregates to display aggregates can always be factored into mappings of data primitivesto
display primitives. We show that our display mappings are complete, in the sense that we

characterize all mappings satisfying the expressiveness conditions.

1.4 Thesis Outline

Therest of thisthesisis organized as follows. In Chapter 2 we describe the architecture of a
system for scientific visualization based on the goals described in Section 1.1. Asdescribed in Section 1.2,
current visualization systems approach the goals for flexibility by enumerating different data types and
different types of displays. In Chapter 3 we develop an aternate approach to flexibility based on defining
very general conditions on the mapping from data to displays, and we analyze the repertoire of functions
that satisfy those conditions. We summarize the results of this analysisin terms of a set of principles for
visualization. In Chapter 4 we continue the presentation of our visualization system architecture based on
those principles. In Chapter 5 we discuss how the analysis of Chapter 3 might be extended to data and
display models appropriate for general programming languages. Chapter 6 summarizes the conclusions of

this thesis.

Chapter 2
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System Design for Visualizing Scientific Computations

In Section 1.1 we defined five broad goals for scientific visualization. Specifically, we seek

visualization techniques that
1. Can be applied to the data of a wide variety of scientific applications.
2. Can produce awide variety of different visualizations of data appropriate for different needs.
3. Enable usersto interactively alter the ways data are viewed.
4. Require minimal effort by scientists.
5. Can be integrated with a scientific programming environment.

In this chapter we develop a system architecture for visualizing scientific computations based on
these goals. Thisarchitectureisimplemented in asystem called VisAD (Visualization for Algorithm
Development).

2.1 A Scientific Computing Environment

The purpose of scientific visualization isto make invisible computations visible. Thus, for

example, Figure 1.2 isavisuaization of asimulation of the Earth's atmosphere. Thisimage includes

depictions of heat (the red and green vertical dice), air flow (the yellow ribbons), precipitated cloud ice

(the blue-green iso-surface), and a chimney-shaped balloon (the white object) floating over a patch of
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tropical ocean (the blue square). Thisimage shows just one instant from the sequence of changing
atmospheric states produced by the simulation. The total volume of data produced by this ssmulation is
enormous, and would be impossible to understand without such visualizations.

In order to make such complex computations visible, our fifth goal was to develop visualization
techniques that " Can be integrated with a scientific programming environment." Our design meetsthis
goa by including a scientific programming language as part of the visualization system. Thisgoa could
be met in other ways, for example by providing alibrary of functions for displaying data that is callable
from common scientific programming languages. However, the size and complexity of scientific
computations and data motivated our third goal that visualization techniques "Enable usersto interactively
alter the ways data are viewed." In particular we noted in Section 1.1 that the user feedback cycle
illustrated in Figure 2.1 may be applied interactively to running computations. This argues for a system
architecture that can flexibly and intimately integrate the user interfaces for programming, computation and
display. This can best be achieved by integrating a scientific programming language with a visualization

system.

Run Computation

Visualize Results

Change Algorithm or
Computational Parameters
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Figure 2.1 The place of visualization in the computational process (this is a copy of Figure 1.3).

Robert Aune's simulation of atwo-dimensional shallow fluid (Haltiner and Williams, 1980)
illustrates how the integration of visualization with a programming language enabl es the feedback loop in
Figure 2.1 to be applied to running computations. The VisAD implementation of the shallow fluid model

is described by the following pseudo-code:
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loop over model time steps {
/* get the user’'s interactive controls of the model */

parameterl = dider("namel”, lowl, highl, defaultl);

parameterN = slider("nameN", lowN, highN, defaultN);
/* compute the next state of the model */

new = shalstep(oldest, old, parameterl, ..., parameterN);
oldest = old; /* save previous model state */

old = new;

} /* end of loop for simulation time steps */

Figure 2.2 shows a screen snapshot of the VisAD system running this program. The system
generates the icons seen in the lower-left corner of the screen based on the callsto the dider function. As
the program runs, the user is free to set values on these icons, which are returned by the calls to the slider
function. These values are passed to the Fortran function shalstep, which computes a new fluid state from
the states for the previous two time steps. The window in the lower-right corner of the screenisa
visualization of the current state of the simulated fluid. Together, dider icons and this visualization enable

the user feedback loop illustrated in Figure 2.1 to be applied to the running shallow fluid simulation.
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Figure 2.2. A snapshot of an executing shallow fluid simulation model. Part of a VisAD program
is seen in the text window on the left, slider icons used to interact with the simulation are seen in

the lower-left, and a visualization of the data object new is seen in the lower-right window. (color

original)
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Figure 2.2 also illustrates the integration of user interfaces for programming, computation and
display. The white window on the |eft side of the screen contains the text of the fluid simulation program.
The long dark horizontal bar highlights the program statement currently being executed, and the short dark
horizontal bars highlight occurrences of the name of the data object being displayed (in this case, the name
isnew). The user selects data objects for display by picking their namesin this text window (i.e., pointing
and clicking at their names with the mouse). The user similarly sets program execution breakpoints by
picking program statements in this window.

Our visualization system design provides an interactive interpreted language in order to let
scientists perform visual experiments with their algorithms and computations. However, an interpreted
language is relatively inefficient. Furthermore, scientists may already have large amounts of software
written in Fortran and C. Thus the VisAD system supports dynamic linking between its interpreted
language and these common compiled languages.

We considered a visual programming language for our system, similar to those used in data flow
visualization systems. Such languages provide a graphical user interface for designing the data and control
flow of programs. However, we chose atext based user interface for an interpreted language becauseit is
more familiar to scientists and can express large and complex algorithms more compactly. Our choiceis
supported by the relative popularity of the IDL (Interactive Data Language) system among physical
scientists, compared to the data flow visualization systems. In fact, if the source code of the IDL system
was freely available we would have strongly considered using it as the scientific programming environment
integrated for the VisAD system.

One powerful effect of integrating visualization with a scientific programming language is the
ability to visually trace computations by watching displays of many different data objects. If an algorithm
is not producing correct results, such integration allows users to step through their computations, visually
comparing the inputs and outputs of short segments of codein order to find abug. This capability requires

that visualization be applied to any selected data object occurring in a program, and thus provides
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additional motivation for our first goal that scientific visualization techniques " Can be applied to the data

of awide variety of scientific applications." Thusin the next section we study the nature of scientific data

2.2 Scientific Data

Physical scientists formulate mathematical models of nature to simulate complex events and to
analyze observations. Models of the Earth's atmosphere and oceans provide one good class of examples.
Temperatures, pressures, latitudes, altitudes and times are expressed as numbers. The primitive elements
of mathematical models are numerical variables used to represent such physical quantities. These primitive
variables are then combined in various ways to build the complex objects of mathematical models. For

example, the state of ainfinitesimal parcel of air may be described by the vector:

parcel = {temperature, pressure, water-concentration,

wind-vel ocity-x, wind-vel ocity-y, wind-vel ocity-z}

The values of temperature and other primitive variables vary over space, and may be described by the

functions:

temperature = temperature-field(latitude, longitude, altitude)

pressure = pressure-field(latitude, longitude, altitude)

water-concentration = water-concentration-field(latitude, longitude, altitude)
wind-vel ocity-x = wind-vel ocity-x-field(latitude, longitude, altitude)

wind-vel ocity-y = wind-vel ocity-y-field(latitude, longitude, altitude)

wind-vel ocity-z = wind-vel ocity-z-field(latitude, longitude, altitude)

The state of the atmosphere may be described by the vector of functions:
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State = {temperature-field(latitude, longitude, altitude),
pressure-field(latitude, longitude, altitude),
water-concentration-field(latitude, longitude, altitude),
wind-vel ocity-x-field(latitude, longitude, altitude),
wind-velocity-y-field(latitude, longitude, altitude),

wind-velocity-z-field(latitude, longitude, altitude)}

Finally, the state of the atmosphere varies over time, and a history of the atmosphere may be described by

the function:

state = state-history(time)

We refer to these mathematical variables, vectors and functions as mathematical objects. The dynamics of
the Earth’'s atmosphere may be modeled by sets of (partial differential) equations involving these
mathematical objects, and, in general, physical scientists’ mathematical models are expressed in terms of
such mathematical objects.

Recording and analyzing actual observations and predicting actual events require implementations
of mathematical models by hand or automated computations. Whereas mathematical models include
infinite precision real numbers and functions with infinite domains, computer memories are finite. Thus
computer implementations of mathematical models are approximations. For example, real numbers are
usually approximated by floating point numbers, and functions are usually approximated by finite arrays.
That is, valuesin the infinite set of real numbers are commonly approximated by values taken from afinite
set of roughly 2~ 32 values between -10 ~ 38 and +10 ~ 38 (the set of 32-bit floating point values) and the

infinite sets of values of functions are commonly approximated by finite subsets of those values (for
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example, atmospheric models usually define discrete values for temperature, pressure and other state
variables at finite grids of locations within the atmosphere).

Thus we interpret data objects as representing mathematical objects. There are avariety of
mathematical types (for example, primitive variables, vectors, functions, vectors of functions, and so on) so
we define a variety of types of data objects appropriate for representing mathematical objects. Specificaly,
we define primitive data types for representing primitive mathematical variables - these could be integer or
floating point types. We define vector types for representing mathematical vectors - these are called
records, structures or tuplesin different programming languages. We define array types for representing
mathematical functions - these are finite sets of samples of function values. We use these as the data types
of the scientific programming language that is integrated with our visualization system.

As an example, we define the following data types for representing the mathematical types
defined earlier. These types could be used for an implementation of an atmospheric model in the VisAD

programming language.
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type temperature = real;

type pressure = real;

type water-concentration = real;
type wind-velocity-x = real;

type wind-velocity-y = real;

type wind-velocity-z = real;

type parcel = structure{ temperature; pressure; water-concentration;

wind-vel ocity-x; wind-velocity-y; wind-velocity-z}

type latitude = redl;
type longitude = redl;

type altitude = redl;

type temperature-field =

array [latitude] of array [longitude] of array [altitude] of temperature;
type pressure-field =

array [latitude] of array [longitude] of array [altitude] of pressure;
type water-concentration-field =

array [latitude] of array [longitude] of array [altitude] of water-concentration;
type wind-velocity-x-field =

array [latitude] of array [longitude] of array [altitude] of wind-velocity-x;
type wind-vel ocity-y-field =

array [latitude] of array [longitude] of array [altitude] of wind-velocity-y;
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type wind-velocity-z-field =

array [latitude] of array [longitude] of array [altitude] of wind-velocity-z;

type state =
structure { temperature-field; pressure-field; water-concentration-field;

wind-vel ocity-x-field; wind-vel ocity-y-field; wind-velocity-z-field;}

typetime =redl;

type state-history = array [time] of state;

These examplesillustrate the ways that data types are defined in the VisAD programming language.
Asin Section 1.2.3, we let U denote the set of data objects used to represent mathematical objects
inU'. Scientific displays can be viewed as a specia kind of data object so, asin Section 1.2.3, we let V

denote a set of display objects. Next we consider the nature of scientific displays.

2.3 Scientific Displays

The same data may be visualized in many different ways, asillustrated in Figure 1.1. Thus our
second goal was to develop visualization techniques that " Can produce a wide variety of different
visualizations of data appropriate for different needs." In order to satisfy this goal, our visualization
system should include a flexible and general display model.

Bertin's display model was limited to static two-dimensional images. While his model was
adequate as a description of the instantaneous contents of a workstation screen, it fails to expressthe
dynamic, three-dimensional and interactive character of scientific displays. Thus we distinguish between a

set V' of static two-dimensional images (i.e., physical displays) and aset V of logical displays. For agiven
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physical display device, V' isafinite and fixed set of static two-dimensional images (for example, it may be
the set of 1024 by 1024 arrays of pixels with 8 bits of intensity for each of red, green and blue). Because V'
isfinite, avisualization mapping D : U — V' cannot be injective (i.e., oneto one). Thiswould be a severe
congtraint on any effort to analyze mappings from data to displays. On the other hand, we can define a

infinite set V of logical displays that

1. Are three-dimensional.

2. Are animated.

3. Have infinite extents in space and time.

4. Have varying resolution in space and time.

5. Are generated by avariety of rendering techniques.

The meaning of logical displaysinV is defined by afunction RENDER: V — V'. The RENDER
function projects three-dimensional displays onto atwo-dimensional screen, removes hidden objects during
this projection process, clips displays to finite screen boundaries, simulates scene lighting, simulates
transparency and reflection, animates sequences of static images, and so on. Thelogical display model
may include generic scalar and vector fields, in which case the RENDER function may implement the
calculation of iso-surfaces and plane slices to represent scalar fields, and of arrows and streamlinesto
represent vector fields. We note that there are many possible functions RENDER : V - V', depending on
parameters of the projection from three to two dimensions, on parameters of simulated lighting, on the

place in an animation sequence, and so on. By giving users control over these parameters, and thus control
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over the choice of the function RENDER : V - V', we define the interactive nature of logical displaysin V.
For example, control over the projection from three to two dimensions lets users interactively rotate, pan
and zoom logical displays.

The RENDER function implements the traditional operations of computer graphics which have
been extensively studied (Foley and VVan Dam, 1982; Wyvill, McPheeters and Wyvill, 1986; Lorensen and

Cline, 1987).

2.4 Mapping Data to Displays

We have described a scientific data model U containing data objects of various types, and a
display model V containing interactive, animated, three-dimensional displays. Visualizationisa
computational process that transforms data into displays and can be described as a function of theform D :
U - V. Thevisualization repertoire of our system can be described as a set of functions of thisform. In
order to satisfy the goal of developing visualization techniques that " Can produce a wide variety of
different visualizations of data appropriate for different needs' we seek to define a broad visualization
repertoire. Asdescribed in Section 1.2, current systems define visualization repertoires by enumerating
such sets of functions. However, with an enumerated repertoire there is no way to be sure that it includes
all useful ways of displaying data. An enumerated repertoireisjustified only by the tastes and experience
of those who decide what functions to include in the enumeration.

In contrast, we seek to define a visualization repertoire as the set of al functions satisfying
Mackinlay'’s expressiveness conditions (Mackinlay, 1986). These conditions say that displays express al
facts about data objects, and only those facts. In the next chapter we show how these conditions can be
rigorously interpreted in terms of lattice structures defined on data and display models. We have noted that
scientific data objects are approximate representations of mathematical objects. We define alattice
structure on our data model U based on away of comparing how data objects approximate mathematical

objects, and define asimilar lattice structure on our display model V. We then define our system’s
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visualization repertoire as the set of visuaization functionsD : U - V that satisfy the expressiveness
conditions, asinterpreted in the lattice structure.

This approach to defining a visualization repertoire has a number of advantages, including:

1. Therepertoireis complete, in the sense that it includes all visualization functions satisfying the

expressiveness conditions.

2. Asinglefunction D : U - V can be applied to display data objects of any type in the unified data
model U, simplifying the user interface for controlling displays. That is, one set of display controls
can be applied to display any data object defined in a program. Because display controls are
independent of data type, they are naturally separate from a user’s scientific algorithms. Thisisa
clear distinction from previous visualization systems that require calls to visualization functionsto
be embedded into scientific programs. In Chapter 3 we show that selection of a function satisfying

the expressiveness conditions can be controlled by a conceptually simple user interface.

3. Lattice structures can be defined for a wide variety of data and display models, so our approach can
easily be extended to other scientific dataand display models. In Chapter 5 we outline how the
approach may even be extended to a data model appropriate for a general-purpose programming

language.
4. A lattice-structured data model provides a natural way to integrate various forms of scientific

metadata into the computational and display semantics of scientific data. This reduces the user’s

need to explicitly manage the relation between data and associated metadata.

Chapter 3
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An Analysis of Mappings from Data to Displays

Current scientific visualization systems enumerate different ways of displaying data, or require
users to write programs (possibly as data flow diagrams or in object-oriented programming languages) to
control how data are displayed. These approaches either lack flexibility or require significant effort from
users. In contrast, we take a more systematic approach, analyzing the ways that data can be displayed from
basic principles.

In this chapter we describe our approach to scientific visualization, based not only on an abstract
view of data and displays, but also an abstract view of the visualization mapping between them. First, we
recognize that visualization is a computational process that defines a mapping from alarge set of data
objectsto alarge set of displays. Thus, rather than analyzing visualization in terms of the way an
individual data object is displayed, we analyze visualization in terms of its effect on sets of data objects.
(Infact, it isarguable that data objects only have meaning in relation to other data objects, just asthe
significance of the number pi can be explained only in relation to other mathematical objects). Thus we let
the symbol U represent a set of data objects, let the symbol V represent a set of displays, andletD : U - V
represent the mapping from data to displays. We define a visualization repertoire as the set of all such
visualization mappings that satisfy certain analytic conditions.

The simplest example of an analytic condition on D expresses the uniqueness requirement that
different data objects have different displays, so that users can distinguish different data objects from their

displays. Thisisjust the condition that D beinjective (one to one). It can be expressed as follows:

(31) Ou,uvdU.u=uU = D(u)=D()
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Eqg. (3.1) isavery weak condition on D. For example, if U isaset of two-dimensional images and
if V=U (that is, the display model V isalso a set of two-dimensional images), then any permutation of
images satisfies Eq. (3.1). However, it iseasy to construct a permutation D of images such that the display
D(u) generally does a poor job of communicating information about the data object u to users. Thuswe
seek stronger conditions on D.

In general, any condition on D must be defined in terms of mathematical structureson U and V.
For example, Eq. (3.1) expresses a condition in terms of the mathematical structure of equality on U and V.
The advantage of Eq. (3.1) isthat it can be applied very broadly to visualization because all data and
display models include an equality relation. Therefore we also seek to define stronger conditions on D that

express fundamental properties of scientific data objects and displays.

3.1 An Analytic Approach Based on L attices

In this thesis we focus on the observation that, for most scientific computations, computer data
objects and displays are finite approximations to mathematical models of nature. That is, real numbers
have infinite precision and functions of real variables have infinite domains, whereas the computer data
objects that represent these mathematical objects are finite and therefore approximate. Because scientific
data objects and displays are approximations, we can define an order relation between them based on the
precision of approximation (for example, a high resolution image is more precise than alow resolution
image as an approximation to aradiance field). This order relation alows usto define lattice structures on
data and display models, and to define analytic conditions on visualization mappings based on the lattice

Structures.

3.1.1 Basic Definitions for Ordered Sets

Since our analytic approach to visualization draws on the theory of ordered sets, we first review

some basic definitions from this theory (Davey and Priestly, 1990; Gierz, et al., 1980; Gunter and Scott,
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1990; Schmidt, 1986; Scott, 1971; Scott, 1976; Scott, 1982). Appendix A contains a more complete list of

definitions.

Def. A partially ordered set (poset) isaset D with abinary relation < on D such that, 00x, y, zO D

€)] X< X "reflexive"
(b) Xx<y&ysxld x=y "anti-symmetric"
(© X<y&y<z[ x<z "transitive"

Def. An upper bound for aset M [J D isan element X [1D such that

OydM.y<sx

Def. The least upper bound of aset M [ D, if it exists, isan upper bound x for M such that if yis
another upper bound for M, then x <y. Theleast upper bound of M is denoted sup M or \/m. sup{ x,y} is

written x 0.

Def. A lower bound for aset M [0 D isan element X [L1D suchthat Oy 0 M. x<y.

Def. The greatest lower bound of aset M [0 D, if it exists, isalower bound x for M such that if y
is another lower bound for M, then y < x. The greatest lower bound of M is denoted inf M or N\wm. inf{x,y}

iswritten x Oy.
Def. A subset M O D isadownsetif OxOM.OyOD.y<x[O yOM. Given

M O D, define tM={yOD |[xOM.y<x}, and given x [ D, define

Ix={yOD|y<x.
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Def. Asubset M ODisanupsetif OxOM. Oy O D.x<yO yOM. Given
M O D, definetM={yOD |XOM. x <y}, and given x O D, define

tx={yOD |x<V}.

Def. A subset M [0 D isdirected if, for every finite subset A 0 M, thereisan

xOMsuchthat Oy DA y<x

Def. If D and E are posets, we use the notation (D — E) to denote the set of all functions from D

toE.
Def. If D and E are posets, afunction f:D - E is monotone if
Ox, yOD.x<yO f(x) < f(y). We usethe notation MON(D - E) to denote the set of all monotone

functions from D to E.

Def. If D and E are posets, afunction f:D — E isan order embedding if

Ox,ydD.x<y < f(x) <f(y).

Def. Given posets D and E, afunction f:D - E, and aset M 0 D, we use the notation f(M) to

denote {f(d) |d O M}.

Def. A poset D isalatticeif for al x,y 0 D, x Oy and x Oy existin D.

Def. A poset D isacompletelattice if for all M O D, \/M and /\M exist in D.
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Def. If D and E are lattices, afunction f:D - E is alattice homomorphismif for al x, y O D, f(x O

y) = f(x) Of(y) and f(x Oy) = f(x) Of(y). If f:D - E isalso abijection then it is alattice isomorphism.

3.1.2 Scientific Data Objects as Approximations of Mathematical Objects

In Section 2.2 we described the nature of scientific data as representing mathematical objects. We
noted that data objects are usually approximations to mathematical objects, as for example floating point
numbers approximate real numbers and arrays are finite samplings of functions of areal variable.

The importance of the approximate nature of scientific datais reflected in the common use of
semantic metadata to document the how scientific data approximate mathematical variables and functions.

For example, in Section 2.2 we defined a data type:

type temperature-field =

array [latitude] of array [longitude] of array [altitude] of temperature;

Data objects of type temperature-field are approximate representations of the mathematical function:

temperature = temperature-field(latitude, longitude, altitude)

One important form of scientific metadata describes the locations of samples of temperature-field arrays.
Furthermore, temperature values in the array are represented by finite numbers of bits, and another
important form of metadata describes the correspondence between finite bit patterns and real numbers.
Such metadata may be implicit in the specification of afloating point number standard, but may also be
explicit, asin the case of coded 8-bit or 10-bit satellite radiances. Metadata may describe how data values
are spatial or temporal averages of physical variables; this metadata quantifies how data values

approximate mathematical values. Metadata may explicitly document numerical precision by providing
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error bounds for values that approximate real numbers. Metadata may define missing data codes used to
indicate failures of observing instruments or numerical exceptions; we view such missing data codes as
documenting values that have the least possible precision.

Other metadata provide indirect information about how precisely data objects approximate
mathematical objects. Vaues produced by simulations may include metadata about the name and version
number of the model that produced them, about the data used to initialize the model, about parameter
settings of the model, and so on. Values produced by observations may include metadata about which
sensors produced them, and may also include, for example, observations of the instruments themsel ves for
calibration, sensor temperatures, angles to the sun or other navigation landmarks, and so on. These detailed
metadata are often the basis of complex computations for estimating sampling and accuracy characteristics
of values.

The approximate nature of scientific datais afundamental property of that data that can serve as
the basis for a mathematical order structure on a scientific data model. As explained in the next section,
data objects can be ordered based on how precisely they approximate mathematical objects. This order
relation provides us with a mathematical structure on data and display models that can be used as the basis

for defining analytic conditions on visualization mappings.

3.1.3 A Mathematical Structure Based on the Precision of Scientific Data

We assume a set U’ of mathematical objects and aset U of data objects. Thereareonly a
countable number of data objects (objects that can be stored inside a computer are limited to finite strings
over finite aphabets) but an uncountable number of mathematical objects. Thus each data object generally
represents a large set of mathematical objects. Given adata object u 0 U, let math(u) O U’ be the set of
mathematical objects represented by u. Given two data objects u and u’, if math(u’) O math(u) then u’
represents a more restricted set of mathematical objects than u does and we can say that U’ is more precise

than u. Thus we define an order relation on U by:
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(32) usu = math(u) O math(u)

For example, a missing value (which we indicate by the symbol [0) can represent (i.e., is consistent with) all
mathematical values, so (I < x where x is any data value.

Similar order relations have been defined for reasoning about partial information in data base
management systems (Read, Fussell and Silberschatz, 1993) and in the study of programming language
semantics (Scott, 1971). Thereis no algorithmic way to separate hon-terminating programs from
terminating programs, so the set of meanings of programs must include an undefined value for non-
terminating programs. Thisvalueisless precise than any of the values that a program would produce if it
did terminate so it is natural to define an order relation between program meanings where undefined < x for
all program values x. In order to define a correspondence between the ways that programs are constructed,
and the sets of meanings of programs, Scott elaborated this order relation into an elegant lattice theory for
the meanings of programs (Scott, 1982). He equated
"x < y" with "X approximates y."

Thus Scott’s order relation is similar to the order relation defined by Eq. (3.2), and the undefined
value in programming language semantics is analogous with the missing value used in scientific
computations. (We note that the source of undefined values is non-terminating computations whereas the
sources of missing values are sensor failures and numerical exceptions). There are many other examples of
how the order relation defined in Eq. (3.2) may be applied. Metadata about accuracy often take the form of
error bars, which are intervals around values. Real intervals have been studied as a computational data
model for real numbers (Moore, 1966), and have been applied to computer graphics (Duff, 1992; Snyder,
1992). Aninterval represents any real number it contains, so Eg. (3.2) indicates that smaller intervals are
"greater than" containing intervals. We can combine the missing value and real intervalsin asimple data

model for approximations of real numbers. The order relation on this data model isillustrated in Figure
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3.1. Notethat the set of real intervalsis not countable, but an implementation of the real interval data
model could be restricted to the set of rational intervals. From now on we will not require that U be

countable, but will recognize that an actual implementation of U can only include a countable number of

data objects.
[0.0,00] [0.01,0.01] [0.5,0.5] [0.945, 0.945]
bo, o.o{] [0.93, 495] [0\94, 0.97]
[0.0,|O.1] }3.9, 1.0]/
\[0.0, 1.0]/
;

Figure 3.1. Order relation of a continuous scalar. Closed real intervals are used as approximate
representations of real numbers, ordered by the inverse of containment (that is, containing
intervals are "less than" contained intervals). We also include a least element O that corresponds
to a missing data indicator. This figure shows a few intervals, plus the order relations among
those intervals. The intervals in the top row are all maximal, since they contain no smaller

interval.

We can extend the data model in Figure 3.1 to real functions by defining array data objects that
are sets of pairs of real intervals. Thefirst interval in apair represents a domain value of the function, and
the second interval represents the corresponding range value. The two intervals define a rectangle that

contains at |east one sample from the graph of the represented function. For example, the set of pairs

(33)  {([1.1,1.6],[3.1,3.4]), (3.6, 4.1], [5.0,5.2]), (6.1, 6.4], [6.2, 6.5])}
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contains three samples of afunction. The domain value of a sampleliesin the first interval of apair and its

range value liesin the second interval of a pair, asillustrated in Figure 3.2.

[6.2,6.5] -
[5.0,5.2] -

[3.1, 3.4]/ﬁ

[1.1,1.6] [3.6,4.1] [6.1,6.4]

Figure 3.2. Approximating real functions by arrays.

An array represents any function whose graph contains a point in each of the rectangles defined by
itspairs. Adding more samplesto an array restricts the set of functions that the array can represent.
Similarly, replacing pairs of intervals by pairs of more precise intervals restricts the set of functions that the
array can represent. Thus we can define an order relation between arrays, asillustrated in Figure 3.3. Note

that the empty set isthe least value of this data model since it can represent any real function.
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{([1.33, 1.40], [3.21, 3.24]), {([1.1, 1.6], [3.1, 3.4]),
([3.72, 3.73], [5.09, 5.12]), (3.6, 4.1], [5.0, 5.2]),
([6.21, 6.23], [6.31, 6.35])} ([6.1, 6.4], [6.2, 6.5]),

\ ([7.3, 7.5], [8.1, 8.4])}

{([1.1, 1.6], [3.1, 3.4]),
([3.6, 4.1], [5.0, 5.2]),
([6.1, 6.4], [6.2, 6.5])}

{(1.1, 1.6],0),
(3.6, 4.1], [5.0, 5.2]),
([6.1, 6.4],0 )}

@ (the empty set)

Figure 3.3. Order relation of arrays.

139

The sequence of satellite images in Figures 3.4 through 3.7 provides a practical illustration of an

order relation based on precision. Each of these images contains a finite number of pixels that are samples

of a continuous Earth radiance field. The higher resolution images are more precise approximations to the

radiance field, and the sequence of images form an ascending chain in the order relation.
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Figure 3.4. Least precise image in sequence of four. (color original)
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Figure 3.5. Second image in sequence of four, ordered by precision. (color original)
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Figure 3.6. Third image in sequence of four, ordered by precision. (color original)
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Figure 3.7. Most precise image in sequence of four. (color original)
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These examples of data models for approximating two simple types of mathematical objects, real
numbers and real functions, show how Eg. (3.2) can be used to define order relations. In these examples
we defined different sets of data objects to represent different mathematical types. However, a scientific
application may include many data types, and it isimpractical to provide a separate data model U and a
separate analysis of visualization functionsD : U — V for each different datatype. Thusit isdesirableto
define data models that include many different data types.

In the study of programming language semantics, objects of many different types have been
embedded in lattices called universal domains (Scott, 1976). In Section 3.2 we will show how scientific
data objects of many different types can be embedded in asingle lattice. Thus we assume that our data
model U isalattice. We further assumethat U isacomplete lattice. Any ordered set can be embedded in a
complete lattice by the Dedekind-MacNeille completion (Davey and Priestly, 1990), so thisis not avery
strong assumption. Scott showed how to define atopology on ordered sets (Gunter and Scott, 1990) and in
this topology least upper bounds play arole analogousto limits. Thus we can think of the assumption that
U is complete as meaning that it contains the mathematical objects that are the limits of sets of
approximating finite data objects. Complete lattices are a convenient mathematical context for studying
visualization functions, as long as we remember that actual implementations of data models are restricted
to countable subsets of U.

The notion of precision of approximation also appliesto displays. Displays have finite resolution
in space, color and time (that is, animation). Two-dimensiona images and three-dimensional volume
renderings are composed of finite numbers of pixels and voxels, each implemented with a finite number of
bits, and changing in discrete steps over time. Computer displays are finite approximations to idealized
mathematical displays (that is, displays defined in terms of real-valued functions) and it is possible to
define an order relation between displays based on the precision of these approximations. Thus we assume

that our display model V is also a complete lattice.
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3.1.4 Data Display as a M apping Between L attices

Data objects provide information about mathematical objects, and Eq. (3.2) says that the order
relations on U and V provide measures of the information in data objects and displays (that is, how
precisely they specify mathematical objects). The purpose of visualization isto communicate information
about data objects, and we will express this purpose as conditionson D : U - V defined in terms of the
order relationson U and V. In order to define conditions on D we draw on the work of Mackinlay
(Mackinlay, 1986). He studied the problem of automatically generating displays of relationa information
and defined expressiveness conditions on the mapping from relational data to displays. His conditions
specify that a display expresses a set of facts (that is, an instance of a set of relations) if the display encodes
all the factsin the set, and encodes only those facts.

In order to interpret the expressiveness conditions we define a fact about data objects as alogical
predicate applied to U (that is, afunction of the form
P:U - {false true}). However, since data objects are approximations to mathematical objects, we limit

facts about data objects to approximations of facts about mathematical objects. In particular, we would like

to avoid predicates that define inconsistent information about mathematical objects. For example, if uq <
u2 then uq and uo are approximations to the same mathematical object (or objects), so we will disallow

any predicates that define P(uq) = true and P(up) = false. We can do this by restricting our interpretations

of facts about data objects to monotone predicates of the form
P: U - {undefined, false, true}, where undefined < false and undefined < true. Furthermore, a monotone
predicate of the form P: U — {undefined, false, true} can be expressed in terms of two monotone
predicates of the form P: U — {undefined, true}, so we will limit facts about data objects to monotone
predicates of the form
P: U - {undefined, true}.

Thefirst part of the expressiveness conditions says that every fact about data objects is encoded

by afact about their displays. We interpret this as follows:
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Condition 1. For every monotone predicate P: U — {undefined, true}, there is a monotone

predicate Q: V - {undefined, true} such that P(u) = Q(D(u)) for each u 0 U.

Thisrequires that D beinjective [if uq # up then there are P such that P(uq) # P(up), but if D(uq)
= D(u) then Q(D(uq)) = Q(D(uy)) for al Q, so we must have D(uq) # D(up)].
The second part of the expressiveness conditions says that every fact about displays encodes a fact

about data objects. We interpret this as follows:

Condition 2. For every monotone predicate Q: V — {undefined, true}, there is a monotone

predicate P: U — {undefined, true} such that Q(v) = P(D‘l(v)) foreachv O V.

We show in Appendix B that Condition 2 implies that D is a monotone bijection (that is, one-to-
one and onto) from U onto V. Thus Condition 2 istoo strong since it requires that every display in Visthe
display of some data object in U, under D. Since U isa complete lattice it contains a maximal data object
X (the least upper bound of al members of U). For all dataobjectsu 0 U, u< X. Since D is monotone this
implies
D(u) < D(X). We use the notation | D(X) for the set of all displayslessthan D(X). | D(X) isitself a
complete lattice and for all data objectsu 00 U, D(u) O + D(X). Hence we can replace V by ¢ D(X) in
Condition 2 in order to not require that every v [ V is the display of some data object. We modify

Condition 2 as follows:

Condition 2'. For every monotone predicate Q: | D(X) — {undefined, true}, there is a monotone

predicate P: U — {undefined, true} such that Q(v) = P(D‘l(v)) for each v O | D(X).
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P D Q
{O,true} < U >V > {0, true }
true Uy Vy 7 true
true € Uy 7 Vg > true
\
O < U2 7 V2 U]
\
O < U1 7 V1 U]

Figure 3.8. The expressiveness conditions specify that D : U - V defines a correspondence

between monotone predicates on U and V.

These two conditions quantify the relation between the information in data objects and the

information in their displays. Figure 3.8 shows D mapping the chain uq < up <u3z <ugin U to the chain

V1 <Vg <v3<VvginV, and shows the values of the monotone predicates P and Q on these chains. The

expressiveness conditions define a correspondence between such predicates. We now use them to define a

class of functions.

Definition. A functionD: U - Visadisplay function if it satisfies Conditions 1 and 2'.

In Appendix B we prove the following result about the class of display functions:

Prop. B.3. A functionD: U - Visadisplay function if and only if it is alattice isomorphism

from U onto | D(X).
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Thisresult may be applied to any complete lattice model of data and displays. In therest of this

chapter we will explore its consequences in a more specific setting.

3.2 A Scientific Data M odel

The scientific data model developed in Section 2.2 defined a set of data types for representing
mathematical types. We define scalar types for representing variables, tuple types for representing vectors,
and array types for representing functions. Based on the ideas developed in Section 3.1.3, metadata that
describe how precisely data objects approximate the mathematical objects that they represent are integrated
into this data model.

The data model defines two kinds of primitive val ues, one appropriate for representing real
numbers and the other appropriate for representing integers or text strings. We call these two kinds of
primitive values continuous scalars and discrete scalars. A continuous scalar takes the set of closed rea
intervals as values, ordered by the inverse of containment. Figure 3.1 illustrated the order relations
between values of a continuous scalar. A discrete scalar takes any countable (possible finite) set as values,
without any order relation between them (since no integer is more precise than any other). Figure 3.9
illustrates the order relations between values of a discrete scalar. The value sets of continuous and discrete

scalars also always include aminimal value [ corresponding to a missing data indicator.

-3 -2 -1 0 1 2 3

Nt/

Figure 3.9. Order relation of a discrete scalar.
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The data model does not specify a particular set of scalars. Rather the data model can be adapted
to a particular scientific application by defining afinite set Sof scalar types to represent the mathemeatical
variables of the application (for example, time, latitude, temperature, pressure). These scalar types are

aggregated into aset T of complex data types according to three rules:

1. Any continuous or discrete scalar in Sisadatatypein T.

T with element typestj. Data objects of tuple types (that is, data types constructed as tuples) contain

one data object of each of their element types.

3. If wisascalar typein Sand r isatypein T such that w does not occur in the definition of r, then
(array [w] of r) isan array type with domain type w and range type r. Data objects of array types
(that is, data types constructed as arrays) are finite samplings of functions from the primitive
variable represented by their domain type w to the set of values represented by their range typer.
That is, a data object of an array type is a set of data objects of its range type, indexed by values of

its domain type.

Each datatypein T defines a set of data objects. Continuous and discrete scalars define sets of
values as described previously. The set of objects of atuple typeisthe cross product of the sets of objects
of its element types. A tuple of data objects represents a tuple of mathematical objects, and the precision of
the approximation depends on the precision of each element of the tuple. One tuple is more precise than

another if each element is more precise. That is, (X1, ..., Xp) < (Y1, ... Yp) if Xj <y;j for eachi. Figure3.10

illustrates the order relations between tuples.
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([0.3,0.4], [2.3, 2.4])

([0.0, 0.9], [2.3, 2.4]) ([0.3, 0.4], [2.0, 2.9])
@, [23,24])  ([0.0,09],[20,2.9]) ([0.3,0.4], D)

/
AN
=/
N

Figure 3.10. Order relation of tuples. Tuples are members of cross products. This figure shows a
few elements in a cross product of two sets of continuous scalar values, plus the order relations
among those elements. In a cross product, the least element is the tuple of least elements of the

factor sets.

The set of objects of an array typeis similar to afunction space. However, an array’s domain type
generally defines an infinite set of values, whereas arrays are limited to finite subsets of domain values.
For each finite subset of domain values, define the space of functions from this finite set to the set of
objects of the array’s range type. Then the set of objects of an array type is the union of such function
spaces taken over all finite subsets of the domain’s value set. We will make this definition rigorousin
Section 3.2.3. The order relation between array objects wasillustrated in Figure 3.3 and is precisely

defined in Section 3.2.3.
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While the development of this data model is complex, it offers several advantages over more
commonly used data models. First, awide variety of scientific data can be expressed in this data model by
building hierarchies of tuples and arrays. Thus a system based on this data model can be applied to awide
variety of scientific applications and can be used to combine data from different sources. Thisisa
significant advantage over most existing scientific visualization systems.

Second, this data model integrates several forms of scientific metadata, including:

1. Each scalar type isidentified by the name of the primitive mathematical variable that it represents.

2. An array data object is afinite sampling of a mathematical function, and contains a set of objects of
the array’s range type, indexed by values of the array’s domain scalar type. These index values

specify how the array samples the function being represented.

3. Theinterval values of continuous scalars are approximations to real numbers in a mathematical

model, and the sizes of these interval s provide accuracy metadata about the approximations.

4. Any scalar object may take the value [, corresponding to a missing data indicator.

Most previous systems require users to store such metadata in separate data objects and to manage the
relation between data and metadata explicitly in their programs. A system based on this data model can
integrate metadata into the computation and display semantics of data, and thus reduce the burden on users.
In the next three sections we show how to define a lattice structure for this data model. This
lattice structure can be used to analyze visualization mappings from this data model to alattice-structured

display model and thus define a repertoire of visualization functions for a system based on this data model.
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3.2.1Interpreting the Data Model asa L attice

We treat the visualization process as a function from a set of data objects to a set of display
objects. Our datamodel defines a different set of data objects for each different data type, suggesting that a
different visualization function must be defined for each different datatype. However, we can define a
lattice of data objects and natural embeddings of data objects of all data typesinto thislattice. Thislattice
provides us with a unified data model U for data objects of al datatypesin T. Thusavisuaization
functionD : U - V appliesto all datatypesin T and our analysis of the properties of these visualization
functions will be independent of particular data types.

In Section 1.2 we saw that many current visualization techniques achieve generality by
enumerating sets of data types and display techniques. The lattice U provides an aternative to this
approach by defining a unified data model and enabling a unified analysis of visualization functions for
different data types.

Define atuple space X as the cross product of the sets of values of the scalar typesin S and define
amember of the data lattice as a subset of the tuple space X. In Section 3.2.2 we show how to define an
order relation on this lattice, and in Section 3.2.3 we show how the data objects of our scientific data model
are embedded in this lattice.

To get an intuition of how the embedding works, consider a data lattice U defined from the three
scalars time, temperature and pressure. Objectsin the lattice U are sets of tuples of the form (time,
temperature, pressure). Consider the tuple data type struct{ temperature; pressure}. Data objects of this
type are tuples of the form (temperature, pressure), and we can embed them in the lattice U asillustrated in

Figure 3.11.

152



153
embedding of a tuple type

into a lattice
(temp1l, presl) {(0, templ, presl)}
an element of the tuple type a member of the lattice of sets of tuples
(temperature, pressure) of the form (time, temperature, pressure)

Figure 3.11. Embedding a tuple type into a lattice of sets of tuples.

Similarly, we can embed array datatypesin the datalattice. For example, consider the same
lattice U defined from the three scalars time, temperature and pressure, and consider an array datatype
(array [time] of temperature). A data object of thistypeisaset of pairs of the form (time, temperature).
We can embed such data objectsinto the lattice U asillustrated in Figure 3.12.

The basic ideas presented in Figures 3.11 and 3.12 can be combined to embed complex data types,
defined as hierarchies of tuples and arrays, in data lattices. Thiswill be formalized in Section 3.2.3. These
embeddings enable a unified, lattice-structured data model so that visualization mappings apply to data
objects of all datatypes. Thisisimportant for a visualization system based on this lattice model because it

implies that the user interface for controlling how data are displayed isindependent of data type.

timel: templ _
time2: temp2 {(time1, temp1, L),
time3: temp3 embedding of an (time2, temp2, 1),
array type into (time3, temp3, [0),

) a lattice

' (timeN, tempN, 1)}
timeN: tempN

array of temperature values set of tuples with O pressure values
indexed by time values and with no two time values equal

Figure 3.12. Embedding an array type into a lattice of sets of tuples.
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3.2.2 Defining the Lattice Structure
Now we can develop arigorous definition of our lattice model for scientific data. We will define

lattices of data objects and displays in terms of scalar types. We use the symbol R to denote the real

numbers. A scalar type sis either discrete or continuous and defines a set | g of values of type s.

Def. A discrete scalar s defines a countable value set | g that includes aleast element [ and that

has discrete order. That is, Ox,y O lg (x<y O x=0). Figure 3.9 illustrates the order relation on I,

Def. A continuous scalar s defines a value set

Is={0} O{[x,y] |x, yOR & x<vy} (that is, the set of closed real intervals, plus [J) with the order defined

by: O<[x yl and [u,v] O[x,y] = [X Y] <[u,Vv]. Figure3.1illustrates the order relation on I

Given a continuous scalar s, the closed real intervalsin I g represent real numbers with limited

accuracy. A real interval is"lessthan” its sub-intervals since sub-intervals give more precise information.
Given a set A of closed real intervals, if the intersection
ﬂA is non-empty then \/Ais equal to that intersection (it isaclosed interval), otherwise \/A is undefined.
/\Aisthe smallest closed interval containi ng the union UA, or if the union is unbounded.

It isinteresting to note that, given a continuous scalar s, the order relation on | g encodes
information about the ordering and topology of real numbers through the containment structure of intervals.

We use the notation XA for the cross product of members of the set A. We can now define an

ordered set of tuples of scalar values, as follows:

Def. Let Sbe afinite set of scalars. Then the cross product X = X{ Is|s0 S isthe set of tuples

with an element from each |5, Let agdenote the s component of atuple
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a0 X. Definean order relation on X by: fora, b0 X, a<bif OsO S ag< bg. Figure 3.10 illustrates this

order relation on tuples.

Let POWER(X) ={A | A O X} denote the power set of X (that is, the set of al subsets of X). As
discussed briefly in Section 3.2.1, we use the sets of tuplesin POWER(X) as models for scientific data
objects. Itiswell known that it is difficult to define an order relation on POWER(X) that is consistent with
the order relation on X and is consistent with set inclusion (Schmidt, 1986). For example, if a, b 0 X and a

< b, we would expect that {a} <{b}. Thuswe might define an order relation between subsets of X by:
(34) UOABOX (A<B <~ DaOA [bOB.a<h)

However, given a < b, Eq. (3.4) impliesthat { b} < {a, b} and {a, b} <{b} are both true, which contradicts
{b} £{a, b}. Asexplained by Schmidt, this problem can be resolved by defining an equivalence relation
on POWER(X). The equivalencerelation is defined in terms of the Scott topology, which defines open and

closed sets as follows:

Def. A set A0 Xisopenif tAQ Aand, for al directed subsets

cox,V\coAO cnAza

Def. A set A O Xisclosed if 1 A Aand, for all directed subsets C O A, \/C O A. We use CL(X)

to denote the set of all closed subsets of X.

Note that the complement of an open set is closed, and vice versa. Also, X and ¢ are both open

and closed.
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Def. Define arelation <g on POWER(X) as: A<R Bif for all open C O X,

An C#zel Bn C# @ Alsodefinearelation =g on POWER(X) as: ASR Bif Asg Band BSR A

Aswe show in Appendix C, =R is an equivalence relation. Clearly, if A=R B and C =R D, then
A<Rr C = B<RD, so the equivalence classes of =R are ordered by <R. In Appendix C we also show that
the equivalence classes of =R form a complete lattice, ordered by <R. These equivalence classes are our
models for data objects. However, it is not necessary to work directly with equivalence classes. Given an
equivalence class E of the =R relation, let Mg = JE. Asshown in Appendix C, Mgisclosedand E -

ME defines a one-to-one correspondence between equivalence classes of =R and closed sets. Thus we use

U = CL(X) as our datalattice. The following proposition from Appendix C explains how sups and infs are

calculated in thislattice.

Prop. C.8. If Wisaset of equivalence classes of the =g, relation, then N\Wis defined and equalsE
such that Mg = [ KMy |w O W}. Similarly \/Wis defined and equals E such that Mg isthe smallest
closed set containing U{ My | w O W} . Thus the equivalence classes of the =g, relation form a complete

|attice and, equivalently, CL(X) isacomplete lattice. If Wis finite and E = \/W, then Mg = {My, |w O

e

To summarize, U = CL(X) isacomplete lattice whose members are in one to one correspondence

with the equivalence classes of =R. Thelattice U is our data model. Figure 3.13 illustrates the order

relation on CL(X). In the next section we show that the data types of a scientific programming language

can be naturally embedded in U.

156



{(A,B,0), (A, 00, (B, 0O), (00 0}

{(A, O, 0), (O, B, 0), (0, O, O)}

[

{(A, O, 0), (O, 0, D} {(O, B, ), (0, O, O)}

N/

{6, 0,04

0= the empty set (also denoted by @)

Figure 3.13. Defining an order relation on sets of tuples. The sets are all down sets and are
ordered by set containment. We assume that the three scalars that define these tuples are

discrete, so that the down sets in this figure are all finite.

3.2.3 Embedding Scientific Data Typesin the Data L attice

In this section we formalize the data model presented in Section 3.2.1.

157

Def. A set T of data types can be defined from the set Sof scalars as follows. Two functions, SC:

T - POWER(S) and DOM : T — POWER(S), are defined with T, asfollows:

(35) sOSO sOT(thatis, SOT)

SC(s) ={s}

DOM(s) = @.
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(36) (fori=1..n§0T)&(i#j0 SC(t) n SCO(G) =@) O struct{tq;..itp} O T

37 wOS&rOT&wOSC(r)O (array[w]ofr)OT
C((array [w] of r)) ={w} O SC(r)

DOM((array [w] of r)) = {w} O DOM(r)

(array [w] of r) isan array with domain type w and range typer. SC(t) isthe set of scalars occurringint,
and DOM(t) isthe set of scalars occurring as array domainsint. Note that each scalar in Smay occur at
most oncein atypein T.

In an actual implementation of a programming language, data objects must be represented as finite
strings over finite alphabets, so only a countable number of data objects can be defined. Thus we define

countable sets of values for scalar types and complex data types.

Def. For each scalar s S, define a countable set Hg [ | g such that, for all
a,b0HgalbOHg albOlgO alb [ Hg and for al al Igthere exists A 0 Hg such that a = \/A
(that is, Hg is closed under infs and under sups that belong to I, and any member of Igisasup of aset of
members of Hg). For discrete sthisimpliesthat Hg= I g (recall that we defined discrete scalars as having
countable value sets). For continuous s, Hg may be the set of rational intervals plus . Note that, for

continuous s, Hg cannot be a cpo.

We can use the sets Hg to define countable sets of finite data objects of all types. We definea

tuple data object as a set containing one object of each of its element types. We define an array data object
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as afunction from a finite set of data objects of its domain type (which is a scalar type), to the set of data
objects of its range type. Now we define countable sets of data objects of each typein T, and define

functions that embed these data objects into the lattice U.

Def. Given ascaar w, let
FIN(H\y) = {AOHWM O} |Afiniteand Oa, b O A. = (a< b)}.

If wis adiscrete scalar, then a member of FIN(H,,) isany finite subset of Hy,, not containing O. If

w is a continuous scalar, then a member of FIN(H,) is any finite set of closed real intervals such that no

interval contains another.
Def. For complex typest [ T define Ht by:

(38) t=struct{ty;..;tn} O H= Htlx...Xth

(3.9 t=(array[w]ofr)Od Ht= U{(A - Hy) |AOFIN(Hyw)}
Def. Define an embedding Et : Hy — U by:

(310) tOSO Ey@) =L (0,...a,..0)

(311) t=struct{ty;....;tn} O Et((aq,...apy)) ={b10...0bp | Oi. bj O Eti (&)}
(312) t=(array[w] ofr) O

[a0 (A - Hy) O E(a) ={bCc|x DA & b0 Ey(x) & c 0 Ep(a(x)}]

Def. For t O T define Ft = E¢(Hy).
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In Appendix D we show that E¢ does indeed map members of Hi to members of U, and that this
mapping isinjective.

Recall that we use the notation ag for the s scalar component of a tuple
alX{lg|sOS. Now X{lg|sO S} isnot alattice, so it is not obvious that b1 [L...Cby, in Eq. (3.11) and
bk in Eq. (3.12) exist. However, as shown in Appendix D, for all a O H¢ and for all b O E¢(a), bg=0
unless s 0 SC(t). Thusbq[...0bp in Eqg. (3.11) exists since the typestj in Eq. (3.11) are defined from
digoint sets of scalars, and bl in Eq. (3.12) exists since the scalar w does not occur inthe typer.

Because Et : Ht - U isinjective, we can define an order relation between the members of H
simply by assuming that E; is an order embedding. (If E; were not injective, it would map apair of
members of Hy to the same member of U, and the assumption that E; is an order embedding would imply

that the order relation on Hy is not symmetric.)

Def. Given a, b O H¢, we say that a < b if and only if E¢(a) < E¢(b).

Appendix D shows that the order relations on the sets Hy implied by this definition have simple
and intuitive structure. If tisascalar, then thisisthe same asthe order relation on It. If t = struct{tq;...;tn}
andif (aq,....an), (b1,...bpn) O Hy, then (a1,...,ap) < (b1,...,bp) if Ti. aj < bj (that is, the order relation
between tuples is defined element-wise). If t = (array [w] of r),ifa,b0Htandifal (A — Hy) andb O
(B - Hy), then

asbif OxOA Ep(ax) < \/{ Er(b(y)) |[yOB& x<y} (thet is, an array aisless than an array b if the

embedding of the value of a at any sample x is less than the sup of the embeddings of the set of values of b
at its samples greater than x).

In summary, in this section we have shown that data types appropriate for a scientific
programming language can be embedded in our data model U. Thus, results about displaying data objects

in U can be applied to the display of data objects of scientific algorithms.
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3.2.4 A Finite Representation of Data Objects

If Scontains any continuous scalars, then most elements of U = CL(X) contain infinite numbers of

tuples. However, aclosed set of tuplesis only one member of an equivalence class of =g as defined in

Section 3.2.2. We can define an aternate representation of a data object as the set of maximal elements of

aclosed set, asfollows:

Def. Given A 0 U, define MAX(A) ={a O A |Ob O A. =(a<b)}. Thatis, MAX(A) consists of the

maximal elements of A.

The following proposition from Appendix E tells us that the equivalence relation

=R defines a one-to-one correspondence between the closed setsin U and the sets of their maximal

elements.

Prop. E.3. A 0 U. A=R MAX(A).

Thus, data objects in our data model can either be represented by closed sets, or by the sets of maximal

elements of closed sets. Asthe following proposition from Appendix E shows, if tisadatatypein T, and
if A Ftisthe embedding in U of adata object of typet, then MAX(A) isfinite.

Prop. E.5. For all typest 0 T and all A O Ft, MAX(A) isfinite.

Our lattice model of datais motivated by the observation that data objects are approximations to
mathematical objectsthat may contain infinite amounts of information. Since our data lattice is complete it

contains objects, definable as limits of objects of typesin T, that are models for mathematical objects
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containing infinite amounts of information. The sets of maximal tuplesin these objects are generally not
finite, so we cannot make the assumption that MAX(A) is finite when we apply Prop. B.3 to our scientific
datamodel in Section 3.4. Thus working with sets of maximal tuples offers no real advantage over

working with closed sets.

3.3 A Scientific Display M odel

For our scientific display model we start with Bertin's analysis of static two-dimensional displays
(Bertin, 1983). He modeled displays as sets of graphical marks, where each mark was described by an 8-
tuple of graphical primitive values (that is, two screen coordinates, size, value, texture, color, orientation
and shape). Hisideaof modeling a display as a set of tuple valuesis quite similar to the way we
constructed the data lattice U. Therefore we define afinite set DS of display scalars to represent graphical
primitives, we define Y = X{ Ig1d O DS} asthe cross product of the value sets of the display scalarsin DS,
and we define V as the complete lattice of al closed subsets of Y. Weinterpret the maximal tuples of
members of V as representing graphical marks (we show in Section 3.4.4 that for any typet O T and any
data object a [ H, the display D(a) contains a finite number of maximal tuples), and we interpret the
display scalar values in these maximal tuples as defining the graphical primitives of those graphical marks.

Bertin first published his display model in 1967, and it is limited to static two-dimensional
displays. However, we can define a specific lattice V to model animated three-dimensional displaysin

terms of a set of seven continuous display scalars:

(3.13) DS={x,V, z red, green, blue, time}

A tuple of values of these display scalars represents a graphical mark. Theinterval values of x, y and z

represent the locations and sizes of graphical marks in the volume, the interval values of red, green and
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blue represent the ranges of colors of marks, and the interval values of time represent the duration of marks
in an animation sequence, asillustrated in Figure 3.14.
set of animation steps: location and size

] of mark in volume
X

| interval that mark —
|| persists during ‘ z
|_{ animation

tuple of display
scalar values
for a graphical
mark

(time, x, y, z, red, green, blue)

#

ranges of values
i3 of mark’s color
components

red green blue
Figure 3.14. The roles of seven continuous display scalars (X, y, z, red, green, blue, time) in an

animated three-dimensional display model.

The display lattice illustrated in Figure 3.14 models volume rendering and animation. Displaysin
V are interactive in the sense that users control parameters to choose afunction RENDER : V - V' that
maps logical displaysto physical displays (thisfunction is described in Section 2.3). For the display lattice
illustrated in Figure 3.14, users control the projection from three dimensions to two dimensions, and

control animation sequencing. We can add more display scalars to DSto model other rendering techniques
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and other user interaction techniques. For example, consider the display model defined by the following

set of display scalars (where n and m are parameters of the display model):

(3.14) DS={red, green, blue, transparency, reflectivity, vectory, vectory, vector z,

contour1, ..., contourp, X, y, z, animation, selector1, ..., selectory}

The transparency and reflectivity display scalars model parameters of volume rendering techniques. The

vectory, vectory and vector 4, display scalars model flow rendering techniques, and possibly interactive

placement of seed points for tracing and rendering flow trajectories (athree-dimensional flow field is
defined by the values of these display scalars attached to graphical marks). The contour1, ..., contourp,
display scalars model iso-surface rendering techniques (iso-surfaces are rendered through the three-

dimensiona field defined by the values of these display scalars attached to graphical marks). The

selector1, ..., selectorpy display scalars explicitly model a user interaction technique. That is, auser
interactively selects sets of values for each selector;j (for i between 1 and m) and graphical marks are

displayed only if their values for selectorj overlap the user-selected set of values.

Display scalars can be defined for awide variety of attributes of graphical marks, and need not be
limited to such primitive values as spatia coordinates, color components and animation indices. For
example, we may define adisplay model whose displays consist of sets of graphical icons (i.e., graphical
shapes) distributed at various locationsin adisplay screen. This display model could be defined using
three display scalars: horizontal screen coordinate, vertical screen coordinate, and an icon identifier. Inthis
display model asingle value of the icon identifier display scalar would represent the potentially complex
shape of agraphical icon. We could define another display model in which a set of display scalars form the
parameters of two-dimensional ellipses. This display model would include five display scalars that
represent the two-dimensional center coordinates, the orientations, and the lengths of major and minor axes

of the ellipses.
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The possihility that logical displays may be interactive suggests that we have great flexibility in
the way we define alogical display model V, aslong as we can define a family of mappings RENDER : V
- V' parameterized by user controls. For example, we can build adisplay lattice V that models Beshers
and Feiner’s "worlds within worlds" visualization technique (Beshers and Feiner, 1992). Thistechniqueis
an attempt to overcome the limitation to three spatial dimensions by nesting small coordinate systems
within larger coordinate systems. Data are plotted as a set of small graphs, each including a small set of
three axes. The location of the origin of asmall coordinate system within a containing coordinate system
determines the values of the containing coordinates for the plotted data. Users can interactively move the
small graphs within the containing coordinate systems to see how plotted values change with respect to
changes in the values of the containing coordinates. We can model this technique by defining a display
lattice V in terms of two or more sets of three-dimensional graphics locations. The mapping RENDER : V
- V" would be paramterized by the user’s controls over the locations of small graphs.

The examples described above indicate that it is possible to define awide variety of display
modelsin terms of tuples of display scalars. Thuswe do not focus on any particular display model.
Rather, we just assume that there isa set DS of display scalars, and that our display model V consists of
displaysthat are sets of maximal tuples of values of these display scalars.

The important point hereis that the lattice model and its theoretical results are easily extensible to
awide variety of different display models. If auser can express rendering and interaction techniquesin
terms of a set of display scalars and user controls for the choice of the mapping RENDER: V - V', then

our lattice results are applicable to that model.

3.4 Scalar Mapping Functions

So far, we have defined a particular lattice structure appropriate for scientific data and displays.

Now we apply the results of Section 3.1.4 to that structure.
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3.4.1 Structure of Display Functions

Display functions are lattice isomorphisms. However, in the context of particular data and display
models defined in the previous sections there is much more that we can say about them. Data objects of
scalar types can be naturally embedded in the lattice U (as we saw in Sections 3.3.2 and 3.3.3), and we can

define similar embeddings of display scalar typesin the lattice V. These embeddings can be defined as:

Def. For each scalar s S, define an embedding Eglg — U by:
Ob O lg Eg(b) = 1 (4,...,b,...,0) (this notation indicates that all components of the tuple are [ except b).

Also define Ug=Eg(lg) O U.

Def. For each display scalar d (1 DS, define an embedding Eg:lg - V by:

Ob O I Eg(b) = 4 (D,....b,...,.0). Also define Vg =Eq(lg) O V.

These embedded scalars play a special role in the structure of display functions. Asshown in
Appendix F, adisplay function maps embedded scalar objects to embedded display scalar objects.
Furthermore, the values of a display function on all of U are determined by the values of the embedded
scalar objects. The results of Appendix F are summarized by the following theorem about mappings from

scalarsto display scalars:

Theorem. F.14. 1f D : U - Visadisplay function, then we can define a mapping MAP : S -
POWER(DS) such that for all scalarss [0 Sand for all a O Ug, thereis
d O MAPP(s) such that D(a) O V. Thevaluesof D on all of U are determined by the values of D on the
scalar embeddings Ug. Furthermore,
@ If sisdiscrete and d O MAPp(s) then d is discrete.

(b) If sis continuous then MAP(S) contains a single continuous display scalar.
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(©  1fs#sthen MAPD(S) n MAPD(S) = .

This theorem tells us that mappings of data aggregates to display aggregates can always be
factored into mappings of data primitives (e.g., time and temperature) to display primitives (e.g., screen
axes and color components). This has been accepted asintuitively true, as, for example, atime series of
temperatures may be displayed by mapping time to one axis and temperature to another. However,
Proposition F.14 tells us that all mappings that satisfy the expressiveness conditions must factor in this
way. In Section 3.4.3 we present a precise statement of how such a factorization is a complete
characterization of visualization mappings satisfying the expressiveness conditions.

Figure 3.15 provides examples of mappings from scalarsto display scalars. The upper-right
window of Figure 1.1 shows a display defined by these mappings. In thisfigure, timeis mapped to
animation so that the time sequence of images will be represented by animation (as opposed to being
stacked up along adisplay axis, for example). Line and element are mapped to the x and z display axes and
ir is mapped to the y axis, so that an image in the time sequence is displayed as aterrain (i.e., asasurface
with y asafunction of x and 2). visis mapped to green, so that thisimage terrain is colored green with
intensity as a function of visible radiance.

type image_sequence =
array [time] of array [line] of array [elem] of structure {ir; vis}

Syl
<L -

@L

nwoT o —+oun

So~—~o3g—TSo

red green blue
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Figure 3.15. Mappings from scalars to display scalars.

3.4.2 Behavior of Display Functions on Continuous Scalar s

In the previous section we saw that display functions map embedded continuous scalar objectsto
embedded continuous display scalar objects. Continuous scalar values are real intervals, so the values of
display functions restricted to embedded continuous scalars can be analyzed in terms of their behavior as
functions of real numbers. First, we define the values of display functions on embedded continuous scalars

in terms of functions of real numbers.

Def. Given adisplay function D:U — V and acontinuous scalar s S, by Prop. F.14 thereisa

continuous d J DS such that valuesin Ug are mapped to valuesin V. Definefunctionsgg: R xR - R
andhg: R xR - Rby:

04 (O,...[% ¥l,-..,0) O Ug, DO (O, [X, Y- 0)) = 4 (0,095, ¥), hg(X, W]L-.,0) O Vg

Since D({(0,...,0)}) ={(0,...,0)} and D isinjective, D mapsintervalsin Igto intervalsin | 4, so g(x, y) and
hy(x, y) are defined for all z. Also define functionsg’'s: R - R and

hs:R - Rby g2 =94z 2) and h'(2) = h{z 2).

Asshown in Appendix G, the functions gg and hg can be defined in terms of the functions g's and

h'g, asfollows. Givenadisplay function D:U - V, acontinuous scalar

sdS and[x y] Olg then

(3.15) ggx, y)=inf{g42) |x<z<y} and

(3.16) hg(x,y) =sup{h'(2) |[x<z<y}.
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In Appendix G we a so show that the overall behavior of adisplay function on a continuous scalar
must fall into one of two categories. Specifically, given adisplay function D:U - V and a continuous

scalar s S, then either

(3.17) [Ox,y,zOR.x<y<zimpliesthat gg(x, 2) = gg(X, ¥) & hy(X, ) < hg(X, 2) and that

05X, 2) < g4y, 2 & hgly, 2) = hg(X, 2),

or

(3.18) [x,y,zOR.x<y<zimpliesthat gg(x, 2) < gg(X ¥) & hy(X, y) = hg(X, 2) and that

05X, 2 = g¥, 2 & hyly, 2) <hd(x, 2).

If Eq. (3.17) applies, we say that D isincreasing on s. If Eq. (3.18) applies, we say that D is

decreasingonss.

Appendix G shows that these categories also apply to the functions g's and h'g. Given adisplay
functionD:U - V, acontinuousscalar s00 S and z< Z, if D isincreasing on sthen g'g(2) < g'{(Z) and
h'(2) <h'(Z), and if D isdecreasing on sthen g'g(2) > g'((Z) and h'g(2) > h'(Z).

These categories enable usto prove (see Appendix G) that the functions g' and h'g must be
continuous (in terms of the topology of the real numbers), and that they satisfy a number of other

conditions, summarized in the following definition.

Def. A pair of functionsg'sR - Rand h'gR - R iscalled acontinuous display pair if:
€) g’ has no lower bound and h’g has no upper bound,
(b) 0zOR. g4 <hy2), and

() g's and h'g are continuous,
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(d) either g's and h'g are increasing:
Oz, ZOR.z<Z 0O g2 <g4Z) & h'yz2) <h'(2),
or g'sand h'g are decreasing:

Oz, ZOR.z<Z 0O g2 >g4Z) & h'y2) > h(2).

Given adisplay function D:U - V and a continuous scalar s [ S, then g'g and h'g are a continuous
display pair. If we draw the graphs of the functions g's and h'g, these conditions tell usthat their graphs
must be smooth, both slanted up or both slanted down, with the graph of h'g above the graph of g'g, no
upper bound on the graph of h'g, and no lower bound on the graph of g's. A display function maps closed
real intervalsin a continuous scalar to closed real intervalsin a continuous display scalar, and the graphs of
functions g'g and h'g can be used to determine this mapping of intervals by applying Egs. (3.15) and (3.16).

The behavior of g'gand h'gisillustrated in Figure 3.16.

no upper bound

77777 hg above g
corresponding
interval in a
continuous
display scalar
determined by
hg and gy

/ interval in a

continuous scalar
no lower bound

9s

hg and g both smooth

and increasing (could both
be decreasing)
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Figure 3.16. The behavior of a display function D on a continuous scalar interpreted in terms of

the behavior of functions h's and g's.

3.4.3 Characterizing Display Functions

The results of the last two sections describe a variety of necessary conditions on display functions.

Here we summarize those conditions, and show that they are a so sufficient conditions for display

functions.

Def. Given afinite set Sof scalars, afinite set DS of display scalars,

X=X{lg|sO0S,Y=X{lg|dODS}, U =CL(X), and V = CL(Y), then afunction

D:U - Visascalar mapping function if

@

(b)
(©

(d)
(¢

(f)

(9)

thereisafunction MAPp : S - POWER(DS) such that

Os, s 0'S MAPR(S) n MAPR(S) = o,

for all continuous s O S, MAP(s) contains asingle continuous d [J DS,
for @l discretes 0 S, al d O MAPD(s) are discrete,

D(¢) = eand D (T.....0N}) = {(0....0)},

for all continuouss 0 S, g'gand h'g are a continuous display pair,

for al [u, v] O lg ggu, v) =inf{g'(2) |[u<z< v} and

hg(u, v) =sup{'g(2) [u< z< v},

and, given {d} = MAPp(s), thenfor all [u, v] O 1{ 7},

D(! (O,....[u, V],...,00) = ¢+ (O,....[95u, V), hg(u, V)],...,.00) O Vg,

for all discretes 0 S, for all a O 1{ [},

D(! (O,...,a,...,0)) =b O V4 for some d 0 MAPp(s), where b # {(0,...,)},
and, forala,a 01 {0}, a#za 0 D(4(H,...,a,...,0)) # D(L (O,...&,...,0D))

forall xOX,D(1X) = 1 \V{y | 50 S xg# 0& ty=D( (T,...Xg D))},
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where Xg represents tuple components of x, and using the values for D defined

in(e) and (f), and

(h) foraluU, D(u) = \/{ D(1x) | x O u}, using the values for D defined in (g).

This definition contains a variety of expressions for the value of D on various subsets of U.
Appendix H shows that these expressions are consistent where the subsets of U overlap, and shows that D
ismonotone. This definition says that scalar mapping functions factor into mappings from scalars (data
primitives) to display scalars (primitives), and that the factor mappings on continuous scalars are
continuous real functions. In Appendix H we also prove the following characterization of display

functions:

TheoremH.8. D : U - Visadisplay function if and only if it is a scalar mapping function.

Appendix H a so shows that the val ues of a scalar mapping function D can be expressed in terms

of an auxiliary function D’ from Xto Y. Specifically, for al u 0 U,

(319) D(u)={D'(x) |x O u}.

where D’ is defined by

3200 D' =V{(O...aq...0) |SOS& xg# 0& D(4(0,...Xg. ) =

L (OB D)}
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This decomposition can be used as a basis for implementing scalar mapping functions, and scalar
mapping functions can be used as the basis of auser interface for controlling the display process. We will
describe this further in Section 3.4.4.

Theorem H.8 can also be used as a precise definition of the search space of display functions for

algorithms that attempt to automate the design of displays.

3.4.4 Properties of Scalar M apping Functions

There is a problem with the interpretation of display objectsin adisplay lattice. Closed sets
generally contain infinite numbers of tuples, so we cannot interpret each tuple as a graphical mark.
However, as described in Section 3.2.4, aclosed set isjust one member of an equivalence class of the =R
relation. A closed set v 0V and its set of maximal tuples, MAX(Vv), are both members of the same
equivalence class and thus either can represent a display object. Asshown in Appendix I, if D isadisplay
function and if
v [ D(Fy) for some datatypet O T, then MAX(v) contains a finite number of tuples. Thus, in order to
physically render a display object v 0 V, we interpret the finite set of tuplesin MAX(v) as graphical marks,
rather than the possibly infinite set of tuples of v. Clearly, it is necessary for an implementation of the
function RENDER : V - V' to assume a finite number of input tuples.

In order to compute values of scalar mapping functions we use the auxiliary function D’ from X to

Y defined in Section 3.4.3. The values of D’ are determined by the function MAPp, by the values of the

functions ' and ' for continuous scalars s [ S, and by the values of D on Ugfor discrete scalarss [ S.

As shown in Appendix I, given
t 0 T and adata object A O Fy, maximal tuples of D(A) can be computed directly from the maximal tuples

of Aby

(321) MAX(D(A)) = {D'(a) | a 0 MAX(A)}

173



174

As shown in Appendix D, the maximal tuples of data objects of typet O T are computed by

(322) tOS&A=1(0,...a..0) 0F0
MAX(A) ={(0,....a,...,.0)}
(323) t=struct{ty;..;ty} OT& A={(a1..0ay) | Di. 3 O A} OF¢ 0
MAX(A) = {(a0...0a) | Di. a 0 MAX(A)}
(3.24) t=(array[w] ofr) 0T& A={aq0ay |gUG & aj0E,(g) & as0E,(a(g))} U Fy

0 MAX(A) = {aq Dap | g0G & a1 OMAX(Ey(@)) & agTIMAX(Er(a(@)}

These expressions for sets of maximal tuples and the auxiliary function D’ provide a basis for
implementing scalar mapping functions. Given a data object A, Egs. (3.22) through (3.24) define a
recursive procedure for calculating the maximal tuples of A, and Eq. (3.21) says that the function D’ maps
maximal tuples of A to maximal tuples of D(A).

In Section 3.3 we described displays as sets of graphical marks. However, we can also think of
displays as defining functional relations from graphical space and timeto color. That is, the color of a
screen point is a function of its location on the screen and its place in an animation sequence. These two
views of displays, as sets of graphical marks and as functions, are not consistent. For example, consider

the display latticeillustrated in Figure 3.14. If adisplay in thislattice includes two tuples (time, X, v, z,

redq, greenq, blueq) and (time, x, y, z, reds, greens, bluey) where redq # reds, greenq # greens or blueg #
bluey, then these two tuples do not define a consistent function from space and time to color. In order to
analyze the circumstances under which these two views are consistent, we divide display scalars into two
groups:. those that take the role of dependent variablesin this functional relation and those that take the role

of independent variables. For example, the set DS defined in Eq. (3.14) can be divided as follows:
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Independent variables: x, y, z, animation, selector, ..., selectory,

Dependent variables: red, green, blue, transparency, reflectivity, vectory, vectory,

vector,, contour 1, ..., contourp,

Thus we can ask whether a display function generates displays that define functional relations

between independent and dependent variablesin DS, Define a subset Vg splay 0V consisting of those

display objects that do not contain multiple tuples with the same combination of values of independent

variables. We will study the conditions under which displays of data objects are members of Vj; splay-
First, define DOMDS = the independent variablesin DS, and define

YDOMDS= X{lg|d 0 DOMDS} and Y= X{I4|d 0 DS}. Let PpoMDS:Y — YDOMDSbe the

natural projection from Y onto Yp (that is, if a 0 Yand b = Ppoppga), then for al d 0 DOMDS, by =

ag). Then we can define Vjspl ay &s follows:

Def. Visplay = {A 0 V| Ob, ¢ [ MAX(A). PpoMDSb) = PDOMDS(O) U b=c}. Thatis, if A

isan object in Vg splay: then multiple tuplesin A do not share the same combinations of values for display

scalarsin DOMDS.

Appendix | defines conditions ont and D that ensure that displays of data objects of typet arein

Vdisplay- Specifically, D maps all data objects of typet to displaysin Vdisplay if D mapsal scalarsin
DOM(t) to display scalarsin DOMDS. Symbolically, MAPR(DOM(t)) 0 DOMDS I D(Fy) 0 Vgigplay-
Theinverse of thisrelation is almost true - we only need to disallow degenerate cases. Details are
givenin Appendix I.
In summary, in this section we have shown that the number of tuplesin a display may beinfinite,

but that the number of maximal tuplesis finite. We concluded that only maximal tuples should be

175



176

interpreted as graphical marksin an actual implementation. We have a so described a recursive procedure
for computing the set of maximal tuplesin a data object and described how maximal tuples of displays are
computed from maximal tuples of data objects. This provides a basis for implementing display functions.
We have also demonstrated conditions on data types and display functions so that display objects
are consistent with afunctional view of displays. Animplementation could enforce these conditions on
scalar mappings defined by users. We note, however, that the VisAD implementation described in Chapter
4 does not enforce these conditions. Rather, multiple tuples that are inconsistent with a functional view of
display (i.e., occurring at the same location and time) are merged using a compositing operation (that is, the

system computes the average colors of multiple tuples at the same location and time).

3.5 Principlesfor Scientific Visualization

In this chapter we analyzed the repertoire of visualization mappings from a lattice-structured data
model to alattice-structured display model. In this section we summarize the results of thisanalysisasa
set of basic principles for visualization.

We showed how alattice structure can express metadata about the ways that scientific data objects
are approximate representations of mathematical objects. We also showed that this idea can be applied to

scientific displays. Our first basic principle is that

1. Lattice-structured data models provide a natural way to integrate common forms of scientific

metadata as part of data objects.

We gave an example of how alattice-structured data model includes data objects of many

different types, and we will describe another examplein Chapter 5. Our second basic principleis that
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2. Dataobjects of many different types can be unified into a single lattice-structured data model, so

that visualization mappings (to adisplay model) are inherently polymorphic.

We have shown how lattice-structured data and display models can be adapted very generally by
applying Eq. (3.2). We have shown that Mackinlay's expressiveness conditions on the visualization
mapping can be interpreted in terms of such models and that these conditions imply that visualization

mappings are lattice isomorphisms. Our third basic principle is that

3. Lattice-structured data models and display models may be defined in avery general set of scientific
situations, and the lattice isomorphism result can be broadly applied to analyze the repertoire of

visualization mappings between them.

We have shown how to define alattice-structured data model that allows data aggregates to be
defined as hierarchies of tuples and arrays. We have shown how a similar lattice structure can define a
model for interactive, animated, three-dimensional displays. By applying the lattice isomorphism result in

this context, we have established our fourth basic principle that

4. Mappings from data aggregates to display aggregates can be factored into mappings from data

primitivesto display primitives.

While our fourth principle has been accepted asintuitive in the past, here we have shown that it

completely characterizes all visualization mappings that satisfy the expressiveness conditions.

Chapter 4
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Applying the Lattice M odel to the Design of Visualization Systems

In Chapter 2 we devel oped the following design components for the VisAD system for visualizing

scientific computations:

1. That it isintegrated with a scientific programming language. The system has an integrated user

interface for programming, computation and display.

2. That the data types of that programming language are constructed as tuples and arrays from a set of

scalar types. Data objects of these types represent mathematical variables, vectors and functions.

3. That itsdisplays areinteractive, animated and three-dimensional. These logical displays are

mapped to physical displays by a variety of familiar rendering operations.

In this chapter we will continue that development, guided by the broad goals defined in Section

1.1, by the analysis of visualization repertoires in Chapter 3, and by the basic principles defined in Section

3.5. Toreview, our goals are to develop visualization techniques that

1. Can be applied to the data of a wide variety of scientific applications.

2. Can produce awide variety of different visualizations of data appropriate for different needs.

3. Enable usersto interactively alter the ways data are viewed.

4. Require minimal effort by scientists.
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5. Can be integrated with a scientific programming environment.

The basic principles are

1. Lattice-structured data models provide a natural way to integrate common forms of scientific

metadata as part of data objects.

2. Dataobjects of many different types can be unified into a single lattice-structured data model, so

that visualization mappings (to adisplay model) are inherently polymorphic.

3. Lattice-structured data models and display models may be defined in avery general set of scientific
situations, and the lattice isomorphism result can be broadly applied to analyze the repertoire of

visualization mappings between them.

4. Mappings from data aggregates to display aggregates can be factored into mappings from data

primitivesto display primitives.

4.1 Integrating M etadata with a Scientific Data M odel

Our first goal developed in Section 1.1 was that scientific visualization techniques "Can be
applied to the data of a wide variety of scientific applications." Thusin Section 2.2 we developed a
flexible way to define data types based on the assumption that data objects represent mathematical objects.
However, as we described in Section 1.2.2, scientific data includes metadata as well as datatypes. The first

principle of Chapter 3 tells us that a lattice-structured data model provides a natural way to integrate
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common forms of scientific metadata as part of data objects, and thus handle a greater variety of data. In
this section we describe the ways that our visualization design integrates metadata.
The VisAD system allows data types to be defined as tuple and array aggregates of named scalar

types. Scalar types may be defined with any of the following primitive types:

1. Integers.

2. Text strings.

3. Real numbers (these values are always taken from a specified finite sampling of real numbers, and

intervals around these values are implicit in the spacing between samples).

4. Pairsof real numbers (these values are always taken from afinite sampling of R2 and rectangles

around values are implicit in the spacing between samples).

5. Triples of real numbers (these val ues are always taken from a finite sampling of R3 and rectangular

solids around values are implicit in the spacing between samples).

These types of primitive values do not precisely correspond to the scalar types defined in Chapter 3.

Integer and text string primitives do correspond to discrete scalars. Real number primitives correspond to
the continuous scalars of Chapter 3, except that the intervals around values are implicit. They are included
in our system as a compromise between the computational efficiency of real numbers and the explicit
accuracy information of real intervals. Primitives for pairs and triples of real numbers do not correspond to
the scalars of Chapter 3. They are included in our system because they occur commonly in scientific data

and can be handled more efficiently as primitives. Furthermore, metadata are integrated at the level of
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primitive values, so handling two- and three-dimensional real values as primitives enables the system to
integrate awider variety of metadata. Specifically, these primitives allow samplings of R2 and R3 that are
not Cartesian products of samplings of R.

The system integrates the following forms of metadata:

1. Sampling information: Every value in a data object is taken from afinite sampling of primitive
values. That is, the system includesinternal structures that specify finite samplings of the five
primitive types, and associates every primitive value with one of these structures. For array index
values, this finite sampling determines the way the array samples a function’s domain, and thus

determines the size of the array.

2. Accuracy information: Thisisimplicit in the resolution of samplings, rather than the explicit

intervals described in Chapter 3.

3. Missing dataindicators: Any value or sub-object in a data object may take the special value missing

(indicating the lack of information).

4. Names for values: Every primitive value occurring in a data object has a scalar type, and hence a

name (that is, the name of the scalar type).

The integration of metadata into data objects has important consegquences for computational

semantics. For example, consider the following data types appropriate for satellite images:

type radiance = readl;

type earth_location = real 2d;
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type image = array [earth_location] of radiance;

and the following declarations of data objects:

earth_location loc;

image goes_east, goes west, goes_diff;

The scalar data object loc will take a pair of real numbers as a value - the latitude and longitude of a
location on the Earth. The array data object goes east contains a finite set of samples of an Earth radiance
field, indexed by {latitude, longitude} pairs. The value of the expression goes east[loc] is an estimate of
the value of thisradiance field at the Earth location in loc. There are avariety of interpolation methods for
making this estimate - the VisAD implementation simply takes the value of the sample in goes_east nearest
toloc. If loc falls outside the range of samples of goes_east, the expression eval uates to missing.

Now consider the program fragment:

sample(goes _diff) = goes_east;
foreach (loc in goes_east) {

goes_diff[loc] = goes east[loc] - goes west[loc];

Thefirst line specifies that goes _diff will have the same sampling of array index values (that is, of pixel
locations) that goes_east has. The foreach statement provides a way to iterate over the elements of an
array. Inthiscaseit iteratesloc over the pixel locations of the goes east image. The expression
goes_east[loc] - goes west[loc] is evaluated by estimating the value of (the radiance field represented by)

goes west at loc, and then subtracting this value from goes_east[loc]. Any arithmetic operation with a
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missing operand evaluates to missing, so goes_diff[loc] is set to missing if goes west[loc] evaluatesto
missing. (Note that missing data are natural values for undefined arithmetic operations such as division by
zero.)

The VisAD implementation provides vector operations, so this computation may also be

expressed as:

goes_diff = goes east - goes west;

All the semantics of the previous program fragment are implicit in this statement.

Satellite images are finite arrays of pixels. Pixel radiances are typically represented by coded 8-
bit or 10-bit values. The most important metadata accompanying satellite images are called navigation,
which defines the Earth |ocations of pixels, and calibration, which defines the radiance val ues associated
with coded pixel values. Missing data indicators are also important for satellite data since telemetry
failures are common. Our visualization design can integrate al of these forms of metadata. Satellite
navigation metadata can be integrated as the samplings associated with the real2d indices of image arrays,
satellite calibration metadata can be integrated as the samplings associated with real radiance valuesin
image arrays, and missing data are integrated with any datatype. These forms of metadata are implicit in
the computational semantics of the VisAD programming language. In Section 1.1 our fourth goa was that
visualization techniques should "Require minimal effort by scientists." The programming example above

shows that the integration of metadata into data objects relieves scientific programmers of the need to:

1. Keep track of missing data.

2. Manage the mapping, including interpolation, from array index values to physical values (such as

Earth latitude and longitude).
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3. Check bounds on array accesses.

The integration of metadata into data objects also affects their display semantics. For example,
Figures 4.1 shows satellite image data displayed in a Cartesian Earth coordinate system defined by latitude
and longitude. The system geographically registers thisimage data object using the integrated satellite
navigation metadata, relieving the user of the need to manage the association between images and their
navigation information when images are displayed. Figure 4.2 shows an image generated by a polar
orbiting satellite, displayed in an Earth-centered spherical coordinate system.

The integration of missing data also affects display semantics. Figure 4.3 isanearly edge-on view
of athree-dimensional array of radar echoes. It istraditional to treat the lack of echoes as missing rather
than zero, since information about spectrum and polarity is not available where there are no echoes. The

missing values are simply invisible in Figure 4.3.
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Figure 4.1. A satellite image displayed in a Cartesian Latitude / Longitude coordinate system.

(color original)
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Figure 4.2. An image from a polar orbiting satellite displayed in a three-dimensional Earth

coordinate system. (color original)
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Figure 4.3. Three-dimensional radar data. (color original)
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The VisAD system integrates accuracy information with its data objects only implicitly asthe
resolution of value samplings. However, our system design could easily integrate this form of metadata
explicitly by using real intervals as described in Section 3.2. Interval arithmetic could be used for the
computational semantics of interval values (Moore, 1966), including the use of two and three-dimensional
rectangles as values for two and three-dimensional real primitives.

The samplings associated with values can be exploited for a simple form of data compression. If a
variable takes a value from a set of 255 samples plus missing, then that variable can be stored in asingle
byte. Thus programs can written asif satellite radiances are real numbers, but they may be stored as 8-bit

codesin bytes.

4.2 Interacting with Scientific Displays

In Section 3.3 we discussed how a lattice-structured display model V can be defined in terms of a
set of display scalars (i.e., graphical primitives). The graphical primitives of Bertin’s display model were
2-D location, size, value, texture, color, orientation, and shape. Shape and texture are different from
Bertin's other primitives in the sense that they can be composed as graphical aggregates. Thus we do not
treat them as primitivesin the VisAD display model. The fourth principle of Section 3.5 tells us that
mappings from data aggregates to display aggregates can be factored into mappings from data primitivesto
display primitives. Thus shapes and texturesin VisAD’s displays represent shapes and textures in data
according to this principle. For example, in Figure 4.4 an aggregate of primitive points form a complex
shape. Each point corresponds to an individual observation of an X-ray emanating from interstellar gas.
The overall shape of these points communicates a great deal about the functioning of the instrument that

made these observations.
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Figure 4.4. X-ray events from interstellar gas. (color original)
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Bertin restricted his model to physical displays: static two-dimensional arrays of color. As
discussed in Section 2.3, our design uses logical displays that may are animated, three-dimensional and
interactive. We distinguish between a set V' of physical displays and a set of logical displaysV. We define
amapping RENDER : V - V' that implements the traditional graphics pipeline for iso-surface extraction,
projection from three to two dimensions, clipping, animation, and so on. The VisAD system’s display

model is defined in terms of the following display scalars:

(41) DS={color, contourt, ..., contourp, X, y, z, animation, selector1, ..., selector

Using the terminology of Chapter 3, amaximal tupleinyY = X{ Ig|d O DS} represents agraphical

mark inadisplay. Givenamaximal tuple, its x, y and z values specify the corresponding graphical mark’s
location and size in avirtua three-dimensional graphics space, its color val ue specifies the mark’s color,

and its animation value specifies the mark’s place and duration in an animated sequence of images, as

illustrated in Figure 3.14. The contourj display scalars are similar to color in that they help determine how
amark appears, rather than where or when it appears. For each i, the contourj valuesin tuples are

resampled to avalue field distributed over athree-dimensional voxel array. These fields are depicted by

iso-level surfaces and curves rendered through the voxel array. The selectorj display scalars are similar to

animation in that they help determine when a mark appears, rather than where or how it appears. The user
selects a set of values for each selectorj, and only those tuples whose selector; interval values overlap with
this set areincluded in the display. Note that just as the VisAD data model includes two- and three-
dimensiona real primitives, the display model includes the three-dimensional real primitive color, includes
two- and three-dimensional real primitives for various combinations of graphical location (e.g., xy_plane),
and allows selector scalars to take the dimensionality of the scalars mapped to them.

In Chapter 3 we developed a detailed analysis of the repertoire of visualization mappings from

lattice-structured data models to lattice-structured display models. The data and display models of the
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VisAD system do not precisely conform to the assumptions in Theorem H.8, so it cannot be applied to
VisAD in exact form. However, the VisAD system does implement the essential structure of scalar
mapping functions. Visualization mappings of aggregate data objects are factored into continuous
functions from scalar typesto display scalar types. VisAD deviates from the scalar mapping functions of
Theorem H.8 by including continuous functions of two- and three-dimensional real scalars. Users control
how data are displayed by defining a set of mappings from scalar types to display scalar types.

We can illustrate the way that mappings from scalar types to display scalar types control data

displays by an example. The following data types are defined for a time sequence of satellite images:
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type earth_location = real 2d;
typeir_radiance=red;
typevis radiance=redl;
type variance = redl;
type texture = redl;
typetime=red;
type image_region = integer;
typeimage =
array [earth_location] of
structure {
ir_radiance;
vis_radiance;
variance;
texture;
}
type image_partition = array [image_region] of image;

type image_sequence = array [time] of image _partition;

Each image pixel containsinfrared and visible radiances, and variance and texture values derived from
infrared radiances. Animage_seguence is atime sequence of images, each partitioned into rectangular
regions (which are indexed by image region). These typesinclude seven scalars, so users control the way
that data objects are displayed by defining mappings from these seven scalars to seven display scalars. In
the VisAD system these mappings are defined using a simple text editor. Figure 4.5 shows a data object of

the image_sequence type displayed as a colored terrain, after specifying the following mappings:
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map earth_location to xy_plane;
map ir_radianceto z_axis;

map vis_radiance to color;

map variance to selector;

map texture to selector;

map image_region to selector;

map time to animation;

The user can use the same display scalar name selector in more than one mapping since the system
differentiates multiple occurrences of selector into selector 1, selector, etc.

Note that the VisAD system supplies default continuous functions from scalars to display scalars
when they are not included in the specification of scalar mappings (as they are not included in the above
mappings). The default functions are linear from the range of samplings of the scalar values to the range of

display scalar values. In practice these defaults almost always work well and make the user’s task easier.
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Figure 4.5. A goes_sequence object displayed as a terrain (i.e., a height function), with ir
radiance mapped to terrain height (the y axis) and vis radiance mapped to color. All sixteen
image region values are selected for display. The time sequence may be animated. (color

original)
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The second and fourth goals developed in Section 1.1 state that visualization techniques " Can
produce a wide variety of different visualizations of data appropriate for different needs' and "Require
minimal effort by scientists." The scalar mapping functions used in VisAD are effective at realizing these
goals, and this effectiveness can be explained in terms of the basic principles developed in Section 3.5.
The fourth principle tells us that mappings from data aggregates to display aggregates can be factored into
mappings from data primitives to display primitives. Thusany way of displaying data that satisfies the
effectiveness conditions can be specified by a set of mappings from scalars to display scalars. The second
principle tells us that, because of the way that data objects of many different types are unified into asingle
lattice-structured data model, visualization mappings are inherently polymorphic. The fact that asingle
display mapping D : U - V appliesto data objects of many typesin U has a beneficial impact on the
VisAD system’s user interface: asingle set of scalar mappings control how all data objectsin a user’s
program are displayed. Once a user defines a set of scalar mappings, he can select any data object for
display merely by graphically picking its name. Display controls are separate from a user’s scientific
programs, unlike previous visualization systems that require calls to visualization functions to be embedded
in programs.

In Section 3.4 we noted that our lattice-structured display model was inconsistent with a
functional view of display (i.e., the view that adisplay defines a functional relation from location and time
to color). We developed a set of constraints on scalar mapping functions (these constraints also depend on
the type of the data object being displayed) that guarantee that they generate only displaysthat are
consistent with afunctional view of display. However, we have chosen not to enforce these constraintsin
the VisAD system. We use the VisAD system for experimenting with visualization ideas, and have
generally opted against restrictions on what users may do.

For example, we have even used VisAD to experiment with visualization mappings that do not
satisfy the expressiveness conditions. For example, we experimented with a way of mapping more than

one scalar to adisplay scalar (display scalar values were calculated as the sum of values they would have
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from each scalar adone). While this feature did produce some interesting images, we generally found that it
was not used by scientists. This experience tends to confirm the val ue of the expressiveness conditions.

The third goal developed in Section 1.1 states that visualization techniques "Enable usersto
interactively alter the ways data are viewed." The VisAD design realizes this goals by making the
specification of the mappings from data primitives to display primitives easily edited to change the way
data are displayed. Figure 4.6 shows the goes_sequence data object from Figure 4.5 displayed according to
four different sets of mappings. In the top-right window it is displayed according to the same seven

mappings used in Figure 4.5, which are:

map earth_location to xy_plane;
map ir_radianceto z_axis;

map vis_radiance to color;

map variance to selector;

map texture to selector;

map image_region to selector;

map time to animation;

The display in the top-left window of Figure 4.6 can be generated by the following two changes to the

above mappings:

map ir_radiance to color; /* red */

map vis_radiance to color; /* blue-green */
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Notice that more than one data primitive can be mapped to color sinceit is athree-dimensional primitive.
The user determines how color is factored into components using interactive color map icons like those
shown in Figures 2.2 and 4.3.

Next, the display in the bottom-right window of Figure 4.6 can be generated by the following

additional changes to the mappings:

map ir_radiance to selector;
map vis_radiance to color;

map time to z_axis,

Finally, the display in the bottom-left window of Figure 4.6 can be generated by the following changes to

six of the seven mappings:

map earth_location to selector;
map ir_radiance to x_axis,
map vis radiancetoy_axis,
map variance to z_axis;

map texture to color;

map time to animation;

Actually, the VisAD system allows data objects to be displayed according to four different sets mappings

simultaneously, and this was capability used to generate Figure 4.6.
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Figure 4.6. A goes_sequence object displayed according to four different sets of mappings. The
top-right is the same as Figure 4.5, the top-left maps ir (red) and vis (blue-green) to color, the
bottom-right maps ir to selector and time to the y axis, and the bottom-left maps ir, vis and
variance to the x, y and z axes, maps texture to color, and maps lat_lon to selector. (color

original)
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Flexibility in the ways that data are displayed can be useful for comparing data objects of different
types, asillustrated by the following example. In 1963 E. N. Lorenz developed a set of differential
equations that exhibit turbulence in a very simple two-dimensional atmosphere (Lorenz, 1963). Roland
Stull of the Atmospheric and Oceanic Sciences Department of the University of Wisconsin-Madison
teaches an Atmospheric Turbulence course and has applied the VisAD system to an algorithm that
integrates Lorenz's equations in order to illustrate turbulence to studentsin his course. The datatypes

defined for this algorithm are:

type atmos_location = real2d;
type temperature = real;
type stream_function = real;
type atmos = array [atmos_location] of
structure {
temperature;
stream_function;
}
type phase x = real;
type phase_y = real;
type phase z =redl;

typetime=red;
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type phase_point =
structure {
phase x;
phase_y;
phase z;
}

type phase_history = array [time] of phase _point;

The Lorenz equations describe temperature and air flow in arectangular cell of atwo-dimensional
atmosphere. The algorithm integrates the Lorenz equations as a path through a three-dimensional phase
space, recorded in a data object of type phase_history. This object is displayed in both the lower-left and

upper-left windowsin Figure 4.7. The lower-left window is defined by the mappings:

map atmos_|ocation to selector;
map temperature to selector;
map stream_function to selector;
map phase x to x_axis;

map phase ytoy_axis;

map phase zto z_axis,

map time to selector;

The lower-left window shows two data objects displayed in different colors: red and blue-green (the system
automatically picks adifferent solid color for displays of data objects that don't include any scalar values
mapped to color). The phase_history object, displayed as a path of red points, winds chaotically between

two lobes (this three-dimensional shapeis called the Lorenz attractor). A data object of type phase point is
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also displayed in this window as a single blue-green point, marking the point on the phase space path
corresponding to the rectangular cell of the two-dimensiona atmosphere displayed in the right window in

Figure 4.7. That window shows a data object of type atmos displayed using the mappings:

map atmos_location to xy_plane;
map temperature to color;

map stream_function to contour;
map phase_x to selector;

map phase _y to selector;

map phase_z to selector;

map time to selector;

The color field indicates temperature, where warm areas are red and cool areas are blue. The contours of
the stream function are parallel to air motion, and their spacing indicates wind speed. The direction of air
flow can be inferred from the knowledge that warm air rises. Asthe program executes, this window shows
the changing dynamics of the cell of atmosphere, and the lower-left window shows the motion of the
corresponding phase space point. This animation makes it clear that the two lobes of the Lorenz attractor
in phase space correspond to clockwise and counterclockwise rotation in the two-dimensional atmosphere
cell.

The upper-left window in Figure 4.7 shows the phase _history object displayed using the

mappings:

map atmos_|location to selector;

map temperature to selector;

map stream_function to selector;
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map phase_x to x_axis;
map phase ytoy_axis,
map phase_z to selector;

map time to z_axis,

In the upper-left window two dimensions of the winding path in phase space are plotted against time,

illustrating the apparently random (that is, chaotic) temporal distribution of alternations between the two

phase space |obes.
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Figure 4.7. Three views of chaos. The right window shows temperatures and wind stream lines
in a cell of a two-dimensional atmosphere. The bottom-left window shows the trajectory of
atmospheric dynamics through a three-dimensional phase space. The top-left window shows this

trajectory in two phase space dimensions versus time. (color original)
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Thethird goal developed in Section 1.1 states that visualization techniques "Enable usersto
interactively alter the ways data are viewed." Achieving this goal depends not only on the ease with which
users can control displays, but also on how quickly the system can generate displays. The transformation
of data objectsinto physical displaysis factored into the two mappingsD : U - V and RENDER:V - V,
where Visalogica display model and V' isaphysical display model. Logical displaysinV are sets of
tuples of display scalar values, and physical displaysin V' are two-dimensional arrays of colored pixels.
The RENDER function can be computed quickly sinceit is essentially the traditional graphics pipeline
whose operations are commonly implemented in hardware. Thus we have focused our optimizations on the
function D.

The function D is specified by a set of mappings from scalarsto display scalars. Based on the
embedding of data objectsin the lattice U described in Section 3.2, a data object u isinterpreted as a set of
tuples of scalar values. Each tuplein uistransformed to atuplein D(u) according to the mappings from
scalarsto display scalars. The VisAD implementation of D exploits both parallel and vector techniquesin
order to achieve interactive response times. First, the tuples belonging to a data object can be processed
independently and thus are partitioned among M processes which executein parallel. (These executein a
shared memory model, which is common on modern workstations and relatively easy to port.) Second, the
important branches in the algorithm for processing tuples depend on data types rather than data val ues.
Thus large sets of tuples take the same path through the algorithm and can be processed in groups of N,
allowing computations to be optimized in tight loops over vectors of values for entire groups. Typical
valuesareM =4 and N = 256. While such parallelization and vectorization techniques are not novel, they
are quite effective in producing a fast implementation of the function D.

Asdiscussed in Section 1.2.3, display objectsin V are inherently interactive. Users have the

following interactive controls over the mapping RENDER: V - V'
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1. Control over the projection from a three-dimensional space to a two-dimensional display screen (i.e.,

rotate, pan and zoom in three dimensions).

2. Control over time sequencing for scalars mapped to animation.

3. Control over color maps for scalars mapped to color.

4. Control over the iso-levels of scalars mapped to the contour; scalars.

5. Control over the selected sets of values for scalars mapped to the selector; scalars.

Users also have the following interactive controls over the mapping D : U — V and the selection

of data objects:

1. Control over the way that data are displayed, by selecting, for each scalar, which display scalar itis

mapped to.

2. Control over the mathematical mapping from scalar valuesto display scalar values. Thisis

particularly useful for scalars mapped to spatial coordinates (i.e., X, y and z) and to color.

3. Control over which data objects are displayed. (Note that multiple data objects can be displayed
simultaneously. Ultimately, display objectsin V are transformed into lists of three-dimensional
vectors and triangles for rendering, and multiple data objects are combined merely by merging their

sets of vectors and triangles.)
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A key to design of the VisAD system is that it treats the definition of scalar mappings (items 1 and
2 above) and the selection of data objects for display (item 3 above) like any other interactive display
control. Thisisin contrast to the automated techniques of Mackinlay (Mackinlay, 1986), Robertson
(Robertson, 1991), and Senay and Ignatius (Senay and Ignatius, 1991; Senay and Ignatius, 1994). They
each solicited a set of visualization goals from the user, and then searched for a display design that satisfied
these goals. The automated approach is motivated by the desire to minimize the user’s effort to generate
data displays. However, a set of scalar mappingsis no more complex than a set of visualization goals.
Furthermore, the scalar mappings control how data are displayed in a direct and intuitive way, whereas the
way that a display-design algorithm interprets the user’s visualization goals may not be intuitively obvious.
By making control over scalar mappings interactive, we enable users to explore avariety of different ways
of displaying the data objectsin their algorithms. We believe that this interactive exploration is likely to be

more useful than displays generated by intelligent display generation algorithms.

4.3 Visualizing Scientific Computations

In this chapter and in Chapter 2 we have developed a visualization system approach based on the
five goalslisted in Section 1.1. Our visualization approach can be directly applied to visualize executing
programs because it is interactive and integrated with a scientific programming language. This enables
scientists to perform visual experiments with their computations. Any data object defined in a scientific
computation can be visualized, and can be visualized in awide variety of different ways. This enables
scientists to find high-level problems with their algorithmsin the same way that interactive debuggers
enable them to find low-level bugs. Just as with a debugger, scientists can control execution and set
breakpoints. However, VisAD enables scientists to visualize large and complex data objects and thusto
understand high-level problemsin their algorithms. This visualization does not interfere with scientific
algorithms, since there is no need to embed calls to display functionsin programs, and it does not distract

scientists, since they do not need to write display programs. Thusthe VisAD system is easy to use.
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At the simplest level, visualization serves to make data objects visible. We can think of
visualization like a microscope - making an invisible world visible. Further, the visualization of data
objects provides understanding of computational processes involving those data objects. For example,

consider a bubble sort algorithm written in the VisAD programming language:

typetime=red;
type temperature = real;

type temperature_series = array [time] of temperature;

sort(temperature_series temperatures; time n;)
{
time outer, inner;

temperature swap;

/* A bubble sort is organized as two nested loops */
for (outer=n; outer>1; outer=outer-1) {
for (inner=1; inner<outer; inner=inner+1) {
/* compare adjacent elements*/
if (temperatures/inner-1] > temperatureginner]) {
/* adjacent elements are out of order, so exchange them */
swap = temperatureginner];
temperatureg/inner] = temperatureginner-1];

temperaturegfinner-1] = swap;
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Five data objects are declared in this program. The array being sorted is named temperatures and has type
temperature_series. Itisan array of temperaturesindexed by time. The inner and outer loop indicesinto
this array have type time, as does the size n of the array. The swap variable of type temperatureis used to
exchange elements of the array. Figure 4.8 shows this program running under VisAD, and four of these
data objects are displayed in the window on the right (the size n is not displayed since it does not change as

the program runs). They are displayed using the mappings:

map time to x_axis;

map temperatureto y_axis,
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Figure 4.8. Visualizing the computations of a bubble sort algorithm. (color original)
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The text that defines these mappings can be seen in the small window at the top of the screen. The
temperatures array is displayed as a graph (the set of white points) of temperature versustime. The outer
index is displayed as asmall green sphere on the lower horizontal axis. Note that the white points to the
right of the green sphere are

sorted. Theinner index is displayed as asmall red sphere. It marks the horizontal position of the current
maximum value bubbling up through the temperatures array. The small blue sphere on the left hand
vertical axis depictsthe swap variable. This display changes as the algorithm runs, providing a clear
depiction of how the bubble sort works. Thisis sometimes called algorithm animation (Brown and
Sedgewick, 1984). VisAD'sdisplays are generally asynchronous with computations, but may be

synchronized with calls to the built-in function sync.

Run Computation

Visualize Results

Change Algorithm or
Computational Parameters

Figure 4.9. Visually experimenting with algorithms (this is a copy of Figure 1.3).

The ability to make computations visible can be used to find problems with algorithms, to

experiment with different algorithms, and to tune algorithm parameters. Each of these places adightly
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different emphasis on the system-user feedback |oop shown in Figure 4.9. The time around the feedback
loop in Figure 4.9 may be less than a second when the user is tuning an algorithm, whereas minutes may be
required for the user to edit a program to experiment with algorithm structure. Figure 4.10 illustrates the

system-user feedback loop for finding the causes of problems with agorithms.

Run Computation and Save
Intermediate Data Objects

Use Visualization to Search
For Incorrect Final Results

Visually Compare Incorrect Data Objects to
Preceding Data Objects in the Computation

Step Back Through
Computation

Stop When the Comparison of Consecutive
Data Reveals an Incorrect Computational Step

Figure 4.10. Visually tracing back to the causes of computational errors.

An agorithm for detecting clouds in GOES images provides a good example of using VisAD for

finding high-level problems with algorithms. Some of the data types defined for this algorithm are:

type earth_location = real 2d,;
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typeir_radiance=red;
typevis radiance=redl;
typeir_image = array [earth_location] of ir_radiance;
type image =
array [earth_location] of
structure {
ir_radiance;

vis_radiance;

type image_region = integer;
typeir_image_partition = array [image_region] of ir_image;

type image_partition = array [image_region] of image;

type count = integer;

type histogram = array [ir_radiance] of count;

Theinput to the algorithm is a data object of type image_partition; Figure 4.11 shows an input data object

displayed using the mappings:

map earth_location to xy_plane;
map ir_radianceto z_axis;

map vis_radiance to color;

map image_region to selector;

map count to selector;
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The agorithm partitions images into rectangular regions and processes each region independently. Two
regions are selected in Figure 4.11. The small bump straddling the two image regions on the left isa cloud.
The output of the algorithm is another data object of type image partition where the values of non-cloud
pixels are set to missing. Figure 4.12 shows the output generated from Figure 4.11 with the same two
image regions selected. The small cloud in Figure 4.11 is not seen, o its pixels have been marked as non-
cloud. Thisisclearly an error.

We can find the cause of this error by visually comparing data objects at different stages of the
algorithm’s computations. Figure 4.13 shows three data objects of typeir_image partition. Each data
object isdisplayed in adifferent color: white, red and green. The whiteir_image partition data object
includes all pixels but is overlaid by the red and green data objects. The algorithm selects cloud pixels as
subsets of the non-missing pixelsin the red and green ir_image_partition data objects. Since the bump on
the left is white rather than red or green, the error in the computation must have been made before the
calculation of their_image partition data objects colored red and green. Pixels are selected for these two
data objects according to whether their ir_radiance valueslie in clusters of certain histograms. Three data

objects of type histogram are shown in Figure 4.14 displayed using the mappings:

map earth_location to selector;
map ir_radiance to x_axis,
map vis_radiance to selector;
map image_region to selector;

map countto y_axis,

The white histogram data object includes al ir_radiance values but again these are overlaid by the red and

green histogram data objects. The red and green histogram objects include only thoseir_radiance values
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lying in clusters. The ranges of ir_radiance defined by these red and green histogram objects are used to
select pixelsfor thered and greenir_image partition objects seenin Figure 4.13. The white histogram
object is generated from the population of pixels within one image region pictured in Figure 4.11. Thus
Figure 4.14 makes it clear that the little bump cloud on the left in Figure 4.11 is not large enough to
generate a detectable cluster in the histogram object in Figure 4.14, possibly because this population is
evenly divided between two image regions. Thus we have found the ultimate cause of the error in this

computation.
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Figure 4.11. A close-up view of two regions of a goes_sequence object displayed as a terrain.

Note the small bump, undoubtedly a cloud, straddling the regions on the left. (color original)
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Figure 4.12. A close-up view restricted to the "cloudy" pixels in two regions of a goes_sequence
object displayed as a terrain. The small cloud seen on the left in Figure 4.11 is not detected as a

cloud in this figure. (color original)
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Figure 4.13. Three goes_sequence objects displayed as terrains, with ir radiance mapped to

terrain height (the y axis) but without vis radiance mapped to color. (color original)
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Figure 4.14. Three histogram objects displayed as graphs. The algorithm judges red and green
points to lie in clusters - these define ranges of ir_radiance values that define the red and green

pixels seen in Figure 4.13. (color original)
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An algorithm for detecting valid observations of interstellar X-rays provides a good example of
using the VisAD system for experimenting with algorithms. The Diffuse X-ray Spectrometer sensed
several million distinct events during its January 1993 flight on the Space Shuttle (Sanders et al., 1993),
each potentially an observation of an X-ray emanating from interstellar gas. However, most of these events
were not valid, so Wilton Sanders and Richard Edgar of the University of Wisconsin-Madison needed to

develop an algorithm for detecting valid events. Some of the data types defined for this algorithm are;

typetime=red;
type wavelength = readl;
type longitude = redl;
type pulse_height = real;
type position_bin =redl;
type goodness of fit = real;
type occulted flag = int;
type xray_event =
structure {
time;
wavelength;
longitude;
pulse_height;
position_hin;
goodness of_fit;
occulted flag;

}

type event_number = int;
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type count = int;

type count2 = int;

type event_list = array [event_number] of xray_event;
type histogram_2d = array [longitude] of

array [wavelength] of

structure {
count;
count2;
}

Figure 4.4 shows a data object of type event_list displayed using the following scalar mappings:

map longitude to x_axis;

map wavelengthtoy_axis;

map time to z_axis,

map pulse_height to color;

map position_bin to selector;
map goodness of_fit to selector;
map occulted_flag to selector;
map event_number to selector;
map count to selector;

map count? to selector;

In Figure 4.4 each X-ray event is displayed as a colored dot. Slider iconsin the upper-right corner

were used to select arange of values for each event field mapped to selector, and only those events whose
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field valuesfall in the selected ranges are displayed. This provides an easy way to experiment with event
selection criteria. During the development of the event selection agorithm, alarge number of different sets
of mappings were defined in order to experiment with selections based on different combinations of event
fields and thus to help Sanders and Edgar to understand the mechanisms that produced invalid events.

Figure 4.15 shows a data object of type histogram_2d in a frame of reference defined by:

map longitudetoy_axis;

map wavelength to x_axis;

map count to z_axis;

map count? to color;

map time to selector;

map pulse_height to selector;
map position_bin to selector;
map goodness of_fit to selector;
map occulted_flag to selector;

map event_number to selector;

This histogram _2d object contains frequency counts of X-ray events in bins of wavelength and longitude.
The count2 values are redundant with the count values. Both are included so that one may be mapped to
the x_axis and the other mapped to color. The display of this object is seen from an oblique angle so that it
appears as a series of short colored graphs, one for each longitude bin. Each colored graph shows count as
afunction of wavelength, and thus provides a spectrum of X-raysin alongitude bin. Some types of
spurious events showed up as spikes in one-dimensional and two-dimensional histograms (i.e., these

spurious events had similar valuesin one or two event fields) and this provided insight into how to remove

221



222

these events. Displays of histograms of populations of events selected by various algorithms provided

insight into what further selection criteria were needed.
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Figure 4.15. A two-dimensional histogram of X-ray events, with 10 degree longitude bins along
the vertical axis and small wavelength bins along the horizontal axis. Viewed from an oblique
angle, this object appears as a series of short graphs showing the X-ray spectrum in each

longitude bin. (color original)
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An algorithm for detecting cumulus clouds in GOES images provides a good example of using
VisAD for tuning parameters of algorithms. Robert Rabin (Rabin et. al., 1990) of the National Severe
Storms Laboratory, working at the University of Wisconsin-Madison, developed an algorithm for detecting
cumulus clouds based on infrared radiance, visible radiance, and contrast (a quantity derived from visible

radiance). Some of the data types defined for this algorithm are:

type earth_location = real 2d;

typeir_radiance=red;

typevis radiance = redl;

type contrast = real;

typeir_image = array [earth_location] of ir_radiance;
typevis image = array [earth_location] of vis_radiance;

type contrast_image = array [earth_location] of contrast;

Separate selection criteria were defined for each of ir_radiance, vis_radiance and contrast, and
Figure 4.16 shows data objects of typesir_image, vis_image and contrast_image displayed according to

the mappings:

map earth_location to xy_plane;
map ir_radiance to color;
map vis_radiance to color;

map contrast to color;

The visualization in Figure 4.16 was used to tune the cumulus cloud selection agorithm. In the displayed

data objects, ir_radiance, vis_radiance and contrast val ues that do not satisfy the selection criteria have
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been set to missing and are invisible. The color maps have been adjusted so that any non-missing
ir_radianceisdisplayed asred, any non-missing vis _radiance is displayed as blue, and any non-missing
contrast is displayed as green. Thus each pixel in the image takes one of eight colors, indicating the two x
two x two combinations of selections by these three criteria. Only those pixels colored white are selected
by all three criteria as cumulus cloud pixels (because white = red + blue + green). We were able to
interactively adjust these selection criteria using slider icons (similar to those seen in Figure 2.2), to see
how the selection of cumulus cloud pixels changed in response to those adjustments, and to understand

from their colors which criteria cause pixels to fail to be selected.
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Figure 4.16. Visualizing the three criteria used to select cumulus clouds. Pixels satisfying the
infrared criterion are colored red, pixels satisfying the visible criterion are colored blue, and pixels
satisfying the contrast criterion are colored green. Combinations of these colors indicate pixels

satisfying more than one of the criteria. Pixels selected as cumulus clouds are colored white.

(color original)
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4.4 System Organization

We have described our system design in stages, explaining how it is motivated by the goals of
Section 1.1 and the principles of Chapter 3. In this section we present on overview of the way the system
integrates scientific data, computation and display.

Figure 4.17 illustrates the overall organization of the VisAD system. The system’s computing
components occupy the left side of this diagram and its display components occupy the right side, linked
only through the data component. Furthermore, information from the system’s display component does not
flow into its data or computation components, emphasizing that the system'’s display functions do not
intrude on a user’s science programs.

Figure 4.17 & so shows how the user interface is divided into five different components, two

relating to computation and three relating to display. The computational user interface divides into

1. Aneditor for defining and editing programs. This editor isalso used for defining data types, since

they are part of the text of programs.

2. Controls over program execution. These include controls for starting and stopping execution, for
executing single program statements, and for setting values on slider icons that are read by callsto
theintrinsic function dider (asillustrated in Figure 2.2). Execution breakpoints are set (and
cleared) by graphically picking program statementsin the program text editor, and are indicated by

highlighting statements in the program text.

The display user interface dividesinto

1. Aneditor for defining mappings from data scalar typesto display scalar types. These mappings

control the transformation of datainto logical displays. Data objects are selected (and de-sel ected)
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for display by graphically picking their namesin the program text editor, and are indicated by

highlighting their names in the program text.

2. Controls over the rendering transformation from logical to physical displays (i.e., the RENDER
function). These include controls over animation, over color maps, over selecting ranges of values
(for scalars mapped to selector), over contour levels, and over the projection from three to two

dimensions (i.e., rotate, pan and zoom).

3. Physical displays visible to the user.

Note that there are two deviations from the clean separation of user interface functions and that
both involve graphically picking and highlighting text segmentsin the program text editor. Specificaly,
program statements are selected as breakpoints and data objects are selected for display in thisway. While
we have not used a graphical user interface for designing the data and control flow of programsin our
system, we have adopted these two graphical picking functions because they can be naturally integrated
with atext based programming interface.

The overall system organization shown in Figure 4.17 is consistent with a variety of possible
future system extensions. In particular, the display model could be extended by adding more display
scalars, and a module could be added to design default scalar mappings appropriate for various aggregate
datatypes. These would require changes to the system source code but would not be particularly difficult.
However, based on the goals developed in Section 1.1, the system is designed to make it easy for usersto
define their own data types, displays and programs. By building such generality into our system’s user
interface we seek to reduce the need for changes to the system itself.

The system diagram shows the connection to external functions through a socket interface. This

allows VisAD programsto link to functions written in C or Fortran and possibly running remotely (i.e., on
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another computer connected via a network). The ability to define such links to compiled functionsis
important for the robustness of scientific computing environments. Mature scientific programming
environments typically include hundreds of user-defined functions.

The ways that scalar values can sample one-, two- and three-dimensional real valuesis aso
extensible. The system supports a variety of built-in samplings for two-dimensional map projections and
for geographically registering common meteorological satellites. Whileit is easy to define new built-in
sampling functions, the system also provides away for usersto define one-, two- and three-dimensional
samplings within the programming language.

Our system design defines a few simple capabilities that users can flexibly combine to produce
complex applications. Users can define complex data types as hierarchies of scalars, tuples and arrays,
they can express complex metadata by samplings and missing data, they can define complex algorithmsin
ageneral scientific programming language, and they can define a complete set of data displays by

mappings from data primitives to display primitives.

229



USER USER

editor @

PROGRAM TEXT MAPPING TEXT

mapping compiler

program compiler

Q

A4
al S DATA TYPES N
PROGRAM CODE AND OBJECTS SCALAR MAPPINGS

interpreter

display algorithm

A4
EXECUTION CONTROLS LOGICAL DISPLAYS

socket interface

OBJECT PROTOCOL

RENDERIN

user interface rendering

USER USER

external functions

Figure 4.17. VisAD system organization.

Chapter 5
Applying the Lattice Model to Recursive Data Type Definitions
In Section 3.1 we showed that afunction D : U - V satisfying the expressiveness conditions must

be alattice isomorphism. In Section 3.4 we applied this result to specific lattice structures defined for

scientific data and display models. However, this result can be applied to any complete latticesand it is



natural to apply this result to other lattice structures for data and display models. The motive for new
|attice structures must be new data model s, since display models are themsel ves motivated by the need to
visualize data. The data model defined in Section 3.2 includes tuples and arrays as ways of aggregating
data, but does not include linked list structures defined in terms of pointers. In this chapter we describe

several issuesin extending our lattice theory to data types appropriate for handling objects with pointers.

5.1 Recursive Data Types Definitions

The denotational semantics of programming languages provides techniques for defining ordered
sets whose members are the values of programming language expressions (Gunter and Scott, 1990;
Schmidt, 1986; Scott, 1971; Scott, 1982). An important topic of denotational semanticsis the study of
recursive domain equations, which define cpos recursively (cpo isdefined in Appendix A).

Consider the following example of arecursive domain equation from (Schmidt, 1986). A data

type for abinary tree may be defined by

(5.1) Bintree= (Data + (Data x Bintree x Bintree))

Here"+","x" and "(.)[]" are type construction operators similar to the tuple and array operators defined in
Section 3.2.3. The"+" operator denotes a type that is a choice between two other types (thisis similar to
"union” in the C language), "x" denotes atype that is a cross product of other types (thisis essentially the
same as our tuple operator, so that (Data x Bintree x Bintree) is a 3-tuple), and the "[0" subscript indicates a
type that adds a new least element, [, to the set of values of another type. EQ. (5.1) defines a data type
called Bintree, and says that a Bintree object is either [J, a data object of type Data, or a 3-tuple consisting
of adata object of type Data and two data objects of type Bintree. Intuitively, a data object of type Bintree

is either missing, aleaf node with a data value, or a non-leaf node with a data value and two child nodes.



The obvious way to implement binary treesisto define arecord or structure for a node of the tree,
and to include two pointers to other nodesin that record or structure. In general, self referencesin

recursive type definitions are implemented using pointers.

5.2 Thelnverse Limit Construction
The equality in arecursive domain equation is really an isomorphism. As explained by Schmidt,

these egquation may be solved by the inverse limit construction. For the Bintree example this construction

starts with Bintreeg = { (0}, and then applies Eq. (5.1) repeatedly to get:

(5.2) Bintreeq = (Data + (Data x Bintreeg x Bintreeq))[]

Bintreeo = (Data + (Data x Bintree1 x Bintreeq))

etc.

The construction &l so specifies aretraction pair (gj, fj):Bintregj ~ Bintregj4.q for all i, such that g; embeds
Bintreg; into Bintregj+1 and f; projects Bintregj 1 onto Bintreej (retraction pair is defined in Appendix
A). Then Bintree isthe set of all infinite tuples of the form (g, t1, t, ...) such that tj = fj(tj41) for al i. It
can be shown that Bintree isisomorphic with (Data + (Data x Bintree x Bintree))], and thus "solves’ the
recursive domain equation. The order relation on the infinite tuplesin Bintree is defined element-wise, just
like the order relation on finite tuples defined in Section 3.2, and Bintreeis acpo. We note that the inverse
limit construction can also be applied to solve sets of simultaneous domain equations.

The cpos defined by the inverse limit construction are generally not lattices. 1n order to apply
Prop. C.3 to these cpos they must be embedded in complete lattices. However, the Dedekind-MacNeille
completion shows that for any partially ordered set A, there is always a complete lattice U such that thereis

an order embedding of A into U (Davey and Priestley, 1990).



The set of Bintree objects defined by the inverse limit construction includes infinite trees.
Denotational semantics must include values for non-terminating computations, and non-terminating
computations may produce infinite trees astheir values. Since our result that display functions are lattice
isomorphisms depends on the assumption that data and display lattices are complete, it islikely that any
data lattice we define that includes solutions of recursive domain equations must include infinite data
objects.

The inverse limit construction defines the set of data objects of a particular data type that solves a
particular recursive domain equation. However, our approach in Section 3.2 was to define alarge lattice
that contained data objects of many different datatypes. It would be useful to continue this approach, by
defining alattice that includes all datatypes that can be constructed from scalar types as tuples, arrays, and

solutions of recursive domain equations. Thisis the subject of Section 5.3.

5.3 Universal Domains

A fundamental result of the theory of ordered setsis the fixed point theorem, which says that, for
any cpo D and any continuous function f:D — D, thereisfix(f) O D such that f(fix(f)) = fix(f) (that is, fix(f)
isafixed point of f) and such that fix(f) is less than any other fixed point of f.

Scott devel oped an elegant way to solve recursive domain equations by applying the fixed point
theorem (Scott, 1976; Gunter and Scott, 1990). The ideais that the solution of arecursive domain equation
isjust afixed point of afunction that operates on cpos. Scott first defined a universal domain U and a set
W of retracts of U. W may be the set of al retracts on U, the set of projections, the set of finitary
projections, the set of closures, or the set of finitary closures (these terms are defined in Appendix A).
Then he showed that a set OP of type construction operators (these operators build cpo’s from other cpo’s)
can be represented by continuous functions over W, in the sense that for op O OP there is a continuous

function f on W that makes the diagram in Figure 5.1 commute.
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Figure 5.1. The type construction operator op is represented by function f.

Note that im(w) = {w(u) |u O U}. For unary op O OP thisisim(f(w)) = op(im(w)). Similar commuting
expressions hold for multiary operatorsin OP. Then, for any recursive domain equation D = O(D) where O
is composed from operatorsin OP, thereis a continuous function F:W — W that represents O. By the fixed
point theorem, F will have aleast fixed point fix(F), and O(im(fix(F))) = im(F(fix(F))) = im(fix(F)), so
im(fix(F)) is a cpo satisfying the recursive domain equation D = O(D). The solution of any domain
equation (or any set of simultaneous domain equations) involving the type construction operatorsin OP
will be acpo that is a subset of the universal domain U. Thus this approach is similar to the way that we
embedded data types in a complete lattice (coincidentally denoted by U) in Section 3.2.3. Universal
domains and representations have been defined for sets OP that include most of the type constructors used
in denotational semantics, including "+","x"," »", and "(.)[".

A common example of auniversal domain is the complete lattice POWER(N), which isjust the set
of al subsets of the natural numbers N. In general, the embeddings of data typesinto universal domains, as
defined by papersin denotational semantics, are not suitable for our display theory. For example, asingle
integer (that is, an object of type N), and a function from the integers to the integers (that is, an object of
type N - N), may be embedded to the same member of POWER(N). A display function applied to the
|attice POWER(N), with these embeddings, would produce the same display for the integer and the function
from the integersto integers. Such displays cannot effectively communicate information about data

objects, so other embeddings of types into universal domains must be devel oped.



5.4 Display of Recursively Defined Data Types

Since the goal of visualization is to communicate information about data to people, an extension
of our theory must focus on the data lattice U. However, since adisplay function D isalattice
isomorphism of U onto a sublattice V, we should be able to say something about the structure of V. If a
subset A O U isthe solution of arecursive domain equation (that is, A isthe set of data objects of some
recursively defined data type), then D(A) O V isisomorphic to A and must itself be the solution of the
recursive domain equation.

For example, if the set A isthe solution of Eq. (5.1) for Bintree, then the set D(A) must also solve
this equation. Theisomorphism D provides a definition of the operators "+", "x" and "(.)[7" in D(A) and
thus also defines a relation between "tree" objects and their "subtree” objectsin D(A). The isomorphism
does not tell us how to interpret these operators and relationsin a graphical display, but it does tell us that
such alogical structure exists. Given the complexity of this structure, it is seems likely that display objects
in D(A) will be interpreted using some graphical equivalent of the pointers that are used to implement data
objectsin A.

Two graphical analogs of pointers are commonly used in displays:

1. Diagrams. Hereicons represent nodes in data objects, and lines between icons represent pointers.

2. Hypertext links. Here the visible contents of adisplay screen represents one or more nodes in a data
object, and an icon embedded in that display screen represents an interactive link to another node or
set of nodes. That is, if the user selectsthe icon (say by a mouse point and click), new display
screen contents appear depicting the display object (and possibly other objects) referenced by the

icon.



In order to extend our display theory to data types defined with recursive domain equations, we need to
extend our display lattice V to include these graphical interpretations of pointers. A difficult open problem
isto find away to do thisthat produces a display lattice complex enough to be isomorphic to a universal

domain as described in Section 5.3.



Chapter 6

Conclusions

Thisthesis was motivated by physical scientists' need for visualization techniques that can be
applied to the data of awide variety of scientific applications, that can produce awide variety of different
visualizations of data appropriate for different needs, that are as interactive as possible, that require
minimal effort by scientiststo use, and that can be integrated with a scientific programming environment.
Our approach has been to achieve generality and simplicity by devel oping appropriate abstractions for

scientific data, for scientific displays, and for the visualization mapping from datato displays.

6.1 Main Contributionsand Limitations

The main contributions of this thesis can be summarized as follows:

1. Development of a system for scientific visualization that enables awide variety of visual experiments
with scientific computations. This system integrates visualization with a scientific programming
language that can be used to express scientific computations. This programming language supports
awide variety of scientific datatypes and integrates common forms of scientific metadata into the
computational and display semantics of data. Any data object defined in aprogram in this language
can be visualized in awide variety of ways during and after program execution. Displays are
controlled by a set of simple mappings rather than program logic. These mappings are independent
of datatype and separate from a user’s scientific programs, which is a clear distinction from
previous visualization systems that require scientists to embed calls to visualization functionsin
their programs. Furthermore, computation and visualization are highly interactive. In particular, the

selection of data objects for display and the controls for how they are displayed are treated like any



other interactive display control (e.g., interactive rotation). Previous visualization systems require a
user to alter his program in order to make such changes. The generality, integration, interactivity
and ease-of-use of this system all enhance the user’s ability to perform visual experiments with their

agorithms.,

. Introduction of a systematic approach to analyzing visualization based on lattices. We defined a set
U of data objects and a set V of displays and showed how alattice structure on U and V expresses a
fundamental property of scientific data and displays (namely that they are approximations to the
physical world). The visualization repertoire of a system can be defined as a set of mappings of the
form D: U - V. Itiscommon to define a system’s visualization repertoire by enumerating such a
set of functions. However, an enumerated repertoire is justified only by the tastes and experience of
the people who decide what functionsto include in the set. In contrast, we interpreted certain well-
known expressiveness conditions on the visualization mapping D : U - V interms of alattice
structure, and defined a visualization repertoire as the set of functions that satisfy those conditions.
Such arepertoire isjustified by the generality of the expressiveness conditions. We showed that
visualization mappings satisfy these conditions if and only if they are lattice isomorphisms. Lattice
structures can be defined for awide variety of data and display models, so this result can be applied

to analyze visualization repertoires in awide variety of situations.

. Demonstration of a specific lattice structure that unifies data objects of many different scientific
typesin adata model U, and demonstration that the same lattice structure can express interactive,
animated, three-dimensional displaysin adisplay model V. These modelsintegrate certain kinds of
scientific metadata into the computational and display semantics of data. In the context of these
scientific data and display models, we showed that the expressiveness conditions imply that

mappings of data aggregates to display aggregates can always be factored into mappings of data
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primitivesto display primitives. We showed that our display mappings are complete, in the sense

that we characterized all mappings satisfying the expressiveness conditions.

These results have several limitations. Foremost, they do not include data objects with pointers.
Thus our visualization techniques are not applicable to the data objects of general programming languages.
Thisthesis developed a single lattice-structured scientific data model in which real numbers are
approximated by intervals and functions are approximated by finite sets of samples of their values.
However, there are other ways to approximate numbers and functions based on Eqg. (3.2) and these may
serve as the basis for other lattice-structured models for scientific data. The display model developed in
this thesis model s the ways that computers generate displays, but does not model the ways that people
perceive displays. Finaly, thisthesis only considered conditions on visualization mappings based on

|attice structures, and did not consider conditions based on other kinds of mathematical structures.
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6.2 Future Directions
The work presented in this thesis can be extended to other lattice-structured models for data and
displays, and to analytic conditions on visualization functions based on types of mathematical structures

other than lattices. Specific future directions include:

1. Extend the VisAD system’s display model to include more display scalars, such as transparency,
reflectivity and flow vectors. These would be interpreted by including volume and flow rendering

techniguesin the mapping RENDER: V - V.

2. Extending the VisAD system to supply default mappings for controlling the displays of data objects.
This could be accomplished by integrating VisAD with others work on automating the design of
displays (Robertson, 1991; Senay and Ignatius, 1991; Senay and Ignatius, 1994; Beshers and Feiner,

1992).

3. Extending the lattice results to data objects with pointers (i.e., data objects of recursively-defined
datatypes). In Chapter 3 we showed how to embed scientific data objects of many different data
typesin alattice. In Chapter 5 we showed how this might be extended by describing Scott’s
technigue for embedding data objects of many different recursively-defined datatypesin alattice.
We also described graphical analogs of data objects with pointers. However, we described why
Scott’s embeddings are not suitable for visualization. Thus, finding ways to extend Scott’s
embeddings to aform suitable for visualization is an important next step. Thiswould enable usto
extend the VisAD system to a general programming language rather than a scientific programming

language.
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4. Defining lattice structures based on forms of approximations to numbers and functions other than
intervals and finite samplings. Whenever data objects can be identified with sets of mathematical
objects we can apply Eq. (3.2) (i.e, us u’ = math(u’) O math(u)) to define alattice structure on a
datamodel. For example, functions may be approximated by finite sets of Fourier coefficients

rather than finite sets of function values.

5. The analytic approach has great potential for making the study of visualization more rigorous and
systematic. Itisdifficult to explicitly identify all of the assumptions of a synthetic approach to
visualization, whereas assumptions must be explicit in an analytic approach. Analytic conditions on
visualization mappings must be based on some mathematical structures defined on data and display
models. In thisthesis we have explored the consequences of a single set of conditions defined in
terms of lattice structures. However, the full potential of the analytic approach can only be realized
by exploring a much wider set of conditions based on a variety of mathematical structures. Data
and display models may also have topological structures, metric structures, symmetry structures,
structures based on arithmetic operations, and type hierarchy structures. Each of these kinds of
structures can be used to define conditions on visualization mappings. Such conditions may be able
to express awide range of visualization goals, and mathematical analysis of visualization mappings

satisfying various conditions may provide arigorous foundation for visualization.

6. Defining structures on display models that express principles of human perception. For example, a
metric can be defined for the perceived distance between displays (as measured by psychology
experiments or predicted by psychological models). Alternatively, perception of displays may be
invariant to certain operations (e.g., time translation or spatial trandation), which may be expressed

by defining symmetry groups on sets of displays.



13

Appendix A

Definitionsfor Ordered Sets

The appendices contain al the formal definitions, propositions and proofs for developing a model

of the display process based on lattices. Here we list some basic definitions from the theory of ordered sets.

Def. A partially ordered set (poset) isaset D with abinary relation < on D such that, Ox, y, zO D

(@ X< X "reflexive"
(b) X<y&y<sxO x=y "anti-symmetric"
(c) X<y&y<z[O x<z "transitive"

Def. An upper bound for aset M O D isan element X (D such that

OyOM.y<x

Def. The least upper bound of aset M [ D, if it exists, is an upper bound x for M such that if y is

another upper bound for M, then x<y. Theleast upper bound of M is denoted sup M or \/m. sup{x,y} is

written x .

Def. A lower bound for aset M O D isan element X 1D suchthat Oy O M. x <.

Def. The greatest lower bound of aset M O D, if it exists, isalower bound x for M such that if y is

another lower bound for M, then y < x. The greatest lower bound of M is denoted inf M or M. inf{x,y} is

written x .
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Def. Asubset M O Disadownsetif Ox OM.OyOD.y<xO yOM. Given
M O D, defineIlM={y 0D |xOM.y<x}, and given x 0 D, define

Ix={yOD |y<x}.

Def. AsubsetM O Disanupsetif OxOM. OyOD.x<yd yOM. Given
M O D, definetM={y 0D |x OM. x <y}, and given x 0 D, define
tx={yOD |x<V}.

Def. A subset M O D isachain if, for al x, y 0 M, either y< xor x<y.

Def. A subset M O D isdirected if, for every finite subset A 0 M, thereisan

xOMsuchthat Oy OA. y<X.

Def. A poset D is complete (and called a cpo) if every directed subset M [0 D has aleast upper

bound \/M and if there is aleast dlement 0 0 D (thatis, Oy O D. O<Yy).

Def. If D and E are posets, we use the notation (D — E) to denote the set of all functions from D

to E.

Def. If D and E are posets, afunction f:D - E is strict if f({) = .

Def. If D and E are posets, afunction f:D — E is monotone if

Ox,yOD.x<yO f(x) <f(y). We usethe notation MON(D - E) to denote the set of all monotone

functions from D to E.
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Def. If D and E are posets, afunction f:D — E isan order embedding if

Ox,yOD.x<y = f(X) < f(y).

Def. Given posets D and E, afunction f:D - E, and aset M O D, we use the notation f(M) to

denote {f(d) | d O M}.

Def. If D and E are cpos, afunction f:D - E is continuous if it is monotone and if

f(\/M) = \/i(m) for directed M O D.

Def. If D isacpo, then x O D is compact if, for al directed M O D,

x<\/IMO yOM. x<y.

Def. A cpo D isalgebraicif forall x O D,M={y 0D |y <x & y compact} isdirected and x =
\/Mm.

Def. A cpo D isadomain if D isagebraic and if D contains a countable number of compact

elements.

Most of the ordered sets used in programming language semantics are domains.

Def. A poset D isalatticeif foral x,y 0D, x Oy and x Oy existinD.

Def. A poset D isacomplete latticeif for all M O D, \/M and /\M exist in D.
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Def. If D and E arelattices, afunction f:D - E is alattice homomorphismif for all x, y O D, f(x O

y) = f(x) Of(y) and f(x Oy) = f(x) Of(y). If f:D - E isalso abijection then it is alattice isomorphism.

Def. A binary relation = on aset D isan equivalence relation if Ox, y, z0O D

@ X=X "reflexive"
(b) XEYy o Y=EX "symmetric"
(c) X=y&y=z0O xX=2 "transitive"

Def. idp denotes the identity function on D. Given afunctionf:D - D,

im(f) = {f(d) |d O D}.

Def. If D isacpo, acontinuous function f:D - D isaretraction of D if f= fof. A retraction f:D

- Disaprojectionif f < idp and afinitetary projection if in addition im(f) isadomain. A retraction f:D —

D isaclosureif f > idp and afinitetary closure if in addition im(f) is adomain.

Def. If D and E are cpos, apair of continuous functionsf:D - E and g:E - D are aretraction pair if

gof<idpandfog=idg. Thefunctiongiscalled an embedding, and f is called a projection.
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Appendix B

Proofsfor Section 3.1.4

Here we present the technical details for Section 3.1.4. We can interpret Mackinlay’s

expressiveness conditions as follows:

Condition 1. OP 0 MON(U - {0, 1}). 0Q O MON(V - {0, 1}).
Ou O U. P(u) = Q(D(u)).
Condition 2. JQ O MON(V - {0, 1}). (P O MON(U - {O, 1}).

Ov O V. QW) = P(D 1(v)).

Prop. B.1. If D:U - V satisfies Condition 2 then D is a monotone bijection from U onto V.

Proof. D isafunction from U to V, and Condition 2 requires that D-1isafuncton fromVto U, so

Conditon 2 requires that D is a bijection from U onto V. Next, assumethat x <y, and let Qy = Av O V. (if (v
> D(x)) then 1 else [J). Then by Condition 2 there is a monotone function Py such that Ov O V. Qy(v) =
PX(D'l(v)). Since D isabijection, thisis equivalent to Du O U. Qu(D(u)) = Py(u). Hence, Qy(D(Y)) =

Py(Y) = Py(X) = Qy(D(x)) = 150 Qy(D(y)) = 1 and D(y) = D(X). ThusD is monotone. ®

By Prop. B.1, Conditon 2 istoo strong since it requires that every display in V isthe display of
some data object under D. Since U isacomplete lattice it contains a maximal data object X (the least upper
bound of al members of U). For all data objects
ulU,u< X SinceD is monotone thisimplies D(u) < D(X). We use the notation | D(X) for the set of all

displayslessthan D(X). | D(X) isacomplete lattice and for all data objectsu [0 U, D(u) O 1 D(X). Hence
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we can replace V by | D(X) in Condition 2 in order to not require that every v O V is the display of some

dataobject. We modify Condition 2 as follows:

Condition 2. 0Q 0 MON(1 D(X) — {0, 1}). (P O MON(U - {0, 1}).

Ov O 1 D(X). Q(v) = P(D L(v)).

Def. A function D:U - Visadisplay function if it satisfies Conditions 1 and 2'.

The next two propositions demonstrate the consequences of this definition.

Prop. B.2. If D:U - Visadisplay function then:
@ D isahijective order embedding from U onto | D(X)
(b) OvOV. (w OU.vsD(W) O u O U. v=D(u))
© oM O U. /(M) = D(\/M) and OM O U. \D(M) = D(\M).
Proof. For part (1), D isafunction from U to V, and Condition 2’ requires that D-1lisafuncton
from 1 D(X) to U, so D isabijection from U onto | D(X).

To show that D is an order embedding, assume that D(X) < D(y), and let

Py =Au O U. (if (u=x) then 1 else (). Then by Condition 1 there is a monotone function Qy such that Cu
O U. Qu(D(u)) = Py(u). Hence, Py(y) = Qu(D(Y)) = Qu(D(X)) = Px(X) = 1 S0 Py(y) = Land y = x. Now

assumethat x <y, and let
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Qy=AvOV. (if (v= D(x)) then 1 else (). Then by Condition 2’ there is a monotone function Py such that
OvOV. Qy(v) = PX(D'l(v)). Since D isabijection, thisis equivalent to DOu O U. Qy(D(u)) = Py(u).
Hence, Qu(D(Y)) = Px(y) = Py(X) = Qx(D(X)) = 1 50 Qy(D(y)) = 1 and D(y) = D(x). ThusD isan order
embedding.

For part (b), note that if L’ [0 U. v< D(u’), thenv< D(X) and v { D(X) so
Cu O U. v=D(u).

For part (c), OmO M. m< \/MsoOmO M. D(m) < D(\/M) and so
\/D(M) < D\/M). Thus, by part (2), Cu O U. D(u) = /D(M), and Om O M. D(m) < D(u) so Om O M. m<
u and thus \/M < u. Therefore D(\V/M) < D(u) = \/D(M), and thus
p(\/M) =\/Dw).

Next, Om O M. /\M < mso Om O M. D(/\M) < D(m) and so D¢/\M) < /\D(M). For any mO M,
\D(M) < D(m), s0, by part (2), Cu O U. D(u) = /\D(M), and
OmO M. D(u) < D(m) so OmO M. u< mand thusu < /\M. Therefore

\D(M) = D(u) < D(/\M), and thus D¢\M) = \D(M). =

Asacorollary of Prop. B.2, next we show that display functions are lattice isomorphisms, and are

continuous in the sense defined by Scott.

Prop. B.3.D:U - Visadisplay functionif and only if it is alattice isomorphism of U onto |
D(X), which is asublattice of V. Furthermore, a display function D is continuous.

Proof. AssumeD:U - Visadisplay function. For any x,y O U, let M ={x, y}. Then, by Prop.
B.2, D(x Oy) = D(x) OD(y) and D(x Oy) = D(x) O D(y), so D is alattice homomorphism. Next,a, b |
D(X)0 a,b<D(X)0 aOb,alb<D(X) O
D(aOb), D(aOb) O 1 D(X), so | D(X) isasublattice of V. By Prop. B.2, D ishijective, soitisalattice

isomorphism.
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Assume D:U - | D(X) is alattice isomorphism. If x <y then D(y) = D(x Oy) =
D(x) OD(y) 2 D(x). If D() < D(y) theny = D"L(D(y)) = DYD(x) OD(y)) =
D‘l(D(x Oy)) =x0Oy=x. ThusD isan order embedding. Henceitisinjective
[thatisD(X)=D(y) 0 D(X)<D(y) O x<yandD(X) =D(y) 0 D(y)<D(X) 0 y<x,s0D(X)=D(y) 0 x=
yl
so D-Lisdefined on D(U) O V. GivenP OMON(U - {[O, 1}), define
Q=avOV.V{PDLv))|v<v& v ODU)}. Thesetof v suchthat v’ < v and
v' O D(U) dwaysincludes D(0), so Q isdefined for al v O V. Qisafunction fromV to

{0, 1}, and Q is monotone since

visvo O {Vv|v<svi&vODU)} O{v|v=svp& Vv ODU)}. Then foraluOU,

QW) = V{P(DL(v)) |v < D(u) & v O D(U)} =
PD-1(D()) oV{PD1(v)) |v <D(u) & v O D)} =
[since P and D1 are both monotone, v/ < D(u) O P(D-1(v)) < P(D-1(D(u)))]

P(D"1(D(u))) = P(u).

Thisisequivalentto P=Q o D. ThusD satisfies Condition 1.

Given Q O MON(V - {[O, 1}), define P = Au O U. Q(D(u)). Pisafunction fromU to{O, 1},
and P is monotone since Q and D are monotone. Clearly
Ou O U. Q(D(u)) = P(u). Since D isalatticeisomorphism it is a bijection from U onto
1 D(X) so thisis equivalent to OvO! D(X). Q(v) = P(D'l(v)). Thus D satisfies Condition 2’ and is a display
function.

A display function D is an order embedding and thus monotone. For any directed set M O U,

\/D(M) = D(\/M) by Prop. B.2, so D is continuous.
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Appendix C

Proofsfor Section 3.2.2

Here we present the technical details for Section 3.2.2. Our lattices of data objects and of displays
are defined in terms of scalar types. Each scalar type defines a value set, which may be either discrete or
continuous, and which includes the undefined value 0. We use the symbol R to denote the set of real

numbers.

Def. A discrete scalar s defines a countable value set | g that includes a least element [ and has

discrete order. Thatis, Ox,y Olg (x<yO (x=0& y# [)).

Def. A continuous scalar s defines a value set

Is={0} O{[x ¥l Ix,yOR & x<y} (that is, the set of closed real intervals, plus [J) with the order defined

by: O<[x, yland [X, ¥] <[u,V] = [u,Vv] O[X,V].

Prop. C.1. Discrete and continuous scalars are cpos. Discrete scalars are domains. However, a
continuous scalar is not algebraic because its only compact element is [, and hence it is not a domain.

Proof. A discrete scalar sis clearly complete. To show that a continuous scalar sis complete, let

M be adirected set inlg. We need to show that

\/m :ﬂ{[u, vl |[u,v] OM} isaninterval inlg Setx=max{u|[u,v] O M} and

y=min{v|[u,v]OM}. Ify<x,seta=x-y,y=y+a/3andx=x-a/3s0y <x. ThenQuq, v1] OM.
vy <y and [Quy, vo] O M. up 2 X, 50 [uq, V1] n [up, vo] = @. But M directed implies that [Jug, vg] 0O M.,
[ug, v3] O [uq, vq] n [up, vo]. Thisisacontradiction, so x <y and [X, Y] =\/m.

Let s be continuous and pick [x, y] O Ig To seeif [x, y] is compact, set
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An=[x-2Ny+2"M. Then[x,y] = V/,Anand {A} isadirected set, but
~Ap. [X Y] < A (that is, thereis no interval Ay, contained in[x, y]. Thus O isthe only compact element in

I (for s continuous). W

We define atuple space as the cross product of a set of scalar value sets, and define a data lattice

whose members are sets of tuples. Note that we use the notation XA for the cross product of members of a

set A.

Def. Let Sbe afinite set of scalars, and let X = X{IS | sO S} bethe set of tuples with an element
fromeach g Let agdenote the s component of atuple a 0 X. Define an order relation on X by: for a, b [

X,a<bif OsOS ag< bg

Prop. C.2. Let A X. If bg= \/[{ag|a 0 A} is defined for all s 0 Sthenb = V/A. If cg=/\{ag|a

O A} for all sO Sthenc= AV (that is, sups and infs over X are taken componentwise). Thus, X isacpo.
Proof. Os S Oa O A. ag< bg, so b isan upper bound for A. If eisanother upper bound for A,
then Os [ S. bg < eg (since bgis the least upper bound of {ag|a 0 A}). Thus, b < e, so bistheleast upper
bound of A. The argument that ¢ = NAissimilar.
Let AD X beadirected set, and let Ag={ag|a O A}. If {a;g]i} isafinite subset of Ag, then{a; |
i} isafinitesubset of A, so (e O A. [i. gj < e. ThenforeachsO S

es 0 Agand [i. gjg < eg, S0 Agisadirected set, and thusbS:\/ASD Is Aswe just showed, b=\VADX,

so Xiscomplete. ®

Def. We use POWER(X) = {A | A O X} to denote the set of all subsets of X.
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Asexplained in Section 3.2.2, POWER(X) is not appropriate for alattice structure, so we define
equivalence classes on POWER(X) using the Scott topology. The Scott topology defines open and closed

sets as follows.

Def. A set A0 Xisopenif 1t AQ Aand, for all directed subsets

cox,\/coOAO CnAZq

Def. A set A0 Xisclosed if | A Aand, for all directed subsets C [ A, \/cOA Weuse CL(X)

to denote the set of all closed subsets of X.

Def. Define arelation <R on POWER(X) asfollows: A<R B if for all open
COX,An C#¢@l Bn C#q@. Alsodefinearelation =g on POWER(X) asfollows:

A=RBifAsgBand B<R A

Prop. C.3. Therelation =R is an equivalence relation.
Proof. Clearly DA A<R Aand thus JAA=R A. And
A=RB = ASRB& B<RA = B=RA. IfA<gBand B<R Cthenforall open E [ X,

AnEzZeOBnEZ@andBn EZ90 CnEZ@s0AnEZ¢@0 Cn EZ @ andthusA<RC. So=R

isreflexive, symmetric and transitive, and therefore an equivalencerelation.
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IfA=RBand C=R D, then A<R C = B<R D. Thusthe equivalence classes of

=R are ordered by <R. Now we show that the closed sets of the Scott topology can be used in place of the

equivalence classes.

Def. Given an equivalence class E of the =R relation, let Mg = UE.

Prop. C.4. Given an equivalence class E of the =R relation, then Mg O E.
Proof. Pick some AL E. Then AL ME so A<g ME. For al openCO X, wehaveME N C# @
0O BOEBnC#@(sinceMg = UE), butBn CzeO An Czg@(sinceBERA). ThusMg<Rp Aand

ME=RAsOMgUE. ®

Prop. C.5. Given an equivalence class E of the =R relation, then Mg O CL(X).

Proof. Givena [ Mg and b < a, we need to show that Mg =R Mg O {b} and hence that b O ME.
Clearly ME<sg Mg O {b}. ForalopenCOX,ifb0CthenadC(sinceb<a)soMgn C#@. Thus
Mg O {b} <sg Mgand b O ME.

Next, given adirected set D 0 ME, letb = \/p. Clearly Mg <R Mg O {b}. For all open C O X, if
bOCthenxOD.cOCsocOMEn C. ThusMg O {b} <g Mg and
b 0 ME.

This showsthat Mg is closed. ®

Prop. C.6. Given equivalence classes E and E’ of the =R, relation, then
E<RE - MEOMp andE=FE - Mg=Mp. If A Xisaclosed set, then for some equivalence class
E,A=MEg

Proof. Notethat ESRE = ME<R Mp. If Mg O Mg then for all C 0 X (whether C is open

ornot), Men C#z¢e0O Mp n C# ¢@andthusMg <g Mp. If
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~MEg O Mg then thereisa [ Mg such that a [0 M. The complement of Mg, denoted
X\ Mg, isopen, anda 0 Mg n (X\Mpg) but Mg n (X\Mp’) = ¢, s0 -MEg <R ME..

E=E 0 Mg=Ue=UE =Mg. Conversaly,
ME=Mp O MESRMp & M sRME O ESRE' & ESRE 0 E=FE. ThusE ~ MEisaoneto-
one correspondence between closed sets and equivalence classes of =R.

If A0 Xisaclosed set, then A belongs to some equivalence classE so A0 Mg and A=R ME. If
A# Mg thenthereisa 0 Mg such that a [0 A. X\ Aisopen and
alMg n (X\A) but An (X\A) =@, s0-Mg <R A. Thiscontradicts A=R ME so

A=Mg. &

Thelast proposition showed that there is a one to one correspondence between the equivalence

classes of =g and CL(X). Next, we show that these closed sets obey the usual laws governing intersections

and unions of closed setsin atopology.

Prop. C.7. If L isaset of closed subsets of X, then ﬂL isclosed. If L isfinite, then UL isclosed.
Furthermore, for al x 00 X, ¢ x O CL(X).

Pr oof. IfxDﬂLandysx,thenforalIADL,XDAand IAOA soyOAand so
yO[ L. Thus (L O L. If Cisadirected subset C O )L, thenfor all AD L, COAand \/COA. Thus
\/c oL and [ L is closed.

Now assume L isfinite. If x O UL andy < x, thenfor some AL, x O Aand
IAOA soyOAandsoyOUL. Thus UL OUL. Let Cbeadirected subset C O (UL and assume that

\V/coUL. ThenoA T L. \/COAso, sinceal AL are closed,

OAOL -COA. ThusOAOL. Ckp OC.cp OA. Now, {ca | AOL} isfinite, so

(cOC. OAOL.ca<c. ButDAOL.cpoOAO cOA (since AL are down sets), so

cd UL. This contradicts C O UL so we must have \/C O UL. Thus UL is closed.
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Clearly 1 (1x) O I1x. If CO I xisadirected set (or any subset of | x), then

OcOC. c<xso\V/C<xandthus\/C O 1 x. Therefore L xisclosed. m

Now we show that the equivalence classes of the =R relation, and equivalently CL(X), form a

complete lattice.

Prop. C.8. If Wis aset of equivaence classes of the =R relation, and then N\wis defined and /\w
= E such that Mg = [ KMy, [w O W}. Similarly, \/Wis defined and \/W = E such that M is the smallest
closed set containing U{ My | w O W} . Thus the equivalence classes of the =R relation form a complete
lattice, and equivalently CL(X) isacomplete lattice. If Wisfiniteand E = \/w, then Mg = U{ My [w D
W}

Proof. By Prop. C.7, ﬂ{ Myy | w O W} is closed and, by Prop. C.6, must be Mg for some
equivalence classE. Now, Ow O W. Mg O My, so Ow O W. ME <R My, and
Ow O W. E<gw. If E'isan equivalence class such that 0w [0 W. E' <R w, then
Ow O W. Mg O My, 50 Mg 0 Mg and E' <R E. ThusE = \/w,

By Prop. C.7, the intersection of all closed sets containing U{ My | w O W} must be a closed set
and, by Prop. C.6, must be Mg for some equivalence classE. Now,

Ow O W. My, O ME so Ow OW. Myy <R ME and Ow O W. w<R E.
If E' is an equivalence class such that Ow O W. w <R E', then Ow O W. My, 0 Mg?, so Mg contains
{My |wOW}. ThusMg O Mg and E<R E'. Therefore E = \/w.

If Wis finite, then (J{Myy | w 0 W} is closed and equal to Mg, where E = \/W. =

Now we prove two propositions that will be useful for determining when sets of tuples are closed.

Prop.C.9.1fadX,BOXanda< \/Bthena=\/{aOb|bOB}.
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Proof. Let agand bg denote the tuple components of a and b. The order relation, sups and infs of

across product are taken componentwise, so it is sufficient to prove the proposition for each tuple

component. That is, we will show that

Ds0S ags /{agObg | b 0 B}.
For discrete s, |5 has the discrete order. If \/{ bg|b OB} = Othenag=0and
Os O S bg = [, and the conclusion is clearly true. Otherwise, let cS:\/{bS|bD B}. ThenOb O B. (bg=
Oor bg=cg). If ag=0then b 0 B. agbg= O and
ag=0=\/{agObg|b 0 B}. Otherwise ag= cgand b [ B. ag [1bg = bg and
ag=cs=\/{bg|b 0B} =\/{agObg|b O B}.
For continuous s, the members of |garereal intervals, or are . Let ag= [Xg, Yg| and bg = [x(bg),

y(bg)], where we use x = -co and y = +oo for ag= [J or bg= [I. The order relation on I g corresponds to the

inverse of interval containment, sup corresponds to intersection of intervals, and inf corresponds to the
smallest interval containing the union of intervals. First, note that Ob 00 B. a Ob < a and thus \/{a Ob|b

0B} <a. So,itisonly necessary to show that a < \/{a Ob|b OB}, or, in other words, that the

intersection of the intervals [min{ xg, x(bg)}, max{ys, y(bg)}] for all b 0 B is contained in the interval [xg,
ygl. Thisintersection of intervalsis

[c, d] = [max{min{xg, x(bg)} | b O B}, min{ max{yg, y(bg)}|b O B}]. Now,

ag< V{bs|b 0 B} saysthat xg < max{x(bg) | b 0 B} and min{x(bg) | b 0 B} <y Sofor at least one b
B, x5 < X(bg) and min{xg, X(bg)} = X5, and thus

c=max{min{xg, X(bg)}| b O B} = x5 Similarly d<yg, and so [c, d] O [Xg, Yg], sShowing the needed

containment. W
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Prop. C.10. If YO CL(X) thenB = {\/M MO UY& M directed} is closed.

Proof. First, we show that B isadown set. By Prop. C.9,

as\ImO a=\/{aDm|mD M},soweneedtoshowthat\/{aDm|mD M} isdirected when M is.

Given afinite set {a Obj | bj 0 M} thereiscin M such that 0i. b; < ¢, and thus \/;b; < c. Now Di. bj <

V/ibj 0 Di.a0b;<a0Vib O Vi@Oby) <a0 Vb <

alc. HoweveraDcD\/{aDm|mD M}, so{aOm|m0O M} isdirected, a0 B and B is adown set.
Next, we show that B is closed under sups. Let M be a directed subset of B and we will show that

a=\/M OB. For eachmO M thereisadirected set Q(m) O UYsuch that m=\/Q(m). DefineQ' = U

{Q(m) ImO M} andQ={\/C|COQ & Cfinite}. Notethat \/Q exists (and = a) so \/C exists. For each

finite C O Q’, each ¢ O C belongs to a member of Y. Thus C isasubset of afinite union of membersof Y,

whichisaclosed set, so \/C must bel ong to this same closed set and therefore belongs to UY. ThusQ O U

Y. Pick afiniteset {qj} O Q. Each g isthe sup of afinite subset C; 0 Q', and \/iqi isthe sup of thefinite
Subset UiCi of Q. Thus\/iqi 0 Q so Qisadirected subset of [JY with

a=\/Q=\/Q’, so aisamember of B. ThusB isclosed under sups, andisaclosed set. |
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Appendix D

Proofsfor Section 3.2.3

Here we present the technical details for Section 3.2.3.

Def. A set T of data types can be defined from the set Sof scalars. Two functions, SC and DOM
are defined with T, such that OtOT. SC(t) 0 S& DOM(t) O S.

T, SC and DOM are defined as follows:

(D.1) sOSO sOT (thatis, SOT)
X(s) ={s}

DOM(s) = @.

(D.2) (fori=1,.n0OT)&(@{#j0 SCE;) n SC(tj) =@ O struct{ty;..;tp} OT
SC(struct{ty;...ite}) = Ui sc(ty)

DOM(struct{ty;...;tp}) = UiDOM(ti)

(D.3) wOS&rOT&wWOSC(r)O (array[w]of NOT
SC((array [w] of r)) ={w} O SC(r)

DOM((array [w] of r)) ={w} O DOM(r)
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Thetype struct{tq;...;tn} isatuple with element typest;, and the type

(array [w] of r) isan array with domain type w and range typer. SC(t) isthe set of scalars occurring int,
and DOM(t) isthe set of scalars occurring as array domainsint. Note that each scalar in Smay occur at

most onceinatypeinT.

Def. For each scalar s S, define a countable set Hg O I such that for all
a,b0Hgalb0OHgalObOlgO albOHg and suchthat Oa O I DA 0 Hg, a=\/A(thatis, Hgis
closed under infs and sups, and any member of |gisasup of aset of members of Hg). For discrete sthis
impliesthat Hg = I 5 (recall that we defined discrete scalars as having countable value sets).  Also note that,

for continuous s, Hg cannot be a cpo.

Def. Given ascaar w, let

FIN(Hy) = {A O Hu {0} |Afinite & Da, b O A. ~(a<b)}.

Def. Extend the definition of Hito t O T by:

(D.4)  t=sruct{ty;.;ty} O H¢= Ht1><...><th

(D5) t=(array[w] ofr) O H¢={(A = H) | A D FIN(Hy)}
Def. Define an embedding Eq:H; — U by:

(D.6) tOSO Ea)=1(0,...,a..,0)

(D.7)  t=struct{ty;...;tn} O E((ag,...ay) ={b10..00, | Oi. b O Eti (&)}
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(D.8) t=(array[w] ofr)O

[a0(A - Hp) O Ey(a) ={blc|x OA& bOE/(xX) & c O Ef(a(x))}]

The notation | ([,...,a,...,0) in EQ. (D.6) indicates the closed set of al tupleslessthan ([,...,a,...,00).

Aswe will show in Prop. D.1, for all a 0 H; and for al b O Ey(a),
bg= O unlesss 0 SC(t). Thusb4[...Cby, in Eq. (D.7) isthe tuple that merges the non-0 components of the
tuples by, ..., by., since the typest; in Eq. (D.7) are defined from digjoint sets of scalars. Similarly, bClcin

Eq. (D.8) isthe tuple that merges the non-00 components of the tuples b and ¢, since the scalar w does not

occur inthetyper. Prop. D.2 will show that E; does indeed map members of H; to members of U.

Def. For t O T define Fy = E¢(Hy).

Prop. D.1. Givent O T and A O Fy, for all tuplesb [ A,
OsOS (sOSC(t) 0 bg=0).

Proof. We prove this by induction on the structure of t. Thisis clearly true for

t 0 S For t = struct{ty;...;ty} pick b =Dbq0..0b, O A O Fy, where bj O Bj O Fti . Then
bs=bqg...0bpg By induction, Oi. Os. s O SC(tj) O bjg=[, s0
Os. (0. s 0 SC(t;)) O bg =0, and so Os. s 0 U;SC(ti) O b= 0. But sc(t) = U sc(ty).
Fort = (array [w] of r) picka=bOcOAOF;, whereb O B O F, and
cOCOF,. Thenag=bgcg Byinduction,s#w bg=0OandsO SC(r)) O cg=0,s00s. sO{w} O

SC(r) O bg= 0. But SC(t) ={w} 0O SC(r). =

The following propositions show that E; maps members of Hy to closed sets, and that this mapping

isinjective.
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Prop. D.2. For all a0 Hy, E¢(a) isaclosed set.

Proof. We prove this by induction on the structure of t. Fort O S
Ei(@) = ¢+ (O,...,a,...,00) isclosed, by Prop. C.7. For t = struct{ty;...;ty}, we need to show that E¢(a) = {bq ...

[by, [ Oi. by O Eti (&)} isclosed, wherea = (ay,...,a). To show that Ey(a) isadown-set, pick b < b10...00
b O Et(a). Then Oi. b Ob; < b; and hence

Oi.bOb; O Eti (&) (since these are down sets). Thus, by Prop. C.9,

b= (bObp)0..0(b Obp) O E¢(a). To show that E¢(a) is closed under sups of directed sets, pick a directed
set C O E¢(a) and for al ¢ O Clet ¢ = bq(c)0...[by(c) where

0i. by(c) O Eti (&). We need to show that C; = {bj(c) | c O C} isadirected set. Pick afinite subset {bi(cj)
[j} OC;. SinceCisdirected, thereism O C such that [Jj. G sm Note that m= bq(m)C...00,(m) where O
i. bj(m) O C;. Sincethet; have digjoint sets of non-0 components, Oi. [j. bi(cj) < bj(m). ThusGC;is
directed, and VCi 0 Eti (&). Hence \c= VC1D...D\/ Cn O Et(a), and thus E¢(a) is closed under sups of
directed sets.

For t = (array [w] of r), we need to show that

Ei(@) ={bc|[xOA& bOE(X) & c 0 E,(a(x))} isclosed, wherea [0 (A - H,). Define Ey(a)y = {blc | b
OEp(X¥) & c O Eg(a(x))}. Notethat Ey(a)y =

Estruct{w;r} ((a, a(x))) [where struct{ w; r} isatupletype and (a, a(x)) O Hstruct{w;r}] and thus, by the
argument above for tuple types, Ey(a)y isclosed. Also note that Ei(a) =

U{ Et(a)y | x O A}. However, A isfinite, so E¢(a) isaunion of afinite number of closed sets, and thusis

itself closed. W
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Prop. D.3. The embedding E; : H; — U isinjective.

Proof. We prove this by induction on the structure of t.

Lettbeascaaranda#b. Then-(a<b)or-(b<a). Assume without loss of generality that - (a

<b). Then(dD,...,a,...,0) O 1 (0,...,a,...,0) = Ey(a) but
(0,....a,..,0) 0 ¢ (0,...,b,...,0) = E¢(b), 0 E(a) # E¢(b).

Lett = struct{ty;...tn} and a=(ay,....ay) # (b1,...,.bpy) = b. Then [k. ay # by and, by the inductive

hypothesis, Etk (ay) # Etk (by). Assume without loss of generaity that
[ty O Etk (a). o O Etk (by). and for all i  k pick ¢; O Et; (). Then
c10...0c, O E¢((a1,---ap)), but, since ¢y [ Etk (by) and since
Os0OSOi #k cg# 0O ¢ig= 0, cq0..0cy O E¢((by,-...bp)). Thus
Et((@1,---an)) # E¢((by,....bp)).

Lett=(array [w] ofr)anda# bwherea d (A -~ Hy)andb O (B —» Hy). Theneither AZBor A
=B & [XOA. a(xX) # b(X). Inthefirst case (that is, A # B), assume without loss of generality that [x O A. X
OB. If yOB.x<ythen-[zZOA. y<z(otherwisex DA & zOA& x<2). Thuseither Ix O A. - (Cy O
B.x<y)or

Oy OB. - ((z0O A. y< 2). Assume without loss of generality that

XxOA -(yOB.x<y). Thene=(0,...x,..,00) O Ey(X) and = (Cy O B. e 0 B (y)). Pick f O Ep(a(x)).
Then el O Ey(a) but el O E¢(b), so E¢(a) # E(b). Inthe second case (that is, A=B & [(XOA. a(x) #
b(x)), by the inductive hypothesis, Ep(a(x)) # E,(b(X)). Assume without loss of generality that (x 0 A. [ O

Er(a(x)). f O Er(b(x)). Pick e Ey(x). Then el O Ey(a) but el O Ey(b), so E¢(a) # E¢(b). W

Because E; : Hy — U isinjective, we can define an order relation between the members of H;
simply by assuming that E; is an order embedding. If E; were not injective, it would map a pair of

members of Hy to the same member of U, and induce an anti-symmetric relation on Hy.
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Def. Given a, b 0 Hi, we say that a < b if and only if E¢(a) < E(b).

The order that E; induces on Hy has a simple and intuitive structure, as the following proposition

shows.

Prop. D.4. If tisascalar and a, b [0 H; then Ey(a) < Ey(b) if and only if a< bin I.

If t = struct{ty;...;ty} then E¢((aq,....ap)) <

E¢((b1,...bp)) if and only if

Oi. Eti (a) < Eti (by) (that is, the order relation between tuplesis defined element-wise).

If t=(array[w] of r),if a, b0 H; andif a

O(A - Hy)andb O (B - Hy), then

Ei(a) < E¢(b) if and only if Ox O A. Ef(a(x)) < \/{ Er(b(y)) |y OB & Ey(X) < Eyp(y)} (thatis, an array ais

lessthan an array b if the embedding of the value of a at any sample x isless than the sup of the

embeddings of the set of values of b at its

Proof. Recall that members of U

samples greater than x).

are closed sets ordered by set inclusion, so

Ei(a) < Ey(b) = Et(a) O E¢(b). Lettbeascalar. If a<binl;then

Er(@) = + (0,.a..0) = {(0,....C,
{@,...c....0) [c< b} = 1 (0,...b,

Now assume that Eq(a) < E¢(b). Then
E(@) = 4 (0,..a..0) = {(0,....C,

(0,0 [c< B} = 1(0,....b,

) ]c<a O

..0) = Ey(b).

) ]c<at O

..0) = E(b)

so (0,...,a,...,.00 O{(0,....c,...,0) [c<b} sba< binl;.
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0 SC(t) n SC(tj) = @so, by Prop. D.1, djg= O for s SC(ty) and i # k. Thus ¢yg = dygfor s 0 SC(ty) and

S0 ¢ = di. Thisisimpossible, so

Thus Oi. (¢ O Eti (&) 0 ¢ O Eti (by)), or in other words, Ci. Eti (a) O Eti (by).

Lett=(array[w] ofr),a,b0H{andad (A -~ Hy) andb O (B — H). Assumethat Ox 00 A.
Er(a() < V{E((b(y)) |y 0 B & Ey(X) < Ey(y)}. Then

0x 0 A Er(a() 0 U{E (b)) |y 0 B & Eydx) < En()}-

Ei(a) ={e Of | xOA & elE(X) & fOE(a(X))} =

U{{e Of | edEp(X) & fOE (a(x))} | xOA}.

Now, f O Ep(a(x)) O Oy O B. Ey(X) < Epdy) & T O Ep(b(y)) and

e Ep(X) & Ey(X) < Ey(y) O e Ey(y), so (continuing the chain)
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U{{e Of | eDEp(X) & fOE(a(X))} | xOA} O
U{{e Of | eDE(y) & fOE((b(Y)) & Ep(X) < Ep(y) & y O B} | xOA} O

Ut{e Of | eDE(y) & fOEH(b(y))} |y O B} =

{eDOf |yOB & elIE,fy) & fOE(b(y))} = Ey(b).

Thus E¢(a) < E¢(b).

Now assume that E¢(a) < Ey(b). That is,

Ei(@) ={e Of | xOA & elE(X) & fOE(a(x))} O

Ut{eDf |e0Ey) & OB (b))} 1y O B} = Ey(b).

Since w [ SC(r), elE(X) & fOE(a(x)) & elIf O Ey(b) O OyOB. ellE(y) & fOE.(b(Y))

[thisisaresult of the parenthetical argument in the tuple case of this proof]. Pick x 0 Aand f O E (a(x)),
and definee = (0O,...x,...,0). Then CyOB. edE,(y) & fOE(b(y)). Nowe O Ep(y) O x<y O Ey/(x) <
Ewdy) 01 0 U{E((b)) |y T B & Eyf) < Ey)} =

\/{ E (b(y)) |y OB & Ey(X) < Ep(y)}. Thus

Ox 0 A E(a(0) < V{E(b(y) |y 0 B& Ey(X) < Efy)}. ®

Appendix E

Proofsfor Section 3.2.4

Here we present the technical details for Section 3.2.4.
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Def. Given A 0 U, define MAX(A) ={a O A|Ob O A. =(a<b)}. That is, MAX(A) consists of the

maximal elements of A.

Zorn'sLemma. Let P be anon-empty ordered set in which every chain has an upper bound.

Then P has a maximal element.

Prop. E.1. OA O U. AO | MAX(A), and hence A = | MAX(A).

Proof. Pick AO U andaJ Aand definePg = {x O A|a<x}. For al chains
COP,, Cisadirectedsetand CO A, sob = \/coa (since Aisclosed). If Cisnot empty,thena<bsob
0 Pg. Thus, every chainin P4 has an upper bound in P4, so by Zorn's Lemma, P4 has amaximal element
d. If thereisany ¢ O Asuchthat d < c then
a<csoc O Pg, contradicting the maximality of d in P5. Thusd O MAX(A) and
all I MAX(A). Therefore AQ | MAX(A). Clearly MAX(A) O A, and, since A is closed,

IMAX(A) O LAO Aand s0 A= | MAX(A). ®

Prop. E.2. A, BOU. A=B = MAX(A) = MAX(B).

Proof. Assume Aand B arein U. Clearly, A=B O MAX(A) = MAX(B). To show the converse,
assume A # B and, without loss of generality, thata 0 A& a0 B. Since
A O L MAX(A), there must be c 0 MAX(A) with a < c. However, since B is adown-set,

¢ OB, and hence c 0 MAX(B). Thus MAX(A) # MAX(B). &

Prop. E.3. DA O U. A=R MAX(A).

Proof. First, MAX(A) <R A, since MAX(A) O A. Now, if An C# @forCO Xopenthen[(a O AN

C. Now, A O | MAX(A) so [b 0 MAX(A). a< b. However, sinceCisopenb0CsobOJA N Cand

MAX(A) n C# @. Thus A <R MAX(A) and
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A =R MAX(A). B

Prop. E.4. Given atupletypet = struct{ty;...;t;} O T, A0 F;and
a=a0..08, 0A whereDi . gy OA O Fti , thena 0 MAX(A) = 0i. & O MAX(A).

Proof. Note that a and the &; are tuples, and the sup of tuplesis taken componentwise, so Os[J S.
ag=adll..apg Also note that
i#j0 SC(tj) n SC(tj) = @. If thereis somei such that & 0 MAX(A;), then
[bj O Aj. aj <bjsob=aj[l..[hjll..0ay UA. Now, a <bj 0 [5US ajg<bjgand(sincej i ajg=0
= bjs) ag = ajgand bg = bjg, soa<b. Thusa 0 MAX(A). Conversely, if a0 MAX(A) then[b O A . a<b
with a = aq[..0ay, b = by 0...0b,, and
Oi. aj,bj O Aj. For somesU S ag<bg Thusbg> [ so . s SC(tj), and so

ag<bgll a <bj(sinceag=ajgand bg= bjg). Thusa; U MAX(A)). ®

Prop. E.5. For all typest O Tand al A O Fy, MAX(A) isfinite. If t 0 Sand
A=1(0,...a...,0) OF; then MAX(A) = {(0,...,a,...,0)}. If t=struct{ty;...;t5} O T and
A={(aq0..0an) | Oi. & O A} O F; then MAX(A) = {(a10...0ay) | Di. &y O MAX(A)}. If t= (array [w] of
r) 0 Tand A= {aqlay | g0G & a1 0E,(0) & aslE (a(g))} O Fy then
MAX(A) ={a1 Day |gUG & a1 [ MAX(En(g)) & ap [ MAX(E(a(@)))}-

Proof. We will demonstrate this proposition by induction on the structure of t. Lett 0 Sand let A
OF. ThenaOlg A= 1(0,...,a,...,0), s0 MAX(A) = {(0,....a,...0)}. MAX(A) has asingle member and is
thusfinite.

Lett=struct{ty;...;tn} O Tandlet A O Fy. By Prop. E.4,
MAX(A) = {(a10...Ca,) | Oi. & O MAX(A))}. By theinductive hypothesis, the MAX(A;) arefinite, so

MAX(A) is finite.
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Lett= (array [w] of r) O Tandlet AO F;. Thereisafiniteset G O FIN(H,,) and afunctiona [

(G - Hy) suchthat

A={aq0ay | g0G & a10E,(9) & ax0E(a(g))} =

Uttay0ap | a10B(9) & a0 (@(@)} 190G} = UgAg 900G}

where we define Ag ={a10ay | a10E(9) & aplE(a(g))}. Each Ag isan object in

Fatruct{w; r} for thetuple type struct{w; r}. By Prop. E4,

MAX(Ag) ={a1 Uap | a1 O MAX(E(9)) & ap O MAX(E(a(9)))} =

{(Dv"'7g7"'7D) U 3.2 | a2 U MAX(Er(a(g)))}

Pickgzg inG,andb MAX(Ag) and b’ O MAX(Ag’). Then there are

by O MAX(E (a(g))) and by’ 00 MAX(E,(a(g))) such that b = ([J,...,g,...,00) Oby and

b =(0,...9,..,0) Oby. If b>b theng> g’ since by, = by, = 0. However, this contradicts the defintion
of FIN(Hy,). Thusnob [ MAX(Ag) islarger than any

b O MAX(Ag’) forg#ginG. Thus
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MAX(A) = MAX(U{Ag 190G} = U{MAX(Ag) | g0G} =
Ut{ag Dap | ag O MAX(Ey(9)) & ap [ MAX(Er(a(@)))} |gUG} =

{ag Dap |glG & a1 [ MAX(Ey(9)) & ap [0 MAX(Er(a(9)))}

G isfinite, and by the inductive hypothesis, MAX(E,,(9)) and MAX(E(a(g))) arefinite, so MAX(A) isfinite.
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Appendix F

Proofsfor Section 3.4.1

Here we present the technical details for Section 3.4.1. First, two definitions are given to provide

the context for the work in this and subsequent appendices.

Def. Let Sdenote afinite set of scalars, let X = X{Is|s 0 S denote aset of tuples, and let U =

CL(X) denote the lattice of data objects consisting of closed sets of tuples whose primitive values are taken

fromthe scalarsin S

Def. Let DS denote afinite set of display scalars, let Y = X{ Ig|d DS} denote aset of tuples,

and let V = CL(Y) denote the lattice of displays consisting of closed sets of tuples whose primitive values

are taken from the display scalarsin DS.

Now we prove four propositions that we will use aslemmas in other proofs.

Prop.F.1.Foral A BOU, IADIB=I(AOB).
Proof. IADIB=1An 1B={C|C<A} n{C|C<B}={C|C<A&C<B} ={C|C<AIB}

= |(AOB). m

Prop. F.2. D(¢) = eand D{ (00,...,0)}) = {(C,...,00)}.
Proof. Firgt, notethat duO U.o<uandOuOU.uz @O {(O,.,0)} <u. Thatis, @istheleast

element in U, and {(J,...,00)} isthe next largest element in U. If
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D(p) =v> @, then [ O U. D(u) = @and u < ¢, which isimpossible. ThusD(g) = ¢. Similarly, if D({(0,...,
O)}) =v>{(0,...,0)}, then Cu O U. D(u) = {(0,...,0)} and
u<{(0,..,0)}. However, theonly u < {(0,...,00)} is@, and D() = ¢, sO

D(T,...0)}) = {(T,...,0)}. m

Prop. F.3. If D:U - Visadisplay function, then itsinverse D-1isa continuous function from
D(U) to U.

Proof. First, D-lisafunctionsince D is injective, and D-1is monotone since D is an order
embedding. D1 is continuousif for al directed M 0 D(U), \/D~-1(m) = D-1\/M). However, snceDisa
homomorphism, D'l(M) isadirected set in U. Thus, since D is continuous, \/D(D'l(M)) = D(\/D'l(M)),
and so D-1(\/D(D-1(Mm))) = D-LD(\/D-1(Mm))). Thissmplifiesto D-1(\/M) = \/D-1(M), showing that D-

1liscontinuous. m

Prop. F.4.If D:U - Visadisplay function, then
oM 0 D). Vp-1m) = D-1(\/m).

Proof. Given M 0 D(U) let N = D-1(M) O U. By Prop. B.2, \/D(N) = D(\/N), which is equivalent
to /M = D(\/D-1(M)), and applying D1 to both sides of this, we get

D-1\/m) = D-}(0(\/D-L(m))) = VD (m). m

Now we define an open neighborhood of atuplein X, and prove two more lemmas. Notethat in

the following we will use the notation ag to indicate the s component of atuple a [ X{ Is|sOS.

Def. Givenatuplea [0 X{ Is|sO $ suchthat ag# [x, X] for continuous s, define neighbor(a) as

the set of tuples b such that:

sdiscrete [1 bg= ag



43

scontinuous and ag= [0 bg=> ag
scontinuousand ag# [ [ bg> ag

(thatisag=[x,y] and bg=[u,v] 0 x<uandv<y).

Prop. F.5. ForaQ X{IS |sO S}, the set neighbor(a) is open (in the Scott topology).

Proof. Clearly neighbor(a) isan up set. Let C beadirected setin X{ Ig|sOS suchthat d = \/lc
belongs to neighbor(a). The sup istaken componentwise, so
ds=\V/{cg|c O C} for eachs. If sisdiscrete, then (S0 C. cSg=dg > ag. If sis continuous and ag = [,
then for any c 0 C, cg > ag. If siscontinuous and ag# [, then agand dg are intervals such that dg = [u, V]
O[xy] =ag withx<uandv<y. Here
u=max{p|LOC.[p, q =cg ardv=min{q |t OC.[p,q] =cg sothereexist
cS1, ¢Sy O Csuch that ¢Sy = [p1, d1] and cSy5 = [po, o] Withx < pq and gy <y. Since C is directed,
there must be ¢S [ C such that cS= ¢S1 [ ¢Sy, so ¢5> ag For each s 0 Swe have shown that thereis cS 0

Csuchthat cSg= ag Since Sisfinite, and Cis directed, thereisc [ C such that ¢ = \{cS|sOS =aandc

O neighbor(a). Thus neighbor(a) isan open set. B

Prop. F.6. Givenaset CJ U, B=\/Cand an open set Ain X{Ig|s 0 S}, then
AnBzeO [LOC.Ancza

Proof. Band al ¢ 0 C are closed, so B isthe smallest closed set containing UC. Allthec O Care
down sets, so UC isalso adown set. Thus, by Prop. C.10,
{\/M MO UC& M directed} is closed and hence equal to B. We are given that thereisay 0 A n B, so
there must be adirected set M in UC suchthaty = \/m. However, since Aiis open, there must bemO M n
A, andsinceM O UC, thereisc O C such that

mOcn A R
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Now we define the embeddings of scalar objects and display scalar objectsin the lattices U and V.

Def. For each scalar s [ S, define an embedding Eglg — U by:
Ob O lg Eg(b) = 1 (O,...,b,...,0) (this notation indicates that all elements of the tuple are [ except b). Also

define Ug=Eg(lg) U U.

Def. For each display scalar d [J DS, define an embedding Eqilg - V by:

Ob O Iy Eg(b) = + (0,....b,....0). Also define Vg = Eq(lg) O V.

Next, we use an argument involving open neighborhoods to show that a display function maps
embedded scalar objects to displays of the form | x, where x isadisplay tuple. Prop. F.8 will show that

these | x must be embedded display scalar objects.

Prop. F.7. If D:U - Visadisplay function, thenfor al sO S

Ob O lg [x 0 X{lq|d0DS}. D( (T,....b,....0)) = 1 x.
Proof. GivensO Sandb O Ig leta=(0,...,b,...,00) and let z= D(t &). Then
z=\/{1y|yO2,andby Prop. F4, ta=D"1z =\/{D-L(1y) |yD 2 (note 1y< zso

D-1(1y) exists).
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Now we know that a 0 V/{D1(1y) [y 0 Z. If we could show that
ViD-1(y) |yoz =Utp-1(1y) |y O 2 then there must be x O z such that a 0 D~1(1 x). However, the
D'l(l y) are closed sets, and, by Prop. C.8, we can only show that
\/{ D'l(i y)|lydz = U{ D'l(i y) |y O Z if zisfinite. Thuswe need a more complex argument to

construct x 0 z such that a [ D'l(i X).

Define a sequence of tuplesa, in U, for n=1, 2, ..., by:

if siscontinuous and b = ag =[x, y] for some interval [x, y], then
apg = [x-1/n, y+1/n]

if siscontinuous and b = ag =[], then apg= [

if sisdiscrete, then a5 = ag

foral s OSsuchthats # s, apg =0

Also define z, = D(l ap) < D(1 &) = z and note thet | a, = \/{ D'1(¢ X) | x O z,}. Now neighbor(ap.1) is
open and | a, N neighbor(ay.1) # @, so by Prop. F.6 there must be
Xn O 7, such that D'1(¢ Xp) N neighbor(an.1) # @. Say yisinthisintersection. Then
y O neighbor(a,.1) 0 ap.g<yandy 0D 1(1x) O 1y<Duxy) so
tan.1 < y<D(1x,). Furthermore, xy 0 zq 0 D1(1x) < D(z,) = 1 &y, s0 we have
lap.1 < D-1(s Xp) < Lap, or equivalently 1 X1 < D(Yap.1) < I Xy Thusxp.1 < xyandthe set {xp} isa
chain and thus a directed set. Since X{Id |d O DS} isacpo,
X = V{xn} O X{Id |dODS}. Sincez U, zisaclosed under sups and thus x [ z
Now, 0n. X, < x50 On. Lap < D'Y(1xp47) < DL(1x). Thusta=V1ag<
D-1(1x) (note that a 0 D™1(1 X)) and D(1 a) < 1 x. Ontheother hand, x D zO (x<z=D(la), and so D(!

a)=1Ix N
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Prop. F.7 showed that a display function maps embedded scalar objects to displays of the form | x,
where x isadisplay tuple. Now we show that these | x must be embedded display scalar objects, and that
embedded scalar objects are mapped to embedded display scalar objects of the same kind (that is, discrete

or continuous).

Prop. F.8.If D:U - Visadisplay function, then

Os0OS DaOdUg [d O DS D(a) O Vg.

Furthermore, if sisdiscrete, then d isdiscrete, and if sis continuous, then d is continuous.
Proof. A vaueudUghastheformu=1(0,...a,..,0). If a=Othen

D(u) = {(0.,...,0)} which belongsto V for all d 0 DS. Otherwise, by Prop. F.7,

v O X{Id |d 0 DS}. D(u) = lvand by Prop. F.2, Lv>{(0,...,0)}. If Lvisnotinany Vy, then some

(-ne...f..) O Lvwithez O# f. We consider the discrete and continuous cases separately.
First, consider sdiscrete. Wehave ((...,e,...,[,...) < 1 vand [’ O U such that

D) =1(...,&....,00,..) < 1v=D(u), sou < u. Buttheonly u'lessthan uareand

{(0,...,0)}, and D does not carry theminto ! (...,&,...,0,...). Thus | v must be in some V.
Second, consider s continuous. Define wgf = (O,....e,...,f,...,00) (that is, eand f are the only
elementsin thistuple that are not [). Also definevg= 1 (0,...,e,...,0,...,0) and
vi= L (0,...,0,...f,...,0). Thenvg, v < 1wg< 1v=D(u) so
Cug, Uf < u. (D(ug) = Ve & D(uf) = vf). Now, vg # {(0,...,0)} so ug # {(0,...,0)} and
Cae # 0. (O,...,ag,..,0) O ugand hence | (0,...,ag,...,0) < ug. Similarly,
Cgs # O. L (O,....8,...,0) < up. By Prop. F.1, 1 (O,...,ag O &f,...,0) < ug Ous. However, ag and a5 are real
intervals (since they belong to a continuous scalar and are not ), so
ag Uag isthe smallest interval containing both ag and a5. Let ag bethisinterval. Then
ag=agUas# [, and i (U,...ag,....lJ) < ug Ouf. Thusug Dug # {(0,...,.0)}. Onthe other hand, vig vt = {(

0,...,0)}. But this contradicts D(ug 0 uf) = Vg V¢, SO 1 v must be in some V.
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Next we show that discrete scalar values map to discrete scalar values, and that continuous scalar
values map to continuous scalar values.

Letu=1(0,...a,..,0) O Ugfor discrete swith D(u) =v =1 (0,...,b,...,.00) OVgand bz 0. Ifdis
continuous, then [, [0 < b’ < b such that
{(@,...0} <1(0,.,b,...0)=v <v. Thus['. D(u) =V where
{@,..,0} <u<u=1(0,..,a..,0). Thusu =1(0,...,a,...,.00) wherea' < a, which isimpossible for discrete
S, so d must be discrete.

Letu=1(0,...a,..,0) O Ugfor continuous swith D(u) = v =1 (0,...,.b,...,00) OVy. Then&. O<

a <aand{(0,...0} <1(0O,...4a,..0)=u<us

D{(O,....0}) ={(0,....0)} <D(u) =v' <v. Thisisonly possibleif Vis continuous. ®

Next we show that embedded objects from different scalars are not mapped to the same display

scalar embedding.

Prop. F.9. If D:U - Visadisplay function, thenfor al sands' in S
(828 & ugdUg& updUg & ug# 0# up& D(ug) DVy& D(up) OVy) O d#d.
Proof. Let v = D(ug) and v, = D(up). Assumethat v and vy are in the same Vg, and let
Ug = L (0, 0,00, 0),
up = ¢ (0,...0,...,b,....,0),
Vg = t(0,...e...,0) and
vp =t (0,...f...,0), whereaz 0z bande# O #f.
This notation indicates that uy and up, are in different Ug, and that v and vy, are in the same V.
First, we treat the continuous case. ugy Dup ={(0,...,0)} and, by Prop. F.1,
Vg Ovp =1 (0,....e0f,...,0). eand f arered intervals, and e O f isthe smallest interval containing both e

andf. Thuse Of # 0 sovy Ovp 2 {(0,...,0)}, which contradicts
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D(ug Oup) = vy Ovp. Thusvg and vy must be in the same V.
Second, treat the discrete case. Note that
ug Dup ={(E,....a,...,.0,..,0), (G....0,..,b,...,00), (O,..,0)} and
D(ug Oup) = vy Ovp ={(0,....e...0), (G,....f,...,.00), (O,..,0)}.
Letx=1(0,...a,..,b,...0) =
{@,...a,...b,...0),@0..a..0..,0),@..0..b,..0), (0,..0} > ug Oup.
Sety = D(x). Theny > vy vy sothereis(0,...,g,...,.00) Oy (all elements of this tuple are [ except g) such
that (O,....e...0) # (O,...,9,...0) # (O,...f,...,0). [Infact (O,...,9,...,00) may not even be in the same V that (
d.....e..,0) and (O,...,f,...,0) arein.] Now if
1(4,...,9,..,0) =y thene< g and f < g which isimpossible in the discrete order of 4. Thus | ([,...,g,...,0) <
y and so Ow < x. D(w) = ¢ (O,...,9,...,00). However, the only w lessthan x are ¢, { ({,...,0)}, ug , Up and ug O

Up. Thiscontradictsg # eand g # f. Thus v, and vy must beinthesame V. ®

Asacorollary of Prop. F.9, we show that only embedded scalar objects are mapped to embedded

display scalar objects (that is, non-scalar objects must be mapped to non-display scalar objects).

Prop. F.10. If D:U - Visadisplay function, then

0d 0 DS (D(u) OVgO 50S udUy).

Proof. If u 0 U isnot in any scalar embedding, then [{...,e,...,f,...) Du. e# O # f. AssumeD(u) =
vOVy. Then(O,...e...0,...,0) Duand (O,..,0,...f,...,0) Ou, so
1(4,...e...0.,0 <uand i (O,...,0,...f..,0) <u, and thus D(1 (I,....e,....0,...,0)) O Vg and D(! (O,...,0
yeenrfyens)) O V. However 1 (O,...e,...,0,...,00) and ¢ (O,...,0,...,f,...,00) are in two different scalar

embeddings and, by Prop. F.9, cannot both be mapped to V. Thus D(u) cannot belong to any display

scalar embedding. ®
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Next, we show that all embedded objects from a continuous scalar are mapped to embedded
objects from the same display scalar. Note, however, that embedded objects from the same discrete scalar

may be mapped to embedded objects from different display scalars.

Prop. F.11. If D:U - Visadisplay function and if sisa continuous scalar, then
Oug, Uup O Ug ((D(ug) Vg & D(up) O Vg & ugzO#up) 0 d=d).

Proof. Let v = D(ug) and v = D(up). Assume that sis continuous and that v and vy arein
different V. Let

ug = +(0,...,a,..,0),

up = ¢ (0,...,b,...,0),

Vg =t (0,....e...,0,...,0) and

vp=t(0,...0..5..,0),wheeaz Oz bandez O 2 1.
This notation indicates that uy and uy, are in the same Ug, and that vy and vy, are in different V. Now vy O
vp ={(0,...,.0)} and, by Prop. F.1, ug Dup =t (0,...,a0b,...,00). Sinceaand b arered intervals, a dbis

the smallest interval containing both a and b, so

alb# 0. However, this contradicts D(ug O up) = vg Ovp,. Thus, vg and vy must beinthe same V. ®

Now we show that a display function maps objects of the form | a, for
all X{ Is|sO &}, to objects of the form 1, for x O X{ IqldODS}, and conversely. Furthermore, the
values of display functions on objects of the form | a are determined by their values on embedded scalar
objects. Giventhis, itisan easy step in Prop. F.13 to show that the values of display functions on all of U

are determined by their values on embedded scalar objects.
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Prop. F.12. If D:U - Visadisplay function and if aisatuplein X{IslsD S} then there exists a
tuplexin X{1q4|d 0 DS} suchthat D(1a) = x. Conversely, if xisatuplein X{Iq|d 0 DS} such that TA
O U.xOD(A), thenthere existsatupleain
X{Is|s 0 S suchthat D(t &) = ¢ x. From Prop. F.8 we know that for all sO' S
agz 00 MODS yg Olg. (yg# 0 & L (O,....ygs---0) = D (,...,8g,...,00))),
and similarly, from Prop. D.3 we know that for all d O DS,

Xgz 00 50S hgOlg (bgz O & L (O,...Xg--.,.00) = D(4 (O,...,bg,....0)),

Here we assert that for all SO0 S ag# 0 0 ag=bg and for al d 0 DS xq# 00 xg=Yyg. Thatis, thetuple
elements of a determine the tuple elements of x, and vice versa, according to the values of D on the scalar
embeddings Ug.

Proof. Thisissimilar to the proof of Prop F.7. Givena [ X{ Is|sO 8, let
z=D(1a). Thenz=\/{1y|yO 2, and by Prop. F.4, ta=D"1@z) =\/{D1(1y) |yD 7 (note ly<zso D"
1(iy) exists).

Define a sequence of tuplesay, in U, for n=1, 2, ..., by:
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sdiscrete ] apg=ag
scontinuousand ag= 0 0 apg= ag

scontinuousand ag= [X, y] 0 apg=[*x-1/n, y+1/n].

Also define z, = D(l ap) < D(1 @) = z and note that | a, = \/{ D'1(¢ X) | x O z,}. Now neighbor(ap.1) is
open and | a, N neighbor(ay.1) # . By Prop. F.6 there must be
Xn O 7, such that D'1(¢ Xp) N neighbor(an.1) # @. Say yisinthisintersection. Then
y O neighbor(a,.1) 0 ap.1<yandy 0D 1(1x) O 1y<Dixy) so
tan.1 < y<D(1x,). Furthermore, X, 02,0 D1(1x,) < D(1 7)) = 1a,, sowe have 1ay.1 < D11
Xp) < Lap.

Now consider the tuple components of a,, and x,,. Define xy’ by
O, Xnd - 0) = D (O,....a0g---0)), and set xpq” = O for those d not corresponding to any ap,g # 0.
Also define ay' by | (O,....Xngs--0) = D(4 (O,...,ang)-..,0)) for those d such that xpg # O, and set ap,g' = O
for those s not corresponding to any x,q # 0. Notethat | (0,... Xpgs--0) € 4 Xp S0 Ov O U. 1 (O,... Xpgs---0)
= D(w), and, by Prop. D.3, w must have the form | (0,...,ang)-..,0), SO apg exists for xpq # 0. First, we use

D 1(1x,) < 1 &y, to show that:

@ (O, X ) < 1 X O
L(Oynge ) = DI (O, X)) < D LX) < LA O
ans <ansl
L(Oynngsees ) € 1 (0yenn@ng ) O
V(O Xpgseo D) = DO (O,eenstipgenn, ) <
D (Oyrngd) = 4 (Do Xy sees ) O

Xnd < Xnd’
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The transition from the fourth to the fifth line in (a) shows that if angand a,g arein the same scalar s, then
Xnd @nd X’ are in the same display scalar d. Next, we use

lap < D1 Xn+1) to show that:

(b) (O, apg--0) < tap O
O, Xnd ) = D (O, --0) <Dl ap) < L Xqeq O
Xnd' < X(n+1)d U
LOeXnd'osD) € 40Xy 0) O
L(O,ng D) = DL (O, X oo D) <
DL (O, X)) = 4 (OBt 1)) O

ans< A(n+1)s

The transition from the fourth to thefifth line in (b) shows that if x,g and x(n+1)d " arein the same display
scalar d, then apg and a(p+1)s are in the same scalar s.
Putting (a) and (b) together shows that ang' < ang < a(p+1)s @d Xng < Xnd ' < X(n+1)d for al sand

d. If disadiscrete display scalar, then there is an n such that

Om = n. Xy = Xng» and define xq = Xng. If d isacontinuous display scalar, then there either all the x,q are
O or thereis an n such that

Oijznizj0 xg=[u,v] O [uj, vj] = Xig- In the first case, define xq = 0 and in the second case define
Xg=[u,v] = ﬂ{ [Uj, vi] [i=n}. Inany case, xq = \/andv and defining x as the tuple with components xg, x
= \/an- Since zis closed, {xn} isadirected set, and

On. xp Oz thenx Oz
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By definition, a = \/nan. We have already shown that | ap_1 < D-1( Xp): SO
an.1 0D (1x,) 0D (1x). SinceD(1x)isclosed, a1 DL(1x) and thus 1a <
D-1(1x). However, x 0 z, so D"1(1X) < 1 aand thus | a= D"1(1X). Definex and & by
(O, Xnd - 0) = D (O, apg---0)) and L (O,.... Xngs---0) = D (O,...,apg,-..,0)). Then we can apply the
logic of (a) and (b) (using la< D'l(l X) < | a) to show that
ag < ag< ag and xg < Xg' < Xg, whichisjust ag= ag and xq = x4’ Thus D takes the set of tuple
components of a into exactly the set of tuple components of x.

For the converse, we are given atuple xin X{ Ig|dODS such that
AT U.x O D(A). Then | x<D(A) and [z< A. tx=D(2) = \/{D(1b) |b O 2. After this, the argument for
the converse isidentical, relying on properties of D that are shared by D'l pDlisa homomorphism from
D(U) to U, and Props. F.3 and F.4 show that D1 is continuous and preserves arbitrary sups. Inthe
argument Dlis only applied to members of V that are lessthan | x, where Dlis guaranteed to be defined.

Proposition F.13 will show that the values of display functionson all of U are determined by their

values on the scalar embeddings Ug, which is particularly interesting since most elements of U cannot be

expressed as sups of sets of elements of the scalar embeddings Ug

Prop. F.13. 1f D:U - Visadisplay function, then its values on U are determined by its values on

the scalar embeddings Ug,
Proof. Forall ud U, u=V/{ix|xOu}. By Prop. B.2, D(u) = \/{D(1 X) | x 0 u}. Now, each x O

uisatuple so by Prop. F.12, D(1 x) is determined by the values of D applied to the tuple components of x.

Thus D(u) is determined by the values of D on the scalar embeddingsUg. B



The propositionsin Appendix F are combined in the following definition and theorem about

mappings from scalars to display scalars.

Def. Given adisplay function D, define a mapping MAPR: S -~ POWER(DS) by MAPR(s) ={d O

DS|[a 0 Ug D(a) 0 Vg}.

Theorem. F.14. Every display function D:U - V isan injective lattice homomorphism whose

values are determined by its values on the scalar embeddings Ug. D maps valuesin the scalar embedding
Ugto valuesin the display scalar embeddings Vy for d 0 MAPR(s). Furthermore,

sdiscrete and d 0 MAPQ(s) O d discrete,

s continuous and d 0 MAPp(s) O d continuous,

s# s 0 MAPp(s) n MAPp(S) = ¢,

s continuous 0 MAPRQ(s) contains asingle display scalar.

Appendix G

Proofsfor Section 3.4.2

Here we present the technical details for Section 3.4.2. First, we prove three lemmas that explore

the relation between closed real intervals in terms of the lattice structure.

Prop. G.1. Given acontinuous scalar s 0 S, and [, y] O lg, then
V(O [% Y en D) = (W1 (@2, ) | XS 2 V)
Proof. (0,..[z Z,...0) ={[u, V] Jlus z< v} sO

n{i(D,...,[z, 4,..,0) [x<z<y} ={[u,V] |0z (x<zsyOd u<z<v)} =
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{[uv] Jusx<y<vt =1 (0,....[% V],....00). &

Prop. G.2. Given a continuous scalar s 0 S, and aset A O I \{ [0} such that
. Ou,v] OA. U <uand 0. O[u,v] OA. vV, then

(O, [inf{u | [u, V] O A}, sup{v | [u,v] O A},...,.0) =

Proof. Let x=inf{u|[u,v] O A} andy = sup{v |[u, V] O A}. Thisinf and sup exist since the
lower and upper bounds u’ and v’ exist. Then
(@,...[a b],...0) O 1 (O,....[% V],...,0) =
as<x<ys<b -

Ou,v]OA.agsu<sv<b =

Ofu, V] OA. (O,...[a bl D) O 1 (0, U, V.o, 0) =
(@,...[a b],....0) O Kt (O,.[u, V,.s0) [ [u, V] O A
Thus ¢ (T [% Ve D) = (W 1Oy [U, VD) | [U, V] DA}, W

[x,¥] O lg then D( (O,....[% Y],...00) = [ KD (D,...[2 2....0)) | X< z< ¥}
Proof. xsw<yO /\{D((D,...[z 2,...0)) | X< z< y} < D(L(D,....[w, W],....00)),
sothereisADUsuchthatD(A)=/\{D(¢(D ..... [z 7,...0) | x<z<y} =
(D (D,...[z 2,...0)) | X< z< v} (by Prop. C.8) and such that
x<sws<yO A< LD, [w, W],....0). ThusA</\{1(T,...[w, w],...0) [XS W<y} =
(N4 (@ W, W, 0) | XS WS Y} = 1(D,....[X, Y],....0) (by Prop. G.1).
Ontheother hand, x<z<yO | (O,....[x V],....0) < 1 (0,....[z Z,....0) O
D (Deen[% Y1) < D (D[22, ), SO D(4 (T,ee[X, Y., 1)) < D(A) and thus
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D(! (e[, Y,es ) = D(A) = [ KD( (T2 2, 0) | XS Z< Y} W

Now we define the values of display functions on embedded continuous scalar objects in terms of

functions of real numbers.

Def. Given adisplay function D:U — V and a continuous scalar s 0 S, by Prop. F.8 and Prop. F.11

there isa continuous d [0 DS such that valuesin Ug are mapped to valuesin V. Define functionsggR x R
- RandhgR xR - R by:

04 (0,....[x, Y1,.-.,0) O Ug, DL (O,..,[%, Y1,-..,0)) = L (0,-...[95(%, ¥), hgX, Y)].....00) O V.

Since D({ (O,...,0)}) ={(0,....0)} and D isinjective, D mapsintervalsin Igto intervalsin | 4, so g4x, y) and
hg(x, y) are defined for &l z. Also define functionsg'gR — R and

hWgR - Rby g'((2) =94z 2) and h'g(2) = h{z 2).

In Prop. G.4 we show how the functions gg and hg can be defined in terms of the functions g'g and

Prop. G.4. Given adisplay function D:U - V, acontinuous scalar s S, and
[x,y] Olg thengg(x, y) =inf{g'y(2) | X< z<y} and hg(x, y) = sup{h'g(2) [x< z<y}.
Proof. By Prop. G.3, D(! (O0,...,[%, V,...,00)) =
(XD (D,..[z A, D)) | X< 25 ¥} =[ {1 (O, 0D, WD) D) [ X< 2< Y} . By Prop. F.8 thisis i (0
nld, b],...,00) for somea, b 0 R. Define
A={[g42, (2] |x<z<y}. Then O[g2), h{2)] OA a< gy ad
Olg42), (2] OA. h'(2) < b, and, by Prop. G.2,
D( (O,...[% V],...00)) = 1 (O,...,[& B],...,.00) =

1O, [inf{g42) | x<z<y}, sup{hg(2) [ X< z< y}],...,0). &
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Next, we prove atwo lemmas useful for studying the functions gg and hg.

Prop. G.5. Given adisplay function D:U - V, acontinuous scalar s 'S, and afinite set A 0 1
T}, then
gg(inf{u|[u, v] O A}, sup{v|[u, v] O A}) =inf{gg(u, v) | [u, v] O A} and
hg(inf{u [ [u, v] O A}, sup{v | [u, v] O A}) = sup{hg(u, v) [ [u, v] O A}.
Proof. Since A isfinite, inf{u | [u, v] 0 A} and sup{v | [u, V] 0 A} exigt, 50, by Prop. G.2, 1 (0
..... [inf{u | [u,v] O A}, sup{V|[u,V] O A}],...0) =
(W (@, fu, Ve 0) | UM OAY =10, [u V0 0) [ [U, V] DA}, Let
a=gg(inf{u|[u,v] OA}, sup{v|[u,v] O A} and
b= hginf{u|[u,v] OA}, sup{v|[u,v] OA}). Then
1 (0,...[a, b],...,.0) =
D(+ (O,...[inf{{u | [u,v] O A}, sup{v |[u,V] O A}],....0)) =
N @,...[u, V... 0) | [u, V] O A} =
(Y1 (@....[agu, v), hg(u, v)],...0) [ [u, V] DA} = (by Prop. G.2)
L(O,....[inf{ge(u, V) | [u, V] O A}, sup{hg(u, V) | [u, v] O A}].,...,00), S0

a=inf{gg(u, v) | [u,v] O A} and b = sup{hg(u, v) [[u,v] OA}. &

Prop. G.6. Given adisplay function D:U — V and a continuous scalar s 0 S, then
[a, 0] D [xy] = [g(@ b), hg(@, b)] T [g¢(x, ¥), hs(x, )1

Proof. [a,b] O [x Y] = L[ab] > [x V] =
D@ (O,...[aqa, b), hg(@, b)],...0)) > D(4 (0,....[dg(%, ¥), heX, Y)]--.)) =

[a4(a@, b), hg(a, b)] O [gg(x, y), h(x, y)].
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Now we show that the overall behavior of a display function on a continuous scalar must fal into

one of two categories.

Prop. G.7. Given adisplay function D:U - V and a continuous scalar s (1 S, then either

(@  Oxy,zOR.x<y<zimpliesthat ggx, 2) = gg(X, ) & hg(x, y) < hg(x, 2) and that
9s(% 2) < ggly, 9 & hely, 9 = hg(x, 2),
or
(b)  Oxy,zOR.x<y<zimpliesthat ggx, 2) < gg(X, ) & hg(x, y) = hg(x, 2) and that
gs(X, 2 =04y, 2 & hg(y, 2 <hg(x, 2).
Proof. Let x<y <z Then, by Prop. G.5, gg(X, 2 = min{gg(X, y), o<y, 2} and
hg(x, 2) = max{hg(x, y), hgly, 2}. I g%, 2) < gg(x, ¥) and hg(x, y) < hg(x, 2) then
94y, 2 = g¢(X, 2) and h(y, 2) = hg(X, 2), S0 [gg(x, ¥), hg(x, Y)] O [94(y, 2, hgly, 2)] and by Prop. G.6, [x, y] U
[y, 7], which isimpossible. Thus either gg(x, y) = gg(X, 2) or
h(X, ) = hg(x, 7). However, both equalities cannot hold, since
L (Do [5X, ), N Y] D) = 4 (D[ 9%, 2), M, 2)],.., ) O
(@i [% Yoo 0) = 1 (O, [X, 2,..,0), Which isimpossible. Thus
04X, 2) = gg(X, ¥) & hg(X, y) < he(X, 2) or g, 2) < gy, ) & hg(x, ) = he(x, ). A similar argument applies
to the relation between [y, 7] and [x, 7], S0
9s(%, 2) = 94y, 2) & hdly, 2) <hg(x, 2) or gg(x, 2) < gg(y, 2) & hg(y, 2) = hg(x, 2).
Since gg(x, 2 = min{ gg(x, ¥), 9g(¥: 2} and hg(x, 2) = max{hg(x, y), hy(y, 2)}, if
9e(% 2) = gg(x, y) then hy(x, ) < hy(X, 2) S0 hy(X, 2) = hyly, 2), and if gg(X, 2) = gqy, 2) then hgly, 2) < hy(x, 2)
0 hy(X, 2=hg(x, y). Thus, for all x,y, zO R, x<y < zimpliesthat
(© gs(X, 2 = gg(X, ¥) & hg(X, ) < hg(x, 2) and g¢(x, 2) < g4y, 2) & hg(y, 2 = hy(x, 2),
or

(d) 0% 2) < gy, ¥) & hg(X, y) = hg(x, 2) and gg(X, 2) = g4y, 2) & hg(y, 2) <hg(X, 2).
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We need to show that either (c) istruefor al x<y <z or that (d) istruefor al x<y<z
Now let x<y<z<w. Apply (c) and (d) tox<y<zand x<z< w, but assume that (c) appliesin
one case and that (d) appliesin the other case. That is, assume that
0s(X W) = gg(X, 2) < gg(x, y) and hg(X, y) = hg(x, 2) < hg(x, w), or that
0g(X W) < gg(X, 2) = gg(x, y) and hg(X, y) < hg(x, 2) = hg(x, w). Under both of these assumptions, gg(x, w) <
0g(x, y) and hg(x, y) < hg(x, w), which isimpossible (applying the result of the previous paragraphto x <y <
w). Thus either (c) appliesto bothx<y<zandx<z< w, or (d) appliestobothx<y<zandx<z< w.
Similarly, apply (c) and (d) tox <y <wandy < z< w, but assume that (c) appliesin one case and
that (d) appliesin the other case. That is, assume that
0g(X W) < g4y, W) = gg(z, W) and hg(z, w) < hg(y, w) = hg(x, w), or that
0g(X, W) = g4y, W) < gg(z, w) and hg(z, w) = hg(y, w) < hg(x, w). Under both of these assumptions, gg(x, w)
< gg(z, w) and hg(z, w) < hg(x, w), which isimpossible (applying the result of the previous paragraph to x <
z<w). Thuseither (c) appliestobothx<y<wandy<z< w, or (d) appliesto bothx<y<wandy<z<
w.
Now let x<y<z<X <y < Z. Theresults of the |last two paragraphs can be applied to show that
(c) and (d) are applied consistently to the following chain of triples:
X<y<z
X<y<X
X<x <y
X<y <Z
y<y <7z
z<y'<Z
X <y<Z.
Thus either (c) appliestobothx <y<zand X <y < Z, or (d) appliesto bothx<y<zand X <y <Z.

Givenany twotriplesx<y<zand X <y < Z, pick X" <y" < Z' withz< x" and
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Z<X'. Thenx<y<z<x'<y'<Z'andx <y <Z <X'<y'<Z' 0 either (c) or (d) applies uniformly to
thetriplesx<y<z X' <y'<Z'and X <y < Z. Thuseither (c) or (d) applies uniformly to al triples,

proving the proposition.

Next we define names for the two categories established in Prop. G.7.

Def. Given adisplay function D:U — V and a continuous scalar s S, by Prop. G.7, either (a) or
(b) isappliesto al triplesx <y <z If (a) applies, say that D isincreasing on s, and if (b) applies, say that

D isdecreasing on s.

Prop. G.8 is useful for showing how the categories established in Prop. G.7 apply to the functions

gsand h'g,

Prop. G.8. Given adisplay function D:U - V, acontinuousscalar s0'S, 2O R, and aset A 0 19
[0} such that [z 2 = [ A, then
g'q@) = sup{gg(a b) |[a, b] [ A} and
@) = inf{hg(a, b) | [a, b] O A}.

Proof.
V(02 Zes0) = (O, [U, V], D) [US ZS W} =
{@,...[uV],..0)|Ja b DA usasbsv} =
Ut @....[a b]....0) | [a b] O A}. Thisunion of closed setsis closed (since it equals
1 (0,2 2,...0)), s0, by Prop. C.8,
V(@2 2,..,0) = V{1 (@D,...[a, b].....0) | [a, b] O A}. Then, by Prop. B.3,
D(4(D,...[z 2....0)) = V{D( (O.....[a, b]....0)) | [a, b] O A} =

\/{ L(0,...[a4a, b), hg(a, b)]....,0) | [a, b] O A}. Therefore



L(O,...[g@), P g@)],...0) = {1 (O,...[g4a b), hg(a, b)].....0) | [a, b] O A}. Thus
Ofa, b] O A. 1 (0,...[g4@a, b), hg@, b)],....0) < 1 (0,....[g'<(a), Pg(@)],....0), S0

Ofa, b] O A. gqa, b) < g'(a) < h'((a) < hy(a, b). Therefore

sup{gg(a b) | [a, b] O A} < g's(a) and h'(a) < inf{hg(a, b) | [a, b] O A}.

Now assume that sup{g«(a, b) | [a, b] 0 A} < g'q(a) and pick u such that
sup{gg(a, b) |[a, b] O A} <u<gg@a). Thenforall [a,b] OA ga,b) <uso
1(0,...[a4a, b), hg@, b)],....0) < 1 (O,....[u, K g(@)].....0). Therefore
V{1 (O....[g4a, b), hg(a, b)],...0) | [a, b] O A} <
(O [U, @], D) < 1 (0, [g' (@), @], 0),
which contradicts
V{1 (@....[g4a, b), h@a, b)],...0) [[a, b] O A} = 1 (O,...[g'(@), h'g(@)],....0). Thus
g's(a) = sup{gg(a, b) | [a, b] O A}. A similar argument shows that

@) = inf{hga, b) |[a, b] D A}. m
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Now we show how the categories of behavior established in Prop. G.7 apply to the functions g'g

andh'g

Prop. G.9. Given adisplay function D:U - V, acontinuous scalar s S, and

z<Z,if Disincreasing on sthen g'y(2) < g'(Z) and h'g(2) < h'(Z), and if D is decreasing on sthen g'g(2) >

0'g(Z) and h'g(2) > h'y(Z).
Proof. First assumethat D isincreasing on s. Then, by Prop. G.8,

042 =sup{og(z, X) | z<x}. By Prop. G.7, Ox >z [0y >z g4(z, X) = 9<(Z ¥), SO

Ox>z gy2) =04z x). Similarly, Ox>Z. g'(Z) = 947, X). Pickx>2Z >z Then, by Prop. G.7,g'g(2) =

04z, ¥) <947, X) = g'(2).

By Prop. G.8, 'g(2) = inf{ hg(x, 2) | X< Z}. By Prop. G.7,
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Ox <z Oy<z hgx 2) = hgy, 2), so Ox <z h'g(2) = hy(x, 2). Similarly,
Ox<Z.hyZ) = hyx, Z). Pickx<z<Z. Then, by Prop. G.7,
h'((2) = hyx, 2) <hgx, Z) = h'(2).

Next assumethat D isdecreasingons. Then, by Prop. G.8,
042 =sup{og(x, 2) | x<Z}. By Prop. G.7, Ox < z. 0y < z. g4(X, 2) = (¥ 2), SO
Ox<z gy?) =0g(x, 2. Similarly, Ox < Z. g'¢(Z) = 94X, Z). Pickx<z<Z. Then, by Prop. G.7,g'g(2) =
0<% 2) > 94X, Z) = g'(2).

By Prop. G.8, 'g(2) = inf{hg(z, X) | z< x}. By Prop. G.7,
Ox>z Oy>2z hg(z, x) = hg(z, y), so Ox >z h'g(2) = hg(z, X). Similarly,
Ox>Z.hyZ) = hgZ, X). Pickx>Z >z Then, by Prop. G.7,

hWy(2) = hg(z, X) > hg(Z, X) = h'(Z). |

Next we show that the functions g’ and h’'g must be continuous functions of real variables. The

key ideaisthat g'gand h'gare either increasing or decreasing, so if they are discontinuous there must be a

gap in their values, which contradicts Prop. B.2.

Prop. G.10. Given adisplay function D:U - V and a continuous scalar s 0 S, the functionsg'g
and h'g are continuous (in the topological sense).

Proof. Assumethat D isincreasing on's. Then, by Prop. G.9, g'g and h'g are monotone increasing.
Now assume that g'g is discontinuous at z. Then
€) [k >0. 08> 0. Ow.

z-d<wW<z& gW)<g'(2)-¢€ or

Z<W<z+30& gy2 +e<ggw)
Fix € satisfying (5). If
(b) Ov. (W.<z& g2 -e<ggw.))
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then
(¢ Ow.w.<w<z0 g2 -e<gqw) <gq?
and if
(d) (g (z<wy & ggwy) <g'(d) +¢)
then
(e Ow. z<w<w; 0 gg2) <ggw) <g'y2) +e.
Now, ((c) & (e)) contradicts (&), so (-~ (b) or =(d)).
~(b)= Ow.w<zO ggw) <92 -¢€
and
~(d)= Ow.z<wO gg2 +e<ggw).
Inthe - (b) case, sincez<sw g'g(2) < g'yw), thereisno w O R such that
042 -e<ggw) <gg2. Now, [0¢2), Wg(2)] O[g'«(2) - £/2, h'(2)] so
10,042 - €2, (2)],...0) < 1 (O,....[0 2, "'2)],...0). Thus, by Prop. B.2, thereisu 00 U such that
D(u) = 1 (O,...,[9'(2) - €/2, '(2)]....,00), and by Prop. F.9 and Prop. F.10, u 0 Ug. Letu=1(0,...[a, b],...,0
). Then, by Prop. G.4,
042 - €/2=g4a, b) =inf{g'g(w) |[a< w< b}. However, since thereis no w such that
042 -e<ggw) <gg?2), thisisimpossible. Thus g'gcannot be discontinuous at z.
Inthe - (d) case, sincew <z g'g(w) < g'((2), thereisno w O R such that
042 <g'qw) <g'y2) +¢, and furthermore, z< 7 0 g'(2) <g'{(Z), sothereisz suchthat g'y(2) + € <
0'g(Z). Now, [g'«(Z), W'(Z)] O [g'(2) +&/2, W(Z)] so
10,042 + €2, (2)],...0) < L (O,...[9(Z), i(Z)],....0). Thus, by Prop. B.2, thereisu 0 U such
that D(u) = 1 (0,...,[g'¢(2) + &/2, h'(Z)]....,0), and by Prop. F.9 and Prop. F.10,u 0 Ug. Letu=1(0,...[a,
b],...,0). Then, by Prop. G.4,
0'g(2) +€/2=gga, b) =inf{ggw) |a<w< b}. However, since thereis no w such that

042 <g'{w) <g'y(2) +¢, thisisimpossible. Thus g'g cannot be discontinuous at z
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The proof that h'gis continuous, and the proofs that g's and h'g are continuous when D is

decreasing on s, are virtually identical to this.

Prop. G.11 completes the list of conditions on the functions g'g and h'g that will allow usto define

necessary and sufficient conditions for display functions.

Prop. G.11. Given adisplay function D:U - V and a continuous scalar s [ S, then g'g has no
lower bound and h'g has no upper bound. Furthermore,
0zOR.gg2 < h(2).

Proof. If Ca. Oz g'y(2) > athen,
D(: (G,..,[0, 0],....0) = +(O,...[g0), h(0)]....,0) = 1 (O,...,[a-1, W' (0)],...,.0)
[sincea-1<a< g'g0)], so there must be u 00 U such that
D(u) = 1 (O,...,[a-1, '(0)]....,00). By Prop. F.9 and Prop. F.10, u 0 Ug. However, by Prop. G.4, thereisno
[, y] O Igsuch that
D(t (O,....[% ¥],..,.0)) = L (O,...,[a-1, ' 0)].,...,00). Thusg'ghas no lower bound. The proof that h'g has no
upper bound isvirtually identical.

If g'4(2) > h'(2) then [g'((2), W"g(2)] O I, which isimpossible, so

0zOR. g7 <sh{2). &

The results of this appendix can be summarized in the following definition.

Def. A pair of functionsg'sR -~ Rand h'gR — R are called a continuous display pair if:
@ 0'g has no lower bound and h'g has no upper bound,
(b) 0zOR.gy2 <h'(2), and

(c) g'sand h'g are continuous,



(d)

either g'sand h'gare increasing:
Oz,Z OR.z<Z [0 g2 <g'?) & h'(2) <h'(2),
or g'sand h'g are decreasing:

Oz,Z OR.z<Z 0 g2 >0yZ) & h'g2) > h'(2).
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Appendix H

Proofsfor Section 3.4.3

Here we present the technical details for Section 3.4.3.

Def. Given afinite set Sof scalars, afinite set DS of display scalars,
X=X{lg|sO0S, Y=X{lq|dODS}, U = CL(X), and V = CL(Y), then afunction
D:U - Visascalar mapping function if:
€) thereisafunction MAPp: S -~ POWER(DS) such that

Os, s 0 S MAPR(s) n MAPQ(S) = @,

(b) for all continuous s 0 S, MAPR(s) contains a single continuous d 0 DS,
(© for all discretes 0 S al d O MAPQ(s) are discrete,

(d) D(¢) = 9and D({ (0,...,.0N}) = {(0,....0)},

(e) for all continuouss 0 S, g’'gand h'g are a continuous display pair,

foral [u,v] Olg ggu, v) = inf{g'y(?) [u< z< v} and

hg(u, v) = sup{h'g(2) [u< z< v},

and, given{d} = MAPp(s), then for all [u, v] O 1 {0},

D(! (O,....,[u, V],...,0)) = 1 (O,....[9g(u, V), hg(u, V)]....,00) O Vg,

) for all discretes O S, for all a O 1{ 0},

D(! (O,...,a,...,0)) = b O Vq for some d 0 MAPp(s), where b # {(0,...,0)},

and, forala, a 01O}, aza 0 D(L(0,....a,...,0) # DU (G,...a,...,00))
©) forall x O X, D(1X) = 1 \{y| (50 S xg# 0 & 1y =D(4 (T,... %))},

where xg represents tuple components of x, and using the values for D defined

in (e) and (f),
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(h) foral u 0 U, D(u) = \/{D(: x) | x O u}, using the values for D defined in (g).

This definition contains a variety of expressions for the value of D on various subsets of U. The
next proposition shows that these expressions are consi stent where the subsets of U overlap. Thisinvolves

showing that D is monotone.

Prop. H.1. In the definition of scalar mapping functions, the values defined for D in (d), (e), (f),
(g) and (h) are consistent. Furthermore, D is monotone.

Proof. (e), (f), (g) and (h) do not apply to ¢ and thus do not conflict with the definition of D(@) in
(d). (e) and (f) do not apply to {(O,...,0)} and thus do not conflict with the definition of D({(0,...,0)}) in
(d). Thedefinition of D({(O,...,0)}) in (d) is consistent with (g) and (h) if the sup of an empty set of
objectsis defined as (O,...,00). (e) and (f) apply to digoint sets and thus do not conflict. For all sO S, (g)

appliesto objects

x 0 Ug, but defines D(1 x) as the sup of the singleton set containing the value of D(! x) defined by (€) or (f),

and is thus consistent with that value. (h) appliesto objects x 0 Ug, and is consistent with (e) and (f) if it is

consistent with (g) on these objects. Thus we need to show the consistency of (g) and (h).
If u=Lythen (h) definesD(1y) = V{D(Ix) [x O 1y} =\V/{D(1x) | x<y}. To Show consistency
with (g), it is necessary to show that x <y [0 D(1x) < D(1y) for the definition of D in (d), (e), (f) and ()

(that is, that D is monotone). Clearly D in (d) is monotone, initself and inrelationto D in (e), (f) and (g).

If sO Sisdiscrete, thenfor al a, a 010}, a#z a 0 -(a< &), so D in (f) is monotone by default. If s

Sis continuous then for al [u, v], [u', v] O 1{ [0},

(O, [u, v],...0) < o (O,..,[u, V],..,0) O
[u,v]O[u,v] O
[Inf{gy? [u<zsv}, sup{h(2) |[U<z<v}] O

[iInf{g? [uszs v}, sup{h(2) |[usz<vi] O



68

D( (O,...,[u, V],...,00)) < D(1 (O,...,[u’, V],...,[])).
ThusD in (e) is monotone. For al x, X O X,

x<x

OsOS Xg< Xg [ (since D in (e) and (f) is monotone)
OsOS D(4 (0. Xg...0)) < D(4 (O,... X ..., [)) O

D(1x) <D(1X).

Thus D in (g) ismonotone, so D is consistent in (g) and (h).

All that remainsisto show that D in (h) is monotone. For all u, u' O U,

usu uDu’so\/{D(ix)lxDu}s\/{D(¢x)|xDu’}. Thus D is monotone. ®

Aswe will show in Prop. H.5, the values of a scalar mapping function D can be decomposed into
the values of an auxiliary function D’ from X to Y. Now we define this auxiliary function, show that it isan

order embedding, and prove two lemmas that will be useful in the proof of Prop. H.5.

Def. Given a scalar mapping function D:U - V, defineD:X - Y by

D' = V{(D,..ag...0) | SO S& X% 0 & D(4 (0,... X, ) = 4 (0.0} -

Prop. H.2. Given a scalar mapping function D:U - V, D’ isan order embedding.

Proof. Givenx, X O X, x< X « OsOS xg<Xg Let
D'((O,...Xg.-,0)) = (O,...,ag,....0) and D’((O,... Xg,...,00)) = (0,....ag,...,0J) where
d 0 MAPpQ(s). Notethat xg< x'g0 (0,... Xg....0) < (0,...Xg,...,00) O
3.....ag,....0) < (4,...,.ag,....0) (since aD is monotone) so ag and &'y are in the same | .
ForalsOS xg<Xg = (O,...%g....0) < (0,... Xg..,0) =
(O,...ag,.-»0) =D (0,... Xg,..,0)) < DL (G,... X g, ) = L (O, @ gy, D) =

a,....ag.-..0) = (@,....ag,...00) = ag<ay. Thus



(OsOS xgsxg) = (OdODS ag<ay). Sinceds, s 0 S MAPRp(s) n MAPRK(S) = ¢,
c=D'¥Y 0 (OdODS cgz00 5O S D (O,...Xg...,[0)) = L (O,....Cqs---,[D)

(that is, cq = ag), and thus (Od 0 DS ag< ag) = D’'(X) < D’(X). Therefore, by achain of logical

equivalences, X< X < D'(X)<D’(x). ®

Prop. H.3. Let D:U - V beascaar mapping function. Then, foral uO U,

xOuandb< D’(X) = a, thereisy < x such that b = D'(y).

Proof. For al d 00 DS, by # O implies that
O S D'((O,... Xg-..0)) = (O,...,ag,...,.00) and by < ay. For discretess,
bgsag& byg#z 00 byg=ayg. ThusD'((0,...Xg..,0)) = (0,....bg,...,.0). Letyg=Xs
For continuous s, let ag = [inf{g'(7) |[u< z< v}, sup{h'((2) |u < z< v}] where
Xg=[u,V]. Therearee, f R such that by = [e, f] where
e<inf{gq? [uszsv} <ssup{h'g?) [usz<v) <H.
Since g'g is continuous and has no lower bound, [l g'g(u’) = e, and since h'gis continuous and has no
upper bound, [V, h'g(v') = f. Now g'gand h'g are either increasing or decreasing.
If ggand h'gareincreasingthenu' <uandv<v,soe=inf{gy2) |u<z<Vv} [sinceu <z [
ggu)=gy?] andf=sup{h'((2) |u'<z< v} [since
zsv' [0 hgz) <h'g(v)]. Then
bg=1[ef]=[inf{g42 |u=<z=<sVv}, sup{h'g() |V < z<Vv}] and
D((O,...[u, v],...0)) = (O,...,.bg,....0). Letyg=[u, V].
If ggand h'garedecreasingthenv <uandvs<su, soe=inf{g'y2) |V <z<u} [sincezsu' O
ggu)=gy?] andf=sup{h'(2) |V <z=<u} [since
vi<zO hgz) <hgv)]. Then
bg=1[ef]=[inf{g42 |v <z u},sup{h'y(2) |V <z<u}] and

D((O,...[v, ul....0)) = (O,...,.bg,...,.0). Letyg=[V,u].
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Thusfor al d O DSsuch that by # [, there is yg < Xg such that

D'((O.,....Yg--»0)) = (0,....bg,...,.0). For any s 0 Ssuch that yg is not determined by any by, set yg= . Then

D'(y)=b. m

Prop. H.4. Given a scalar mapping function D:U - V, and adirected set M O X,
p'(\/m) =\/D'(M).
Proof. Given adirected set M O X, let x = \/M and y =D’(x). Since D’ isan order embedding,
D'(M) isdirected so z = \/D’(M) exigts. Also, Dm0 M. m< x, 0
OmOM. D'(m) <yandthusz<y. Foral d 0 DS if yq # Othenthereiss O Ssuch that
L(O,...ygr--0) = D¢ (O, Xg.-,[), and s (O,...ygs--..0) = D’((O,... Xg,-..,[)). Since sups are taken
componentwise in X, Xg = \/{ mg|mOM}.
If sisdiscrete, then [m 0O M. Xg = mg so
(@,....yg»---0) = D’((3,...,mg,...,[)) £ D’(m) < z, and thus yy < Z3. Since z<y, and thus
Zg < yq, thisgivesyq = z4.
If sis continuous, then Xg = [u, V] and mg = [Uny, Vil arereal intervals (we adopt the convention
that gy, = -c0 and v = o for mg= ). Then[u, V] isthe intersection of the
[Uyy Vi, for all mO M, so u = sup{up | MO M} and v = inf{ vy, | m O M} and thus
yg=1[a b] =[inf{g'y(?) [usz< v}, sup{’g(2) |[usz<v}]. Alsoletzy=[e f].
Then, since MAPR(s) contains only d,
e=sup{inf{g'¢(2 lum<z< vy} ImO M} and
f=inf{sup{h'y(2) [um< z< vy} MO M}
If g'sand h'g are increasing then, since they are continuous,
a=inf{gq?2 |sup{um |mOM} < z<inf{viy, |mOM}} = g'g(sup{upm | mOM}) =
sup{g'g(Uy) | MO M} =sup{inf{g's(2) |lujm<z<s vy} IMOM} =eand

b =sup{h(2) | sup{up | MO M} < z<inf{viy | MO M}} = hig(inf{vy, [mOM}) =



71

inf{g(viy) MO M} =inf{sup{h'y(2) |luj <z v MO M} =1,

If g'sand h'g are decreasing then, since they are continuous,

a=inf{gq? |sup{um |MOM} <z inf{vip |mOM}} = g'g(inf{vy, [mOM}) =
sup{g'g(Viyy |m O M} =sup{inf{g'((2) |um<z< vy} |[mOM} =eand

b =sup{h'((2) | sup{up | MO M} < z< inf{vi | MO M}} = hig(sup{up |mOM}) =
inf{hg(uyy) IMOM} =inf{sup{h'(2) |up<z< vy IMOM} =1

In either case, yqg = [a, b] =[e, f] = z4.
Thusyq = zq for all d O DSsuch that yq # 0. However, we also havez< 'y so

zy = Owhenever yg=0,s0yg=zgforal d 0 DSand thusy =z ®

Now we show how a scalar mapping function D can be defined in terms of the auxiliary function

Prop. H.5. Given a scalar mapping function D:U - V, foral u U,
D(u) ={D’'(x) | x O u}.

Proof. First, we show that for all u 0 U, uisclosed O {D’(x) | x O u} is closed.
Assumex Ouandb < D’(x). Then, by Prop. H.3, Oy <x. b=D’(y). Further,
y<xO yOusobO{D'(x) [xJu}. Now assumeN O {D’(x) | x O u} and Nisdirected. Then thereisM
0 u such that N = D’(M), and, since D’ is an order embedding, M is directed. Thus \/M O u and, by Prop.
H.4, \IN=D'\V/M) 0 {D'(x) |x O u}. Thus
{D'(¥) | x O u} isclosed.

Second, we show that for all x 0 X, D(1x) ={D’(y) |y < x}. By (g) in the definition of scalar
mapping functions, Oy O X. Cb O Y. D(1y) = ¢ b. Furthermore, comparing (g) with the definition of D’, Oy
OX.D(ly)=1b = D’(y) =b. Then, given

D(ix)=tla,b<a= Ib<sia=<x.D(ly)=1b < y<x.D'(y)=b. Thus



72

D(1x)=la={b|b<a} ={D'(y) |y<x}.
By Prop. C.8, \/{ D(1x) | x O u} isthe smallest closed set containing

Utp(x) |x O u}. However,

UG x 1x0u =D ) [y <3 [xOu} ={D'(x) | x O u}, which is closed, so

VD x) |xOu =U{D(1x) |xOu}. Thus, foral udU,

D) =\V{D(X) |xOu} ={D'(X) [xOu}. =

The next two propositions show that a scalar mapping function satisfies the conditions of adisplay

function.

Prop. H.6. A scalar mapping function D:U — V isan order embedding (and thus injective).
Proof. By Prop. H.5, for all u 0 U, D(u) ={D’(x) | x 0 u}. Membersof U are ordered by set
inclusion, so
usu O uOu O Du={D'X) |xOu} O{D'(x) | xOu} =D(u) O D(u) <D().
By Prop. H.2, D’ is an order embedding, and thus injective, so u = {(D’)‘l(x) | x O D(u)}.
Therefore D(u) < D(u’) O D(u) O D(u) O
u={D) 1 |xODU)} D{DO)Lx|xODW)}=uD usu.

Thus D isan order embedding. ®

Prop. H.7. A scalar mapping function D:U — V isasurjective function onto
1 D(X).
Proof. Assumethat v' < v=D(X). We need to show that thereisu’ O U such that
V' = D(U). Aswe saw in the proof of Prop. H.6, if thereis such au’, then
u = {(D’)'l(x) [xOv}. Thusletu = {(D’)'l(x) | x O v}, and we will show that thisis aclosed set, and

thus a member of U.
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Assumethaty O u andb<y. ThenD’(b) < D'(y), and since D’(y) O v’ and V' isclosed, D’'(b) O V'
sobOu. Now assumethat N [0 u’ and N isdirected. Then
M = D’(N) O v isdirected (since D’ is an order embedding), so \/M O v and

®)1\/M) O w. By Prop. H.4,\/M =D'(\/N) so /N = (D)-1(\/M) O u. Thusu’ isclosed. m

The results of the last three sections show that display functions are completely characterized as

scalar mapping functions. Thisis summarized by the following theorem.

Theorem H.8. D:U - Visadisplay function if and only if it is a scalar mapping function.

Proof. If D:U - Visadisplay function then Theorem F.14 shows that D satisfies conditions (a),
(b), (c) and (f) of the definition of scalar mapping functions. Theorem F.14, along with Props. G.4, G.9,
G.10 and G.11 show that D satisfies condition (€). Prop. F.2 showsthat D satisfies condition (d). Prop.
F.12 showsthat D satisfies condition (g), and the proof of Prop. F.13 showsthat D satisfies condition (h).
Thus D isascalar mapping function.

If D:U - Visascaar mapping function then Props. H.6 and H.7 show that D is a display

function. ®

Appendix |

Proofsfor Section 3.4.4

Here we present the technical details for Section 3.4.4. Define a set of display scalars as follows:

DS={red, green, blue, transparency, reflectivity, vectory, vectory, vector,

contourq, ..., contourp, X, y, z, animation, selector, ..., selector y}}
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Also define a subset of display scalars

DOMDS = {x, y, z, animation, selector1, ..., selector} and define
YpoMps= X{lg|d 0 DOMDS} and Y= X{I4|d O DS}. Let
Poomps:Y —~ Ypomps be the natural projection from Y onto Yp (that is, if a 0 Y and

b =Ppompg(@). then for all d  DOMDS, by = ag). Then we can define Vg ay s follows.

Def. Vdisplay ={A0V|0Ob, cOMAX(A). Pbompsb) = Pbompg©) O

b=c}. Thatis, if Aisan object in Vyjgp|ay then different tuplesin A cannot have the same set of values

for all display scalarsin DOMDS.

In Prop. 1.4 we will define conditions under which the displays of data objects are members of

Vdisplay- First, we prove three lemmas. Note that we use the notation ag for the d component of atuple a

0X{lqld0ODS.

Prop. |.1. Givenatypet O T and A 0 D(Fy), then, for al tuplesa O A,
0d 0 DS (d O MAPR(SC(1) O ag = D).

Proof. Thereis B O F; such that A = D(B). By Prop. F.12 for any a O Athereis
bOUsuchthat la=D(ib). Sinceta<A, tb<BsobOB. Furthermore, by Prop. F.12, if ag# Othen
thereis s 0 Sand bg # O such that
L(0,...ag,...0) =D (4,...,bg,...,[7)) and d O MAPp(s). By Prop. D.1,

OsOS (bg# 00 sOSC(t). Thusag# 00 d 0 MAPR(SC(t). m

Prop. |.2. Given atupletypet = struct{ty;...;tq} O T, A0 D(F¢) and

a=aq0..08, OA where Oi . gy OA; O D( Fti ), thena 0 MAX(A) = Oi. & O MAX(A).
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Proof. Note that a and the &; are tuples, and the sup of tuplesis taken componentwise, so (d [
DS ag = ajgll...0ang. Also note that
i#j0 SC(t) n SC(tj) = @, and, by Prop. F.9,
i #j 0 MAPP(SC(tj)) n MAPR(SC(tj)) = @. If thereissomei such that aj 0 MAX(A)), then Cb; O A;. g <
bj so b = a4 [..0h;[...Can O A. Now, g <bj U [0 0 DS ajg <bjg and (sincej # i U ajg = U =bjqg) ag =
ajg and by = bjg, soa<b. Thusa 0 MAX(A). Conversely, if a 0 MAX(A) then (b 0 A.a<bwitha=a;[]
..0ap, b =bq 0.0y, and
0i. aj,bj O Aj. For somed DS, ag <bg. Thusbg >0 so 0. d 0 MAPR(SC(t))), and so ag<bg U g <

bj (sinceaq = ajg and by = bjg). Thusa 1 MAX(A). ®

Prop. 1.3. Given atuple typet = struct{t;...;tn} O T, and given B; [ Fti and
A;j = D(B;) for i=1,..,n, then:
@ if bj 0 Bj and | g = D(1 byj) for i=1,..,n, then | (a1 0...0a,) = D(4 (b1 0...0by))
(b) A ={g | Loy U Bj.L 8 = D(1 by)}
© V{1 (a10..0ap) | Oi. &y O A} ={ag0..08, | Oi. g 0 A}

Proof. First we prove (a). Note that the a; and b; are tuples. By Prop. D.1,
Oi#j.0s0S (bjg=DOor bjs: [0), so (b1 0...0bp) exists. Also, by Prop. D.1 and by Prop. F.12, Od O DS,
d O MAPR(SC(t;)) O ag =0, and by Prop. F.9,
0i # j. MAPp(SC(t;)) n MAPD(SC(tj)) =@ so0i#j.0d0DS (gg=0or &g = 0), and so (a10...0ap)
exists. Given | a; = D(! by) then by Prop. F.12, the components of b; determine the components of a;. If | x
= D(4 (b10...0by)) then the components of
(b10...00y,) determine the components of x. Since i #j. Os O S. (bjg= 0 or bjs = [), the components of
(b10...00yy) are just the components of each of the b, so x =
(a10...0ay), proving (a).

By Prop. F.12, for @l bj O B; thereis a; O A; = D(B;) such that | & = D(1 b;), s0
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A O{ag | b O Bj.ta =D(i by)}. Conversely, by Prop. F.12, for &l a; O A; thereis
bj O Bj such that L& = D(1bj), so Aj O {a; | [y O Bj.L & = D(1 bj)}. Together these prove (b).
Clearly, \/{i(alD...Dan) | Oi. gy OA} O{a10..Oay | Oi. & O A}, Pick
a0 V{1 (ay0..08,) | Oi. a O A}. By Prop. C.10, thereis adirected set
M 0K (aq0..Oayy) | Di. & O A} such that a= \/M. However,
Ut (a0..0ap) 1 D gy O A} ={c | (Di. O O A). ¢ < (39 0...Cap)}.
Now, for ¢ < (a10...0a,), by Prop. C.9, ¢ = ((caq)C...(clay)) where (cle;) O A;, so
cO{ay0..0a, |aj OA}. ThusM O {a10...Cap, |a O A} suchthat a = \/M. For each
mOM, let m= (m[...0my) where m; O Aj. Then, since sups of tuples are taken componentwise and since
Oi#j.0d0ODS (mjg=0or Mg = 0),
a=\/M= {(\/ml)D...D(\/mn)) | m O M}. However, (\/mi) O A since A isclosed, so

ab{a10..0an | & OA}. Thisproves(c). B

Now we show that MAX(A) isfinite for data objects of typest O T, and demonstrate conditions on

tand D that ensure that displays of data objects of typet arein Vi) ay-

Prop. |.4. If D isadisplay function, then for all typest O T and all A O D(Fy), MAX(A) isfinite.
Furthermore, MAPp(DOM(t)) U DOMDS D D(Fy) U Vyisplay-

Proof. We will demonstrate both parts of this proposition by induction on the structure of t. Note

that if t' is a subtype of t, then MAPR(DOM(t')) O MAPR(DOM(t)). Thus, if t satisfies the hypothesis of
the second part, then its subtypes also satisfy the hypothesis of the second part.

Let t 0 S(note that MAPRL(DOM(t)) = @ 0 DOMDS) and let A 0 D(Fy). Then, by the Theorem
F.14, [d 0 MAPQ(t). A0 Vq. Furthermore,
AOVygO aOlg. A=1(0O,...a,..,0), 0o MAX(A) = {(0,...,a,...,0)}. MAX(A) hasasingle member and is

thusfinite. Therefore A [ Vjgp| gy and thus
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t0SO D(Fy O Vdisplay-
Lett=struct{ty;...;ty} O T. Given A D(Fy) thereisB [ F¢ such that A= D(B) and (B4 [ Ftl"'

(B, Ok, .B={(b0..0by) | Ti. bj 0 Bj}. Alsolet Aj=D(B;). Then
n“=Mtn 1 n i =B i [

A=D(B) =
DNM{ib|bOB}) = (by Prop. B.3)
\/{D(ib)|bOB} =

\/{D(: (b100...0byy)) | Dib; O B} = (by Prop. 1.3 (3))
\/{1(a90..08,) | Oi.s & = D(1 by) & bj OB} = (apply Prop. 1.3 (b) to each i)
V{1 (a40...0ap) | Diay O A} = (by Prop. 1.3 ()

{(2q0..Cay) | Di.ay O A}

Thus A0 D(Fy) O DA O D( Ftl)"' CAn O D(F,). A={(a0..Cap) | Di. & 0 A} and by Prop. 1.2,
MAX(A) = {(a10...Ca,) | Oi. & O MAX(A))}. By theinductive hypothesis, the MAX(A;) arefinite, so
MAX(A) isfinite. Now assume that MAPp(DOM(t)) I DOMDSbut that A T Vjigplay (that is, assume that
the second part of the proposition is not trug). Then [h, ¢ O MAX(A). Ppomps(b) = Ppovps(©) & b# c.
Letb=

by 0...0b, and ¢ = ¢4 [...0c, where Oi. by, ¢j O Aj. The sups are taken componentwise for the tuples b and
¢, soforal d 0 DS by = byg0...0opg and c¢g = c1g0...0cpg. Now

Poomvpgb) = Ppompsg(c) 0 Ud O DOMDS. by = cq. Pick d 0 DOMDS, and we will show that [i. bjg
=¢jg. If 0. d O MAPR(SC(t))) then Oi’ # i. d O MAPR(SC(tj")) and hence 0i’ # i. bj:g = 0 = ¢j»q o that
bjg = bg = ¢g = ¢jg, and hence Oi. bjg = ¢jg. If

Oi. d O MAPR(SC(t;)) then Oi. bjg = O = ¢jg. Either way, Ppomps(b) = Ppomps(C) impliesthat Od O
DOMDS. [i. bjg = ¢jg and so Li. Ppompsbi) = PDompg(Gi)- Onthe other hand, b# ¢ 0 e 0 DS bg

# Ce. However, e 0 MAPR(SC(tj)) U bje= U= cjeand [i. e 0 MAPR(SC(tj)) would imply bg = [0 = co.
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Thus [J. e 0 MAPR(SC(tj)), and for thisj, bje = be = Cg = Cjg (Since bjg = U = Cjg for i # j). And this
impliesthat, for thisj, bj 7 G However, by the inductive hypothesis, bj =G since we have already shown
that PDOMDS(bj) = PDOMDS(CJ-). Thus the assumption that A [ Vdisplay has led to a contradiction, so
D(Fy U Vgisplay-

Lett= (array [w] of r) O T. Given A D(Fy) thereis
B O F; such that A = D(B), and thereisafinite set G O FIN(H,,) and afunction

al (G - Hy) suchthat

B ={bjlby | glG & by[IE\(9g) & bolE(a(9))} =
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Ut{b10b, | b1OE(9) & bo0E(a(g)} | g0G)

Define By\(9) = Ew(9)UFw, Br(9) = Er(a(@))0Fy, An(9) = D(Bw(9))UD(Fy,) and

Ar(9) = D(By(9))UD(Fy). Then

B = U{{b1b; | b1 0By(9) & by0By(g)} | 9UG)

Thisisafinite union of objectsin Fgtryct{w; r} for the tuple type struct{w; r}. Thus, since the union of a

finte set of closed setsisthe sup of those sets, and since D preserves sups,

A=D(B) = U{D({b1b; | by IB,\(9) & boUBy(g)}) | gUIG}

which, as shown in the tuple case of this proof, is equal to

Ut{a1085 |a10AW(9) & as0A(9)} | 90G)

Recall that MAX(A) is the set of maximal elements of A, soitisclear that if A=Ay O Ay, then MAX(A) O

MAX(A7) 0 MAX(A9). Thus

MAX(A) 0 U{MAX({a; Dap | a; 0 Aw(0) & ap DA(Q)}) |g 0 G}

and so, by Prop. 1.2,

MAX(A) O Ut{aq Dag [ag 0 MAX(AW(G)) & ap O MAX(A(@))} |9 O G}
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G isfinite, and by the inductive hypothesis, MAX(A,(9)) and MAX(A(9)) are finite, so MAX(A) isfinite.
Now assume that MAPR(DOM(t)) 0 DOMDS. As shown for scalars, MAX(A,(9)) has asingle
member, MAX(A(9)) ={a1(9)}. Applying Prop. F.12,
An(9) = ta1(g) = D(Ey(9)) = D(! b1(g)) where bq(9) = (4,...,9,...,00). 1f g# g, then
b1(9) # b1(9) and a1(g) # a1(9). Also, given g, thereisd 0 MAPR(w) such that
a1(9) = (4,...,a1¢4(9),....0). Sincew 00 DOM(t), then MAPR(w) 0 DOMDSand
dODOMDS. Thusg#g O ag(9) # a1(9) 0 Ppompg@1(9)) # Poomps(@1(9)).
Now pick e, f 0 MAX(A) and assume that Ppomps(©) = Poompdgf)- Let
e=eqley and f = f1 [fy with e; 0 MAX(A(9e)), f1 0 MAX(A(9f)), €2 0 MAX(A,(ge)) and fp O
MAX(An(9f)). From what we have just seen,
ge? 90 Ppompgel) # Ppovps(f1). However, since w 00 SC(r),
MAPp(W) n MAPR(SC(r)) = @S0
Poomvps@) # Poompsf) £ Pobovps© # Poompg(f)- This contradicts our assumption, so we
must have gg = gf and, since MAX(A,(g)) has asingle member for each g, e1 =f1. Now ey, fo [0
MAX(A;(9e)) and MAPRH(W) n MAPR(SC(r)) = @impliesthat Phonpg€) = Ppompdf) O
Pbomps(€2) = Pbompd(f2). By theinductive hypothesis, Ar(ge) O Viisplay: S0 PDOMDSE2) =
Ppompd(f2) U ex =fo. Thuse=ejlley =f1lp =1, establishing that A U Vjgp| ay and that D(Fy) O

Vdisplay: ®

The next proposition shows that the auxiliary function D’ provides a way to compute the maximal

tuples of display objects.

Prop. 1.5. If D isadisplay function, if D’ isthe auxiliary function defined in Appendix H, if t O T

andif A 0 Fy, then MAX(D(A)) = {D’(a) | a 0 MAX(A)}
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Proof. By Prop. H.5, D(A) ={D’(a) |a O A}. By Prop. H.2, D’ isan order embedding, so, given a,
bOA -(a<b) = ~(D'(a) <D’(b). Thus

al MAX(A) ~ D'(a) 0 MAX(D(A)). m

The inverse of the second part of Prop. 1.4 isamost true. The next two propositions make this

precise.

Prop. 1.6. If D isadisplay function, if t = (array [w] of r) O T, and if
(91, 92 O Hyy. (91 7 92 & D(L (O,...,97,.-,00)) = tbp O le &

D(t (0,...,g9,-)) = tby O Vd2 & dq, d» 0 DOMDS),

then DA 0 D(Fy). A 0 Visplay-

Proof. Let G ={gy, g2} O FIN(H), pick C O H;, and definef 0 (G- H,) by
f(g1) = Cand f(gp) = C. Pick c O E/(C) such that D(i c) = taand a 0 MAX(D(E(C))). Then (0,...,91,...,0
)c and (O,...,91,...,0)Cc are both members of E(f) O Ft. Note that
D(: ((O,....91,-..0)(c)) = ¢ (aloq) and D(! (([,...,92;...,0) X)) = | (aby), so albq and
allo, are both members of D(E(f)). Clearly by O MAX(D(¢ (0,...,91,...0))) and
by O MAX(D(4 (0,...,02,...,00))) (since b and by are maximal in 1+ by and { by). Furthermore, since w [
SC(r), dq O MAPR(SC(r)) and dy 0 MAPR(SC(r)), so allbq and
alloy are members of MAX(D(E(f))). For all d 0 DOMDS, b1q = 0Oand byg =0, so

PDOMDga[bl) = PDOMDganz). Sincew [0 SC(r), dl O MAPD($(Y)) and
do 0 MAPR(SC(r)), s0 adl =0and ad2 =[. However, g1 # gp S0 bq # by and hence

(alby) dl # (aDJZ)dl and (aD)l)d2 Z (anZ)dz (d1 and dp may or may not be the same). Thus (alby)

# (albp), so D(E(f)) U Vgigplay: ®
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Prop. 1.7. If D isadisplay function, if t O T, and if t has a sub-typet’ such that
DA O D(Fp). A’ D Visplay: then DA 0 D(Fp. AT Vgigplay:

Proof. By an inductive argument, it is enough to prove thiswhen t’ is an immediate sub-type of t.
First, let t beatuplet = struct{tq;...;ty} wheret’ =ty. Let Ay = A’ and pick
ay, a’ [ MAX(A) such that Ppomps(ak) = Ppomps(ak) and ay # a. Fori #k, pick A OD(F, )
and a; 0 MAX(A;). Then define A ={bq0...00p, | bj O A} O D(Fy). Fori #j, MAPp(SC(t)) n
MAPD(SC(tj)) = @soa=aj..Oa..0a, O MAX(A) and
a = aq0..Ca0..Oa, O MAX(A). Now
Ppomps(@1t-Han) = Ppomps@n)t-- BPpomps(@n) ad Ppomps(ak = Pbomps(ak) S0
Poomps@1---0a .. 0ay) = Ppomps(@ .- Dy .. Oay). However, ay # &y s0 aq...0a ..Oan # ag
0..0Cay0..Oan. Thus A O Vgiplay:

Next, lett bean array t = (array [w] of r). Inthe proof of Prop. 1.4 we saw that MAX(B') has only
asingle member for any B’ [J D(F,y), and hence B' [ Vgjgp|ay- Thus
t'=rand A’ 0 D(F;). Pick G={g} OFIN(H,), pick b, c 0 MAX(A’) such that
Poomps(b) = Ppomps(c) ad b # ¢, and definef O (G- Hy) by
f(g) = E, L(D"}(A)) (ADD(F,) implies that D"1(A) exists, and D-1(A) O F, implies that
E, L(D"L(A)) exists). 1f D(4(0,...,g,....0)) = L a then a 0 MAX(D(E,(9))) and so al’b and alc are
members of MAX(D(E4(f))) (since MAPp(w) n MAPRK(SC(r))=¢). However,

Ppomps(@ad) = Ppomps(a) but alb # ale. ThusA Vdispl ay- [ ]
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