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Abstract

We present a viewing strategy for exploring the surface of an unknown object (i.e., mak-
ing all of its points visible) by purposefully controlling the motion of an active observer.
It is based on a simple relation between (1) the instantaneous direction of motion of the
observer, (2) the visibility of points projecting to the occluding contour, and (3) the surface
normal at those points: If the dot product of the surface normal at such points and the
observer’s velocity is positive, the visibility of the points is guaranteed under an infinitesi-
mal viewpoint change. We show that this leads to an object exploration strategy in which
the observer purposefully controls its motion based on the occluding contour in order to
impose structure on the set of surface points explored, make its representation simple and
qualitative, and provably solve the exploration problem for smooth generic surfaces of arbi-
trary shape. Unlike previous approaches where exploration is cast as a discrete process (i.e.,
asking where to look next?) and where the successful exploration of arbitrary objects is not
guaranteed, our approach demonstrates that dynamic viewpoint control through directed
observer motion leads to a qualitative exploration strategy that is provably-correct, depends
only on the dynamic appearance of the occluding contour, and does not require the recovery
of detailed three-dimensional shape descriptions from every position of the observer.

Index terms: Purposive and qualitative vision, autonomous exploration, moving point of
observation, surface visibility, provably-correct algorithms, generic smooth object surfaces,
global surface geometry, occluding contour, visual events
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1 Introduction

There has been considerable interest in active vision approaches that control the viewpoint of the
observer (i.e., position) by following the principle of least commitment [1]. These approaches at-
tempt to recover a three-dimensional description of objects in the scene from the current position
before deciding where to move next [2]. Consequently, they require considerable processing on
each image, and sophisticated sensor configurations are required for deriving detailed information
about the geometry of the object from each position [3,4]. On the other hand, although previous
approaches following the purposive vision paradigm [5] have been used to control viewing pa-
rameters such as focus, vergence and fixation for tasks like obstacle avoidance and tracking, the
ability to direct the observer’s motion for exploring an unknown object has not been exploited.

In this paper we apply the purposive vision paradigm to the problem of controlling a moving
observer in order to visually explore the surface of an object prior to recognition. We consider
object exploration to be the problem of controlling viewpoint in order to induce the visibility of
all points on the object surface that are occluded when the exploration process is initiated. Our
goal is to design a strategy that operates in real time and has provably-correct properties, i.e.,
the motion of the observer is based on the geometry of the object.

The main idea of our approach is to use an active (i.e., mobile) observer that purposefully
directs its motion in order to achieve and maintain a specific geometric relationship with the
object [6,7]. We show that the ability to control the viewpoint of the observer in a continuous
fashion through directed observer motion considerably simplifies the mathematical formulation of
the object exploration problem. Furthermore, by exploiting the continuous interaction between
motion and visual processing, the observer can explore the object’s surface by extracting sparse,
efficiently-computable information (i.e., the 2D occluding contour) from each image.

The motivation for the problem we consider comes from our efforts to identify the funda-

mental abilities that an observer must possess in order to visually gather information about an



unknown object by controlling viewpoint. In particular, a key phenomenon motivating any such
object exploration process is that of occlusion. Our formulation is motivated by the need to de-
velop an exploratory behavior [8-11] for inducing the visibility of previously occluded parts of the
object. This type of behavior is particularly important for a number of tasks, such as generating
three-dimensional object-centered descriptions that cover the entire surface of a non-convex ob-
ject, searching for surface markings during object recognition, avoiding occlusion during object
grasping [12,13], and object model acquisition by obtaining a series of aspects [14] that com-
pletely describes the object. In addition, although we assume in our analysis that the observer
is moving and the object is stationary, our analysis also applies to the case where the observer
is stationary and manipulates the object being explored (e.g., by grasping it or putting it on a

turntable).

1.1 Related Work

In order to completely explore the surface of an object, an observer must be able to perform two
tasks: (1) to change viewpoint in order to induce the visibility of points on the object surface
that were occluded from all previous viewpoints, and (2) to determine when the exploration goal
has been achieved. In order for the observer to perform these two tasks it must represent in some
way the set of surface points becoming visible during the course of the exploration process or,
alternatively, the set of surface points that remain occluded. Previous approaches that controlled
viewpoint in order to induce the visibility of occluded parts of an object considered the process
to be discrete: Viewpoint changes were determined by a sequence of observer positions [4,15-18]
generated by going through a three-step cycle: (1) Recover a detailed description of the visible
or the occluded portions of the object from the current position of the observer, (2) merge this
description with those produced from all previous positions, and (3) move to a new position.

An important characteristic of these strategies is that they try to select a sequence of view-



points where the appearance of the object is as different as possible from those at all previous
viewpoints. For example, Connoly [15] attempted to find a viewpoint that maximizes the area
of object surface points that will be visible for the first time. Unfortunately, predicting changes
in object appearance between two arbitrary viewpoints requires detailed information about the
geometry of the object and makes viewpoint selection a computationally-expensive search prob-
lem [4,15] not amenable to real-time implementation. In addition, the observer does not have any
information about the geometry of the object within the volume of points that are occluded from
all previous viewpoints and, hence, the observer cannot accurately characterize the set of surface
points becoming visible for the first time from a particular viewpoint. To date, there has been
no attempt to characterize the class of objects for which the developed strategies successfully
accomplish the exploration task, i.e., that all points on the object surface become visible.

We feel that theoretical work on the object exploration problem is necessary for two reasons.
First, the visual complexity of an object can be significant even when it is bounded by a simple
non-convex surface (e.g., a sphere with a dent [19]). This makes it very hard to predict the
effectiveness or the performance of heuristic approaches to the exploration problem where, for
example, substantial amounts of occlusion may be present. This is also the case for approaches
using general optimization criteria for controlling the viewpoint of the observer [4] since their
properties are highly dependent on the optimization criterion used, and their correctness and
performance are hard to predict for objects bounded by surfaces with complicated geometry.
Second, a theoretical analysis will provide the basis for designing practical, real-time strategies
for performing the exploration task and for characterizing their effectiveness (e.g., by considering
which assumptions used in the theoretical analysis can be violated and studying their effects
based on object geometry).

Finally, most previous approaches consider the task of exploring an unknown object equivalent
to the task of building a three-dimensional object description. One of the central aspects of our

formulation of the object exploration problem lies in the distinction we make between the task of



exploring an object and the task of building a three-dimensional description of the object. This is
particularly desirable if, for example, an exploratory behavior is used for finding specific markings
on the object’s surface. On the other hand, if the exploration process is used for the purpose
of building a three-dimensional object description, dynamic control of the observer’s viewpoint
implies that successive views of the object will be very similar, making the shape recovery problem
well-posed and the fusion of multiple views easier [20]. Furthermore, by employing a moving
observer our approach is well-suited for building dynamic, viewer-centered object representations

where the dynamic, viewpoint-dependent appearance of objects is modelled explicitly [21].

1.2 Dynamic, Purposive Object Exploration

In our approach, viewpoint control and visual processing are continuous, interdependent processes

that occur simultaneously. The approach is based on two important observations:

e Dynamic viewpoint control corresponds to motion decisions that induce infinitesimal posi-

tion changes.

o If the motion of the observer is directly related to the geometry of the visible object surfaces,
the object appearance under an infinitesimal position change will change in a predictable

manner.

These observations suggest that dynamic control of the observer’s viewpoint can force the
evolution of the appearance of the object to be locally predictable in time. Hence, this evolution
can be controlled by directing the observer’s motion. In [6] we showed that by appropriately
controlling the evolution of the object appearance based on sparse and quickly-computable visual
information (curvature measurements on the occluding contour), the mathematical formulation of
the problem of recovering surface shape information becomes considerably simplified and leads

to a qualitative, active vision strategy for solving it. In this paper we apply the same basic



principle in order to design a strategy for addressing the object exploration problem using shape
information derived from the occluding contour.

The central concept in our approach is the exploration frontier. This is the one-dimensional
set of points on the surface that bounds the points seen so far during the exploration process. We
address the exploration problem by studying the dynamic evolution of the exploration frontier
under directed observer motion. The exploration frontier provides all the information necessary
for a moving observer to direct its motion so that previously-occluded points on the surface
become visible for the first time, or to determine whether the exploration process is complete.
These two properties of the exploration frontier allow the provably-complete exploration of an
arbitrary surface when this boundary representation is used to guide the motion of the observer.

Unlike previous strategies that move the observer to a sequence of arbitrarily-distanced po-
sitions between which prediction of the evolution of this frontier is impossible, by dynamically
controlling the viewpoint of the observer we can predict the dynamics of the exploration frontier
and can plan the instantaneous motion of the observer accordingly. Hence, instead of choosing
viewpoints that give maximally-different views of the object, our approach is to do the oppo-
site: We exploit the similarity between the appearances of the object from viewpoints along the
observer’s path that are infinitesimally close to each other in order to accurately and efficiently
predict and control the dynamics of the exploration frontier. Dynamic viewpoint control is there-
fore a natural way to address information-gathering tasks that must be performed in real-time
and are applied to unknown objects whose global structure cannot be predicted beforehand.

The significance of our approach lies in (1) considering the object exploration task as a
continuous process where viewpoint control and visual processing are tightly coupled, and (2)
using a moving observer whose motion is purposefully controlled so that the representations of
the object are simple, qualitative, and do not require reconstructing the shape of the visible
portions of the object surface from each viewpoint. OQur approach demonstrates that purposive,

dynamic control of the observer’s viewpoint reduces the amount of visual information that must



be processed, simplifies the object exploration process, and leads to a provably-correct, efficient
exploration strategy.

The rest of the paper is organized into three parts. The first part, presented in Section 2,
develops the basic tools necessary for studying the exploration problem. It defines the exploration
frontier and presents the crucial link between (1) the ability to dynamically control the observer’s
viewpoint through directed motion, (2) the problem of inducing the visibility of points on a
smooth surface, and (3) the occluding contour. The main result of Section 2 is Theorem 2.1,
which can be thought as a formal analog of Gibson’s law of reversible occlusion [22]. The second
part of the paper, presented in Section 3, builds on this basic result to formally develop an
exploration strategy for the case where the object is bounded by a single, smooth, generic surface.
The third part of the paper, Section 4, focuses on a specific aspect of the exploration process. In
particular, we present a simple strategy that allows a moving observer to explore a cylindrical
strip of points on the surface by directing the motion of the observer based on the dynamic shape

of the occluding contour.



2 Dynamic Evolution of the Exploration Frontier

Any solution to the exploration problem must address the issues of determining if the object
is completely explored and, if it is not, ensuring that positive progress is always made. We
attack these two issues by studying how the motion of the observer affects the evolution of the
exploration frontier.

Suppose that the observer, starting from an initial position :z, traces a continuous path in an
attempt to explore an object bounded by a smooth surface. This path can be parameterized by
a continuous curve ¢(t) of finite length, where ¢(0) = ¢. At any position ¢(¢) along this path the
exploration goal is only partially fulfilled; points on the surface will either be ezplored if they
were visible from a previous position ¢(s) on the path, s < ¢, or will otherwise be unexplored.
The exploration frontier consists of a collection of closed curves bounding the set of explored
points. We study its evolution by considering the geometrical and topological changes taking
place in this collection of closed curves when the observer is at a position ¢(t) and moves with
an instantaneous velocity v(?).

The basic idea behind our approach is that the evolution of the exploration frontier can be
studied by looking at how the motion of the observer affects the geometry and topology of the
occluding contour. The occluding contour is defined as the projection of the visible rim into the
image (Figure 1). The rim is the set of points on the surface for which the line connecting them
to the observer’s position is tangent to the surface at those points. The wvisible rim consists of
the rim points that are visible.

The connection between the evolution of the exploration frontier and the dynamics of the
occluding contour is a very important one because the geometry and topology of the occluding
contour has been widely studied (e.g., [24]). More importantly, this connection allows us to use
the occluding contour and the visible rim as our basic forms of visual input: The occluding contour

provides all the information necessary for recovering surface shape by a moving observer [20, 23,



25], and the dynamics of its appearance can be used for substantially constraining algorithmic
search when exploration is combined with recognition tasks [26]. From a practical standpoint,
the recovery of sparse, qualitative visual information such as the occluding contour imposes a
relatively light computational burden on the observer, making the occluding contour suitable for
problems requiring its real-time detection and tracking [20,27, 25].

To see how the evolution of the exploration frontier and the dynamics of the occluding contour
are related, note that changes in the exploration frontier occur when unexplored points on the
surface become visible. The evolution of the exploration frontier therefore depends entirely on
the set of surface points becoming visible due to the motion of the observer. A point p on the
surface is visible if the open line segment connecting it to the position of the observer does not
intersect the surface; otherwise p is occluded. Changes in the visibility state of p occur only
when the line segment connecting it to the position of the observer is tangent to the surface at
a point p’ (possibly coincident with p) and does not pierce the surface elsewhere. This locus

of points is usually called the occlusion boundary (Figure 2). It is a collection of curves on the
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tangent plane
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Occluded rim

Figure 1: The visible rim and the occluding contour corresponding to the projection of a bean-
shaped surface on a planar image (adapted from [23]). In this example part of the rim is occluded
by the surface.
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Figure 2: The relation between the occlusion boundary and the visible rim. (a) Sphere S;
partially occludes sphere Sy (a side view is shown). Curves C; and C3 correspond to the rim.
The occlusion boundary also contains Cy, which is the intersection of the sphere S; with the
conical surface defined by the position of the observer and Cy. (b) The appearance of the two
spheres from the position of the observer. (); and )3 are the projections of C; and the visible
points of C5 respectively. The projection, )9, of Cy overlaps with that of );.

surface that contains all points becoming visible or occluded due to the instantaneous direction
of motion of the observer. Furthermore, the occlusion boundary is a superset of the visible rim
and its projection on the image is identical to the occluding contour.!

We study the connection between the evolution of the exploration frontier and the dynamics
of the occluding contour in two steps. In the first step we consider how the set of points on the
occlusion boundary becoming visible is affected by (1) the instantaneous direction of motion of
the observer, and (2) the geometry of the surface. This step forms the basis of our approach
and is presented in Section 2.1. In the second step, presented in Section 3, we consider how
the motion of the observer can be controlled in order to control the evolution of the exploration

frontier, determine which of the points on the occlusion boundary are unexplored, and hence,

guide the exploration process.

In order to emphasize the transitional visibility state of the points on the occlusion boundary, we will consider
these points as being neither visible nor occluded. Under this stricter definition for point visibility, the occlusion
boundary may contain unexplored points.
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2.1 Inducing Visibility by Purposive Observer Motion

This section presents the crucial link between the ability to control the observer’s viewpoint in
a continuous fashion, the problem of inducing the visibility of points on a smooth surface, and
the occluding contour. In the following we assume the spherical projection model for image
formation. In the spherical projection model the visible points on the surface are projected to a
sphere of fixed radius that is centered at the observer’s position. Unlike imaging models where
the points on the surface are projected to a plane (e.g., Figure 1), the spherical projection model
permits an arbitrary field of view for the observer which simplifies the analysis of the exploration
problem.?

We consider the observer to be positioned at a point ¢(¢) and to have an instantaneous velocity
v(t). Points on the surface becoming visible due to the instantaneous velocity of the observer
must be contained on the occlusion boundary. The projection of this boundary is identical to
the occluding contour. The line connecting a point p on the occlusion boundary to the camera
lens center must be tangent to the surface at at least one point p,;,, on the visible rim. We can
determine whether the points p and p,;,, become visible by looking at the surface normal at p,;,,:

(Figure 3(a)):

Theorem 2.1 (Visibility transition dynamics) Let ¢(t) be the position of the observer and
let prim and p (possibly identical to p.im ) be occlusion boundary points on a smooth surface such
that the line segment connecting c¢(t) and p is tangent to the surface only at p.im. Suppose that c
is differentiable at t, with ¢/(t) = v(t). If N(prim) is the outward surface normal at p.im at time

t

Y

1. Af N(prim) - v(t) > 0, p and p,im will become visible

2. If N(prim) - v(t) <0, p and prim will become occluded

?The assumption of an arbitrary field of view, however, is not inherently necessary to our approach. When
the field of view is restricted, the only additional mechanism required is a fixation and tracking mechanism used
to track a segment of the occluding contour (e.g., see [20]).

11



3. If N(prim) - v(t) = 0, (a) prim will either remain on the occlusion boundary or become
occluded, and (b) the visibility of p is completely determined by the local shape of the surface

at prim and by v(t).

Proof. First suppose that the observer does not move on the tangent plane of the surface
at prim, 1.e., N(prim) - v(t) # 0. Since pyip, and p are occlusion boundary points, their visibility
is determined by the sign of N(pim) - [prim — ¢(t)] [24]. In particular, for any visible surface
point « we have N(z) - [z — ¢(t)] < 0. Changes in the visibility state of p and p,i,, occur due to
(1) changes in the sign of this dot product, or (2) the existence of a surface point y, not in the
neighborhood of p,;,, which occludes either p or p,;,. Since the line segment connecting p and
¢() is tangent to the surface only at p,in,, the visibility state of p and p,,, under an infinitesimal
position change depends only on changes in the sign of the above dot product.

Since pyi, 1s a visible rim point, the dot product is zero at time ¢. Therefore, the visibility

of prim (and p) under an infinitesimal position change depends on the sign of the derivative
{N(pmm) ' [przm - C(t)]}/ We have:

d d

SN (rin)  Ipim — e()]} = Nprim) - 5 lprim — (O] [N ()] i — (2]

= —N(prim) - (1)

If the observer moves on the tangent plane of p,;,,, p and p,;, may become occluded by points
in the neighborhood of p,i,. In particular, p,, will remain on the rim; it will be visible (i.e.
it will remain on the occlusion boundary) unless the line connecting ¢(¢) and p,in, is along an
asymptotic direction of the surface at p,;, [6]. Following the same analysis as in [6] it can be
shown that if p,;,, is hyperbolic, p will be occluded by a point in the neighborhood of p,,. If
Prim 1 elliptic, p will remain visible but leave the occlusion boundary. If p,;, is parabolic, the

visibility of p also depends on the direction of motion on the tangent plane at p,;,,. O
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A simple, qualitative strategy for controlling the motion and, hence, the viewpoint of the

observer now emerges:

Dynamic Viewpoint Control Algorithm

Step 1: Select a point p on the occlusion boundary that satisfies the conditions of Theorem 2.1
and whose visibility is desired. This selection is done indirectly by selecting p’s projection,

Poce, on the occluding contour.?

Step 2: Compute the surface normal for the rim point p,;, projecting to p,.. using the tangent

of the occluding contour at p,...

Step 3: Determine the instantaneous direction of motion, v(t), of the observer so that

N(prim) - v(t) > 0.

If N(prim)-v(t) > 0, all points projecting to a segment of the occluding contour that contains
Poce Will become visible. In general, points on the occlusion boundary projecting to other segments
of the occluding contour may also become visible. Under continuous motion of the observer and
when the topology of the occlusion boundary does not change, these segments will trace strips
on the surface (Figure 3(a)). In the following, we refer to the segments of the occlusion boundary
that satisfy the above inequality as the strip-generating segments at time t. The strips produced
by these segments can be considered as families of curves on the surface, indexed by the time
parameter ¢ [20], forming a two-dimensional subset of the surface. We study the problem of

controlling the dynamics of these strips in the following section.

3For example, it can be shown that if ¢(¢) is a stable position, the theorem holds for any point that projects
to an occluding contour point, p,.., at which the occluding contour does not self-intersect.
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Figure 3: The dynamics of the occlusion boundary. The occlusion boundary is shown in bold.
(a) The plane P is defined by the instantaneous velocity v(t) of the observer and the normal at
the rim point p,;,,. The points p and p,;,, become visible due to the motion of the observer. The
occlusion boundary traces two strips on the surface; the arrows indicate the motion of one of the
endpoints of the occlusion boundary segments tracing these strips. Only the portions of the strips
above the motion plane are shown, i.e., the strip points with positive distance from the motion
plane. (b) If the observer is restricted to move on the plane P, the distance , corresponding to
each of these strips can be computed from the distances 61, 6;. Note that 63 > é; and hence the
distance 67 (which is the distance of a point on the visible rim from P) can be used to estimate
the distance 6. In general, 6; will not be the maximum distance from P of the points on the
occlusion boundary segment C'.
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3 Exploring Objects Bounded by Generic Surfaces

In this section we consider the problem of exploring an object bounded by a closed, smooth,
generic surface. Section 3.1 presents our approach to structuring the evolution of the exploration
frontier by purposefully controlling the motion of the observer. Section 3.2 presents the resulting
formulation of the exploration problem. Section 3.3 considers the issues involved in the design

of a provably-correct exploration strategy.

3.1 Structuring the Exploration Frontier by Purposive Observer Motion

The exploration frontier is the boundary of the set of explored points on the surface. We have
seen that this set is the union of the strips of the surface points becoming visible. When the
observer moves along an arbitrary, continuous path, these strips may intersect each other, self-
intersect, split, merge, and new strips may be created. The dynamics of these strips are dictated
by the instantaneous velocity of the observer, the changing topology of the occlusion boundary,
and the local shape of the surface in its neighborhood. The goal of our approach is to find ways
in which the dynamics of these strips can be controlled by controlling the observer’s motion in
order to control and represent the boundary of their union, i.e., the exploration frontier.

In our analysis we assume that the object is bounded by a smooth and generic surface [19].
Generic surfaces are surfaces whose topological and geometrical characteristics are stable un-
der infinitesimal perturbations. They correspond to a very general class of surfaces since an
infinitesimal perturbation of a non-generic smooth surface will make it generic. The absence of
complicated degeneracies on such surfaces (e.g., planar surface patches) makes them ideal for an
initial investigation of the object exploration problem, allowing us to focus on the general issues.

In order to impose structure on the shape of the strips and the exploration frontier we base

our exploration strategy on the following:
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e The observer controls its motion in order to impose structure on a single strip at a time.
This simplifies the problem of controlling the observer’s motion during the exploration

process by focusing the attention of the observer on a single subtask.

e The observer controls its motion with respect to a selected motion plane so that the strip
of points becoming visible is topologically equivalent to a cylinder with one of its bounding

curves strictly on each side of this plane.

The main idea is to develop an exploration strategy whereby the observer controls its motion
with respect to a family of parallel planes in order to completely cover the surface with partially
overlapping cylindrical strips. The strategy has two phases. The first phase is a cylindrical strip
exploration phase in which the observer explores a cylindrical strip on the surface by moving
primarily on the selected motion plane. In the second phase, the inter-plane motion phase, the
observer first decides whether to move above or below the current motion plane and then moves
in the chosen direction to a different plane in the family in order to explore a new strip on the
surface.

A major advantage of this strategy is that the simple topological structure of the strips makes
their description particularly simple: They can be described by two distances, the minimum
distances ¢, and ¢, of their bounding curves above and below the motion plane from the motion
plane itself. Furthermore, the shape of the strip of points becoming visible depends on the
dynamic appearance of the occlusion boundary and, consequently, the occluding contour. This
fact makes it possible to control the motion of the observer based on the appearance of the
occluding contour in order to force the shape of the strips to be cylindrical, with 6,, 6, # 0 (see
Section 4.1).

From a practical standpoint, the advantage of using cylindrical strips as defined above is that
their description can be derived from the dynamic appearance of the occluding contour. Since

the strips are defined as families of segments of the occlusion boundary, the boundaries of the
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Figure 4: Exploring an object bounded by a convex surface S in strips. P corresponds to the
current motion plane. The next motion plane is chosen so that it is above the current motion
plane. The boundary of the current strip will be fully contained within the next strip if the next
motion plane has distance less than 6, from the current motion plane. The upper boundary of the
current strip and the lower boundary of the next strip are not needed to describe the exploration
frontier. The arrows indicate the bounding curves of the two strips and the exploration frontier
after the cylindrical strip exploration phase phase is completed for the next motion plane.

strips correspond to the curves traced by the endpoints of their defining segments. Therefore,
the computation of ¢, and 6, can be performed by computing, at every position of the observer,
the distance of these endpoints from the motion plane (Figure 3(b)) using an approach such as

the one by Cipolla and Blake [20].

3.2 Formulating the Object Exploration Problem

The cylindrical shape of the strips and the structured motion of the observer can be used to
simplify the structure of the exploration frontier considerably. This is particularly evident if,
for example, we restrict ourselves to the exploration of objects bounded by convex surfaces
(Figure 4). In the general case where the surface of the object to be explored is non-convex, our
approach (1) extends the cylindrical strip exploration phase to handle changes in the geometry
and topology of the occlusion boundary as detected by changes in the geometry and topology of
the occluding contour, and (2) describes the surface in a way that is compatible with the notion

of exploring the surface by a collection of overlapping cylindrical strips. We use results from the
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differential topology of surfaces that allow us to represent the surface as a graph and to reduce
the exploration process to an abstract graph exploration problem [28].

The graph representation of the surface we employ is a direct generalization of a tree-like
representation developed by Koenderink for the qualitative description of gray-scale images [29].
To see how such a representation can be derived for a given surface S, fix a plane Fy in the
family of parallel motion planes selected by the observer. Members of this family can be indexed
by d, the distance of a plane in the family from Fy. For generic surfaces, S N P; is a collection
of closed curves and isolated points.* As d varies continuously, the connectivity of these curves
changes at discrete values of d; curves merge, separate, disappear, and new curves are created
(Figure 5(a)). The changes in the topology of SN P, occur at values of d corresponding to planes
that are tangent to the surface. The intersection of the surface with any plane P, that is not
tangent to the surface consists of a collection of simple closed curves. For each curve, ay(s),
in the collection there is an open interval (dq,d;) of maximum length such that the function
F(d,s) = aq4(s) corresponding to the family A = age(g,,4,)(s) is a homotopy, i.e., for any pair of
numbers d,d" with d; < d < d' < dj, the function F' corresponds to a continuous deformation
of a4(s) into ag(s). Furthermore, the family A corresponds to a cylindrical piece of the surface
with its boundaries being the curves ay(s) and ag(s).

We can think of the surface as being composed of a collection of such families A;,... A4,
of simple closed curves, where each family corresponds to a function Fj; that is a homotopy.
Considered as a set of points on the surface, the family A; is an open set; the boundary of this
set is contained in the intersections SN Py, and SN P, and is either an isolated point of tangency
of the surface with Py or Py, or it is a closed curve containing such a point. This leads to a
natural, qualitative representation of the surface as an undirected graph G, which we call the

surface graph, that is defined as follows (Figure 5(b)):

4Non-generic surfaces may have a whole region of contact with the plane P;.
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(a) ()

Figure 5: (a) Topological changes in S N P; for a generic cylindrical-shaped surface S with a
concavity. The surface can be partitioned into a number of cylindrical-shaped slices of various
widths each corresponding to the families A;, ..., As. (b) The surface graph of S. Nodes in
the graph are associated with points of tangency of S with a plane from the family Pen. For
example, vs corresponds to the (hyperbolic) point p contained in the boundaries of A4;, Ay, and
As. vy corresponds to the (elliptic and concave) point where a plane from the family Pjen
between P; and P, is tangent to the surface and bounds A; from below. The observer has no
information about the structure of the surface graph (i.e., its vertices and their connectivity)
when the exploration process is initiated.

e Fach point of tangency py € Py is represented by a vertex v,, in G.

o Two vertices v,, ,v,, in G with d; # d; are connected by an edge whenever a family A;

da
whose corresponding set of points on the surface contains p;, and pg, in its boundaries.

Since the boundaries of such a set lie on exactly two distinct parallel planes, each family

A; contributes exactly one edge to the graph.
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The surface graph is particularly simple in the case of generic surfaces. Specifically, the
surface in the neighborhood of the points of tangency with the planes P;cx can be parameterized
by a height function H, measuring the distance of the points in the neighborhood from F.
Tangency points correspond to critical values of the height function, i.e., to images of points on
Py where the gradient V H vanishes [29-31]. A basic result from Morse theory is that the surface
in the neighborhood of the critical values of H can be approximated by a height function that
is a quadratic polynomial. With probability 1, the surface is locally convex or concave in the
neighborhood of points of tangency that are isolated in S N P;, and is saddle-shaped for points
of tangency that belong to curves in S N P;.5 Consequently, vertices in G have either one or
three incident edges depending on whether or not they correspond to a point of tangency that is
isolated in S N P; (Figure 5(b)).

Our exploration strategy is to induce visibility for the points on the surface corresponding to
the families A; one at a time. The set of points corresponding to each A; becomes explored by
ensuring that the strips of points becoming visible during the exploration process form overlapping
cylindrical strips that cover this set. This task is analogous to the task of exploring an object
bounded by a convex surface. Furthermore, since each A; corresponds to an edge in the surface
graph, there is an analogy between exploring all points corresponding to A; and traversing an
edge in the surface graph. Hence, the object exploration problem reduces to the problem of
traversing all edges of the (unknown) surface graph G (Figure 5(b)).

There are several advantages in reducing the object exploration problem to the exploration
of the surface graph. First, once the reduction is made, correctness, convergence, and efficiency
issues can be examined from a graph-theoretical standpoint. The importance of this ability
is amplified by the close relation between the surface graph and the qualitative geometry of

the surface it represents. For example, the number of vertices in the graph cannot exceed the

5The set of orientations for the family Psex for which there is a plane in the family tangent to a parabolic
surface point is a zero-measure subset on the sphere of possible plane orientations.
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number of points on the surface having the same normal, a number that depends on the folds
of the Gauss map [19]. Currently, several algorithms exist that solve variations of the abstract
graph exploration problem (e.g., [28]).

Second, the approach allows the use of a qualitative representation of the exploration frontier
containing only the information necessary for solving the exploration problem: The exploration
frontier is represented by the set of vertices in the graph adjacent to at least one traversed and
one untraversed edge. The tangency points corresponding to these vertices are detected by the
observer and serve as surface shape features guiding the exploration process. Third, at the end of
the exploration process the observer will have constructed the complete surface graph, and hence,
will have computed a qualitative description of the surface that enables subsequent processing
to compute qualitative properties of the surface such as its genus.

Although the object exploration problem becomes simple once it is reduced to the exploration
of the surface graph, the graph reduction process itself is far from trivial and requires the use
of several visually-guided motion control strategies that ensure the correctness of the reduction.

Section 3.3 presents the main issues involved in the reduction process.

3.3 Reducing Object Exploration to Exploration of the Surface Graph

In order to model the exploration of the object as a graph exploration process, we need to
establish a precise correspondence between the steps of the two processes. Specifically, the graph
exploration problem can be formulated as follows: An automaton is initially positioned at a vertex
vo of a finite graph and its goal is to traverse every edge of the graph. The graph is unknown
to the automaton in the sense that it does not have any initial information about the number
or connectivity of the vertices in the graph. Furthermore, when the automaton is positioned at
a vertex v, it can determine the edge e in the graph last used to reach v and the edges incident

to v that were previously used to leave v. The automaton can leave v by traversing a previously
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untraversed edge incident to v and then marking it traversed, or it can backtrack by traversing
the edge e in the opposite direction.

Existing algorithms for exploring an arbitrary, unknown graph rely on depth-first search (e.g.,
Tarry’s algorithm [28]). They rely on three important assumptions: (1) each edge in the graph
needs to be marked traversed only once, (2) when the automaton is positioned at a vertex v, it
can determine whether an edge incident to that vertex was previously marked traversed, and (3)
the automaton has the ability to backtrack to the previous vertex on its path. In order to reduce
the object exploration problem to the above graph exploration problem we must ensure that the
observer’s viewing strategy satisfies these three assumptions.

The first assumption requires that when the observer chooses to extend the set of explored
points by exploring points corresponding to the family A; (i.e., the automaton chooses to traverse
the unmarked edge €;), the observer must be able to control its motion so that all points corre-
sponding to A; become explored. Even though in the graph exploration problem the traversal of
an edge is an atomic operation, in the object exploration problem the set of points corresponding
to A; must be explored by generating a finite-length path for the observer. Furthermore, the
observer must be able to determine when this exploration process is completed, i.e., that a new
vertex is reached in the graph. These issues are addressed during the cylindrical strip exploration
phase, and are considered in Section 4.

The second assumption requires that when the observer determines that all points corre-
sponding to a family A; have been explored, it can also decide whether all points in the families
adjacent to A; in the surface graph have also been explored. In addition, if one or more of these
families contains unexplored points, the observer must be able to initiate a sequence of cylindri-
cal strip exploration phases in order to induce the visibility of all points corresponding to these
families.

The third assumption requires the observer to trace a path that leads to the position cor-

responding to the vertex last visited in the surface graph. It is possible to show that this can
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be achieved without maintaining a representation of the continuous path that led the observer
to the current position. Rather, the observer can reach that position by following a polygonal
path containing one point from each motion plane selected during a cylindrical strip exploration

phase.
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4 Cylindrical Strip Exploration Phase

In the cylindrical strip exploration phase, the observer is positioned on a plane P; belonging to an
a priori specified family of parallel planes Pjen. The goal of this phase is to explore a cylindrical
strip of points contained in a prespecified family A such that the distance of its boundary above
or below the motion plane is greater than zero. The family is represented by the projection of a
visible point p4 contained in AN Py (Figure 6). Without loss of generality, we assume that the
observer is required to explore a cylindrical strip of points so that the distance of its boundary
above P, (i.e., in the direction of the plane’s normal) is greater than zero. The information
determined at the end of the cylindrical strip exploration phase consists of (1) a distance &,
indicating that all points in A above P, at a distance less than or equal to §, have been made
visible, (2) whether or not the tangent plane bounding A above P, has distance less than 6, from
P, (i.e., that the edge in the surface graph corresponding to A has been traversed), and (3) a
point p’y € A on Pyis,, whenever the tangent plane bounding A has distance greater than 4,
(which will serve as the point p4 for the next cylindrical strip exploration phase to be performed
on Piis,). In the following, we assume that P, is not tangent to the surface,® and use P; and A
to refer to the motion plane and the selected family of points on the surface, respectively.
Although this phase is straightforward in the case where the viewed surface is convex, the
issues involved for arbitrary surfaces are nontrivial. The resulting exploration process is event-
based: The observer performs specific actions depending on the occurrence of specific changes in
the geometry and topology of the occluding contour. In particular, the observer must perform

the following:

Enforce the cylindrical strip property. In order to ensure that a cylindrical strip of points
corresponding to a family A is explored, the observer must be able to determine which

strip-generating segments (Section 2.1) trace strips that actually contain points in A and

6 An infinitesimal perturbation of d is sufficient to ensure this condition.
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Figure 6: Representing the family A of surface points. The figure shows the occluding contour of
two torus-like surfaces. The dotted line represents the intersection of the motion plane P; with
the image [ which is drawn as a plane here, for simplicity. Point g4 is the projection of p4. Since
there are two curves in the intersection of the surfaces with P, g4 is used to determine the curve
corresponding to the selected family A.

ensure that their union is connected and topologically equivalent to a cylinder (Figure 7(a)).

Determine the strip width. From any single view the observer can obtain surface shape in-
formation only for points that lie on the visible rim. Furthermore, the distance of the
boundaries of A from P; is not known a priori. This makes it impossible to determine
exactly the boundary of the cylindrical strip corresponding to the family A and, hence,

this boundary must be estimated while also ensuring that all points in A4 become explored

(Figure 7(b)).

Ensure finite execution. The result of a cylindrical strip exploration phase is a distance ¢ that
directs the observer to perform the next cylindrical strip exploration phase on the plane
Pyys. Clearly, the sequence ) §; of distances resulting from successive phases should never
converge, since this would imply that the exploration process would involve performing
an infinite number of cylindrical exploration phases.” Although Section 4.1 shows that

the cylindrical property of the strip can be guaranteed by moving strictly on the motion

"Note that this requirement is much stronger than simply requiring &; to be non-zero.
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(@) (b)

Figure 7: Difficulties encountered during the cylindrical strip exploration phase. (a) The leftmost
view shows the projections of the strip-generating segments (shown in bold) above P;. There are
two such segments, ()7 and ()9, with ¢); lying on the visible rim and )2 being the intersection
of the surface with the conical surface defined by @); and the observer’s position (see also Figure
2). Although two strips are traced (i.e., by 1 and @3), the observer cannot determine from
this view whether the surface points belong to a single family A or not. Hence, the observer
cannot determine whether an infinitesimal motion will make visible one or two sets of points in
A.Two possible evolutions of the occluding contour are shown in the middle and right views,
corresponding to a torus and a bean-shaped surface. (b) Although the observer may be able to
determine the distance of ();’s endpoint, p, from the motion plane, the observer cannot determine
whether or not p belongs to family A. Hence, the boundary of the set of visible points in A above
P, cannot be determined exactly: In this case, the observer assumes that p does belong to A.

plane Py, it can be shown that the observer must also move above P, to guarantee this

convergence property.

In the following section we focus on the basic component of the cylindrical strip exploration
phase, namely a strategy that controls the motion of the observer so that the strip of points

corresponding to A that is explored is guaranteed to be cylindrical.

4.1 Controlling Motion to Enforce the Cylindrical Strip Property

Enforcing the cylindrical property of the set of points explored is the most basic task in the

cylindrical strip exploration phase. Our approach is based on the fact that the boundary of the
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strip on the motion plane must be a closed, connected curve. The observer purposefully controls
its motion so that all points on the curve a in S N P; corresponding to the family A are made
visible. Since the surface is assumed generic and the motion plane is not tangent to the surface,
this curve is simple, closed and smooth. In order to perform this task, we must be able to answer
three questions: (1) which of the visible points on S N Py are contained in « at time ¢, (2) how
to move in order to make more points on « visible, and (3) how to determine when all points on
a have been explored?

In this part of our analysis we model the observer as a point. Modelling the observer as
a point assumes that the observer has considerable freedom in moving arbitrarily close to the
object to be explored (e.g., the observer can go through arbitrarily small holes on the object). In
general, this condition is necessary to guarantee the complete exploration of an arbitrary object.
Even though this assumption is not realizable in practice, it allows us to focus on the relation
between continuous observer motion and the evolution of the exploration frontier without having
to worry about the finite dimensions of the observer. In practice, the assumption can be relaxed
by employing heuristic strategies that answer the above questions under specific assumptions
about the object (see Section 4.1.1).

The first question above is answered by taking advantage of the connectivity of . From the
initial position, the observer can determine a connected set K of visible points belonging to «
by looking at the projection g4 of pa (Figure 8(b)). If some points in « are occluded from the
current position, K will be bounded by one or two occlusion boundary points. Similarly, the
occlusion boundary segments containing these points bound a connected set of visible points in
A. During the cylindrical strip exploration phase the observer can determine which points belong
to a by using the fact that « is connected: The observer controls its motion so that it ensures
that the connectivity of the points in K is propagated to the points becoming visible on F;.

The second question is answered by using the algorithm presented in Section 2.1 to circum-

navigate o and arrive back at the initial position. There are two ways to move on P, to achieve
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this: clockwise or counterclockwise. This corresponds to selecting a guide point, g, which is either
the left or the right endpoint of K, and controlling the instantaneous direction of motion on P,
so that g becomes visible (Figure 8(a)). Recall that ¢ may be an occlusion boundary point that
does not belong to the visible rim (Section 2.1). Here we consider in detail the case where g is a
visible rim point; the case where ¢ is an occlusion boundary point not on the visible rim can be
treated in a similar fashion.

The third question of determining whether the exploration process is complete corresponds to
determining when the circumnavigation of « is complete without having to explicitly represent
the set of points on a. A solution is to detect when ¢(t) crosses the line connecting ¢(0) and
g, and to move toward point ¢(0) until the point is reached or a collision with the surface
becomes imminent. Below we answer the first two questions by focusing on the geometry of the
circumnavigation problem and on the necessary observer motion controls.

Suppose that ¢(0) and ¢(0) = g satisfy the conditions of Theorem 2.1, and the observer
performs an infinitesimal motion in the direction v(¢) on P; in order to make ¢ visible (using
the Dynamic Viewpoint Control Algorithm in Section 2.1). The idea of the circumnavigation
process comes from the fact that if a new point in the vicinity of g(0) appears on the visible rim at
time 0t and the conditions of the theorem still hold, the observer can apply the same algorithm
to the new point g(6t). As the observer continuously applies the algorithm to determine the
instantaneous direction of motion for making ¢(¢) visible, both ¢(¢) and g¢(t) trace curves on P,.

Theorem 2.1 and the Dynamic Viewpoint Control Algorithm are sufficient to define an al-
gorithm for controlling the observer’s motion for any portion of the observer’s path for which
the conditions of the theorem are true and for which the mapping f : ¢(t) — ¢(¢) is continuous.
The motion of the observer during the circumnavigation can therefore be studied and described
in terms of a circumnavigation event, corresponding to observer positions where the Dynamic
Viewpoint Control Algorithm cannot be applied. Each time a circumnavigation event occurs,

the observer must take a specific action. Circumnavigation events can be described in two equiv-
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alent manners, either by considering the relation between the geometry of S N P; and the point
¢(t), or by considering the dynamic appearance of the occluding contour during the motion of
the observer. The following theorem characterizes these events using the first approach. It also
describes the changes in the occluding contour associated with these events when ¢(t) is a stable

viewing position (Figure 8):
Theorem 4.1 (Circumnavigation events) Circumnavigation events occur iff:
o (Event 1) ¢(t) is an inflection point on «, or

o (Event 2) the line segment L(t) connecting c(t) and ¢(t) is also tangent to a curve in SN Py

at a point other than ¢(t).

Furthermore, if ¢(t) is a stable viewing position, the changes in the occluding contour’s geometry

correspond to:
® a cusp crossing Py, or
e a T-junction crossing Py,

respectively.

Proof. By definition, circumnavigation events occur iff (1) f is not continuous, or (2) the
assumptions of Theorem 2.1 do not hold.

Discontinuities of f occur iff the line L(#) connecting ¢(t) and g¢(t) is along a direction 6 for
which the pedal curve [23] w(8) of the smooth curve « has a cusp at 6. In [23] Giblin and Weiss
showed that cusp points on w(f) occur iff 4 is the direction of an inflectional tangent, i.e., when
L(t) is tangent at an inflection point of o, i.e., Event 1 (Figure 8(a) at time #;).

To see the changes in the occluding contour that correspond to this event, let g(¢) be a visible
rim point for which L(¢) is tangent to « at an inflection point. From Meunsier’s Theorem [30],

the normal curvature of S along L(t) is 0, i.e., L(¢) is along an asymptotic direction of S at ¢(%).
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Hence, if ¢(t) is a stable position, ¢g(¢) is a cusp point on the visible rim [24]; the circumnavigation
event in this case corresponds to a cusp point crossing the motion plane® (Figure 8(c)).

Now, without loss of generality, suppose that the observer is circumnavigating « in the clock-
wise direction. The conditions of Theorem 2.1 hold iff L(#) is tangent to S N P; only at g(¢). A
circumnavigation event therefore occurs when L(?) is tangent to more than one point in S N P.
When ¢(t) is stable, L(t) can be tangent to at most two points and, therefore, L(¢) is a bitangent
ray. If k is the second point of contact, it must be that « in a neighborhood N of & is convex
and that N lies to the left of L(¢) (Figure 8(a) at time t¢3).

Since ¢(t) is stable, this circumnavigation event corresponds to a T-junction in the occluding
contour with L(t) being the associated bitangent ray [19]. This T-junction must have been either

above or below P; before the event (Figure 8(d)). O

4.1.1 A Circumnavigation Algorithm

The algorithm for circumnavigating « uses the Dynamic Viewpoint Control Algorithm in Section
2.1 for inducing the visibility of surface points when the algorithm is well-defined (i.e., when the
position of the observer does not correspond to a circumnavigation event), and specifies the
actions taken by the observer in order to handle the two types of circumnavigation events.

The first type of event can be handled easily. When the line L(t) connecting g(¢) with ¢(¢)
touches an inflection of «, the curve in the neighborhood of ¢(t) is concave on one side of L(t)
and convex on the other. The observer can therefore deduce that the set of points in the concave
part of « is connected to the set of points traced by g(¢). The circumnavigation process continues
by selecting a new point & on the occlusion boundary that bounds the set of visible points of «
on the side of the concavity (Figure 8(a,c) at time #;).

The occurrence of the second type of event poses special problems for the circumnavigation

8If the position of the observer is not stable, this circumnavigation event corresponds to a change in the
topology of the occluding contour [19]. In particular, since all points in the vicinity of g(¢) on a become visible
with an infinitesimal change of position, this event can only correspond to a split of the contour at point g(t).
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process because the point g(¢) can potentially become occluded by an infinitesimal change in
the observer’s position. In order to avoid the problems caused by this type of event, we control
the distance of the observer to ¢(t) so that such an event never occurs. The idea is to ensure
that the observer controls its distance from g(¢) so that it passes “between” occlusion boundary
points that can cause this event to occur. By also taking taking care of the case where the
initial position of the observer corresponds to such an event, the occurrence of this event can be
completely ignored.

We now have a simple algorithm for performing the circumnavigation of . Assume that D

and ¢ are fixed positive constants with ¢ < 1.

Step 1: Determine a connected set K of visible points on « contained in A from the projection

of p4.

Step 2: Select a direction for circumnavigating «. (Suppose the clockwise direction is chosen.)

Let g,c.(0) be the projection of the guide point ¢(0) (i.e., the left endpoint g of K).

Step 3: (Handling a circumnavigation event of the second type at the initial position.) If there
is a visible rim point between ¢(0) and ¢(0), move along L(0) toward ¢(0) until that point

is behind the observer.

Step 4: Let k(t) be the visible rim point to the left of ¢g(¢) on P; such that (1) the surface in the
vicinity of k(t) is to the left of the line connecting ¢(¢) and k(¢), and (2) k(¢) is the closest

such point, if such a point exists (Figure 8(a) at time £5).

Step 5: (Continuous control of the direction of motion.) Apply the Dynamic Viewpoint Control
Algorithm in Section 2.1 for choosing an instantaneous direction of motion that induces

the visibility of the guide point g(#), until either ¢(0) is reached, a circumnavigation event
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of the first type occurs, or the following inequalities are not satisfied:

(1) dy(c(t), (1)) < eda(c(t), k(1))

(2) dy(c(t), g(t)) < D

Step 6: (Handling circumnavigation events of the first type.) If ¢g(¢) is a point of inflection,
define h to be the occlusion boundary point bounding the concavity to the left of L(t). Use

h as the new guide point and continue at Step 5.

Step 7: (Avoiding circumnavigation events of the second type through distance adjustments.)

If Eq. (1) is not satisfied, move closer to g(t) along L(%) to a position where it is satisfied.

Step 8: (Ensuring the observer does not get arbitrarily far away from «.) If Eq. (2) is not

satisfied, move along L(t) to a point where it is satisfied.

This algorithm guarantees that all points on a become visible, but does not necessarily ensure
that the strip of points explored on S has non-zero width. However, it is easy to show that this
property can be enforced by ensuring that v(¢) is never chosen to be along L(t) in Step 5, and
by applying the Dynamic Viewpoint Control Algorithm to points in the vicinity of g(¢) when a
circumnavigation event of the first type occurs.

Finally, note that satisfying Eq. (1) is the only part of the algorithm that may not be
implementable if the observer is not a point. The inability to satisfy this inequality implies that
the guide point ¢g(¢) may inevitably become occluded during the circumnavigation process by the
occurrence of a circumnavigation event of the second type. However, if such an event occurs at
time t.,, a simple heuristic solution in this case is to circumnavigate the surface by moving on P,
until ¢(t) crosses the line L(t.,). If g(t) is visible, the circumnavigation of « can then be resumed,
thereby avoiding the issue of satisfying Eq. (1). This simple heuristic strategy is sufficient to

allow the observer to explore cylindrical strips on surfaces such as a torus (Figure 8(e)).
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Figure 8: Circumnavigating curve a. The viewed surface a torus with a dent. (a) Circumnaviga-
tion events during a circumnavigation path on P;. Times 0,¢; and ¢3 correspond to the views of
the surface shown in (b),(c) and (d), respectively. The dashed line is a portion of the observer’s
path. Times ¢ = 0 and ¢t = ¢, represent typical positions along the observer’s path (i.e., where the
mapping f is continuous and the conditions of Theorem 2.1 are satisfied). (b) View of the surface
when the circumnavigation process is initiated on FP;. There are two strip-generating segments,
(1 and Q)2 (behind (1) whose projections are shown in bold. The dashed line corresponds to the
intersection of P, with the image I (shown here as a plane). The bold horizontal line corresponds
to the projection of the points in K. Points ¢, ¢, are the projections of K’s endpoints. The guide
point ¢ is selected indirectly by selecting its projection g,.. on the occluding contour. Here g
corresponds to a clockwise circumnavigation of a. The observer assumes that only the segment
(1, containing g, traces points in A. (¢) A circumnavigation event corresponding to a cusp cross-
ing. The point projecting to g,..(f1) is an inflection point of . Step 6 of the circumnavigation
algorithm selects point & (shown in (a) at time t1) as the new guide point by selecting its projec-
tion h,e. on the occluding contour. (d) A circumnavigation event corresponding to a T-junction
crossing. The line L(t3) connecting ¢(3) and ¢(t¢3) is a bitangent ray. (e) Circumnavigation for
observers with non-zero dimensions. At time ?., a circumnavigation event of the second type
occurs. The observer circumnavigates the occluding curve on P, until the line L(t.,) is crossed.
Since g(t.,) is visible, ¢(t.,) defines a connected set K’ of visible points on « that are connected
to pa (shown in bold). Hence the circumnavigation process can continue by using the endpoint
g’ of K’ as the new guide point.
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5 Concluding Remarks

This paper has shown an important link between (1) the problem of inducing the visibility of
occluded points on a smooth object surface, and (2) the ability to purposefully control the ob-
server’s viewpoint in a continuous fashion by directed observer motion. We have demonstrated
that this connection leads to a provably-correct strategy for exploring objects bounded by ar-
bitrary smooth surfaces. Furthermore, this strategy uses quickly-computable quantities derived
from the occluding contour (distance to a point) and requires that only a qualitative representa-
tion of the surface be maintained during the exploration process.

The use of an active observer that purposefully and dynamically controls viewpoint is the
most crucial aspect of our approach. This ability allows the observer to impose structure on
the set of points becoming visible, making it possible to direct the exploration process using
quickly-computable visual information in an image and a qualitative object surface representa-
tion. Moreover, our approach demonstrates that object exploration does not require the recovery
of a detailed three-dimensional description of the object being explored from every viewpoint.
The reason for this is that continuous, directed observer motion allows the evolution of the ob-
ject appearance to be locally predictable in time, thus eliminating the need for detailed shape
descriptions to guide the process. This is a major step towards qualitative, active vision, al-
lowing provably-correct, exploratory behaviors to control viewpoint based on qualitative shape
information.

Although the approach presented here for solving the object exploration problem is theoreti-
cal, our results have important practical consequences. For example, the simple viewing strategy
presented for exploring cylindrical strips of an object surface can be easily implemented as a
front-end motion control module for other procedures that recover surface curvature information
from the deformation of the occluding contour [20,27]. We are currently in the process of im-

plementing this exploration strategy for exploring and recovering the shape of cylindrical strips
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on synthetic object surfaces. At a theoretical level, we are also investigating strip exploration

strategies that guarantee the convergence of the exploration process.
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