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Abstract

We present an approach for solving the path planning prob-
lem for a mobile robot operating in an unknown, three dimen-
sional environment containing obstacles of arbitrary shape.
The main contributions of this paper are (1) an analysis of the
type of sensing information that is necessary and sufficient for
solving the path planning problem in such environments, and
(2) the development of a framework for designing a provably-
correct algorithm to solve this problem. Working from first
principles, without any assumptions about the environment of
the robot or its sensing capabilities, our analysis shows that
the ability to explore the obstacle surfaces (i.e., to make all
their points visible) is intrinsically linked with the ability to
plan the motion of the robot. We argue that current approaches
to the path planning problem with incomplete information sim-
ply do not extend to the general three-dimensional case, and
that qualitatively different algorithms are needed.

1 Introduction

The goal of our work is the development of strategies
for real-time, purposeful, robust, and provably-correct auto-
matic motion planning in unknown environments where three-
dimensional reasoning and visual sensing is necessary. This
type of reasoning is necessary when a mobile robot must con-
trol its position for the purpose of reaching a desired location,
learning the shape of an unknown object, producing a map of
a three-dimensional environment, or simply surveying it.

In this paper we consider the path planning or find-path
problem, a problem fundamental to the task of moving within
a complex environment. We assume that the environment is
three-dimensional space containing obstacles that are finite
volumes bounded by closed surfaces of arbitrary shape. We
assume that the robot is a point and that it is equipped with one
or more sensors (e.g., a camera or a range sensor). Its goal is
to plan a collision-free path from an initial to a target location
if such a path is possible, or to report that such a path does not
exist.

The support of the National Science Foundation under Grant Nos. IRI-
9022608 and DDM-9196187 is greatfully acknowledged.

A crucial issue in motion planning is the type of infor-
mation the robot has or is able to recover about its envi-
ronment through its sensors. Motivated by early artificial
intelligence approaches to problem-solving and planning, a
large body of research in robotics considered approaches fol-
lowing what could be called an act-after-thinking strategy.
These approaches emphasized the mutual independence be-
tween sensing and action and generated interest in solutions
to motion planning problems where complete information is
available at the time of robot action or decision making. The
Piano Movers problem [1] was subsequently formulated in
order to solve the path planning problem in cases where the
environment of the robot was already accurately known.

The difficulties involved in recovering complete informa-
tion about the environment a priori (e.g., about unstructured
or cluttered terrains, or undersea and space environments) mo-
tivated an alternative approach to robotic motion planning. Its
underlying principle is that intelligent behavior is the result of
a collection of simple reactions to a complex world [2]. This
approach follows a purposive [3], act-while-thinking strategy
[4]: Instead of trying to achieve the general recovery goal,
attack the motion planning problem directly by (1) using only
the sensor information necessary for planning the motion of
the robot, and (2) considering robotic motion planning as a
continuous process where sensing and action are tighty cou-
pled. The approach advocates the need for real-time robot
control with incomplete information [4] or under uncertainty
[5], and real-time spatiotemporal processing of the sensor in-
put [6].

In this paper we study the path planning problem under the
purposive, act-while-thinking paradigm. The main contribu-
tions of this paper are (1) an analysis of the type of sensing
information that is necessary and sufficient for solving the path
planning problem in an unknown three-dimensional environ-
ment, and (2) the development of a framework for solving
the path planning problem in such environments. No such
analysis is currently available for the case where the mobile
robot is able to freely move in space (i.e., has three degrees of
freedom in position).

Although the analysis we present is theoretical, its results
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Figure 1: The start position � is on the interior surface of the
building while the target position

�
is on the exterior surface.

The interior and exterior surfaces of the building are connected
through the door and the window.

have important practical consequences. A major consequence
is that assumptions about the capabilities of the robot and its
sensors currently used in path-planning algorithms for two-
dimensional environments simply do not extend to the three-
dimensional case. Furthermore, our analysis indicates that vi-
sual sensing

�

is far more important for planning the motion of
the robot in unknown and unstructured three-dimensional en-
vironments than previously thought (e.g., it provides the robot
with more powerful motion planning capabilities than tactile
sensing). In particular, we show that in order for the robot
to be able to plan its motion in such environments it must be
able to visually explore them. This stresses the importance of
solving the visual exploration problem, which is the problem
of making all points in the environment visible by planning a
finite-length path for the robot. In addition, these facts point
to three-dimensional path-planning algorithms that are qual-
itatively different from the algorithms currently employed in
robotics and that contain visual information processing as an
important and indispensable component.

Our emphasis is on developing deterministic strategies for
solving the path planning problem that are not heuristic-based,
but rather possess predictable properties (e.g., correctness and
bounded length of generated paths) even in geometrically-
complex three-dimensional environments. The major prob-
lems that arise while trying to extend current approaches to
the cases we are considering are outlined below.

First, current approaches consider path planning as a prob-
lem independent of the visual exploration problem. An im-
portant consequence of our analysis in Section 2, which con-
stitutes the main part of this paper, is that in order to plan a
finite-length path to an arbitrary location in the environment
or to determine whether that location is unreachable, the robot

�
We use the term “visual sensing” in this context to characterize sensing

mechanisms that allow us to recover shape information about the portions of
the obstacle surfaces that are visible to the robot from its current position.
These portions contain all points for which the open line segment connecting
them to the robot does not intersect any obstacle. In our discussion “visual
sensors” include cameras, where only information about the projected shape of
the visible surfaces is directly available, as well as more powerful mechanisms
such as range sensors, that directly provide distance information for visible
surface points within a finite ball around the robot.

must in general be able to visually explore the environment.
An intuitive explanation of this result can be given by con-
sidering the path planning problem in Figure 1. If the robot
is an “ant” constrained to move on the wall of the building,
it must find either the window or the door before it is able to
reach the target position

�
. To do this it may need to explore

the entire interior surface of the building. This example is a
manifestation of a deeper result that follows from our analy-
sis which states that the path planning problem is unsolvable,
in general, for a robot moving on an unknown surface if the
only information available to the robot is the robot’s current
three-dimensional coordinates and the coordinates of the target
location. Existing algorithms solve the path planning problem
based solely on this information only for the cases where the
robot moves on a plane or on a surface for which some geo-
metrical information is available (e.g., that it is a torus [7]),
or when known relevant landmarks (e.g., a door) are available
to guide the robot’s motion [8]. However, the building ex-
ample above illustrates that the path planning problem needs
an approach very different from current approaches when no
shape information about the surface on which the robot moves
is available (e.g., a sunken ship or the ocean floor) and no
landmarks are present, requiring an exploratory process. This
is also the case for a robot moving freely in three-dimensional
space cluttered with obstacles of arbitrary shape.

The results of our analysis in Section 2 establish the impor-
tance of addressing the visual exploration problem in arbitrary
three-dimensional environments, since solving this problem
is a fundamental requirement for solving the path planning
problem. This leads us to the analysis of the visual explo-
ration problem. Even though the visual exploration problem
has been considered previously for the case where the robot
moves in a three-dimensional space cluttered with obstacles,
only polyhedral obstacles have been treated. The algorithms
rely on the fact that the obstacles consist of a finite collection
of planar faces, and produce paths whose lengths diverge in
the limit. For example, the exploration algorithm proposed
by Rao [9] has a complexity depending on the number of
faces in the environment’s description. This description, how-
ever, becomes infinite when the obstacles are smooth surfaces.
Consequently, exploration becomes an infinitely complex task
even when the environment contains geometrically simple sur-
faces (e.g., a sphere). On the other hand, previous work in
computer vision that addresses the visual exploration problem
(e.g., [6, 10]) has not considered the issues of correctness or
convergence in arbitrary three-dimensional environments.

The remainder of this paper is organized as follows. The
next section presents the main result of the paper, stating
that the three-dimensional path planning problem requires
an exploratory process. The implications of this result are
then discussed in Section 2.1. Motivated by these results
we consider path planning in conjunction with the visual ex-
ploration problem. To this end, Section 3 presents a simple



algorithm for solving the path planning problem in arbitrary
three-dimensional environments under the assumption that an
exploration algorithm is available to the robot. Our prelimi-
nary work on the exploration problem is presented elsewhere
[11].

2 Unsolvability of Non-Exploratory Path
Planning in

���

In this section we show that, in general, path planning in
three-dimensional environments requires an exploratory pro-
cess. We formally develop the notion of an “exploratory”
algorithm in an abstract setting, using an abstract definition of
the sensing mechanism of the robot.

Without loss of generality we assume that the environment
contains a single connected surface � . Furthermore, we as-
sume that � is closed, has an arbitrary shape, and bounds an
open, finite and connected volume ��� . � We define an au-
tomaton � able to plan its motion in the space 	�

� ��� as
follows:

Definition 2.1 (Sensing mechanism) The sensing mecha-
nism of � is described by a function � assigning to each point� in 	�
�� ��� a subset ��� ��� ��� of 	�
�� ��� , such that when
� is positioned at � it can determine the three-dimensional
coordinates of all points in ��� ��� ��� .
Definition 2.2 (Path of the automaton) The path � traced
by the automaton is a continuous curve in 	�
�� ��� of fi-
nite length. The point ��� ��� �!� is the start position of � . The
last point on � corresponds to the current position " of the
automaton.

Definition 2.3 (Memory of the automaton) Given a path �
of the automaton, its memory # �$� � ��� is a subset of%�&!')(+*-,/.10 ��� ��� ��� , such that when � traces path � it can store
the three-dimensional coordinates of all points in # �$� � ��� .

The definition of the automaton’s sensing function ex-
presses the automaton’s ability to determine the three-
dimensional coordinates for all points belonging to ��� " � ��� .
The idea behind the definition of the automaton’s memory is
that the automaton is capable of storing the coordinates of
some (or all) of the points it sensed from along its path.

Example 2.1 (Tactile sensing) If ��� " � ��� � 2 "43 for " 5
	�
6� ��� , the automaton can only determine the three-
dimensional coordinates of its current position, an assumption
used in the path-planning literature (e.g., [4]).

7
“Hollow” objects are not allowed under this definition, since this would

imply that the surface bounding the object is not connected.

Example 2.2 (Range sensing) If ��� " � ��� � 28� 5 	�
49 � 5: � " �<; � and � is visible from "43 , the sensing mechanism of
the automaton corresponds to a range sensor that can determine
the coordinates of all visible points within a ball of radius; . Recall that point � is considered visible if the open line
segment connecting it to " does not intersect ��� .

Example 2.3 If ��� �!� ��� � 	�
�� ��� then the automaton al-
ways has complete information about the environment before
it starts planning its path.

The above examples show that the definition of the sensing
function � of the automaton is very general (e.g., it does not
restrict the sensing ability of the robot to purely “local” sens-
ing). This generality is intentional since our purpose is to
identify those properties of the sensing function that are cru-
cial for determining the automaton’s ability to solve the path
planning problem. We are interested in sensing mechanisms
that are less powerful than that of Example 2.3.

The automaton can now be formally defined as follows:

Definition 2.4 (Automaton) An automaton � is a 5-tuple
�/� � # �>=?�A@B� �C� where

� is the sensing mechanism of the automaton
# is the memory of the automaton= is the deterministic algorithm generating a new

position for the automaton@ is the input to algorithm = (defined below)
� is the path in 	�
 traced by the automaton.

In order to define the path planning problem we also need
to define the notion of point reachability:

Definition 2.5 (Reachable points) Two points � � �<� � are
reachable from each other iff they can be connected by a
continuous curve that does not intersect ��� . Equivalently,� � �<� � are reachable iff they both belong to 	�
�� ��� .

An automaton that solves the path planning problem is an
automaton such that (1) when its current position is " , algo-
rithm = accepts as input @ the tuple � �!� � � ��� " � ��� � # �$� � ���/� ,
where � is the path already traced by the automaton, � 5
	�
�� ��� is the initial position of the automaton, and

�
is

the target position, (2) if
�

is reachable from � , then a path
��� ��D � � connecting � to

�
will generated by = , and (3) if

�
is

not reachable from � , then = terminates after it has generated
a finite-length path.

We now focus on a property of algorithm = that is crucial
to our analysis below.

Definition 2.6 (Exploratory algorithm) We call = ex-
ploratory iff for any surface � we can choose a positive num-
ber E � such that the following two conditions are satisfied:



1. For any path � generated by = , if ���������
	-�$�C��� E � then
for all open subsets 
 of � ,
 � ���

&!')( ��� ��� ����� �� �
2. At least one path of length greater than E � can be gen-

erated by = .

We call = non-exploratory if at least one of these two condi-
tions is not satisfied.

This definition of an exploratory algorithm states that the
automaton is capable of sensing practically all points on the
surface if a sufficiently large, but finite, path is generated. Note
that the exploratory property imposes very strict constraints on
the algorithm = : It does not simply require = to be capable
of generating a path that allows the automaton to sense all
points on the surface; it requires that all paths generated by =
having length greater than E � have this property. Intuitively,
this means that the algorithm must control the motion of the
automaton by always taking into account the points on the
obstacle surface that have already been sensed.

Our main goal is to prove the following theorem:

Theorem 2.1 Let � � �/� � # �>=?�A@B� �C� be an automaton,
where

1. = is a deterministic algorithm

2. ��� " � ��� contains " for any "�5 	�
�� ���
3. # �$� � ��� � � &!')(+*-,/.10 ��� ��� ���
4. = can generate a path between " and any

� 5 ��� " � ���
5. If ��� " � ����� : � � for some

: � 	�
 closed, ��� " � ��� �
��� " � ��� � for any surface ��� satisfying ���!� : � � � :

6. @ � � �!� � � ��� " � ��� � # �$� � ���/�
7. � &!')( ��� ��� ��� is closed for any finite-length path � .

Then � solves the path planning problem iff = is exploratory.

Condition 2 states that the automaton has available the co-
ordinates of its current position. Conditions 3 and 4 allow
the automaton to store the coordinates of all points it already
sensed along its path and to plan a path to any of those points.
Condition 5 expresses the local nature of the automaton’s sens-
ing mechanism. Finally, Condition 7 ensures that the robot can
determine the boundary of the points already sensed; together
with Definition 2.6 it ensures that an exploratory algorithm al-
lows the automaton to sense all points on the obstacle surface.

We prove the ‘only if’ part of Theorem 2.1, since the other
part is immediate by Conditions 3 and 4. We prove this
by contradiction, assuming that there is a non-exploratory
algorithm that allows � to solve the path planning problem.
In particular, we prove the following proposition:

Proposition 2.1 Let � � �/� � # �>=?�A@B� �C� be an automa-
ton satisfying the conditions of Theorem 2.1. If = is non-
exploratory,

1. There exists a surface �� , and � 5 	�
 � ���� such that the
length of the path generated by = for any point

� 5 ����
is unbounded.

2. Given E � � , there is a point
� 5 �� such that = plans

a path between � and
�

of length greater than E .

This proposition implies that determining whether or not
�

is reachable is an unsolvable (or undecidable [12]) problem
since if

�
is not reachable, the automaton’s algorithm will not

terminate. Refer to the Appendix for a proof of the proposition.

2.1 Implications of Theorem 2.1

The intuitive result that follows from Theorem 2.1 is that
the path planning problem in arbitrary three-dimensional envi-
ronments is in general unsolvable if the robot does not possess
an ability to explore the surface of an obstacle. An important
consequence of this result is that apart from the algorithmic
machinery that must be available to the robot, certain con-
straints are put on the sensing mechanisms that the robot needs
in order to plan its path.

An important constraint imposed by the theorem is that the
robot must be able to sense all points on the surface (i.e., a
two-dimensional set of points) from a one-dimensional set of
positions corresponding to the robot’s path. This implies that
the sensing mechanism of the robot must fulfill either (or both)
of the conditions below for an arbitrary surface:� The robot can sense a two-dimensional set of points on

the surface from a discrete number of positions along its
path.� From each position in a one-dimensional subset of its
path, the robot can sense a one-dimensional set of points
on the surface it did not previously sense.

The immediate consequence of these conditions is that tactile
sensing, whereby the robot can determine the coordinates of a
point on the obstacle surface by means of single-point contact,
is not sufficient to guarantee the successful exploration of an
arbitrary surface. Hence, tactile sensing cannot guarantee the
correctness of a three-dimensional path planning algorithm;
more powerful sensing mechanisms are necessary to deal with
the path planning problem in three dimensions. On the other
hand, the above conditions point directly to algorithms that
use visual sensing (i.e., either a camera or a range sensor)
for guiding the exploration and the path-planning processes:
The first condition leads to strategies where the path planning
process is guided by observing the obstacle surfaces from a
discrete set of positions and planning the motion of the robot



between them (e.g., similar to [10]). The second condition
leads to the development of strategies that are based on the
detection of one-dimensional curves that can “slide” on the
surface as the robot moves (e.g., the occlusion boundary [6,
13, 14]).

The above conditions also point to a two-dimensional path
planning problem that has been hitherto not considered: The
problem of planning the motion of the robot between two
points on an unknown surface. Although the robot in this case
moves in a two-dimensional space, the path planning problem
cannot be solved using traditional path planning algorithms
that assume the robot moves on a plane or a known surface
(e.g., a torus). In fact, the above conditions show that this
problem is unsolvable even if the robot is equipped with visual
sensors, because the robot will not be able to explore the
surface by tracing a finite length path. For example, if the
robot moves on a convex part of the surface, only the point of
contact of the surface with the robot can be sensed, which is
a zero-dimensional set. An intuitive explanation of this result
is that the problem is an overconstrained version of the three-
dimensional path planning problem, where the robot must
reach a point described by its three-dimensional coordinates
while being constrained to move on a fixed (but unknown)
surface. This implies that the robot must in general move
above the surface, planning its motion in three-dimensional
space, in order to reach the target position.

An important point in Theorem 2.1 is that no assumptions
are being made about the nature of the space in which the
path planning problem is formulated. For example, the space
in which path planning is performed does not have to be the
workspace of the robot but could instead be a configuration
space. This amplifies the importance of our result since it im-
plies that some motion planning problems that are cast as path
planning problems in three-dimensional configuration spaces
may require the ability to explore the surface of the configu-
ration space obstacles. Non-exploratory path planning algo-
rithms in three-dimensional configuration spaces have been
developed that take into account the natural constraints on the
shape of the configuration space obstacles imposed by the ge-
ometry of the robotic manipulator [7, 15]. Important directions
for future research will be to identify the geometrical prop-
erties of three-dimensional configuration spaces that require
their associated path planning algorithms to be exploratory
and to design exploratory path planning algorithms for such
configuration spaces.

3 Path Planning in
���

Having identified the key characteristics of algorithms that
can solve the path planning problem in three dimensions, we
now consider the issue of how to design such an algorithm. We
assume that the environment of the robot is 	�
 , containing a
number of obstacles that are finite volumes bounded by closed
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Figure 2: Path planning around a crater-like surface. Points
� and

�
are reachable but not � -reachable. The robot must

plan a path outside plane � in order to reach
�

(e.g., path � ).
The two curves in � � � are the only obstacles presented to
a robot constrained to move in � . These curves define two
equivalence classes � � � � � of � -reachable points.

surfaces of arbitrary shape. Obstacles in the environment do
not touch each other. Furthermore, we assume that (1) any ball
of finite radius intersects only a finite number of such obstacles,
and (2) the intersection of any plane with an obstacle contains
only a finite number of connected regions.

We will assume that the robot is modeled as a point au-
tomaton � . The automaton has available an algorithm =�� for
exploring the surface of any obstacle by tracing a finite-length
path. The goal of this section is to design a provably-correct
exploratory algorithm = 
�� for � that will use =�� as a com-
ponent to solve the three-dimensional path planning problem.
Here we focus on the case where the sensing mechanism of
the robot is a range sensor, i.e., the robot is able to determine
the three-dimensional coordinates of all points on the obstacle
surfaces that (1) lie within a ball of fixed radius, and (2) the
open line connecting them to the position of the robot does
not intersect any obstacle.

The main idea of our approach is to decompose the path
planning problem in three dimensions into two independent
subproblems:� A planar path planning problem, solved by an algorithm= ��� , where the robot must either plan a path between

two points � and
�

in a given plane by tracing a finite-
length path, or determine that

�
cannot be reached from

� .� A three-dimensional exploration problem, solved by al-
gorithm =�� , where the robot explores an obstacle surface
until a surface point sensed by the robot satisfies a given
condition.

The remainder of this section describes how algorithms= ��� and =�� for solving these two subproblems can be com-
bined to produce a path planning algorithm for the three-
dimensional problem.



3.1 Decomposition of Path Planning in � 

Let � and

�
be the start and target position of the robot,

respectively, and let � be a point in 	�
 such that �!� �
and� are not collinear. These three points define a plane � in

	�
 that possibly intersects the obstacles in the environment.
Although the target location

�
may be reachable from � , it

may or may not be reachable by a collision-free path on � .
If � and

�
are reachable on � , one of the known planar path

planning algorithms (e.g., [4]) will be able to solve this path
planning problem. On the other hand, if

�
is not reachable, the

robot must plan its motion by moving outside of � (Figure 2).
The idea behind the decomposition of the three-dimensional
path-planning problem is to consider it as a collection of two-
dimensional path-planning problems in � and a series of ex-
ploration problems that force the robot to move outside of
� .

Definition 3.1 ( � -reachable) Let � be a plane in 	 
 . Points
� and

�
are called � -reachable if they can be connected by a

curve in � that does not pierce any obstacle. 

In general, plane � will intersect a number of obstacles in

the environment. The intersection of � with an obstacle �
will be a collection of closed curves (not necessarily simple),
lines, points, or even two-dimensional regions of � (e.g., when
� touches the face of a cube). Since the robot is allowed to
move on the surface, areas of contact of the surfaces with �
that are isolated lines, points or two-dimensional regions are
not considered obstacles. Therefore, the obstacles for a robot
constrained to move in � will only consist of closed curves. � -
reachability is defined in terms of these obstacles. It partitions
points in � not belonging to obstacle interiors into equivalence
classes, where each equivalence class contains points that are
� -reachable from each other (Figure 2).

Definition 3.2 (Reachability region) The reachability re-
gion of

�
in � is the set 28���4� and

�
are � -reachable 3 .

Clearly, if the robot can reach from � any point within the
reachability region of

�
in � , then any planar path planning

algorithm that is consistent with the definition of the obsta-
cles in � (i.e., non-polyhedral and arbitrarily-shaped closed
curves) would be able to complete the path from � to

�
. We

will use the exploration algorithm = � in order to plan the
motion of the robot so that it reaches the reachability region
of

�
in � . This region is bounded by curves in the intersection

of � with the obstacles in the environment. Therefore, if the
robot is able to sense points belonging to any of these curves
using =�� , the robot will be able to reach a position on � that
belongs to the reachability region of

�
.

�
We will assume that the robot can move on the obstacle surfaces, and

therefore paths that are tangential to the obstacle surfaces or lie on these
surfaces will be considered acceptable.

3.2 Algorithms � ��� and � �

Simply for the sake of specificity we assume that the robot
uses algorithm Bug1 [4] for solving the two-dimensional mo-
tion planning subproblem. Briefly, a robot using the Bug1
algorithm moves toward the target in a straight line in � until
an obstacle is encountered or until the target is reached. If an
obstacle is encountered, the robot moves along the obstacle
boundary in � until it is completely circumnavigated. It then
performs a � -reachability test and if the test is positive it con-
tinues moving toward the target in a straight line. If the target
is not � -reachable, it determines which obstacle boundary in
� bounds the region containing the target.

We also assume that the robot uses a procedure��� 	�

����� ��� ��� � allowing it to explore the obstacle sur-
face containing the closed curve ��5 � � � until a point is
sensed by the robot such that its distance from

�
is less than � .

3.3 Algorithm � 
��
We now have a simple algorithm for planning the path of

the robot in arbitrary three-dimensional environments:

1. Use algorithm = ��� until either
�

is reached or until = ���
determines that

�
is not � -reachable (i.e.,

�
is contained

in the open region of � bounded by ��5 � � � ). If
�

is
reached, stop. Otherwise, let ��� dist � � � � � .

2. Use algorithm
��� 	�

����� ��� ��� � to explore the surface

of the obstacle containing � until a point � 5 � is sensed
with distance to

�
less than � . If no such point is sensed,

stop (
�

is unreachable).

3. If a point � is sensed, move on a straight line to � , and
continue at Step 1.

The following lemma shows that algorithm = 
�� is correct.
The interested reader can refer to [16] for a proof.

Lemma 3.1 Steps 1-3 will be executed a finite number of
times. Furthermore, if

�
is reachable, the position of the robot

when the algorithm terminates will be
�
.

4 Concluding Remarks

This paper reveals a crucial link between the path plan-
ning problem and the problem of visually exploring a three-
dimensional environment. By showing that visual exploration
is necessary for successfully planning the motion of a robot
in unknown three-dimensional environments, our analysis
stresses the importance of integrating exploratory visual sens-
ing with motion planning. This work makes explicit the need
for solving the visual exploration problem. Important future
research issues will be to study the implications of our analysis
to path planning problems in three-dimensional configuration
spaces, and to study the visual exploration problem.
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A Proof of Proposition 2.1

To see how the above proposition can be proved, consider
the non-exploratory algorithm = and let �� be a surface for
which one of the conditions of Definition 2.6 is not satisfied.

Now suppose that = solves the path planning problem.
Then for any points �!� �

with � 5 	�
�� ���� and
� 5 ���� the path

generated by = is of finite length. We proceed by deforming�� into a new surface that contains
�

and considering the paths

generated by = on this new surface. Intuitively, the idea of
the proof is to show that any non-exploratory algorithm that
plans a path from � to

�
must be able to “foresee” any possible

deformation of the surface that would make the surface contain
�
. This requires the generated paths to have unbounded length,

therefore contradicting the correctness of the algorithm.
The next subsection makes formal the notion of deforming

the surface in the environment. We then consider the problem
of planning the path between � and an unreachable point

�
on

the surface �� . Because the algorithm is deterministic, Lemma
A.1 proved in Section A.2 and its extensions show that we
can appropriately deform the surface without affecting the
initial portion of the automaton’s path, even though after this
deformation process

�
becomes reachable. Lemma A.3, whose

proof we omit due to lack of space, then shows that the length
of this initial portion of the path is unbounded.

In order to avoid ambiguities concerning the environment in
which � operates, we write � � for the automaton operating in
the environment that contains surface � and, similarly, write
�C� for its path.

A.1 Deformations of ��
Let � ��� � ����� D �� be a simple closed curve on �� and let	 � �-� � � ����� � . We only consider curves

	
that bound an

open region
��


of �� homeomorphic to a disk. �
Definition A.1 Given any tuple � �� � 	 � � � we define the de-
formation ���

 of �� with respect to

	
and

�
as�� 

 � ��� 

 % � 9 �� *������� � �� �(1)

where �
is the identity function in 	�
� 

 � ��
 D � � 
 is a homeomorphism with� 9 
 � � 9 
 ,

� 5 � 

 � ��
 � ,
and

� � 
 � ���� .��
 � � � 
 are the closures of
��


and
� � 
 ,

respectively.

Since
�

is in the connected set � �� , it follows that such a
homeomorphism � 

 exists, i.e., we can deform

��

in the

above fashion without altering its genus, producing any self-
intersections, or intersections with �� � ��


. Also, from the
Glueing lemma [17] it follows that both � � 

 % � 9
�� *����� � and
its inverse are homeomorphisms.

For any fixed point
� 5 � �� , � 

 allows us to associate a

unique surface ���

 with each simple closed curve
	

bounding
a disk in �� , such that ���

 contains

�
. In the following we fix

�

and omit the superscript in ���

 . Intuitively, �� 
 is created by
producing a dent in �� so that the new surface contains

�
.�

If �� is homeomorphic to a sphere, then without loss of generality assume
that as point ���! #" moves on $ by increasing  , the region %'& is to the left of���! #" .
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A.2 The Main Lemma

The main idea of the proof of Proposition 2.1 lies in the
following simple observation. Since algorithm = is determin-
istic, any deformations applied to regions of �� that were not
sensed along the path already traced by the automaton will not
affect the execution of = (i.e., the path of the automaton) up
to the current position of the automaton.

We make these ideas concrete as follows. Let
	�� � 	 � be

simple closed curves bounding disks
��
 � � ��
 � on �� . We

consider the actions of three automata, � �� � � ���� � , and � ���� � .
We assume that they use the same algorithm to plan their
motions and the same sensing mechanism but live in three
different spaces, namely the sets 	�
�� ���� � 	�
�� ������ � , and

	�
�� ������ � , respectively.

Let � ���� � � ��D � � be the path from � to
�

traced by � ���� � in

	�
��������� � (Figure 3(a)). Suppose ��� �!� �� 
 � ��� ���� � ������ � �� (i.e., the automaton � ���� � cannot sense the deformed portion

of �� 
 � from position � ), and let � � be the first point on this path

for which ����� � � �� 
 � � � ���� � ������ � �� � . Since � 5 	�
-� ����
the initial portion � of this path will be contained in 	�
 � ���� .

Now consider � as a path in 	 
 � ���� . Suppose that

��� �!� �� ��� ��
 � � � . Let
�	�

be the first point of � for which
��� �	� � ������ ��
 � �� � , and let � ���� � � � D 
�� � be the initial

segment of � up to and including point
�
�

(Figure 3(b)). We
now have the following lemma:

Lemma A.1 If
��
 � � # �$� ���� � � � D 
�� � � �� 
 � � � � , the

path � ���� � � ��D � � traced by � ���� � contains � ���� � � ��D 
�� � .
Proof. Consider the input available to algorithm = at

���
after planning path � ���� � � � D 
�� � for automaton � ���� � .
This consists of the coordinates of �!� �

and of all points in
# �$� ���� � � ��D 
�� � � �� 
 � � and ��� �	� � �� 
 � � .

We now apply the following deformations on �� 
 � :
1. Deform

� � 
 � into
��
 � using � � 

 � � * �

.

2. Deform
��
 � into

� � 
 � using � 

 � .

First note that by definition
��
 � , � � 
 � , and ���� � ������ �

have no points in common with # �$� ���� � � ��D 
�� � � �� 
 � �/� .
Hence, from Condition 5 of Theorem 2.1 we conclude that
the execution of the algorithm upto position

���
is not affected

by the first deformation step applied to �� 
 � . Second, note
that by the assumptions of the lemma

��
 � and # �$� ���� � � ��D

�� � � �� 
 � �/� have no points in common.

The first deformation step deforms �� 
 � into �� . We can
therefore conclude that the paths generated by the algorithm
for � ���� � and � �� are identical up to and including point

�
�
.

Now, by the definition of the deformation operation,
� � 
 �

is contained in � �� . Since # �$� �� � �
D 
�� � � ���� has no points
in common with either � �� or

��
 � , we can again conclude that
the second deformation step cannot affect = at least until the
automaton � ���� � has traced � ���� � � ��D 
�� � . �

We now apply Lemma A.1 to a sequence of simple closed
curves � 	 ��� bounding disks in �� in order to show that the
path generated by = on �� will pass through enough points to
make its length unbounded.

Note that for each simple closed curve
	 � in the sequence,

we can assign a point
� � 5 � 	�
������� ����� 	�
����������� � such that

� ������ � ��D 
�� � � 	�
�� ���� and # �$� ������ � ��D 
�� � � �� 
 � �/�
has no points in common with

��
 � .

Definition A.2 (Independent sequences � 	 ��� ) We call a se-
quence � 	 ��� of simple closed curves bounding disks on ��
independent iff the following condition holds for all � :

��
 � � � � * ��
��� �

# �$� ������ � ��D 
�� � � �� 
 � �/��� �� �(2)

The proofs of the following lemmas can be found in [16].

Lemma A.2 Let � 	 ��� be an independent sequence of curves
in �� . Then for any � � � � � ������ � ��D � � contains all paths

� ������ � ��D 
�� � ��� � � .

Corollary A.1 Let � 	 ��� be an independent sequence of
curves in �� . Then for any � � � � � �� � � D � � contains
all paths � ������ � ��D 
�� � ��� � � .

Corollary A.1 shows that if we can construct an independent
sequence of curves � 	 ��� then � �� � ��D � � contains the initial
portions all paths � ������ � ��D 
�� � ��� � � . Proposition 2.1
in now proved by the following lemma which shows that we
can find such a sequence so that the path generated by = in
the environment containing �� is of infinite length:

Lemma A.3 There exists an independent sequence of curves
� 	 ��� such that for any positive E � � there is an integer �
(that depends on E ) such that���������
	-�$� ������ � ��D 
�� �/� � E(3)


