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Abstract—Delineation of RF-ablator induced coagulation 
(thermal lesion) boundaries is an important clinical problem not 
well addressed by conventional imaging modalities.  Automation 
of this process is certainly desirable.  Elastography that estimates 
and images the local strain corresponding to small, externally 
applied, quasi-static compressions can be used for visualization of 
thermal coagulations.  Several studies have demonstrated that 
coagulation volumes computed from multiple planar slices 
through the region of interest are more accurate than volumes 
estimated assuming simple shapes and incorporating single or 
orthogonal diameter estimates.  This paper presents an 
automated segmentation approach for thermal coagulations on 
three-dimensional elastographic data to obtain both area and 
volume information.  This approach consists of a coarse-to-fine 
method for active contour initialization and a gradient vector 
flow active contour model for deformable contour optimization 
with the help of prior knowledge of the geometry of general 
thermal coagulations.  The performance of the proposed 
algorithm is shown to be comparable to manual delineation by 
medical physicists (r = 0.99 for 36 RF-induced coagulations).  The 
correlation coefficient of the coagulation volume between auto-
segmented elastography and manually-delineated pathology is 
0.96. 
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I.  INTRODUCTION 
Radiofrequency (RF) tumor ablation has provided an 

effective and safe means to treat a large variety of benign and 
malignant conditions and holds promise as a treatment on an 
outpatient basis [1-3].  RF Ablation is an interstitial focal 
ablative therapy in which an electrode is placed into a tumor to 
cause heating and cauterization of the tumor from ionic 
agitation.  The rapid vibration of ions creates friction, therefore, 
heating of the region of interest. 

Imaging modalities that dynamically monitor the 
irreversible cellular damage evolution during and after 

treatment are important to the success of RF ablation therapy 
[1, 2].  Ablative therapy is usually guided by Ultrasound and 
CT.  However, CT is not suitable for real-time monitoring and 
coagulation to tissue-background contrast is poor on B-mode 
images.  RF ablation is known to cause increases in the 
stiffness of tissue at the treated site.  Elastography [4, 5] detects 
and images the local strain corresponding to a small, externally 
applied quasi-static compression.  Local tissue displacements 
are estimated using a normalized time-domain cross-correlation 
between gated pre- and post-compression US radiofrequency 
echo signals.  The gradient of the tissue displacement in the 
axial direction provides an estimate of local tissue strain.  
Elastography is sensitive to small changes in elastic modulus 
[6], and thus, it has the potential to image and differentiate the 
thermal coagulation necrosis from normal surrounding tissue.  
Three-dimensional (3D) images such as with multiplanar 
reconstruction, shaded surface processing, or volumetric 
processing, provides more meaningful representations of the 
underlying data set than planar images alone [7].  We have 
shown that 3D US elastography exhibits high coagulation-to-
liver contrast, good correlation with pathology, and performs 
better than conventional US and CT [8-10]. 

Elastography is a promising tool for 3D visualization of RF 
ablation therapy thermal coagulations.  However, manual 
delineation of boundaries on multiple planar two-dimensional 
(2D) images is tedious and labor intensive.  Automatic 
extraction of lesion boundaries would be attractive to remove 
possible subjectivity and reduce assessment time.  Although 
automatic and semiautomatic segmentation has been described 
for other imaging modalities, it has not been well addressed for 
elastographic depiction of structures.  Two methods have been 
reported in the literature for automatic segmentation of 
elastographically delineated boundaries: (1) a simple threshold 
method [11] to segment lesion/tissue-background for semi-
automated segmentation of regions treated by high-intensity 
focused ultrasound and (2) our previous semi-automated 
algorithm [12] for delineating RF-induced thermal coagulations 
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on elastograms, which is based on thresholding and 
morphologic operations. 

Figure 1.  Ultrasonic (left), elastographic (center), and pathological (right) 
views of a typical thermal coagulation. 

Figure 1 shows ultrasonic, elastographic, and pathological 
views of one slice of a typical thermal coagulation.  The 
elastographic image has been pre-processed by using several 
image enhancement techniques.  The purpose of the work 
described in this paper is to propose a fully automated method 
to segment the stiff lesion (the central darker circular area) 
from the background in 2D and 3D elastograms.  Segmented 
regions would be used for measuring cross-sectional areas and 
volumes.  The proposed algorithm is based on a coarse-to-fine 
method [13] for active contour initialization and a gradient 
vector flow active contour model [14] for deformable contour 
optimization with the help of prior knowledge of the geometry 
of general thermal coagulations. 

II. MATERIAL AND METHODS 

A. Data Acquisition 
RF ablation in vitro was performed on specimens of freshly 

excised canine liver tissue having approximate dimensions of 
40mm by 30mm, and 25 – 40mm thickness. A RITA model 
460kHz 1500 RF generator (RITA Medical System, Mountain 
View, CA, USA) with nine StarBurst XL multi-tined 
expandable electrodes was used for the ablation procedures. 
The electrode consisted of a 15cm long 14-gauge stainless steel 
shaft insulated to within 1cm of the tip by a thin plastic layer, 
through which 9 sharp tines (0.53mm in diameter) can be 
deployed or retracted manually. The electrode was inserted into 
a liver specimen, and the tines were carefully deployed to 
provide 2-3cm active lengths in addition to the 1cm active tip 
of the shaft.  The tines were deployed in an "umbrella" 
configuration at 45-degree intervals, along with the central tine.  
A foil ground pad was attached to the bottom surface of the 
liver specimen.  RF ablation of the target tissue was performed 
at a 150-watt power level setting for 10min duration after 
different target temperatures (70°, 80°, 90°, and 100°C) were 
reached to create coagulations with different volumes.  Forty-
four RF coagulations were created, scanned, and measured to 
obtain the thermal coagulation area and volume.  After the 
ablated liver specimen had cooled to room temperature, it 
(along with the RF electrode, for inscribing fiducial markers) 
was encased in a gelatin block, 110mm by 80mm and 70mm 
thickness, for subsequent imaging. 

On the second day after the procedure, the gelatin block 
containing a liver specimen was removed from the mold and 
placed in an apparatus for elastographic imaging at room 

temperature.  An Aloka SSD 2000 (Aloka, Tokyo, Japan) real-
time ultrasound scanner with a 42 mm 5-MHz linear array 
transducer with a 70% bandwidth was used.  By manually 
translating the gelatin block parallel to the scan plane and 
repeating the data acquisition steps for each plane, 3D 
elastographic data were acquired.  A 2mm distance between 
planes (the elevational resolution is slightly larger than 2mm) 
was precisely controlled using a precision linear stage.  In 
general, about 20 slices were acquired for each phantom and 
among them about 15 slices contained the thermal coagulation. 

Time-domain cross-correlation analysis of RF echo signals 
from the pre- and post-compression data sets (0.5% 
compression) was performed using a window length of 3mm 
with a 75% overlap between data segments to compute tissue 
displacements.  Axial strain was estimated using a least squares 
strain estimator [15] with a kernel size of 2.25mm.   

After ultrasound scans, the liver specimens were fixed by 
formalin solution for at least 2 weeks and then sliced in 2mm 
intervals.  The tissue slices were placed on a transparent film 
and photographically scanned.  These fixed gross-pathology 
images were used to obtain volume estimations of the thermal 
coagulation. 

B. 2D/3D Segmentation 
The active contour algorithm (aka snakes) is a well-known 

technique for detecting an object’s boundary [16, 17].  A snake 
is defined as an energy-minimizing spline. The snake’s energy 
depends on its shape and location within the image.  In 
constructing a contour of an object’s boundary, generally, we 
first place an initial spline (snake) on the image, and then its 
energy is minimized through spline deformation.  Local 
minima of this energy correspond to desired image properties.  
The snake is defined parametrically as X(s)=[x(s),y(s)], where 
s∈[0,1] is the normalized arc length along the contour.  The 
energy functional to be minimized may be written as 
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where Eint is the internal energy of  the snake due to bending, 
Eimage measures image forces, and Econ describes external 
constraint forces.  The internal spline energy can be written as:��
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where α(s)�and β(s)�specify the “elasticity �and “stiffness �of 
the snake, respectively.  The image forces, Eimage↪ψ are 
derived from the image data over which the snake lies.  Three 
important features that a snake can be attracted to are line, 
edge, and endpoint functions.  The total image energy can be 
expressed as a weighted combination of these three features.  
Gradient vector flow (GVF) defines an external force (see 
reference [14] for details).  It improves the performance of 
conventional snakes because GVF active contours have a larger 
capture range, i.e., are less sensitive to contour initialization, 
and exhibits better convergence to boundary concavities.   

Although GVF snakes have a larger capture range than 
traditional snakes, initialization of the contour is still critical to 
successful segmentation.  In this study, to relax the 
initialization constraint, we use a coarse-to-fine approach.  A 
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Gaussian pyramid [13] was constructed for the input image, 
and then the snake algorithm was applied level by level, 
interpolating the result of one level as the initial contour at the 
next lower level.  Each level represents the same image with 
1.5 times lower resolution in both the lateral and vertical 
directions.  Neighboring pixels in an upper lever image are 
more independent because subsampling reduces their 
correlation.  To achieve automatic segmentation, template 
matching at a coarse level of the Gaussian pyramid was 
performed first to determine an initial contour for the snake.  
Template matching on the low-resolution image is fast and 
relatively immune to noise.  Since we have prior knowledge 
that the thermal coagulation is spherical or ellipsoidal in shape, 
a circular disk with a ring is used as the template.  The goal is 
to find a dark region on a light background.  The best matching 
position is defined where the normalized cross-correlation is 
maximum.  A fast algorithm based on the FFT is used for 
template matching. 

For 3D segmentation, because the spatial resolution is 
anisotropic, simple extension of 2D active contours to 3D 
active surfaces will not provide a good result.  Simple 
interpolation in the elevational direction may introduce 
artifacts.  Since 3D data are essentially reconstructed from 2D 
slices, the 2D algorithm proposed above can be applied 
repeatedly on the sequence of 2D images.  We first apply the 
2D algorithm on the central plane of the 3D data, and then we 
apply the algorithm to its adjacent planes.  The initial lesion 
location and geometry on the current plane may be estimated 
from the processed adjacent plane. 

III. RESULTS 
Figure 2 is a typical automated segmentation result for a 3D 

data set.  Only every other slice is shown.  The parameters used 
for the algorithm were chosen by applying the algorithm on 8 
thermal coagulations.  This set of parameters was then used for 
the remaining 36 coagulations. 

Figure 2.  Segmentation of thermal coagulation on a 3D elastographic data 
set. Red contours are the segmentation results. 

 

Figure 3.  Coagulation volumes obtained by manual depiction versus 
automated segmentation.  The solid line is from the least-squares fit; the 

dotted line is the line of equal size. 

Figure 4.  Coagulation volume measurements comparing manual (top) and 
automated (bottom) elastography volumes with volumes obtained from fixed 

tissue pathology. 
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To evaluate the segmentation result, the overlap between 
manual segmentation and automated segmentation is defined 
as: overlap = (Manual ∩ Automated) / (Manual ∪ Automated), 
where ∩ and  ∪ represent intersection and union, respectively.  
Based on 36 thermal coagulations, the average area overlap of 
the central slice elastograms was 89.5%.  Using results for 
every image plane, average volume overlap of the segmented 
coagulations was 84.3%.  Figure 3 shows a scatter plot of 
coagulation volume measurements, comparing manually 
delineated volumes with the automatically segmented volumes.  
They are highly correlated (correlation coefficient, r = 0.994), 
indicating that the automatically segmented results are very 
good if we assume manual depiction is the standard.  Figure 4 
displays scatter plots of coagulation volume measurements 
comparing manual or automated elastography volumes with 
fixed tissue pathology (manually depicted by a medical 
physicist).  The correlation coefficient between manually 
delineated  elastography volumes and pathology volumes is 
0.972, while that between automated elastography volumes and 
pathology volumes is 0.967.  Elastography tends to slightly 
underestimate the actual coagulation size found on gross 
pathology. 

IV. DISCUSSION AND CONCLUSION 
Although the results presented are for automated 

segmentation of in vitro ablation specimens, similar results are 
expected under in vivo conditions.  This is due to the close 
correspondence between the manual and automated 
segmentation results.  To prove this, in vivo elastograms for 
thermal coagulations in pig liver were used to test the 
algorithm.  Only 2D images were acquired at this time.  
However, the results are promising as shown in Figure 5. 

The close correspondence between the manual and 
automated segmentation results demonstrates the automated 
algorithm is able to provide quantitative thermal coagulation 
segmentations, comparable to those obtained with manual 
delineation. 

Figure 5.  Automated segmentation of thermal coagulation created in pig 
liver in vivo. 
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