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Abstract
This paper introduces a method for metric self-

calibration that is based on a novel decomposition of the
fundamental matrix between two views taken by a camera
with fixed internal parameters. The method blends impor-
tant advantages of the Kruppa constraints and the modu-
lus constraint: it works directly from fundamental matrices
and uses a reduced-parameter representation for stability.
General properties of the new decomposition are also de-
veloped, including an intuitive interpretation of the three
free parameters of internal calibration. The approach is
demonstrated on both real and synthetic data.

1. Introduction

It is common for a video camera used in machine-vision
applications to have unvarying internal calibration, espe-
cially over short periods of time. As such a camera is moved
around a scene, any two positions of the camera can be re-
lated by a screw transformation. This means that, given
any two positions, the camera in the first position can be
rotated around some fixed axis in space and then translated
parallel to the axis to end up in the second position. Us-
ing this observation, we introduce a new representation of
the fundamental matrix between any two views taken by
an internally-fixed camera. The new representation, a more
general form of an equation given in [3], decomposes the
fundamental matrix into terms involving the angle of rota-
tion around the screw axis, the amount of translation paral-
lel to the screw axis, and three vectors related to the internal
calibration of the camera.

The new decomposition makes it possible to use the fun-
damental matrix between two views to determine informa-
tion about the screw transformation and the camera calibra-
tion, which is useful because the fundamental matrix can
be determined directly from point correspondences (or by
other means, like optical flow or identification of planar ho-
mographies, when reliable point correspondences are not
available). We develop some of the important properties of
the decomposition and, in particular, demonstrate a novel
method for camera self calibration.

The support of the National Science Foundation under grant IIS-9988426
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Camera self calibration is the process of finding the in-
ternal parameters of a camera (as they would be measured in
a Euclidean coordinate system up to an overall scaling fac-
tor) directly from views taken by the camera, without any
knowledge of scene geometry. Faugeras et al. [2, 6] in-
troduced an important, simple, general-purpose method for
self calibration based on the Kruppa constraints. Besides
simplicity, the Kruppa method has two major advantages:
(1) it works directly from fundamental matrices, and (2) be-
cause of this, only a small number of the camera views ac-
tually need to overlap (since a fundamental matrix can be
determined from any two overlapping views and only three
fundamental matrices are required by the method).

More recently, Pollefeys [8, 9] has developed an alter-
native and apparently more robust self-calibration method
based on his modulus constraint. Pollefeys’ method fol-
lows a striated approach to metric self calibration, first cre-
ating a projective scene reconstruction, then improving this
to an affine reconstruction before finally determining met-
ric calibration and reconstruction. The apparent stability
of Pollefeys’ method comes from reducing the number of
free parameters during the affine reconstruction step. When
finding the plane at infinity to upgrade from projective to
affine reconstruction, there are naively three free parame-
ters, but Pollefeys demonstrates that there are actually only
two free parameters because of the modulus constraint. In
the Kruppa method, where metric calibration is determined
in one nonlinear minimization step, there are five free pa-
rameters and thus more flexibility for the solution to erro-
neously fit noisy data. A serious drawback to Pollefeys’
method is the requirement that all cameras be put in the
same projective basis as an initial step. In practice, this is
usually achieved by finding a set of feature points that are
either visible in all views or can be projectively transferred
between all views (see description in [7]). The Kruppa
method works directly from fundamental matrices and so
is applicable whenever fundamental matrices can be deter-
mined, even if a common projective basis cannot be found.

Our approach to metric self calibration has the strengths
of both of these methods: it works directly from fundamen-
tal matrices (giving it the advantages of the Kruppa method)
and it reduces the number of free parameters from five in the
Kruppa method down to three, thus improving numerical



Figure 1: Decomposi-
tion of the fundamental
matrix based on screw
transforms.
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stability as in Pollefeys’ method. Our method has several
other strengths which will be highlighted later as they arise
during the mathematical development of the algorithm. Fi-
nally, it should be mentioned that there exist several other
methods for self calibration from general camera motions
(e.g., [10]), each with their own strengths and weaknesses,
but space prevents us from describing them further. The
mathematics underlying our method is distinctly different
from the mathematics underlying other methods, giving our
algorithm a combination of beneficial properties not shared
by any other method.

2. Rising turntable formulation of the funda-
mental matrix

If two identical cameras are placed at different posi-
tions and orientations anywhere in space, then there exists
a unique screw transformation that will take the first cam-
era and make it exactly overlap the second camera [1]. A
screw transformation is defined as a single rotation around
a fixed axis in space followed by a single translation par-
allel to the axis. Because the two cameras are related by
a screw transformation, we could alternatively think of the
views as being captured under a fixed-camera formulation
of the problem. In this formulation, only the first camera
is used, fixed in position and orientation: The single cam-
era views the scene and the scene is interpreted as moving
on a rising turntable whose rotation axis matches the screw
transform axis and which undergoes an equal and opposite
screw transformation to the original.

In this section we develop a formula for the fundamental
matrix between two views of a rising turntable taken by a
fixed camera. We choose the world coordinate system so
that the rotation axis coincides with the - -axis and the first
camera is located at � �.0/1.0/ % (

. This makes the two camera
matrices 243 5 6 7 8$9 : : ;�9: 9 : :: : 9 : <2>= 5 243@?BA ;"CEDF;HG&I
where J is an upper triangular matrix representing the fixed
internal calibration of the camera and K is a rotation matrix

giving the fixed tilt of the camera relative to the world coor-
dinate system. The remaining matrix is defined by?BA CED�G&I 5 LMNPOFQ'R G ; RTSVU G : :RTSVU G OFQ'R G : :: : 9 C: : : 9

WYXZ
This matrix transforms the coordinates of points in the scene
before projection into the fixed camera, thus producing the
motion of the rising turntable. Throughout the paper, we
will need to reference the column vectors of the two camera
matrices, which we will do using the representation [ \ ��]�"!^���"��� � �@_1�

and [a` � �]bc!�bd�"bd� � be_��
where

��f . bdfPgh �
. Notice that

�i_)� � �"!
, which is used below in finding

the epipole.
Using the camera matrices [ \ and [a` , we can write

the fundamental matrix between the two views as� � � �kj�l ��� � � m %
(4)� � � �k� ��� ��
n%o�"! � ���	��
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where � m � �qbc!"bd�rbd�^�T���"!s���r���^�ut !
(6)

and j�l is the epipole as it appears in the sec-
ond camera, given by j1l � [a` � �.0/1.0/1.q� % ( �[a\ � ��� ��
 .q� ���	�+
 .q� � .q� % (

. Eq. 4 appears frequently (e.g.,
[4]) and

� m
is discussed further in Section 3.2.

One of the main goals of this paper is to present the alter-
native formulation of the fundamental matrix shown in Fig.
1 (generalized from an equation in [3]). We prove that Eq.
4 and Eq. 1 represent the same function as follows: Since�

is a matrix and all matrices represent linear transforma-
tions, it only needs to be shown that the expressions in Eq.
4 and Eq. 1 act the same way on three basis vectors span-
ning

h �
(in which case they will act the same way on all

linear combinations of those basis vectors and thus on all
elements of

h �
).

�"!
,

���
, and

�v�
are linearly independent

(for any nondegenerate camera matrix) and thus form a ba-
sis for

h �
.

�"!
is the direction of the w -axis as represented

in camera x ’s coordinates (alternatively,
�H!

is the image
of the vanishing point of the w -axis as seen in camera x ).



As such,
� ! � [a\ � �.0/1.0/1.0/ % (

.
� m

transforms the rep-
resentation of directions (homogeneous vectors with fourth
coordinate 0) from camera basis x to camera basis

�
, so� m �"!$� [a` � �.0/1.0/1.0/ % (

(this is also clear just by look-
ing at the definition of

� m
in Eq. 6). Applying this same

reasoning to
�^�

and
���

yields:� m �"!k� [a` � �.0/1.0/1.0/ %�( � ��� ��
�"! � ���	��
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It is now a straight-forward exercise to multiply both ver-
sions of the fundamental matrix by

�H!
,
���

, and
�v�

and show
equality of the results in each case.

3. Self calibration
Surprisingly, it is possible to find metric camera calibra-

tion (i.e., to find the matrix J up to a scale factor) directly
from camera views without knowledge of scene measure-
ments [2]. In this section, we develop some useful proper-
ties of Eq. 1 that lead to a new method for self calibration.

Let
� � JaK � ���"!p���'���p�

and notice that�a� ( � JaK K ( J ( � JaJ (
(10)

since rotation matrices are unitary. The matrix JaJ (
is

called the dual image of the absolute conic and is denoted��� . Thus if
�

can be found, then ��� can be found and J
can be determined by Cholesky factorization of � � . Our
goal becomes finding

�s!
,
���

, and
�v�

, which is where Eq. 1
gets utilized.
3.1. Parameterizing the projected axes of world co-

ordinates

The fundamental matrix
�

between views x and
�

can
be found directly from the images themselves by identifying
point correspondences or by other means. Once

�
has been

found, the relationship in Eq. 1 puts constraints on
�

,


,

and � . Assume [ \ has been scaled so that
�s!

,
���

, and
�v�

exactly satisfy Eq. 1. Also assume � jel � � � j�� � � � .� + and
� - can be determined from

�
because� + � �	 � � � �k(s%

and
� - � �	 � � � �k(s%

(11)

Notice that
�v��
q� + ����� / . This property allows the image

of
���

to be parameterized by a single real variable � . One
way to do this is by expanding the equation

� �
� + ���P�/ and then using the quadratic equation. A more elegant
parameterization is (see Appendix B)������ � ��� � � % t ! j�l (12)

where � is any (invertible) matrix satisfying
� � � j l ��� � .

The notation
��

indicates equality up to a scale. Once
�"�

is
known up to a scale then

�s!
can be found via

�"!��� � � + � %H# � � + ���'%
(13)

where � is defined by
� - � � � ���

, making � �� � -� �0��� . � -� !o��� . � -� !o��� % ( . The notation � � f���� indicates the
entry of matrix � in row � and column � . Since we will
need to refer to the exact scaling factors that make Eq. 12
and Eq. 13 equalities, we define the quantities � ! , � � ,

� !
,

and
� �

by

� �q��� � � � � � ��� � � % t ! j�l
� !��"!�� � ! � � � + � %r# � � + � � %

To summarize so far: If
�

and � are known, � can be
chosen using

�
and then

� !
and

� �
can be found. If, in

addition,



is known, then
� �

and � ! can also be found as
the following algorithm shows:

(1) Find the unique null eigenvector
A���� D �! I " of�$# + % ! ; # - % � *

. This eigenvector is
A 9'&)( � D C�&)(+*�I "

up to an unknown scale factor , .

(2) Since # + % � 5 A 9d; OFQ'R G&I A % !.- % � I , the following overde-
termined system can be solved for , (note , % ! 5 �/� % !

):

, # + % � 5 �/�pA 9s; OFQ'R G&I A % ! - % � I
(3) Find , % �

using

, % � 5 9RTSVU G A ,�0 ; �! OFQ'R G % � I
(Remarks) Using Eq. 3 and Eq. 2, step (1) comes from� + �"! � � ���	��
 � ��� # ���'%

and
� - ��� � ���	�+
 � ��� # ���'%

.
Since the matrix has two columns, its rank is 1 or 2; its
rank must be at least 1 (nonzero matrix) and is clearly less
than 2. Step (3) comes from the definition of � and Eq. 2:� � ���	��
��� � ����� ��
���

. Also note 1 �q� � � 2 � ���
.

In summary,
�s!

,
���

, and
� �

, which are the vanishing
points of the w , 3 , and - -axes as seen in the first camera
view, respectively, can be determined directly from

�
pro-

vided two real parameters � and



are known. Furthermore,
by the method just described,

�
can be determined up to

a single unknown real parameter: the scale of
�"�

, which is� . Once
�

is determined, the metric internal calibration of
the camera can be found and metric scene reconstruction is
possible. To complete the algorithm for finding

�
from � ,


, and � , add the following step to the previous algorithm:

(4) Use C (and , ) to extract ('* from the eigenvector in step
(1). Then % � 5 % � &)(+* .

Naively, since J is an upper triangular matrix and we
are only interested in J up to a scale factor, we know J
has at most 5 degrees of freedom. Our analysis shows that



Figure 2: 6
-

5 matrix
and corresponding null
eigenvector used when
finding � m
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J can be parameterized by three real numbers � ,


, and� . The fact that J has only three degrees of freedom has

been shown before (e.g., [7]). Here we have demonstrated
a specific parameterization, one which has a great deal of
intuitive meaning:



is the rotation angle between the views,� corresponds to the vanishing point of the rotation axis, and� is the amount of translation along the screw axis during

the screw transformation.

3.2. Additional properties of the rising-turntable
formulation

The matrix introduced in Eq. 6 is called the homogra-
phy induced by the plane at infinity.

� m
transforms di-

rections represented in camera x ’s coordinate system into
directions represented in camera

�
’s coordinate system. If� m

can be found, the cameras are said to be affinely cali-
brated and it is possible to perform affine scene reconstruc-
tion (scene reconstruction that is equivalent to metric recon-
struction transformed by an invertible � # � matrix).

Consider the fixed-camera formulation of how the views
were captured, in which the camera is fixed in position and
the scene sits on a rising turntable. The vanishing point of
the rotation axis, as seen in the first view, is given by

�s�
.

As the turntable rises, neither the rotation axis nor the fixed
camera change and thus

�^�
always describes the vanishing

point of the rotation axis as seen in the camera. Thus� � m %o��� �� ���
(14)

Similarly, consider all the planes that are perpendicular to
the rotation axis (in world coordinates). Just as parallel
lines have a vanishing point, parallel planes have a vanish-
ing line. As seen in camera x , the vanishing line for the
planes that are parallel to the rotation axis will contain the
vanishing points of both the w and 3 axes, which are given
by

�"!
and

���
. Thus we denote this vanishing line by � !o�

(here we use � !o� to denote both the concept of this particu-
lar vanishing line and the specific representation of this line
in view x ). As with the vanishing point of the screw axis,
� !o� will project onto the same line in all camera views as the
turntable rises. Thus � � m %�( � !o� �� � !o� (15)

(If ����� is a � # � invertible matrix that transforms basis x
into basis

�
and � is a plane through the origin, then it is

an easy-to-prove fact of linear algebra that ����� ( ��� �� ���
where ��� denotes the vector perpendicular to � in basis x
and ��� denotes the vector perpendicular to � in basis

�
.)

Eq. 14 and Eq. 15 state that
� �

is an eigenvector of� m
and � !o� is an eigenvector of � � m % (

. Since
� m �JaK J t !

,
� m

is conjugate to a rotation matrix and thus
has the same eigenvalues as K . K has only one real eigen-
value, which is � , and

�^�
is the eigenvector corresponding

to this unique real eigenvalue.
Assuming � �� / (i.e., assuming the cameras are in gen-

eral position),
� m

can be found from
�

using only the two
real numbers



and � (if they are known) as follows:

(1) Use � and G to find % !
, % �

, and % �
as described in Sec-

tion 3.1.

(2) Find the line � !o� in image  that goes through % !
and % �

:

� !o� 5 % ! - % �
! % ! - % � !

(3) Let " 5 # l%$ � !o� . (If "�& 9 then C was too small and the
views represent pure turntable motion.)

(4) Find the null eigenvector
A�' D ')( DF9�I " of the matrix in Fig.

2, where * is from Eq. 12 and + 5 * " � !o� .

(5) Having determined
(

in step (4), find � m
using

� m ,5 * - # l ( " (16)

(Remarks) Eq. 16 has been used by many authors (e.g., [5]).
Only the matrix used in step 4 needs further explanation:
Rows 2 through 4: Letting 1 !

and 1 �
be the scaling fac-

tors for Eq. 14 and Eq. 16 leads to
� m ��� � 1 !����

and1 � � m � � � j�l � (
. These equations combine to produce� � � � � � � � � j�l � (� � %

for � � �	. � 1 ! 1 �&%
. Rows 5 and 6:

Using Eq. 15 and Eq. 16 gives � !o� �� � ( � !o� � j (l � !o� � �
� � 
 � . Cross-multiply the w and 3 coordinates on each
side to eliminate the unknown scalar. Derivation of row 1 is
explained in Appendix C.

Thus once the fundamental matrix
�

between two views
taken by the same camera has been determined, the set of
all possible

� m
’s for the two cameras is parameterized by

two real numbers,



and � . Furthermore,



is the angle of
rotation between the two cameras and thus has a very in-
tuitive meaning. � does not have an intuitive meaning by
itself, but can easily be combined with

�
via Eq. 12 to yield� �

, which is intuitively understood as the vanishing point
of the rotation axis. If



is known, then

� m
is known up

to a single real parameter. If



can be restricted to a nar-
row range (such as, / / 
 / 0 /)1 radians) then the set of
possible

� m
’s is similarly restricted. If the rotation axis is



known or can be restricted to be within a certain area of the
image, then

� m
is also similarly restricted. The ability to

restrict
� m

using the kinds of knowledge just discussed is
not directly shared by the modulus constraint.

To conclude this section, we make one final observation:
In Eq. 16, every � g h �

leads to an
� m

that satisfies Eq.
4. However, the modulus constraint forces all legal choices
of � to lie on a two-dimensional manifold embedded in

h �
.

The numbers � and



parameterize the modulus-constraint
manifold, and do so in an intuitive manner.

4. Manifold intersection algorithm for metric
self calibration

We now show how the parameterization presented in
Section 3.1 can be used for metric self calibration. Our
method is distinct from all previous self calibration meth-
ods and shares some advantages of Faugeras’ method based
on the Kruppa constraints and Pollefeys’ method based on
the modulus constraint.

We can give J the specific representation:J � LN�� � �/ � �/ / � WZ
and think of J as being a point somewhere in a 5-
dimensional space; we term this space K-space. We take
a series of � views with the camera, of which � pairs of
views contain enough shared information to find fundamen-
tal matrices

� !
, . . . ,

�	�
.

For a specific fundamental matrix
� f

, each triple
 � . 
 . ��� yields a point in K-space that might be the trueJ . Thus each
� f

defines a 3-dimensional manifold � f
in

K-space containing the true J ; each manifold is parame-
terized by


 � . 
 . ��� . The intersection of all the � f
must

contain the point representing the true J . Thus if �  � ,J can be found. If one or more of the parameters � ,


, or �

are known for a particular view pair (for instance, if the an-
gle of rotation between two views is known), then � can be
less than 3. Of course, in practice many more image pairs
than the minimum are used for stability. Since it is not nec-
essary to put all the cameras in the same projective basis,
every pairwise fundamental matrix can be used and so it is
easy to make � large.

Our algorithm involves “sketching out” the manifolds� f
to determine the unique intersection point J . We sketch

a manifold � f
by randomly selecting triples


 � . 
 . ��� to
yield random points on � f

. The particular approach we
have implemented uses a voting scheme as follows:

(1) A volume � of K-space that contains the point
6

is cho-
sen (see comments after the algorithm).

(2) � is subdivided into small voxels (5-dimensional hyper-
cubes). A finer subdivision slows down the algorithm but im-
proves success. However, because real data contains noise,
the voxels must be large enough to contain the near inter-
section of all manifolds.

(3) For each manifold � a triple � � DoG DTC�� is randomly selected
and the corresponding point in K-space is determined. The
voxel � containing this point is then determined and a vote
is cast for � provided manifold � has not already voted for � .

(4) Step (3) is repeated until one voxel � receives enough
votes.

(5) “Zoom in” step: A new volume � half the size of � is cen-
tered around the winning voxel � , and the algorithm returns
to step (2) using the smaller volume � in place of � .

(6) The algorithm continues until a sufficient resolution has
been reached (i.e., the volume � is small enough).

After several “zoom in” steps, the manifolds become ap-
proximately linear (i.e., they begin to look “flat”) within the
reduced search region. Once three or more manifolds are
approximately linear, the point of intersection can be deter-
mined in a single step by fitting hyperplanes to the locally
“flat” manifolds and then intersecting the hyperplanes (by
solving a linear system). Not only does this observation
provide a way to greatly speed up the algorithm, but it also
defines a stopping condition: The algorithm finishes when
enough manifolds are approximately linear and the linear
approximations all intersect at a single point (within some
tolerance). Our implementation uses this criterion, and in
the experiments of Section 5, almost all trial runs reached
the linearity stage after 4 or 5 zoom in steps.

In step (1), the initial search region can always be set
to the hypercube with side length 2 centered at the origin.
Simply make sure to divide each randomly generated man-
ifold point (when thought of as a calibration matrix) by its
Frobenius norm, forcing each matrix component into the
range

� �,�.q� � . Rescaling is permissible because the internal
calibration is only defined up to a scale factor.

Because of noise, in real applications the manifolds will
not all intersect at a single, well-defined point. All self-
calibration algorithms have to deal with this fact whether
they explicitly calculate the manifolds or not. By “sketch-
ing out” the manifolds, our algorithm has the advantage that
it can find a small region that is intersected by all or most
of the manifolds, and it can provide some measure of con-
fidence that this region contains the true solution: the more
manifolds a region contains and the smaller it is, the more
reliable it is. More importantly, our approach is inherently
robust to outliers. If any

� f
is severely wrong (and thus

an outlier), it will generate a manifold that does not con-
tain the true J . Votes generated by this manifold will not
coincide with votes generated by the other (inlying) mani-
folds and thus this erroneous manifold will not influence the



MEDIAN CALIBRATION ERROR
average noise added per point

5 pixels 2 pixels 1 pixels 0.5 pixels 0.25 pixels
100 points 0.0629 0.0345 0.0172 0.00806 0.00567
60 points 0.0701 0.0489 0.0233 0.00878 0.00771
30 points 0.1880 0.0583 0.0359 0.01400 0.00855
10 points 0.5390 0.1450 0.1350 0.03280 0.03640

Figure 3: Table of median errors for differing noise levels and numbers of scene points for synthetic data trials. At
right is shown the scene and cameras for one trial with 100 scene points (all trials used 6 cameras).
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Figure 4: (a) error vs. noise, (b) error vs. scene size on the retina, (c) error (in components on the main diagonal of6
) vs. noise, (d) error (in principal point) vs. noise

zooming-in process of the algorithm. After a few zoom-in
steps, the incorrect manifold will be outside volume � and
will be completely ignored.

Another advantage to our approach is that certain kinds
of additional information can be easily and naturally incor-
porated into the algorithm to make the search task easier
and more robust. For example, if the angle of rotation be-
tween any pair of views is known, then the manifold for this
pair is only 2-dimensional, greatly narrowing the search. If
it is known that J � !o��� (the skew factor) is close to 0, then
the search space is 4 dimensional; only manifold points that
have their skew factor close to 0 need to be considered. A
similar effect happens if it is known that J � !0! � and J � �0���
are almost equal.

5. Experiments
Extensive experiments with synthetic and real data were

performed to test the manifold intersection algorithm.

Simulations

For each trial run, a scene consisting of 10 to 100 points
positioned randomly with uniform density inside a unit
sphere was generated. The scene was viewed by 6 or 7 cam-
eras positioned randomly but such that every point in the
scene was visible from every camera. All cameras had the
same internal parameters, which were generated randomly
for each trial using realistic ranges for each parameter. The
image size for each camera was 1 // # 1 // pixels; this is

important when interpreting the results of the trial runs.
Noise was added to the projected position of each scene

point. Distribution of the noise was uniform, meaning, for
example, if the mean of the added noise was 5 pixels then
anywhere between 0 and 10 pixels of noise was added in a
random direction with an equal likelihood for each amount.
The error between the true internal calibration matrix J and
the calculated calibration � was calculated as

ERROR � J .�� %s�
FROB � J . FROB � J % � � . FROB � � %�%

where FROB � � %
is the Frobenius norm of matrix � .

The table in Fig. 3 shows how error was related to the
number of points in the scene and the average (mean) of the
noise added to each point on the image plane. When gen-
erating this table, all trials used 6 cameras. One conclusion
is that tracking extra scene points can make up for a lack of
accuracy in locating the points on the image plane.

Each trial used in generating the graphs in Fig. 4 con-
sisted of 60 scene points and 7 cameras. Fig. 4(b) demon-
strates how error is related to the size of the scene as it ap-
pears on each camera’s image plane. For every trial run
used in this graph, the amount of noise added per point had
a mean of 2 pixels. Retinal scene size was taken to be the
smallest retinal scene size for any view in the trial. The
graph shows how the algorithm becomes more stable as the
scene covers more of the image plane.

Fig. 4(a) shows how error increases with higher noise
levels. Interestingly, error increased at different rates for



Figure 5: (top row) Two views from an experiment using a real camera and a calibration object, and three views of the
reconstructed feature points. (bottom row) Two views from an experiment using automatic point tracking, and three
views of the reconstructed feature points.

different components of the calibration matrix, as demon-
strated in Fig. 4(c)-(d). Fig. 4(c) shows the growth of error
only in the diagonal elements of the calculated internal cali-
bration matrix (i.e., J � !0! � and J � �0��� ) while Fig. 4(d) shows
growth of error in the last column of J (i.e., J � !o��� andJ � �0��� , which form the principal point). The graphs demon-
strate that error in the calculated principal point grows at a
much higher rate and has more randomness than error in the
diagonal elements, and that the error values in Fig. 4(a) are
largely a result of errors in the calculated principal point.

Further experiments

Fig. 5 shows the results of two more experiments. The
first experiment used a real camera and an accurate calibra-
tion target. The target consisted of three walls meeting at
right angles. Covering the walls were uniform dot patterns
(including some reference dots) printed with a laser printer.
The center of each dot was automatically recovered using
a separate algorithm; correspondences were determined au-
tomatically via the reference dots. The algorithm was run
using 8 views of the calibration object and the object was
reconstructed using the calculated internal calibration. The
reconstructions show perpendicular walls and uniform, rec-
tilinear spacing of the dot centers, confirming an accurate
metric reconstruction.

In the second experiment, 7 views of a synthetic scene
were used. The synthetic scene was based on a real
scene, and photographs from the original scene were tex-
ture mapped onto the model to achieve a high level of re-
alism. Although the scene was computer generated, no ad-
ditional information (other than the views themselves) was
used by the algorithm. Points were automatically tracked
between the views using an off-the-shelf point tracking al-
gorithm and the automatically-determined point correspon-
dences were then fed into the manifold intersection algo-
rithm to determine the internal calibration. Three views
of the reconstructed feature points are given in the fig-

ure. The center reconstruction is an overhead view show-
ing that the two main walls are perpendicular to each other.
In the left-most reconstruction, points on the narrow roof
that overhangs the doorway are visible and an approximate
right angle between the overhang and the wall is evident.
The right-most reconstruction shows an edge-on view of
the other wall; note the feature points are not perfectly in
the same plane, indicating a certain amount of noise in the
automatically-tracked points.

6. Concluding remarks
An overview of this paper including its main contribu-

tions is as follows: When two views of a static scene are
taken by a camera with fixed internal parameters, it is al-
ways possible to interpret the camera as being fixed in po-
sition and the scene as sitting on a rising turntable. Using
this reinterpretation, we have presented a new decomposi-
tion of the fundamental matrix between the views (Eq. 1).
When the fundamental matrix between two views is known,
we have shown through this decomposition that the internal
calibration matrix is parameterized by only 3 parameters,
each of which has an intuitive meaning. The 3 parame-
ters generate a “screw-transform” manifold in K-space. We
have presented an algorithm for metric self-calibration that
works by intersecting screw-transform manifolds. We have
also presented some additional useful properties of the un-
derlying mathematical framework.

A. Finding rotation angle from relative cali-
bration

The relative calibration � m
between two internally-equal cam-

eras can be written as
647 6�� �

, where
7

is a rotation matrix. The
rotation angle G associated with

7
can be found from � m

as fol-
lows: Let

� m 5 647 6 � � 5 8 � � �
� � �
� 	 
 < (17)



Because � m
is conjugate to

7
, it has the same eigenvalues as

the rotation matrix; these eigenvalues have the form:
' � 5 �

,'� 45 �������eA � G&I , and
' * 5 �������eA ; � G&I . The

'	�
can be found

from � m
using the characteristic equation: 5 
�����A � m ; '	� I5 ' * ; '  A � - � - 
 Ic; 'dA ; � � ; � 
 ; � 
 - � � - � �- � 	 Ic; A � � 
 - � � � - � � 	 ; � � � ; � � 
 ; � 	 � I5 ' * -� '  -�� ' - C (18)

where  5 ; A � - � - 
 IC 5 ; A � � 
 - � � � - � � 	 ; � � � ; � � 
 ; � 	 � I
Thus (using a well-known property from algebra)C 5 ; '�� '� ' * 5 ; � * 5 ; A�'�� - '� - ' *pI5 ; � ; �������dA � G&IE; �������eA ; � G&I5 ; �rA 9 - � OFQ'R G&I
and G can be found viaG 5 ��� OFOFQ'R � 9� � A CeI��� ; 9���� (19)

Note that G can only be determined up to a sign by this method
(due to the symmetry of the eigenvalues). If available, additional
information may be used to disambiguate the sign.

B. Parameterization of � �
Eq. 12 is derived viaA � m I % � ,5 % �A * - #�( " I % � ,5 % �A * - #�( " I % � 5 � � % �

#�( " % � 5 A � �!� ; * I % ��  # 5 A � �!� ; * I % �A � �"� ; * I � � # ,5 % �
(20)

C. Alternative expansion of the characteristic
equation of # m

� m
has an alternative representation as * - #�( "

(see Eq.
16), where * and

#
can be found directly from the fundamental

matrix between the views. Expanding the characteristic equation
for � m

using this alternative representation can yield some useful
constraints. In what follows, we use $&%'$ for the determinant of
matrix % . The characteristic equation is: 5 $ � m ; '	� $ 5 $ * - #�( " ; '	� $ (21)

Define ( f and ) f
by* ( ! ( � ( �,+ 5 * and

* ) ! ) � ) �-+ 5 �

Using a triple-product for the determinant, the right-hand side of
Eq. 21 can be writtenA ( ! - � � # ; ' ) � I $ A ( � - �  # ; ' )  I - A ( � - � * # ; ' ) *�I
Expansion leads to: 5 � * A.� ' I * - �  'A.� ' I  - � ��A.� ' I � - �	/ (22)

where

� * 5 ;�9�  5 $0( ! ) � ) � $ - � � $ # ) � ) � $ - $1) ! ( � ) � $ - �  $1) ! # ) � $
-2$1) ! ) � ( � $ - � * $1) ! ) � # $

� � 5 $0( ! ( � ) � $ ; �  $0( ! # ) � $ ; $0( ! ) � ( � $ ; � * $0( ! ) � # $; � � $ # ) � ( � $ ; $1) ! ( � ( � $ ; � * $1) ! ( � # $ ; �  $1) ! # ( � $
�	/ 5 $ * $ - � * $0( ! ( � # $ - �  $0( ! # ( � $ - � � $ # ( � ( � $; � � $ # ( � ) � $

Dividing Eq. 22 by the coefficient of
' * allows Eq. 22 and Eq. 18

to be equated. In this way, row 1 of the matrix in Fig. 2 is derived
by equating  in Eq. 18 with ; �  & � . In Fig. 2,

'
is 9'& �  .
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