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Abstract

This paper introduces a novel linear algorithm for
determining the affine calibration between two camera
views of a dynamic scene. The affine calibration is
computed directly from the fundamental matrices as-
sociated with various moving objects in the scene, as
well as from the fundamental matriz for the static back-
ground if the cameras are at different locations. A min-
imum of two fundamental matrices are required, but
any number of additional fundamental matrices can
be incorporated into the linear system to improve the
stability of the computation. The technique is demon-
strated on both real and synthetic data.

1 Introduction

Most research into camera calibration and scene re-
construction has focused on static scenes, or scenes
without motion. Algorithms developed for static scenes
can also be applied to dynamic scenes that contain rigid
objects in motion by treating each rigid object individ-
ually. However, when a dynamic scene contains several
moving objects, the movement of the objects relative to
each other becomes a new source of information about
the cameras and the scene. To utilize this extra in-
formation, new algorithms specifically designed for dy-
namic scenes must be developed.

In this paper, we present a novel linear algorithm
that utilizes the relative motion of objects in a dy-
namic scene to determine the affine calibration between
two cameras viewing the scene. That is, the algorithm
finds the homography induced by the plane at infinity
between two views of the scene. Among other things,
knowledge of affine calibration can be used for affine
scene reconstruction and as an intermediate step in
metric self-calibration.

Our algorithm finds affine calibration directly from
the fundamental matrices associated with moving ob-
jects. At least two fundamental matrices are required,
but additional ones can be incorporated naturally into
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the linear system, providing greater numerical stabil-
ity. If the two cameras have different optical centers,
then the stationary background elements of the scene
give rise to the standard fundamental matrix, which
can also be incorporated into the linear system.

Although two views of a moving rigid-body object
will usually give rise to a fundamental matrix, the ma-
trix can only be used by our algorithm if the object’s
motion meets certain conditions. The simplest form of
these conditions is that the object must undergo a rigid
translational motion. However, since only two views of
the scene are actually used by our algorithm, this basic
condition can be generalized. First, notice that the two
views must be captured at different times for the dy-
namic nature of the scene to be relevant. Consequently,
there is a missing interval of time between when the
views are captured. During this missing interval, the
object can undergo any motion as long as the total
change in the object and its location is equivalent to a
single, rigid translational motion.

The term object has a specific meaning in this pa-
per, defined by the general condition just given: An
object is a group of particles in a scene for which there
exists a fixed vector u € R3 such that each particle’s
total motion during the missing time interval is equal
to u. Throughout this paper, objects will be assigned
numbers and the notation u® will represent the motion
vector for object i.

The problem of finding the affine calibration be-
tween two views has been widely studied and is of
great use in machine vision. For example, once the
affine calibration has been recovered, affine scene re-
construction is immediately possible (e.g., by triangula-
tion, or see [5]). Among other things, affine reconstruc-
tion can be used for affine, model-based object recogni-
tion, tracking, augmented reality, feature transfer, and
novel view generation in image-based rendering. Find-
ing affine calibration is also an essential intermediate
step in the stratified approach to metric self-calibration
[1, 18, 4, 13, 5].  For instance, if three views of a
scene are available that have all been captured by the



same camera with constant internal parameters and if
the affine calibration can be recovered for each pair of
views, then the metric calibration of the camera can be
determined [12, 11]. In the realm of pure image-based
rendering, it has been shown [10] that affine calibration
can be used to directly generate linear interpolation se-
quences for translational dynamic scenes without the
need for scene reconstruction.

Various techniques for finding the affine calibration
between pairs of views have been published. Several
authors [17, 1] used the fact that if two views are cap-
tured by a fixed camera undergoing a rigid transla-
tional motion, then the infinity homography between
the views is known to be the identity matrix. Faugeras
[5] described an alternative approach to affine cali-
bration that also involves pure translational motion.
Other techniques [3, 2] have been developed for the re-
stricted case of planar camera motion, that is, for when
the camera’s internal parameters do not change and
the camera only undergoes translations and rotations
that are parallel to a fixed plane. None of these tech-
niques are directly related to dynamic scenes, and they
all place restrictions on camera motion; our technique
places restrictions on object motion but not camera
motion.

The most direct method for finding affine calibration
is to identify four conjugate directions (i.e., points on
the plane at infinity) that are not all coplanar; like all
planar homographies, the infinity homography is com-
pletely determined by its behavior on four points [5].
Pollefeys demonstrated that affine calibration between
two views taken by the same camera can be determined
from just two conjugate directions if the modulus con-
straint is utilized [12]. Since one conjugate direction
can be determined from the motion of each moving ob-
ject in the scene, these techniques might be applicable
when two or more moving objects are present. How-
ever, the technique presented in this paper is usable
even when only one moving object is present (because
the static background can provide the second necessary
fundamental matrix); additionally, the cameras can be
different in our approach.

The technique presented by Zisserman et al. [18]
and later expanded upon by Horaud et al. [9] applies,
in general, to a different class of problems than our
technique and uses a completely different mathemati-
cal approach. Zisserman’s algorithm is for a stereo rig
viewing a static scene from two different locations and
is mathematically based upon projective reconstruc-
tion of conjugate points. In contrast, our technique
works directly from fundamental matrices without any
need for reconstruction; thus additional errors intro-
duced during projective reconstruction (e.g., errors in-

troduced through triangulation) are avoided. Further-
more, in our technique it is not strictly necessary to
identify conjugate points at all if the fundamental ma-
trices can be determined by some other means. For
example, Stein [15] presented a direct method for find-
ing the trilinear tensor between three views using op-
tical flow; the required fundamental matrices could be
determined from such a trilinear tensor [8]. While our
technique could be applied to the stereo rig problem for
static scenes if the rig undergoes a rigid translation (see
Section 5.2), it is not possible in general to apply Zis-
serman’s technique to the dynamic scenes considered
here.

Recently, several papers have been published con-
cerning the use of dynamic scene information for var-
ious types of calibration. Fitzgibbon and Zisserman
[6] studied the problem of metric self calibration
from multiple moving objects. Their techniques, how-
ever, are presented as nonlinear minimization prob-
lems whereas the technique we present is linear. More
closely related to the problem presented here, Shashua
and Wolf [14] developed a technique for finding the
dual Htensor between three views of a dynamic scene
in which all the objects move along straight-line paths.
Their algorithm is linear and, in principal, the dual
Htensor could be used to find the relative calibration
between any two views. However, the optical centers of
the views must lie on the same line or alternatively the
entire scene and all the scene motion must be in a sin-
gle plane. Our technique only requires two views and
has no restrictions other than the straight-line motion
requirement given earlier. Finally, Stein [16] presented
a method for finding the weak calibration between two
widely-separated views using statistics acquired from
a dynamic scene over an extended period of time. His
technique is unrelated to the present work and will not
be discussed further.

2 Notation and preliminary concepts
Assume two camera views are captured at times
t = 0 and t = 1 using pinhole cameras, which are
denoted camera A and camera B, respectively. In this
paper, a fized-camera formulation is used, meaning the
two cameras are treated as if they are at the same loca-
tion and the world is moving around them; this is ac-
complished by subtracting the displacement e between
the two cameras from the motion vectors v¢ of all ob-
jects in the scene. In the reformulated scene, object
i moves by u* = v’ — e and what had been the sta-
tionary background becomes an object that moves by
—e. Under the fixed-camera formulation, the camera
matrices are just 3 x 3 and thus each camera represents
a basis for #2. The basis induced by camera A will be
called basis A, and so on. We reiterate that, although
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we choose to reinterpret the cameras as sharing the
same optical center, in actuality the cameras can be
at different locations and can be completely different
internally.

The quantity e used above is called the epipole. A
position or a direction in space, such as e, exists inde-
pendently of which basis is used to measure it; when
necessary, we will use a subscript letter to denote a
particular basis. For instance, e, is e measured in ba-
sis A. If cameras A and B are at different locations in
the original scene, then e is nonzero and there exists a
fundamental matrix F for the cameras which has the
following representation [7]:

F= [eB]ng?s (1)

Here [-]x denotes the cross product matrix and HSS, is
the homography induced by the plane at infinity, the
quantity we seek to calculate. When the two cameras
share the same optical center, the fundamental matrix
is 0 and has no meaning. However, for each moving ob-
ject @ in the scene, we can define a new kind of funda-
mental matrix. If, after switching to the fixed-camera
formulation, object i is moving in direction u?, then
the fundamental matrix for the object is:

F' = [UE]XH% (2)

The epipoles of F? are the vanishing points of object 4
as viewed from the two cameras, and the epipolar lines
trace out trajectories for points on object i.

Notice that, under the fixed-camera formulation, the
stationary background in the original scene becomes
just another moving object (provided e is nonzero).
Hence by using the fixed-camera formulation we are
able to create a single mathematical theory that ap-
plies to pairs of cameras at different locations as well
as to pairs of cameras that share the same optical center
(e.g., two views from a single camera that is undergoing
a zoom or rotating around its optical center).

3 Motion-based affine calibration
We now show how affine calibration can be com-
puted directly from the motion of two scene objects

Figure 1: Example of the fixed-camera formulation. (left) Two
different cameras A and B view a dynamic scene from different
positions. Camera A captures a view at time ¢t = 0; camera B
at time ¢ = 1. The scene has one moving object (labeled 1)
and one stationary object (labeled 0). Object 1 translates by
vi between time ¢t = 0 and ¢t = 1. The displacement between
the two optical centers is e. (right) The same two views would
have been captured under this alternative scenario: The two
cameras share the same optical center, object 0 translates by
up = —e, and object 1 translates by u; = v; —e.

that are not moving parallel to each other. Let the two
objects be indexed by the set {0,1} and consider Eq.
2. Observe that HSS is a rank three invertible matrix,
but [ul]« is rank two, and consequently F? is also rank
two. Because of the rank deficiency in [u}]«, the fol-
lowing arises: Let S; = {M € ®3*3 : F! = [u}], M}.
Then S; is a 4-dimensional vector space over the real
numbers; specifically, a basis for S; is given by the ma-
trices pj, pi, ps, pi € B33, where p) = HSS and

p} = [u},0,0], pi=[0,u},0], p;=[0,0,ul]

Because HSS, is in the basis of both Sy and S, and
because u® and u' are not parallel, SyNS; =< HYS, >,
where < - > denotes the subspace generated by a set
of vectors. Since we only need to find HS up to a
scalar, we only need to find one nonzero element in the
intersection of Sy and S;. This is accomplished by first
finding any two matrices pj such that

F' = [Ug]xpi (3)

Next, notice that S; is spanned by p?, p%, ps, and pj}
(because if p} is in < p!, p}, p} >, then [ul]«xp; = 0).

Consequently, there exist scalars k1, ..., ks such that
HY, = —kip! — kop3 — ksp — kup}
= kspi + kepy + krp3 + kspg (4)

The second equality in Eq. 4 means that

[P P P3P Pi P3 Ps PullkL k- ks]T =0 (5)

Here we treat the matrices pj- as column vectors in
2. The above can be solved using standard techniques
from linear algebra (e.g., singular value decomposition
to find the eigenvector of eigenvalue 0). Once the k;’s
are found, we can find HS (up to a scalar) using Eq.
4.

Formally, we must show that the left-most matrix
in Eq. 5 has rank 7. The rank is less than 8 since Eq.
4 has a solution. The vectors p?, pY, pY, pi, pi, p}
clearly form a linearly independent set because u® and



Table 1: CALIBRATION ERROR
average noise added per point
5.003 pixels 2.500 pixels 1.250 pixels 0.500 pixels 0.250 pixels

0=0.261 0=0.130 0=0.065 0=0.026 0=0.013
100 points || error=0.0838 | error=0.0338 | error=0.0207 | error=0.00536 | error=0.00277

0=0.153 0=0.0839 0=0.0777 0=0.0102 0=0.00400
60 points 0.103 0.0470 0.0200 0.00993 0.00276

0=0.167 0=0.109 0=0.0497 0=0.0516 0=0.00413
30 points 0.142 0.0632 0.0295 0.0125 0.00764

0=0.182 0=0.115 0=0.0726 0=0.0384 0=0.0225
10 points 0.381 0.230 0.115 0.0494 0.0313

0=0.276 0=0.236 0=0.172 0=0.101 0=0.0911

u! are not parallel. If p; = hip? + hap9 + hsp) +

hapi + hspi + heps for some scalars h;, then by Eq. 3,
F! = [hyu®, hou?, h3u?®] where u? = u! x u®. This is a
contradiction since F! has rank 2, not rank 1. Thus 7
of the column vectors are linearly independent.

Because of the reliance on the linear independence
of the column vectors in Eq. 5, it is crucial that u® and
u' be linearly independent; the algorithm becomes un-
stable as the two objects move in nearly parallel direc-
tions.
3.1 Generalizing to multiple objects

If more than two moving objects are present in the
scene, then the mathematics presented above can be
generalized to incorporate each object’s fundamental
matrix simultaneously into one large, linear system.

Let the objects be numbered 0 to n — 1. Let P(i)
denote the 9 x 4 matrix

[p! P} P} P (6)

and let Ogy4 denote the 9 x 4 matrix filled entirely with
0’s. We construct a matrix M by the following method:

Start with M equal to the null matriz. For each i €
{0,...,n-2} and j € {i+1,...,n-1} such that u’ and
u’ are not parallel, enlarge the matriz M by appending
the following 9 X n matriz to its bottom:

i-1 j—i—1
[ngﬁly-"709><4‘,P(i)7i)9><4,-"v09><4‘7 (7)
_P(j)709><47 - '709><4 ]

n—j

Once M has been constructed, the following system is
solved (e.g., by singular value decomposition):

M [kiky ... kan]" =0 (8)

Affine calibration can now be determined from the fol-
lowing, which holds for every i € {0,...,n —1}:

HY}, = kait1P} + kaivoPh + kairsph + kairapl  (9)

4 Experiments with synthetic data
Extensive experiments with synthetic data were con-

ducted to test the approach. In this section, we summa-

rize the experimental method and present the results.

4.1 Experimental procedure

The general pattern for each trial run was as fol-
lows: Two or more objects were generated and a ran-
dom translation was assigned to each object. Two cam-
eras with random internal parameters were created and
randomly positioned so that both objects at time ¢t = 0
were visible in the first camera and both objects at time
t = 1 were visible in the second camera. Next, noise
was added to the projected points on each image plane
and then the method described in Section 3.1 was used
to recover the affine calibration between the cameras.

For different trials, the overall scale of each object
was magnified or reduced, the distance that the ob-
jects moved was scaled by different amounts, and the
amount of noise was varied. The error in the recovered
HS? was measured using the following error metric:
Error Metric: Treating the matrices as vectors in
R, with vectors p and q denoting the calculated HSS,

and the true HS, the error was calculated as:

_|p-d
Ipllllall

Note that this quantity is 1 — |cos(f)|, where 6 is the
angle between the vectors. An error metric based on
the Frobenius norm would have represented the dis-
tance between the two matrices as points in R? and
thus two matrices that were almost equal except for an
overall sign factor would have erroneously had a large
error. We avoid this issue of overall sign by using the
cosine of the angle between the matrices, thus measur-
ing parallelness.

Each object consisted of up to 100 points selected
randomly in a unit sphere such that the density of
points was uniform throughout the sphere. The in-
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Figure 2: (a) Calibration error vs.
e, | angle (in degrees) between object
motion vectors considered under
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ternal parameters of the cameras were randomly gen-
erated within ranges that are realistic for actual cam-
eras. Each image was size 640 x 480 pixels; this fact
is crucial for interpreting the results that follow since
measurements (e.g., noise added) will often be given in
pixels.

4.2 Results

Table 1 shows how calibration error was related to
the number of conjugate points and to the average
amount of noise added to each conjugate point. As
would be expected, error decreases as the number of
conjugate points increases and as the amount of noise
decreases. The large standard deviations stem from oc-
casional outliers; the scatter graphs in Fig. 2 give a vi-
sual indication of how the error values are distributed.

Recall that the algorithm becomes unstable as the
objects move more parallel to each other in 3D when
considered under the fixed-camera formulation. This
instability is demonstrated in Fig. 2(a). Notice that
there are few outliers for angles above approximately
20°. Thus for the remaining scatter graphs as well
as for the table just presented, trials in which the an-
gle between the object motion vectors was less than
20° were eliminated. For every trial in all the scatter
graphs, 100 conjugate points were used per object and
an average of 1.25 pixels of noise was added per point.

The scatter graph in Fig. 2(b) shows how error is
reduced as noise is reduced. Notice that there are some
outliers even at small noise levels, but the general trend
is clear.

Fig. 2(c) demonstrates how error is reduced as the

o 100 200 300 400 500
SMALLEST RETINAL OBJECT MOTION (PIXELS)

added to each point; (c) calibration
error vs. object area on the image
plane; (d) calibration error vs. reti-
R 1 nal object motion

«
.
4

PO,

AR, S

objects appear larger on the image plane. Notice that
when the average object size covers less than about 40
pixels in the image, error increases rapidly.

It might be hypothesized that the algorithm would
be stabilized by greater projected object motion. How-
ever, Fig. 2(d) shows that error was not affected by the
amount of apparent motion of the objects across the
image plane, at least for the ranges tested. It would
be expected, however, that as the amount of motion
approached the noise level, the error would increase;
this was not tested, however.

Finally, the table below shows how the result is sta-
bilized by the use of more moving objects. Also note
the improvement gained by using 30 conjugate points
rather than 10; this could be due to increased stability
brought on by using more conjugate points to compute
the fundamental matrices.

CALIBRATION ERROR
2 objects | 3 objects | 4 objects
100 points 0.0207 0.0144 0.0102
60 points 0.0200 0.0169 0.0124
30 points 0.0295 0.0235 0.0218
10 points 0.1154 0.0696 0.0651

5 Experiments with real data

In this section, we present the results from two ex-

periments performed with real scenes.

5.1 Experiment I

The first experiment was designed to produce very
reliable data. The object that was used in the experi-



A (time=0)

B (time=1)

Figure 3: The four views on the left are the source views of the box that were used to find the two fundamental matrices
for calibration. Views from camera A are on the left and views from camera B are on the right; the top pair shows object
0 moving towards the camera while the bottom pair shows object 1 moving laterally. The three rightmost views show the

affine reconstruction of the box as seen from different angles.

ment was covered with a regular dot pattern (see Fig.
3), and the center of each dot was determined to sub-
pixel accuracy by an automatic algorithm that found
the center of mass of each dot. The cameras were fixed
in position throughout the experiment.

Only one actual object was used, but it was moved in
two different directions and thus served as two different
objects. This means the two objects were not visible at
the same time, but that fact is irrelevant to the algo-
rithm when the cameras are in fixed positions relative
to each other (e.g., as on a stereo rig). This situation
occurs, for example, when a pair of fixed cameras are
monitoring the intersection of two roads. Occasionally,
lone vehicles will cross the intersection, going in either
direction. Each vehicle would give rise to a fundamen-
tal matrix, and over time the affine calibration could
be accurately computed.

The ground truth affine calibration between the
two views was acquired by using a three-dimensional
calibration grid containing several hundred points at
known positions. Each camera matrix was computed
directly from the known 3D to 2D correspondences
stemming from the calibration grid. Prior to this, ra-
dial distortion was corrected for as a separate step.

The ground truth affine calibration, as determined
directly from the full camera matrices, was

0.005270 —0.002681 0.3752
0.002858 0.004966 —0.9269
0.0000009253 —0.0000000624 0.005347

oo
HAB_

while the affine calibration determined using the mo-
tion of the box was

0.005127 —0.002625 0.3773
0.002789 0.004809 —0.9260
0.0000009684 —0.0000001226 0.005186

HY =

AB

The distance between the matrices, using the same
error metric used for the synthetic experiments, was
2.71 x 1075, or about 0.13° when treating the matrices
as vectors.

5.2 Experiment IT

The second experiment utilized objects that had
more natural texture so that fewer and less reliable
point correspondences were obtained. In this experi-
ment, several objects were placed on a piece of paper
such that the paper could be slid across a table to sim-
ulate motion of the objects or the cameras. As before,
the object was viewed by two cameras that were fixed in
position throughout the experiment. The input images
that were used for this experiment are shown in Fig. 4.
Notice that the center view is zoomed in and has much
less radial distortion than the left view. The left and
center views, corresponding to camera A and camera
B respectively, form one pair representing the object
at time ¢ = 0. From this pair, a fundamental ma-
trix was recovered via standard techniques using about
30 point correspondences that were selected by hand.
Next, the object was slid across the table in a manner
approximating a pure translation. One final view was
then captured from camera A only; this is shown as
the rightmost view in Fig. 4. A second fundamental
matrix was computed using the right and center views,
again using about 30 point correspondences selected by
hand.

Our algorithm was then applied to the two funda-
mental matrices, yielding an affine calibration of

0.351  0.153 0.196
—-0.433  0.505 0.151
—0.222 —0.053 0.546

oo
HAB_

The ground truth affine calibration was determined
from vanishing points. In particular, a regular grid
was viewed by both cameras as it was placed in vari-



ous orientations in space. The vanishing points of this
grid, found automatically by a separate program, rep-
resent conjugate directions in the two views; four such
points at infinity are sufficient for finding the affine cal-
ibration and many more than four were actually used.
The affine calibration thus determined was

0.359  0.139 0.208
HSS = | —0.431  0.497 0.128
—0.211 —-0.069 0.557

Again, agreement is very good despite the many poten-
tial sources of error in this experiment. The distance
between the matrices, using the same error metric, was
0.000756, or about 2.2°.

6 Conclusion

Dynamic scenes contain sources of information that
are not present in static scenes, but not many meth-
ods exist to utilize this extra information. This paper
presented the only existing linear algorithm that uti-
lizes dynamic scene information to determine the affine
calibration between two generally-positioned camera
views. The algorithm has been shown to work on both
synthetic and real data. Through experiments with
synthetic data, it has been shown that the algorithm
degrades gracefully with noise and the results improve
as more moving objects are incorporated.

It remains to be investigated how the ideas of this
paper could be extended to utilize more than two views.
The trilinear tensor arising from three views should sta-
bilize the fundamental matrix calculation and improve
results. Moreover, it may be possible to compute the
affine calibration directly from pairs of trilinear ten-
sors.
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