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Abstract

There are important questions that require an understanding of white matter
connectivity in the brain, such as how the brain integrates sensory inputs, how
white matter tissue and connections are altered by disease, or how cancer tumors
should be excised without destroying healthy tissues. These questions require a
global understanding of the geometric nature of white matter tissue as well as the
organization of white matter structure in local regions of the brain. This thesis
presents novel approaches and methods that simultaneously combine local and
global geometry of white matter into a single model.

The methods presented in this thesis are called Semiparametric Geometric
Modeling (SGM). The SGM fits a nonlinear manifold to Diffusion Weighted
Magnetic Resonance Imaging data and produces a nonlinear coordinate system.
Specifically, an SGM simultaneously extracts white matter structures and produces
a set of functions that together define a model of the white matter. An SGM
produces manifold models of the physical white matter structures. This allows the
physical structures to be mapped by a multi-dimensional, nonlinear coordinate
system that allows points, curves, surfaces, and volumes to be defined by the
manifold model. Associated SGM functions can interpolate to the level of a
single neural fiber, reveal the path of nerve fiber bundles, and be used to study the
interaction e.g. crossing, touching, bifurcating, of fiber bundles throughout the
brain. SGM functions can be used to query the manifold structure, allowing data
to be organized so as to enable methods such as Functional Data Analysis to be
used for statistical analysis of the data.
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Software to build SGMs was implemented and a series of experiments were
carried out on Diffusion Weighted Magnetic Resonance Imaging data. The data
consisted of control subjects and subjects with autism. An SGM was used to
simultaneously extract and model two structures for each subject: a portion of the
genu of the corpus callosum and the right corticospinal tract. The SGMs were used
to map data from imaging space to curves on the manifold. These data curves were
the input for group differential analysis using Functional Data Analysis. Group
differences were found, based on these structures that are consistent with results
from other sources. However, the results also indicate that the group differences
were the result of differences in rates in change in data distributions along the
structure rather than simply point-wise differences in data at specific locations.
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Chapter 1

Introduction

The brain is the most important and complex organ in the human body. 98% of
of neural tissue, specialized for sending command signals to all other organs, is
concentrated in the brain. The brain contains over 100 billion neurons with several
hundred trillion connections and an estimated storage capacity of 2.5 petabytes,
enough capacity to record high definition video 24 hours a day for 300 years. The
brain controls or supervises everything from autonomic processes like breathing
to walking to deep cognitive functions such as seeing and understanding the world
around us.

Conditions or diseases that alter the structure of neural tissue, and the connective
network, it creates have a significant impact on human health. The Center for
Disease Control estimates 1 in 88 children are affected by autism. The World
Health Organization estimates that Schizophrenia affects about 24 million people
worldwide. Alzheimer’s disease is expected to affect 1 in 80 people worldwide.
All of these conditions have been tied to changes in white matter tissue and
connectivity of the brain. Cancer also modifies tissue and connectivity. Tumors
of the white matter distort, infiltrate or destroy white matter fibers. Treatment
requires delicately excising the abnormal tissue while simultaneously minimizing
functional deficit and maximizing structural integrity.

Understanding brain structure and neural connectivity is fundamental to
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understanding “normal” dynamic cognitive processes as well as for treating
pathological conditions. First, there are fundamental questions regarding how the
brain functions dynamically. For example, how do parts of the brain work together
to create memory, perceive and integrate sensory inputs, process emotions, make
decisions, and many, many more? There are many tools, such as Functional
Magnetic Resonance Imaging and Electroencephalography, that look at dynamic
processes in the gray matter of the brain. Additionally, there are methods such
as Transcranial Magnetic Stimulation that can stimulate the brain directly to see
how brain function changes.

A great deal about how the brain functions has been discovered without
taking into account in any detail how the regions of the brain are structurally
connected. The next major step is a good understanding of how these areas are
structurally connected and how changes in the organization of the connections as
well as changes in the quality of the connections modulate cognitive processes.
Fortunately, a relatively new imaging method called Diffusion Weighted Magnetic
Resonance Imaging provides the basic information needed for studying large
scale organization of white matter in vivo.

Dendrite

Cell body

Node of
Ranvier

Axon Terminal

Oligodendrocyte

Myelin sheath

Axon

Nucleus

Figure 1.1: (left) Coronal view slice through the mid brain. (right) Sketch of a
neuron from [173]. The dark areas are comprised of the cell bodies that make
up the gray matter and the light areas are the myelinated axons that make up the
white matter.

Diffusion Weighted Magnetic Resonance Imaging (DWI) samples the water
diffusivity properties that are determined by the organization of neural tissue. At the
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lowest level, the tissue of interest is made up of myelin producing oligodendrocytes
and neurons. For simplicity only neural tissue that is involved in long-range
communication will be described. The right side of Figure 1.4 shows a sketch of a
typical neuron. The cell body and axon terminal are anchored in gray matter tissue.
The axon that connects the cell body and axon terminal is wrapped in myelin
and propagates signals between them. A single myelinated axon is referred to as
a white matter fiber. White matter fibers come in a few different diameters but
most are on the order of a few microns in diameter. However, the best resolution
currently available in DWI is on the order of cubic millimeters. So, what DWI
measures are the tissue level properties of bundles of white matter fibers.

These white matter tissue properties are measured at voxels throughout the
volume of the brain and the measurements are organized so that we know which
voxels are next to each other. Some of the questions that can’t be answered directly
from the data in this form are:

1. Where are given fiber bundles are located?

2. How are given fiber bundles organized internally?

3. How do fiber bundles interact structurally with one another?

4. Where do given fiber bundles terminate in the gray matter?

5. Is there a common global organization to the fiber bundles?

Many methods have been proposed to take these voxel level data and construct a
map that attempts to answer some of these questions. But until now, no method
has integrated all the information available in the data and ideas about how the
brain is organized globally, from the level of the whole brain (organ) to the
regional level to the tissue level. To give some intuition as to the organ level
organization, see Figures 1.2 and 1.3. [186] have proposed that white matter fiber
bundles are arranged so as to follow the layout of a three dimensional grid that
is locally regular but highly distorted at the whole brain level. Since this grid
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can then be said to define the geometry of the organization of the fiber bundles.
More specifically, the distorted grid is a nonlinear coordinate system on what is
known as a nonlinear manifold. The nonlinear coordinate system describes how
to “navigate” around the nonlinear manifold. Like any good coordinate system,
geometric entities such as points, curves, surfaces, and volumes can be defined in
terms of coordinates on the manifold. Manifold properties allow all of the tools
and properties of differential geometry, algebraic topology and foliation theory to
be brought to bare to analyze and describe the structural organization of white
matter in the brain. This thesis presents new methods for building a model of a
nonlinear manifold mapped by a nonlinear coordinate system where bundles of
white matter connecting different parts of the brain follow the coordinate "axes."

Figure 1.2: Nonlinear geometry of the sagittal stratum in the rhesus occipital
lobe. From [186]. Reprinted with permission from AAAS.

A new method is presented in this thesis called Semiparametric Geometric
Modeling (SGM). An SGM fits a nonlinear manifold to DWI data, allowing points,
curves, surfaces, and volumes to be defined on that manifold. Specifically, an
SGM produces a set of functions that together define a multidimensional nonlinear
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Figure 1.3: Comparative neuroanatomy of white matter organization between
(A) galago, (B) marmoset, (C) owl monkey, (D) rhesus monkey, and (E) human.
From [186]. Reprinted with permission from AAAS.

coordinate system that maps the nonlinear manifold. The SGM functions can
interpolate to the level of a single neural fiber, reveal the path of nerve fiber
bundles, and be used to study the interaction (crossing, touching, bifurcating) of
multiple fiber bundles throughout the brain.
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Figure 1.4: The data in this figure are vectors that are tangent to white matter
fiber bundles in the genu of the corpus callosum. The green vectors are from
the original DWI data. The red vectors were generated from the SGM. The two
vector fields have been slightly offset to make visual comparison easier.

1.1 Semiparametric Models

Semiparametric models account for the data at multiple scales simultaneously.
They combine global parametric models that can be used to infer large-scale
features of a data set but which may occasionally be too smooth to account for
small scale features; nonparametric models model data well on a local level but
have little control over global structure. Global parametric models have two
important properties. First, by accounting for large-scale structure they reduce the
complexity and therefore the dimensionality of the data. Second, the form of the
parametric model allows us to include prior knowledge about large-scale features
in the model in a straightforward manner. Nonparametric models handle local
complexity well and allow imposition of prior knowledge about local features
of the data. The global parametric models in the SGM are implicit algebraic
polynomial functions introduced in the next section and the nonparametric models
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are compact kernel functions that describe local geometry alluded to in Section
1.4.

1.2 Implicit Algebraic Polynomial Functions

Implicit algebraic surfaces of the form S(~x) = 0 have long been used in computer
vision and computer graphics to describe surface properties of objects. What the
equation means is that the surface is determined by all of the points in the domain
of S(~x) that evaluate to 0. Two important properties of implicit functions that are
central to this thesis are (1) the gradients of implicit functions are normal to the
surface defined by the function, and (2) by choosing a range of values other than
0, entire families of implicit functions can be defined. A novel aspect of the SGM
is that it fits the gradients of a family of implicit surfaces to a vector field, and
that family of implicit surfaces is defined by a single algebraic polynomial.

1.3 Depth Function

When fitting data to a geometric model it is important to decide “where” the model
should go. For standard least-squares the criteria for where the model should
placed is the most likely part of the data. Given that, the criterion for deciding
where the model should be placed is the minimum of the squared residuals. If
the model is a line for instance, the squared residual controls the placement and
orientation of the line through the data.

In order to fit our SGM to model to DWI data, a similar notion is required.
Because of the nature of the problem the squared residual is not appropriate. We
turn instead to the notion of statistical depth. When fitting a function it is important
for stability and robustness to localize the function near the “center” or deepest
point in the data. For point-like data in Euclidean space the geometric median is
a robust choice for defining the deepest point in the data. However, for an SGM,
the entity that needs to be placed in the deepest part of the data is a surface and
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the space it needs to be “centered” in is nonlinear. This dissertation presents a
novel depth function called a Geometric Median Surface (GMS) for this purpose.
The GMS plays the same role in this nonlinear space that the geometric median
does in linear spaces.

1.4 Semi-Supervised Models

The last element of the model is a means of “discovering” the local structure
of the data and inferring how it should be added to the global algebraic model.
The method chosen for this task is semi-supervised learning. Semi-supervised
learning is a classification technique used in machine learning. The basic idea is
to take a comparatively small sample of data with known classification “labels”
combined with a large amount of unlabeled data and build a classifier that labels
all of the data. The assumptions are that the data is smooth, i.e. that data that is
part of the same classification doesn’t change character too rapidly. That data
can in some sense be clustered, and that even complex data can be described
relatively simply. The semi-supervised method used here is different from the
usual methods. First, it uses a single class label, second, the “decision function”
is biased by a global parametric model of the data, and third the local similarity
functions are compact kernels. The resulting decision function is applied to all
the data and the class label is applied to any data that the function evaluates as
being part of the same class. This process allows data that is part of a structure of
interest to be segmented from, or extracted from, all other data in a data set.

1.5 Multi-Objective Optimization Algorithms

Fitting data to a model where the various objectives conflict or interact is known as
multi-objective optimization. The multi-objective optimization problem for fitting
the SGM weights the various parts of the model allowing them to be adjusted
or traded off relative to one another. As a result a whole sets of “best” solutions
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are described as the weights are varied. These optimal solutions are said to be
Pareto Optimal [114]. It is up to the modeler to determine when a given solution
is acceptable. The usual nonlinear least-squares solver (trust region reflexive in
Matlab) is extended to solving a nonlinear multi-objective optimization problem
whose objective functions make use of L1, L2, and L∞ norms.

Figure 1.5: Diffusion Weighted Image – axial view slice through a region called
the splenium of the corpus callosum. The shading is calculated from the imaging
data and indicates the distribution of white matter versus gray matter. The best
available resolution is almost 3 orders of magnitude larger than the size of a
single myelinated axon. At best, the imaging data is a noisy approximation of the
organization of groups of myelinated axons.
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Figure 1.6: Clockwise from lower-left to upper-right. Axial, sagittal, and coronal
views with an SGM volume of the genu of the corpus callosum that connects
two designated ROIs overlaid. The lower-right image shows manifold curves
generated by the model representing the organization of the white matter fibers in
the SGM volume.

1.6 Contributions

The elements of an SGM are (1) a novel semi-supervised, semiparametric slab
support vector machine, (2) a new geometric entity called a Geometric Median
Surface, (3) a global implicit polynomial method for modeling a vector field and
by extension a second order tensor field, and (4) an algorithm that fits the SGM
model to the data by solving a nonlinear, multi-objective optimization problem
whose objective functions make use of L1, L2, and L∞ norms.



11

Figure 1.7: (left) is an example of curves modeling a portion of a white matter
structure called the corticospinal tract. (right) is a volume of the same structure
shown in the position where it is located in the brain.

The SGM is a new approach to discriminating differences in connectivity
among different brains, and presents a new framework to further explore how
differences in connectivity modulate differences in dynamic processes in the brain.
Semiparametric Geometric Modeling is a natural foundation for partitioning,
modeling and analyzing the local, global, and volumetric properties of white
matter volumetric structures. Unlike all current methods, the SGM inculcates the
full structural information available from the data and from assumptions based
on the global organization of white matter in the brain into a nonlinear manifold
embedded in R3. This geometric model can be queried to extract geometric
and scalar invariants based on the geometry of the white matter rather than on
the imaging organization of the data’s raw 3D rectilinear grid. The model can
partition white matter structures into well defined geometric volumes, surfaces,
curves, and points. The major contributions of this dissertation are:

1. A novel method for embedding a nonlinear manifold defined by a second
order tensor field in R3.

2. A novel method for modeling the foliations of a manifold defined by a
vector field by a single implicit polynomial function that represents a family
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of implicit surfaces. This problem has previously been formulated as a local
dynamic problem and solved by PDEs. That method suffers from sensitivity
to noise and ignores global structure. Instead, the problem is formulated
here as a static global problem that is solved by fitting the gradients of a
function with global basis functions and “localizing” the function using the
Geometric Median Surface.

3. A novel robust depth function called a Geometric Median Surface (GMS).
The GMS generalizes the geometric median point to parametric surfaces in
vector fields.

4. A semi-supervised Support Vector method for clustering data on manifolds.
This is an extension of the Slab SVM to a single class classifier. It clusters
in a manner similar to single-link hierarchical clustering. Data is iteratively
added to a labeled class based on compact kernel functions.

5. The SGM manifold model whose local structure is determined by a semi-
supervised support vector model and whose global volumetric structure
is a function of global, intersecting families of implicit surfaces. For
example, in R3 for a manifold determined by a second-order tensor, the
global volumetric structure amounts to the intersections of three families of
orthogonally-intersecting implicit functions.

6. A structural query method to organize data on an SGM manifold for
statistical analysis. For example Functional Data Analysis to analyze
fractional anisotropy (FA) data along white matter fibers.

7. A model that allows analytic calculation of local torsion, curvature and
other differential geometric quantities at any point in the volume modeled
by an SGM.

8. A model that allows for rigid body transformations, for example rotations
and translations, of an extracted volumetric structure by linear transforms
of the coefficients of the implicit functions that are the output of the SGM.
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9. A new definition of white matter connectivity is defined based on the SGM’s
ability to partition white matter structures into well defined volumes.

1.7 Outline of the Thesis

The remainder of this dissertation is organized as follows.
Chapter 2 presents an overview of the basic organization of neural tissue in

the brain. Focused primarily on the properties of white matter tracts.
Chapter 3 provides an overview of Diffusion Weighted Magnetic Resonance

Imaging (DWI) and what it measures in white matter. The balance of Chapter 3
looks at current methods of modeling and analyzing white matter structures.

Chapter 4 reviews the fundamental concepts and constructs that underlie the
modeling method that is the subject of this thesis. The most important abstract
elements are the definition of manifolds, foliations, implicit algebraic surfaces
as foliations of a manifold, and total ordering of foliations. The most important
algorithmic notions reviewed are semiparametric models, manifold learning, and
semi-supervised learning. As these ideas are presented some of their relationships
to the application domain are briefly described.

Chapter 5 presents a new modeling framework called Semiparametric Geomet-
ric Modeling (SGM). An SGM brings together elements of Differential Geometry,
Differential Topology and Machine Learning to model the data at multiple scales
on multiple structures. The resulting algorithm enables automatically extracting
and modeling white matter structures from DTI data.

Chapter 6 presents the algorithm for fitting an SGM. Finding the “best” fit
to the data of each part of the model and then combining the parts would very
likely give a model that is a poor fit to the data. Since there are multiple parts or
objectives in the model, a better approach is to combine the objectives together
to form a multi-objective function. The multi-objective formulation and the
algorithm to fit it is described.

Chapter 7 introduces methods for querying geometric properties of the SGM.
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It begins by demonstrating how to extract submanifolds – volumes, surfaces,
curves, and points from the model. Next, it defines how to map points from image
space to manifold space and from manifold space to image space. This chapter
also specifies how to sample submanifolds so as to organize the data for Functional
Data Analysis, and how to use the SGM to calculate invariants at each point on
the manifold. Next, concepts behind rigid body transformations of the manifold
model are presented. This chapter also includes the definition of connectivity
used in the SGM. Finally, orientation statistics are presented as a method to access
how well the SGM fits the data and as a method to detect small-scale structures
that might not be seen by the global model.

Chapter 8 presents an implementation of SGM and uses it to analyze a Diffusion
MRI data set and is able to detect, and localize group differences in two white
matter structures that have been implicated in Autism Spectrum Disorder. The
software that implements the SGM includes software to (1) build SGM models,
(2) implements sampling and mapping functions, (3) outputs SGM volumes at
voxel (NIFTI format) and subvoxel levels (Matlab mat format), (4) outputs SGM
curves, C‖,C⊥, and C in Camino, Trackvis formats, and Matlab mat format (5)
maps users choice of invariants such as FA onto SGM curves and outputs each
curve as a spline function ready for Functional Data Analysis, and (6) provides a
wrapper around third party FDA package to do the analysis and generate reports.

Chapter 9 reviews the contributions of this thesis and outlines possible future
work. Additionally, new methods of solutions are suggested. Also, ways of
extending these methods to other imaging modalities and the incorporating
clinical data are discussed.
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Chapter 2

Organization of White Matter of
the Brain

2.1 Introduction

In this chapter we briefly review the basic organization of neural tissue in the
brain. We focus primarily on white matter volumetric structure and the fiber
bundles that make it up. Identifying these white matter regions, characterizing
their volumetric structure, and determining what gray matter regions of interest
(ROI) they connect, is important for understanding both normal brain function
and disease processes.

2.2 Volumetric Structure and Organization of
Neural Tissue of the Brain

Early anatomical studies of the brain revealed two major types of tissue: white
matter and gray matter as shown in Figure 2.2. Looking more closely, histological
studies revealed that what appeared to be two separate types of tissue shared a
common component—the neuron (See Figure 2.1).
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The part of the neural tissue associated with gray matter is predominantly
unmyelinated axons and cell bodies. The cell bodies may be considered processing
nodes with unmyelinated axons as the short range local connections between
neural cell bodies. Unmyelinated axons can be packed very tightly allowing
many short range connections but have comparatively low signaling velocity.
Conversely, myelinated axons in white matter are bulkier but have additional
structure that allows much higher signaling velocities.

Myelinated axons are axons wrapped in myelin sheaths. The myelin is
produced by oligodendrocytes (Figure 2.1). A single oligodendrocyte may
myelinate as many 50 axons, in effect helping to define and constrain the local
geometry of groups or bundles of axons. This suggests that the myelinated axons
are unlikely to be arranged in a tangled mass but have a more coherent local
organization. Bundles of myelinated axons are called white matter structures or
fiber tracts. The fibrous organization of the myelinated axons is apparent in the
dissection of the corticospinal tract shown in Figure 2.2.

Until recently the fibrous organization has defined the primary geometric
consideration in modeling the organization of white matter structures. In this case
only the geometry parallel to the bundles is taken into account. The reason for this
is that the data sampling method, Diffusion Magnetic Resonance Imaging (DMI)
relies on the freedom of water to diffuse along the myelin parallel to the underlying
axon bundles. We make use of empirical evidence that the sampling method may
also be used to infer the geometry orthogonal to, or across the orientation of,
the axon bundles. For example, modeling sheet-like, tube-like or more general
kinds of organization. We consider the fiber bundle and additional geometric
organization orthogonal to the fiber bundle locally to be the mesoscale geometry
of the brain. The macroscale or global organization of the main body of the brain
has yet to be fully characterized but has been proposed to be tied to the embryonic
axes of development.

The general body plan of all chordates is known to follow a set of intrinsic
geometric axes known as embryonic axes of development [52]. These are, the
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Figure 2.1: Schematic of a neuron. The cell body containing the nucleus and the
dendrites and axon terminal comprise the gray matter of the brain. The myelin
sheathed axons are the long range connections of the brain and make up the white
matter fibers of the brain.

rostro-caudal, the medio-lateral (or proximo-distal), and the dorso-ventral axes.
The brainstem and midbrain have also been shown to have structural organization
that follows these axes. The work in this thesis concentrates predominantly on the
mesoscale organization of the brain but we return to the macroscale organization
in Chapter 9.

Figure 2.2: Dissection of the corticospinal tract. (left) Coronal view slice through
the brain demonstrating the gray matter and white matter structures at the gross
anatomical level. (right) Brain with portions of the white and gray matter removed
showing the midbrain to the cortex. The fibrous organization of white matter can
be seen. From [173].
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2.3 Discussion

This chapter reviewed a few properties of white matter fibers and fiber bundles. It
is the modeling of the large scale organization of these white matter bundles that
is the object of this thesis. Clearly, before the organization these substructures can
be modeled it is necessary to acquire information about it’s structure in vivo. An
imaging modality that provides the information that is needed is called Diffusion
Weighted Magnetic Resonance Imaging. The next chapter, Chapter 3, reviews the
principles of Diffusion Weighted Magnetic Resonance Imaging and some of the
current methods for modeling white matter organization.
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Chapter 3

Diffusion Weighted Magnetic
Resonance Imaging

This chapter provides and overview of Diffusion Weighted Magnetic Magnetic
Resonance Imaging (DWI) and what it indicates about the local organization of
white matter. We then look specifically at Diffusion Tensor Imaging (DTI) which
has historically been the major imaging method for analyzing white matter tissue.
The balance of Chapter 3 looks at current methods of modeling and analyzing
white matter structures.

A variety of methods are available to study white matter tissue. These range
from histology and chemical tracers to DWI. Histology and tracers are excellent
at the very small scale but are impractical for large numbers of neurons over long
distances and are impractical for in vivo studies in humans. DWI on the other
hand is ideal for studying white matter at a large scale and in living human beings.

DWI samples the water diffusivity properties of tissue that correlate with
the microstructure and organization of the tissue. However, the best available
resolution is almost 3 orders of magnitude larger than the size of a single myelinated
axon. As a result, what is measured are the local properties of bundles of myelinated
axons. Fortunately, DWI is very sensitive to the organization and microstructure
of these bundles of myelinated axons [59] [18] [159].
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A single DWI voxel may be a sample of a single tissue type or substance.
For example, white matter, gray matter, or Cerebrospinal Fluid (CSF). Alterna-
tively, a single voxel may contain a combination of these tissue/substance types.
Additionally, a voxel may be the result of sampling an area where axon bundles
cross, split or merge. Instances where a voxel is the result of sampling multiple
tissue/substance types or where the fibers have a complex local geometry are
known as the partial volume problem.

There are a number of variations of DWI that may be used to sample white
matter, but by far the most common is Diffusion Tensor Imaging (DTI) and is the
imaging modality we use in our model. See [81] for a detailed examination and
survey of DWI methods.

3.1 Diffusion Tensor Imaging

The Diffusion Tensor is represented by a positive definite 3x3 matrix D with 6
degrees of freedom. The Stejskal and Tanner [81] equation:

Sl = S0ε
bl⊗D (3.1)

is the basis for the estimating the Diffusion Tensor [81], where b is the matrix
that encodes measurement parameters, D is the Diffusion Tensor, S0 is the image
acquired with no diffusion encoding gradients, and Si is the image acquired
with each change of the diffusion gradient. Note that the diffusion tensor model
produces a highly smoothed orientation distribution making it difficult to infer
how the tissue orientation might vary spatially within a sampled voxel.

This is especially challenging in voxels where partial voluming occurs. DTI
alone cannot provide enough information to deal effectively with the partial
volume problem. The Diffusion Tensor D in Equation 3.1 is represented by a
symmetric 3x3 positive definite matrix. The eigen decomposition of D results in
3 eigenvectors and their associated eigenvalues,~εi,λi i= 1,2,3. Sorted by largest
to smallest eigenvalues λ1 > λ2 > λ3. Following [193] we relate the geometry
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of D as follows. The primary diffusion direction or vector is interpreted to be
aligned parallel with the axis of the underlying fiber bundle. Specifically, λ1 is the
eigenvalue and ~ε‖ =~ε1 is the associated eigenvector parallel to the fiber bundle.
For the secondary diffusion direction, which we consider the dispersion of the
fiber bundle, λ2 is the eigenvalue and its associated eigenvector ~ε⊥ = ~ε2 is the
direction of the dispersion. Finally, the tertiary diffusion direction is the normal
to the first two defined by λ3 and its associated eigenvector ~ε =~ε3.

A schematic of a Diffusion Tensor is shown in Figure 3.1. Our method assumes
that for any small area on a given fiber bundle the tensors in neighboring voxels,
each with a given ~ε‖,j, ~ε⊥,j, and ~ε,j for the voxels j = 1...N with N being the
number of voxels, are approximately parallel and vary locally about a common
orientation. However, large scale changes in the organization of the tissue, for
example bifurcation points, do occur where tensors change orientation rapidly
and we will describe these exceptions in Chapter 8.

The diffusibility properties measured by DTI that correlate with tissue orga-
nization are important when trying to estimate tissue integrity and composition.
Scalar values that are independent of local tissue orientation are particularly useful
for analysis. A number of invariants derived from the Diffusion Tensor, D, have
been shown to be correlated with characteristics of diffusivity in white matter.
Beginning with a definition of Mean Diffusivity, MD, as

MD = Tr(D)/3 (3.2)

where Tr(·) is the trace of the Diffusion Tensor. The trace is a well known tensor
invariant. Letting λ̂= MD, Fractional Anisotropy FA [13] is defined as

FA =

√
3
2

√√√√(λ1 − λ̂)2 +(λ2 − λ̂)2 +(λ3 − λ̂)2
√
λ2

1 +λ
2
2 +λ

2
3

, (3.3)
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Figure 3.1: Diffusion Tensor: a) principal diffusion direction ~ε‖. b) Normal
diffusion direction~ε⊥. c) Binormal diffusion direction~ε. The principal diffusion
direction is aligned with white matter structures.

and Relative Anisotropy RA [13] as

RA =

√
1
3

√
(λ1 − λ̂)2 +(λ2 − λ̂)2 +(λ3 − λ̂)2

Tr(λ)
. (3.4)

MD, FA, and RA are the scalar data that are analyzed using sampling methods
from our model in Chapter 8.

In Section 3.2 we review current methods used to characterize white matter
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fiber bundles. One example of tracing fiber bundles by streamlines is shown in
Figure 3.2.

Student Version of MATLAB

Figure 3.2: Streamline tractography: The streamlines in red trace along the fibers
of the left and right cingulum bundles.

3.2 Deterministic Tractography

The term tractography has a number of meanings. Unless noted otherwise we
use it here to refer to the deterministic streamline algorithms used to analyze white
matter structure. The space curves that result from applying these models will
be referred to as streamlines. The term tract refers to a physical white matter
structure. Finally, the term fiber refers to bundles of myelinated axons.

Identifying which bundles of myelinated axons belong to a given white matter
tract, characterizing their structure, and determining what gray matter ROIs they
connect, is important for understanding both normal brain function and disease
processes.

Tractography can be thought of as a set of methods for finding an unknown
nonparametric function whose solution defines a space curve through the data
that corresponds to the axis of a white matter fiber bundle. This is accomplished
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by propagating a streamline from an arbitrary starting or seed point through a
vector or tensor field defined by the diffusion data.

While this has been a very fruitful approach, it has a number limitations. [14]
and [94] have shown that the farther a streamline is propagated from a seed point,
the greater the uncertainty that that tract represents a real connection between
ROIs. In addition, tracts are 1D objects that do not interact with each other. This
means that an arbitrary number of tracts may cross a single voxel. In fact very
little can be inferred about the geometry between two nearby streamlines. Other
than some local smoothness constraints on the propagation methods, in general
there are no global constraints. An exception to this are constraints that require
streamlines to pass through or avoid ROIs in the data [79] and the requirement
that each streamline is constrained to lie on a parametric curve [1].

Questions that anatomists might like to ask tend to be global questions about
membership and strength of connection [82]. There are significant challenges in
using streamline tractography to address these questions. For example, deciding
which streamlines are part of a specific white matter structure using the intersection
constraint mentioned above is challenging. Due to noise, some streamlines that
should connect two ROIs may not do so. Conversely, again because of noise,
some streamlines that should not intersect the ROIs, appear to do so.

Using streamlines to determine the strength of connection between two ROIs is
also challenging. The most common method is to count the number of streamlines
that intersect the ROIs. This is, in effect, an effort to estimate the volume of the
white matter connecting the two ROIs. In addition to the noise related issues
mentioned above, there is the question of over-counting. That is, arbitrarily many
streamlines may pass through a voxel, and the greater the distance between the
ROIs, the more likely streamlines are to intersect a given voxel. This results in
an overestimation of the volume of tissue connecting two ROIs. The current
method for correcting for this is ad hoc and not entirely satisfactory. Some form
of rejection sampling [46] might be a better choice for estimating this volume
using streamlines.
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In contrast, our method provides well-defined definitions of both membership
and volume.

3.2.1 Deterministic Streamline Tractography

Historically, deterministic streamline tractography was borrowed from methods
used to visualize the organization of vector fields [28] [154]. Initially it was used as
a means to visualize and group white matter tensors based on the principal diffusion
direction (~ε‖) vector. Subsequently, streamlines were extended to quantitative
analysis. We begin by looking at streamlines as solutions to families of Ordinary
Differential Equations (ODEs) on vector fields of ~ε‖. Then we look at methods
that make use of the full Diffusion Tensor to find streamlines that are solutions to
Partial Differential Equations (PDEs).

First, we consider two properties that are important to both methods: Smooth-
ness and ambiguity of the "direction" of the vectors derived from the diffusion
tensor. Given that we are tracing physical structures with known geometric proper-
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Figure 3.3: Lipschitz continuous means that the rate of change in a continuous
function is bounded. For example, in this sketch if the curve changes so rapidly
that it enters the white region it would not be considered Lipschitz continuous.

ties that by inspection can be considered Lipschitz continuous [147], smoothness
in this case amounts to choosing a local cone as shown in the white area in Figure
3.3. If the apex of the cone is slid along the curve and no other nearby point
intersects the body of the cone, it is considered Lipschitz smooth.
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It is, however, useful to define a constant L, such that

‖f(x1)− f(x2)‖< L‖x1 −x2‖, (3.5)

where L specifies the maximum local rate of change in the function f. Deterministic
streamline techniques choose a Lipschitz constant as a hard stopping constraint
when generating streamlines. We return to Lipschitz continuity when discussing
our methods.

Figure 3.4: Slope or orientation fields graphically represent the solution set of
first-order differential equations (ODE). Streamline tractography traces pathways
through slope fields by propagating along the solution set of ODEs.

The diffusion properties estimated using DTI give us a ~ε‖ that can’t be said to
have a "direction." That means there is really no preference for ~ε‖ versus −~ε‖.
We therefore consider the field to be a slope or tangent field that can be solved
using families of ODEs. Given a set of seed points or initial values the ODEs may
be solved iteratively by numerical methods as we will see in the next section.

3.2.2 Generating Streamlines using ODEs

V(x̃) may be rewritten as V([x1(t),x2(t),x...n(t)], in Rn. Then,

dxi
dt

= Vi(x̃), t > 0 (3.6)
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is an autonomous linear ODE where t is a parameter of the integration and can be
thought of as local distance along the length of the curve xi where i ∈ 1...N is a
family of curves, x̃(t), that are tangent to the vectors Vi(x̃).

The most common methods for numerically solving these ODEs are local
applications of Euler’s method or 4th order Runge-Kutta. See [12, 85] and a
survey [205] for Runge-Kutta methods applied to streamline tractography. A step
size is chosen, and local integration is applied to estimate the next next point to
be included in the function. It is common to choose a Lipschitz constant, L, (
Figure 3.3 ) such that a large abrupt change in direction in the streamline causes
the ODE to halt. Another stopping criterion is, when the value of FA in the voxel
concurrent with the local solution is less than a constant.

3.2.3 PDE–Level Set Propagation

A vector field in R3 can be thought of as a set of local systems of partial differential
equations (PDEs):

V(~x)i =

[
∂F

∂~x

]
. (3.7)

The solutions of this kind of PDE turn out to be surfaces that are the level sets of
a function. In order to find unique solutions, some further constraints must be
applied.

Level set propagation methods use all of the Diffusion Tensor information at
a voxel to do tractography. [205] is a survey of different tractography techniques
including descriptions of wavefront propagation. [124] and [30] used evolving
level set surfaces and a variation of directed Fast Marching to determine a maximum
diffusion direction. [69] used Navier-Stokes fluid flow simulation followed by an
Active Contour method [200] to generate streamlines. Tensor Deflection [96] is
a wavefront algorithm that uses a weighting scheme rather than velocity-based
methods or pseudo viscosities. All these techniques apply criteria that allow for a
unique solution that determines the direction of propagation for the next step in
tracing the streamline.
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3.3 Volumetric Methods

While streamline tractography has some useful properties, there is a need to be able
to analyze white matter volume as well. As described in Section 3.2, questions
about strength of connection between two ROIs are closely related to the volume
of tissue connecting those ROIs. One approach to attempt to characterize volumes
using streamlines, is clustering.

3.3.1 Tract Clustering

Streamline tractography produces 1D curves that then need to be agglomerated
to represent physical white matter structures. One method to accomplish this it
to define ROIs and choose those tracts that pass through them and obey certain
rules. For example, tracts may be chosen such that they pass through ROI A and
ROI B but not ROI C. More sophisticated clustering methods include spectral
methods [83, 125, 189, 210]. In this case features are extracted from the curves and
spectral methods are used to find clusters. Probabilistic clustering methods [55,
105] cluster tracts by finding a set of minimum cost paths that connect two given
regions of a brain. The minimum cost is chosen and paths that fall within some ε
cost of that path are included. While this method does a good job of localizing a
set of tracts to a volume there is no real geometric relationship between the tracts
at any point besides the end points.

3.4 Volumetric Methods without Streamlines

Since our method does not use streamlines we next describe other volumetric
methods that also do not require streamlines.



29

3.4.1 Tube Fitting

[64] models white matter bundles using a tube fitting algorithm based on Principal
Curves. Guided by ~ε‖, their algorithm starts at a seed point. An implicit surface
orthogonal to ~ε‖ at the seed point is determined. The surface is constructed so
as to be the level set of a bivariate normal function (an ellipse). Nearby points
that project onto the surface are selected and added to the tube. A medial point in
the current surface is determined, and then a step is taken, a new level surface is
then constructed, and new nearby points are added. The set of medial points are
connected and become the medial axis of the tube. As a final step the boundary
of the tube is estimated. The result is a tube parameterized by a medial axis. As
noted in [64], major cortico-cortico fiber bundles would be poorly modeled by a
tubular structure. However, structures such as the Cortico Spinal tract might not
be well modeled by such a tube-like structure. Like other methods, it fails to take
into account the full information available from Diffusion Imaging. While taking
volume information into account, this method doesn’t allow bifurcations of the
extracted structure.

3.4.2 Deformable Models

Deformable models have a conceptual relationship with our method. M-reps
[130, 203] and other deformable models [112] fit various geometric and algebraic
objects to data sets locally and iteratively, unlike our method, that fits data sets
globally. Recent work [23] has applied this approach specifically to diffusion
imaging [54, 158]. Most deformable models fit the overall shape of the structure.
They then impose an arbitrary coordinate system unrelated to the internal structure
to analyze the interior structure.
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3.5 Discussion

This chapter reviewed current methods of modeling white matter structures as
well as some of the mathematical concepts behind them. The next chapter begins
the process of putting together the mathematical concepts and tools that are at the
foundation of our new modeling method.



31

Chapter 4

Mathematical Background

4.1 Introduction

This chapter introduces the fundamental concepts and constructs that underlie the
modeling method that is the subject of this thesis. The most important abstract
elements are the definition of manifolds, foliations, implicit algebraic surfaces
as foliations of a manifold, and total ordering of foliations. The most important
algorithmic notions reviewed are semiparametric models, manifold learning, and
semi-supervised learning. As these ideas are presented some of their relationships
to the application domain are briefly described.

Figure 4.1 is a representation of the white matter organization in a human brain
using streamline tractography. The number of streamlines chosen is ad hoc and
can often be more that 100,000. This is an extremely complex and large data set.
In fact, one way of describing the complexity while making minimal assumptions
would be to say the degrees of freedom, or dimensionality, of the data are the
number of streamlines times some number of points sampled on each streamline.
Even if the streamlines themselves are represented parametrically as in [1, 36],
the dimensionality is still extremely high. One way to reduce the dimensionality
of the data and in some sense make it easier to analyze is to assume that it lies on,
or is sampled from, a lower dimensional structure.
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Figure 4.1: Visualization of the organization of the brain using streamline tractog-
raphy.

4.2 Manifolds

“Think Globally, Fit Locally” [141] is a good description of geometric manifold
modeling. In order to be a geometric manifold a solution space must have certain
properties. First, it must be a metric space. A metric space M must have a suitable
local distance function or norm with the follow properties:

1. d(x,y)> 0 for all x,y ∈M

2. d(x,y) = 0 if and only if x= y

3. d(x,y) = d(y,x) for all x,y ∈M

4. d(x,y)6 d(x,z)+d(y,z) for all x,y,z ∈M (triangle inequality)

Let (M,d) be a metric space. For each point x and ε > 0, the norm is confined to
an ε−ball or ε−neighborhood about each point x.

D(x,ε) = y ∈M|d(x,y)< ε, (4.1)

where D(x,ε) are open subsets about each x. We are working in a space of
continuous functions and topological spaces that are the natural domain of such
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functions [29, 195]. A topological space is defined as a set X of points with open
subsets O that satisfy the following:

1. The empty set, ∅ ∈O

2. X ∈O

3. I=Oi∩Oj {i, j} ∈ {1...k,k <∞}: I ∈O

4. J=Oi∪Oj {i, j} ∈ {1...k,k6∞}: J ∈O

We need two more definitions on metric spaces:

Definition 4.1. Homeomorphism

1. Homeomorphism – a continuous function between two topological spaces

that is bicontinuous.

2. A space is a locally Euclidean spaceX of dimensionN if∀x∈X, ∃D(x,ε)⊂
X and D ′(x,ε)⊂ RN and a homeomorphism φ :D(x,ε) 7→D ′(x,ε).

Definition 4.2. Manifold
A manifoldM of dimensionN is a topological space with the following properties:

1. M is Hausdorff

2. M is locally Euclidean

3. M has a countable basis of open sets

Finally, it is assumed that manifolds are compact but not necessarily bounded.

When a manifold is not compact it can, in general, be made compact using a
process called compactification.

Definition 4.3. Compactification
Compactification or making a manifold compact is accomplished by adding

points at infinity. This means transforming the problem into the real projective

space P3. The resulting manifold is both compact and closed.
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We rarely explicitly perform compactification. However, when we need these
properties it is assumed that we can compactify the manifold in order to perform
whatever analysis or operations are required, and then convert the result to back
to R3.

4.3 Foliations

Informally, foliations are non-intersecting surfaces that partition a manifold into
connected subsets of points [116, 170]. Additionally, they may be thought of as
filling the space of a manifold. Another way of stating this is that a foliation is
a decomposition of a manifold into a union of locally parallel submanifolds of
lower dimensionality. For example, the rings of a tree trunk may be considered a
foliation of a manifold represented by a generalized cylinder. The layers of an
onion are a foliation of a sphere. Or the simplest example of a foliation is the
pages of a book. Following [201] we define foliations as:

Definition 4.4. Foliations and leaves
Foliations and leaves [138] Let MN be a manifold and let F = {Lα} denote a

partition of MN into a family of B disjoint pathwise-connected subsets. Then F is

a foliation of codimension c, with 0< c<N, if there exists a cover of MN by open

sets U, each equipped with a homeomorphism h :U 7→RN or h :U 7→RN+ which

sends each nonempty component of Fα∩U onto RN−c×α in RN−c×Rc = RN.

Lα is called a leaf.

1.
⋃
α∈B

Lα =M

2. For every α,β ∈ B if α 6= β then Lα
⋂
Lβ = Ø

3. For any point p ∈M there exists a local chart (U,φ) ∈ A where A is

an atlas, p ∈U so that if U
⋂
Lα 6= Ø for some α ∈ B the components of

φ(U
⋂
Lα) are subsets of parallel affine planes
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Figure 4.2: (left) Shows a vector field in space. (right) Vector field with level
surfaces. When the vector field describes a manifold, the level surfaces correspond
to foliations of the manifold.

A vector field V on a smooth manifold M gives rise to a decomposition of M
by the integral curves of V [170]. Integral curves are the solutions of ODEs and
represent co-dimension 2 foliations. On the other hand, the solution surfaces of
PDEs [120] are codimension 1 foliations.

There is an important distinction between the two types of foliations. Codi-
mension 2 foliations in general have no partial order on M3. Conversely, [123]
has shown partial ordering for codimension 1 foliations.

Definition 4.5. Partial ordering of foliations:
⋃
α∈B

Lα is the set of all leaves of

M. Consider the relation 6 on the set of leaves. We say L1 6 L2 if and only if

L1 ⊂ L2. Then

1. L1 6 L1

2. if L1 6 L2 and L2 6 L1, then L1 = L2
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3. if L1 6 L2 and L2 6 L3, then L1 6 L3

Level surfaces of families of implicit differentiable functions, F(x), are con-
gruent to co-dimension 1 foliations on M3. Implicit functions can be shown to be
totally ordered with the ordering parameterized by some function g(t) where t
is an index variable.

In this case we have an implicit function,

F(x) = g(t),t ∈ R;(−∞,∞) (4.2)

where g(t) is a signed function and is monotonically decreasing to the left of 0
and monotonically increasing to the right of 0.

4.4 Algebraic Implicit Surfaces

The study of the differential geometry of curves and surfaces has a long history [51].
Implicit algebraic and implicit parametric curves and surfaces have been used
extensively in Computer Vision, Computer Graphics, and Medical Imaging, with
many applications [11, 22, 113, 144, 165, 208]. With the exception of work related
to [165], most methods are nonparametric and applied to closed surfaces. Our
method differs from these in that the surfaces are implicit algebraic surfaces
congruent to foliations of a manifold. More specifically, we use families of
implicit algebraic functions to model the internal structure of volumes rather than
a single implicit function to model a surface.

In Chapter 5 we present our model and show that among other properties
volumes, curves and points are well defined on the manifold by our model.
These are important properties in our context because for example, connectivity
between gray matter regions is defined as a function of the volume of white matter
connecting those regions.
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4.5 Manifold Learning

Classical Manifold Learning algorithms [62] assume a single, possibly nonlinear,
low-dimensional manifold embedded in a space of high ambient dimension;
in other words, the data are assumed to be sampled (with noise) from one

underlying manifold. Among the better known methods are Isomap, Locally
Linear Embedding, Laplacian Eigenmaps, and Semidefinite Embedding [97]. All
of these approaches are nonparametric, assume only one manifold, and require
extensions to handle out of sample data, that is, new data. This problem is well
studied and various powerful algorithms are known. On the other hand, the
generalization of these methods to more complex data sets, specifically those
containing multiple manifolds, remains non-trivial and an area of current research.
The available tools for solving these kinds of problems are far less developed.

Some Multi-Manifold Learning algorithms begin by partitioning the data
using an estimate of local structure. They then apply standard Manifold Learning
[183] or Semi-Supervised Learning [61]. One, based on Gestalt ideas [118], uses
a voting scheme. [48] and [118] are approaches that do not look for an embedding.
They estimate the manifold and then work with data in the original space. Neither
estimates a global model. Our model is global and continuous. This allows for
proper handling of out-of-sample data naturally while more local methods require
searching for neighborhoods that are “close enough" to the model to be included.

4.6 Kernel Machines

Our multi-manifold learning and modeling methods make use of kernel machines.
This section gives a brief overview of this very large area of study.

[152, 174, 175] introduced Semiparametric Support Vector Machines (SSVM).
The SSVM consists of a parametric model and a nonparametric model. The
parametric model encodes prior knowledge that constrains the nonparametric
model. Nguyen and Tay [121] explored the use of multiple kernels in the
nonparametric model and spline functions in the parametric model to model
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functions that have different properties in different portions of the function
domain. We expect to include other sources of prior information. Adding prior
information to Kernel Machines is an active area of research. [92, 181] provide an
survey of the field, relating mostly to Support Vector classification. [143] looked
at the problem of using prior knowledge to construct kernels to deal with local
invariance and locality in images.

Standard decomposition methods such as [131] and SVMlight[80] can not deal
with the multiple equality constraints that appear in SSVM. General quadratic
solvers can deal with multiple constraints but don’t take advantage of the structure
of Support Vector Machines. As a result they are limited in the size of the problem
that they can solve.

Equality constraints work well for specifying constraints at points. [106, 107]
used a fundamental theorem of the alternative for convex functions to convert
linear or non-linear prior knowledge into inequality constraints.

Finally, transform invariants allow incorporation of prior knowledge locally.
[181] surveyed methods for incorporating prior knowledge in SVMs including
local transform invariants.

4.7 Semi-Supervised Methods

[209] provides an extensive literature survey on Semi-supervised Learning. The
basic idea is to exploit both the structure and a small amount of labeled data
to find a good classifier. Semiparametric Support Vector Machines (SPSVM)
are described in [152]. Our algorithm exploits the structure in the data using a
semiparametric model.

A formulation that is similar to the nonparametric portion of our model is
[144]. They used an unsupervised method to construct surfaces from point clouds
of data.
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4.8 Semiparametric Models

Semiparametric models account for the data at multiple scales simultaneously.
Parametric models can be used to infer large-scale features of a data set but may
occasionally be too smooth to account for small scale features. Non-parametric
models on the other hand can model data locally very well but do poorly at
modeling large scale features. Semiparametric models are a synthesis of these
properties. A parametric model uses a fixed or finite number of parameters to
model the data [58, 185]. The number of parameters in a nonparametric model
may be either infinite [27] or in some sense proportional to the size of the problem
or the number of data points [184]. Often semiparametric models consider the
parametric portion of the model informative and the nonparametric portion to
be a "nuisance" factor [8]. In our model both the parametric and nonparametric
portions of the model are useful and important.

Our semiparametric model combines a family of implicit algebraic func-
tions with Support Vector Machines [99, 121, 152] and extends them into the
semiparametric realm.

4.9 Discussion

This chapter introduced the fundamental concepts and constructs that underlie
our Semiparametric Geometric Model approach. The most important abstract
elements are the definition of manifolds, foliations, implicit algebraic surfaces
as foliations of a manifold, and total ordering of foliations. The most important
algorithmic notions reviewed are semiparametric models, manifold learning, and
semi-supervised learning.

In Chapter 5 these elements are combined and expanded to give the formulation
of our new Semiparametric Geometric Model.
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Chapter 5

Semiparametric Geometric
Modeling

In this chapter a new modeling framework is presented called Semiparametric
Geometric Modeling (SGM). An SGM brings together elements of Differential
Geometry, Differential Topology and Machine Learning to model the data at
multiple scales on multiple volumetric structures. The resulting algorithm enables
automatically extracting and modeling white matter volumetric structures from
DTI data. Next, in Chapter 6, methods for fitting the model to data are presented.

5.1 Introduction

SGM is a new model and algorithm for extracting and modeling portions of
white matter volumetric structures. The result is a set of functions that describe
the local internal and global geometric properties of those volumetric structures.
SGM combines a Semi-supervised Manifold Learning Algorithm (SMLA) with
a Semiparametric Functional Approximation Model (SFAM). We begin with
the assumption that different white matter volumetric structures in the brain are
described by separate manifolds each of which is a smooth representation of the
data that lie on that manifold. Since the determination of which manifold the data
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lie on is a function of the organization of the data the first thing to do is to take a
closer look at the data.

Recall the Diffusion Tensor (DT) is made up of three orthogonal eigenvectors,
ε‖, ε⊥ and ε. ε‖ points along the white matter fibers so its link to large scale
geometry is clear. ε⊥ is normal to the sheet-like organization of white matter in a
given region. ε rounds out the description. See Figure 3.1. The eigenvectors
of the DTs can be decomposed into three orthogonal vector fields. One vector
field is composed of all of the ε‖, the second vector field is composed of all of the
ε⊥ and the third vector field is composed of the ε eigenvectors. An SMLA is
used to cluster tensors with similar organization and location and that fit closely
to an SFAM model. An SFAM simultaneously "fits" the gradients of a global
function to the Diffusion Tensor (DT) vectors. Since the SFAM only fits gradients
to the tensors finding a way to localize the model to the "middle" of the data
and give a robust estimate of the SFAM is important. A geometric entity called
the Geometric Median Surface (GMS) is a robust estimator of the position of a
parametric surface in the "middle" or deepest position of a vector field. The GMS
provides the property to the SGM model.

In the next section we describe what properties of the manifolds we rely on
and show how those properties fit the physical problem we are addressing. We
begin by looking at this as a multi-manifold learning problem. In order to find
each manifold and partition the corresponding data we further formulate this
as a semi-supervised learning problem. In this case a few example voxels are
designated for each of the manifolds of interest and then the SGM is computed and
used to add new data points to the computed models. This process is repeated until
all of voxels are assigned to manifolds or have been determined to be unassignable.

We use techniques developed in machine learning and differential geometry to
construct the nonparametric portion of our model. Our parametric model leverages
properties of differential topology and our new Geometric Median Surface. We
begin by analyzing the geometric properties of the model.
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5.2 Geometric and Algebraic Models

Small bundles of white matter fibers have an obvious geometric property. That is,
they may be described locally as smooth, continuous curves that have a meaningful
distance or metric associated with them. At the same time they also have a clear
interpretation in terms of algebraic functions as they can be modeled as manifold
curves. Such manifold curves can be described as the intersection of two algebraic
implicit surfaces.

Algebraic functions have a fixed number of parameters and are considered
to be parametric models. Parametric models have two important properties.
First, by accounting for large-scale structure they reduce the complexity and
therefore the dimensionality of a model. Second, the form of the parametric
model allows us to include prior knowledge about large-scale features in the model
in a straightforward manner. Unfortunately, they can be poor at handling local
complexity.

Conversely, nonparametric models handle local complexity well but other
than some smoothness constraints generally don’t model global properties well.
Prior knowledge about local features of the data can be added to nonparametric
models.

A semiparametric model can be stated generically as a blend of parametric
and nonparametric models. Note first that either model is a weighted sum of some
number of basis functions. First, a parametric function F(~x,~θ) over the domain
of the data points ~x has a fixed number of basis functions with unknown weights
or parameters ~θ. Conversely a generic nonparametric function assigns a basis
functionΦ to each data point and has the same number of weights as the number
of data points. This can be written compactly as an inner product of weights and
basis functions, 〈w,Φ(~x)〉.

Using this notation, our semiparametric model is defined as

G(〈w,Φ(~x)〉 ,F(~x,~θ)). (5.1)
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For brevity, we fold the parameters, ~θ, into the notation of the parametric
model and write F(~x,~θ) as F(~x).

Then, for each manifold we are modeling, Mi,

G(〈w,Φ(~x)〉 ,F(~x)) = 〈w,Φ(~x)〉+F(~x) (5.2)

Mi = 〈w,Φ(~x)〉i+Fi(x). (5.3)

The nonparametric function 〈w,Φ(x)〉 specifies the local structure of the manifold
– the differential geometry, while the parametric function F(~x) models the large
scale or global structure of the manifold – the differential topology.

Now that have we stated the general form of the model we are ready to analyze
the parametric and nonparametric parts separately before recombining them into
a full statement of the model at the end of the chapter.

5.2.1 Parametric Models: Manifolds and Curvilinear
Coordinate Systems

Formally, let the set of white matter volumetric structures be given by

W≡
⋃

Wi, i= 1, ...,K, (5.4)

where W is a set of K white matter volumetric structures. Let the set of nonlinear
manifolds be given by

M≡
⋃

Mi, i= 1, ...,k, (5.5)

where M is the set of nonlinear manifolds.
That is, each structure, Wi, lies on the manifold Mi. We are given a set of

n points (X1, ...,Xn ∈ X) sampled from k intersecting nonlinear manifolds and a
set of k indexes (i) where i ∈ 1,2, ...,k is an index associated with each Mi. We
find a set of functions fi(X) that assigns each point to one or more manifolds (in
case of intersecting or overlapping structures). Specifically, each structure will be
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represented by a function that maps data in the input space R3xS3 to a nonlinear
manifold in R3.

Recalling Section 4.3, the foliation of manifolds are defined as,

⋃

α∈B
Fα =M (5.6)

⋃

α∈B
Sα =M3 (5.7)

where Sα are the implicit surfaces that foliate the manifold and therefore partition
the corresponding white matter tract, and B is the set of foliations.

Based on observed global structure [95, 186] and the definition of the Diffusion
Tensor, the tensor field is treated as three mutually orthogonal vector fields:

⋃

α∈B
(S~ε‖,α∩S~ε⊥,β∩S~ε,γ) =M3 (5.8)

where ~ε‖, ~ε⊥, and ~ε are the eigenvectors of the tensor in the parallel, normal,
and binormal diffusion directions respectively as defined in Section 3.1. α,β and
γ are the set of foliations of the manifold in each vector field corresponding to ~ε‖,
~ε⊥ and ~ε.

Given that the surfaces S are codimension 1, the foliation represented by Eq.
5.8 is clearly a codimension 0 foliation and therefore localizes every point on the
manifold.

Returning to the global properties of the manifold we note the following
theorem:

Theorem 5.1. Dupin’s theorem [153] states that if we have three families of

implicit surfaces such that the surfaces of all the families foliate a manifold M3,

and implicit surfaces from different families intersect mutually orthogonally, then

the intersection curves of surfaces from different families are lines of curvature.

Additionally, at each point of intersection the tangent to the curve of intersection

is a principal direction that lies in both surfaces. These surfaces naturally form
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Figure 5.1: Dupin’s Theorem. Blue represents the orthogonal intersection. Red
are the principal lines.

a curvilinear coordinate system on M3. The curves of intersection can also be

shown to be geodesics on the manifold.

This gives us some useful properties:

1. Any point on the manifold can be uniquely defined as the intersection of
three mutually orthogonal implicit surfaces (see Figure 5.2).

2. Choice of a specific point automatically gives three principal curves that
are geodesics on the manifold (see Figure 5.1).

3. Given the properties of the manifold and codimension-1 foliations, it is
possible to uniquely define volumes on the manifold (see Figure 5.2).

Property 2 means that for each point on the manifold the principal curve in the
direction parallel to the white matter bundles is completely defined by S⊥,α∩S,α

where α is the index of the implicit surfaces. Property 3 is the property that allows
us to talk about connectivity between ROIs in terms of well-defined volumes. The
function

F(~x) = S‖(~x)∩S⊥(~x)∩S(~x) (5.9)
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⊩

ǁ

⊥

ε

ε

ε

f(x) = const.⊩

f(x) = const.

f(x) = const.

⊥

ǁ

(a)
(b)

Figure 5.2: (a) Each point on the manifold is located at the intersection of three
implicit surfaces. Each surface is normal to the vector field defined by εi. (b) As
in a regular rectilinear coordinate system a volume can be defined by two points
located at non-coplanar points of the “cube.”

parameterizes the manifold. ~x are the data points.
The families of curves, or codimension 2 foliations, may now be defined as

C‖ = S(~x)⊥∩S(~x) (5.10)

C⊥ = S(~x)‖∩S(~x)
C = S(~x)‖∩S(~x)⊥.

C‖ is the curve whose tangents are the ~ε‖ vectors. A natural question to ask
is: what is the relationship between the complexity of the surfaces Si and the
complexity of the curves Ci? Assuming two surfaces are defined as algebraic
implicit functions of degreem and n by Bézout’s Theorem, the degree of a curve
of intersection is on the order of the product of the degrees of the surfaces or
polynomials, for example degreem×n. So, for example, two surfaces defined
by 4th degree polynomials could have curves of intersection up to order 16.

The family of curvesC‖ have a particulary important role in the global geometry
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of white matter structures. These curves are parallel to the fiber orientation and
trace along the white matter fibers. Tracing these curves gives the primary method
for extracting data for statistical analysis along the length of the white matter
fibers.

5.2.2 Implicit Surfaces that Foliate the Manifold

An implicit function that models a surface that foliates a manifold with an associated
vector field has a specific location and a specific relation to the manifold. The
gradient of the implicit function is aligned point by point with the vector field
throughout the volume of the manifold. Geodesics of the manifold follow paths
whose tangents are also locally parallel to the vectors of the vector field. First
define points on the manifold in terms of a function of the intersection of implicit
functions of surfaces:

F(~x) = S(x)‖∩S(x)⊥∩S(x) (5.11)

with the surfaces defined in terms of alignment and pairwise location on the
manifold:

Si = 1−
∇f(x)i
‖∇f(x)i‖

�~εi+dG(F(~µ),~x)~εi (5.12)

where ∇f(x)i
‖∇f(x)i‖ �~εi is the alignment of the gradient of S(x)i with the Diffusion

Tensor eigenvectors, ~εi, where i ∈ (‖,⊥,). dG(F(~µ),~x)~εi is a distance function
related to the “location” of Si on the manifold.

Distance relationships depend on the underling manifold structure. In R3

dE(F(~µi),~xi) is the usual Euclidean Distance. dK(F(~µi),~xi) is the Gaussian
Kernel projection used in Principal Curves and Surfaces. Finally, dG(F(~µi),~xi)
represents the geodesic distance function from a point to the surface F(~µi).
Distances using this measure require tracing along geodesics. Looking back to R3

the geodesics are straight lines andF(~µi) are planes so inR3 under those conditions
dG(F(~µi),~xi) = dE(F(~µi),~xi). The Gaussian Kernel projection distance function
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fits data to nonparametric curves and surfaces by linear projections. Our manifolds
are in general nonlinear and potentially complex so dG(F(~µi),~xi) is determined
from the data as described in Section 5.2.3.

Ultimately an estimation of the functions that describe the manifold will need
to be as robust as possible in the presence of noisy data. That issue is addressed
in the next section.

5.2.3 Geometric Median Surface (GMS)

There are an infinite number of implicit functions whose gradients would fit the
vector data. Some means is required to localize the estimate “near” or in the
“middle” of the data in order to properly constrain the function. One way to
approach this kind of constraint is to look for the foliation that most evenly divides
the data in a geometric sense. The function that locates this foliation is known as
a depth function. [7] surveys an number of methods for robust estimation of data
depth that are based on various forms of medians and subspace division techniques.
Since we have requirements that those methods fail to meet we present a new
depth function called the Geometric Median Surface.

Definition 5.2. Geometric Median Surface
Geometric Median Surface is the implicit surface that minimizes the sum of

distances along geodesics of the manifold:

SMi = arg min
~µi,j∈Fi(~µ,~x)=0

~xj∈M

N∑
j

dG(Fi( ~µi,j),~xi,j). (5.13)

More generally, the Weighted Geometric Median Surface is defined as

SMi = arg min
~µi,j∈Fi(~µ,~x)=0

~xi,j∈M

N∑
j

wi,jdG(Fi(~µi,j),~xi,j) (5.14)
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where i ∈ {‖,⊥,}, ~µ are points that lie on the GMS and the distance function is
dG(F(~µi),~xi).

The GMS is a constraint of the formulation of the implicit function that foliates
the manifold of the model. As such it is also the primary object that represents the
global geometry of the SGM. Given the definition of the GMS, at the intersection
of the three GMSs are the three principal curves that are “deepest” in the data,
CM‖ ,CM⊥ , and CM . In fact CM‖ plays a role similar to the medial axis. Unlike the
medial axis, however, CM‖ is defined by the global geometry of the model that
includes all of the internal structure. The medial axis is defined only relative to
the surface of a structure.

5.3 One Class Semiparametric Support Vector
Model (SSVM)

The SSVM is at the heart of the Multimanifold Learning algorithm. It combines
it’s own local similarity kernels with the semiparametric models of the SGM to
decide which points to add, keep, or remove from the model.
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Figure 5.3: To build the model we use Ψ= dG(F(~µ,~x)) and to evaluate the model
we set ρ= 1, which gives us a model of the convex hull of the training data. Any
new points that evaluate to the interior of the convex hull are added to the model.
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Consider the following loss function:

V(f(x))≡

0 , if
∣∣τ

2 + f(x)
∣∣< τ

2∣∣τ
2 + f(x)

∣∣− τ
2 , otherwise.

(5.15)

This leads to the following optimization problem:

min
w∈H,ξ(∗)∈Rm

1
2
‖w‖2 +

1
mν

m∑
i=1

(ξ∗i +ξi) (5.16)

subject to


−ξi 6 〈w,Φ(xi)〉+λF(xi)6 τ+ξ∗i
ξ> 0

ξ∗ > 0

where ‖w‖2 is a regularization term,Φ(xi) maps xi into high-dimensional feature
space, ξ∗i and ξi are slack variables that allow some flexibility in fitting points
between the hyperplanes, and τ= δ∗−δ is the distance between the hyperplanes
(we set δ= 0 and δ∗ = τ ). In practice, the map Φ(xi) is unknown. The kernel

trick allows Φ(xi) to be used implicitly rather than explicitly for finding this
mapping, i.e., K(xi,xj) =ΦT (xi)Φ(xj).

The Support Vector portion of our model (Section 4.7 ) solves a nonlinear
PDE by projecting the Diffusion Tensors into a high-dimensional space. This
alone doesn’t guarantee a reasonable solution [157]. However, as we shall see,
our method solves families of PDEs for the nonlinear case by iteratively solving
what amounts to flow problems guided by the global parametric portion of the
model. Each iteration includes a step that can be interpreted as applying boundary
conditions to these flow problems in order to choose the next step in the look-ahead
prediction of the solution trajectories of the PDEs.
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5.4 Discussion

This chapter presented a new model that can automatically extract and model white
matter volumetric structures from DTI data. The new model and the algorithm to
compute it are called Semiparametric Geometric Modeling (SGM). SGM builds on
elements of Differential Geometry, Differential Topology and Machine Learning
to model the data at multiple scales on multiple volumetric structures. The next
chapter formulates the problem of fitting the Semiparametric Geometric Model to
data as a multi-objective optimization problem.
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Chapter 6

Fitting a Semiparametric
Geometric Model by Solving a
Multi-Objective Optimization
Problem

6.1 Introduction

In this chapter we look at how to go about fitting the SGM to data. Finding
the “best” fit to the data of each part of the model and then combining the parts
would very likely give a model that is a poor fit to the data. Since there are
multiple parts or objectives in the model, a better approach is to combine the
objectives together to form a multi-objective function. If solving each objective
separately and combining them gives a good solution the solution is trivial. It
is far more likely that the objectives of the model interact with each other in
potentially complex ways. Fitting data to a model where the various objectives
conflict or interact is known as multi-objective optimization. The multi-objective
optimization problem for fitting the SGM weights the various parts of the model
allowing them to be adjusted or traded off relative to one another. As a result
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a whole sets of “best” solutions are described as the weights are varied. These
optimal solutions are said to be Pareto Optimal [114]. It is up to the modeler to
determine when a given solution is acceptable. Given this caveat fitting the SGM
is formulated as the solution to a multi-objective optimization problem.

6.2 The Multi-Objective Optimization Problem

The formulation of the multi-objective function (MOF) used to fit the SGM is
referred to as a scalarized MOF. This means that the optimization problem is of
the form

min
k∑
i=1

λifi(x) (6.1)

where i indexes the objective functions fi(x) and λi > 0 are the weights applied
to the objective functions. It’s important to understand that the λis are inputs to
the problem. The λis are determined by the modeler, or some wrapper function,
that evaluates the desirability of a resulting solution and iteratively changes them
according to outside criteria until those criteria are met.

Beginning with the semiparametric statement of the model,

G(~x,F(~x)) =
N∑
i

αiK(~x,~xi)−F(~x) (6.2)

the scalarized MOF is:

min
w∈H,ξ(∗)∈Rm

1
2
‖w‖2 +

1
mν

m∑
i=1

(ξ∗i +ξi) (6.3)

subject to

−ξi 6 〈w,Φ(xi)〉+λ0F(xi)6 τ+ξ∗i
ξ(∗) > 0,
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and the parametric function is expanded out as

F(~x) = min
x∈M

{
λ1‖~U‖ ·~ε‖‖L∞+λ2

[
argmin
x∈M

‖dG(F(~µ),~x)~ε‖‖L1

]
(6.4)

+λ3‖~U⊥ ·~ε⊥‖L∞+λ4

[
argmin
x∈M

‖dG(F(~µ,~x)~ε⊥‖L1

]

+λ5‖~U ·~ε‖L∞+λ6

[
argmin
x∈M

‖dG(F(~µ),~x)~ε‖L1

]

+λ7

∥∥∥1−(~U‖ · (~U⊥× ~U))
∥∥∥
L2

+λ8‖
∑
i,j

H(F(~x))i,j‖L2

}

where ~U(·) is the unit vector
∇f(x)(·)
‖∇f(x)(·)‖ and H(F) is the Hessian matrix with rows

i and columns j.
This is a fairly large set of trade-off parameters. Fortunately, as we will

see in Chapter 8, once a reasonable set of values is determined empirically, the
optimization is relatively insensitive to changes in most of the weights and all but
two of them were held constant for all of the models tested. A useful approach to
solving this kind of multi-objective optimization problem is nonlinear least-squares.
However, the norms for two object functions of the model are not compatible
with the L2 norm required for nonlinear least-squares. As a result we choose and
iterative method of solution. The global MOF is solved by iteratively solving a
nonlinear least-squares for the weighted objectives, while the L1 L∞ objective
functions are solved using an iteratively reweighed least-squares approach inside
the global optimization. This allows standard solvers for nonlinear least-squares
to be used without modification.
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Figure 6.1: Slope or orientation field. Similar to the eigenvectors of the Diffusion
Tensor, this field has orientation but not direction. The lines here are tangent to
the orientations.

6.3 Solving the Multi-Objective Optimization
Problem

As described in the last section the approach to solving this multi-objective
optimization problem is nonlinear least-squares. The scalarized multi-objective
problem is wrapped around a set of solvers for the individual objective functions.
The overall algorithm is summarized next and then the solution methods for the
individual objective functions are presented. See Figure 6.2 for a flowchart of the
algorithm. The next section describes the algorithm for calculating the infinity
norm used to align the function gradients with the tensor eigenvectors.
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Calculate
geodesic distances

Initialize model

Calculate weights (1) L∞ and (2) L1

εki,L∞(~xi) = res

(
wki,L∞ × (1− ∇F(~xi)

‖∇F(~xi)‖
� ~εi,ω)

)
(1)

wki+1
i,L∞ =





wki ×
|εki (~xi)|∑

i∈[1,N]
|εki (~xi)| , if

∣∣εki,L∞(~xi)
∣∣ > 10−18

10−18, otherwise

εki,L1
(~xi) = res

(
wki × dG(F(~µ), ~xi)~εω

)

wk+1
i,L1

=





1√∣∣∣εki,L1
(~xi)

∣∣∣
,if
∣∣εki,L1

(~xi)
∣∣ > 10−8

10−8 , otherwise

(2)

Do Multi-Objective Nonlinear Least Squares: F(~x) =

min
x∈M

{
λ1wL∞

∣∣∣~U‖ · ~εω
∣∣∣
L∞

+λ2argmin
x∈M

‖wL1
dG(F(~µ), ~x)~εω‖L1

(3)

+λ3

∥∥∥1− (~U‖ · (~U⊥ × ~U))
∥∥∥
L2

+λ4‖
∑

i,j

H(F(~x))i,j‖L2

}

Regression
converged?

Model
Converged?

stop

Geodesic Distances
ε-NN graph such that the edge weights
are:

dG(Ω) = G(dE(xi − xj), h(εi · εj)) (4)

where dE(xi − xj) is the
Euclidian distance between voxels and
h(〈εi · εj〉) is the tensor orientation dis-
tance. The geodesic paths are approxi-
mated by Dijkstra’s Algorithm.

yes

no

no

yes

Figure 6.2: Flowchart of the algorithm for solving the multi-objective optimization
problem.
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6.4 Fitting L∞ by Iteratively Reweighed
Least-Squares (IRNLS)

Our model calls for matching the gradients of ∇F(~xi) and the vector field as
closely as possible. This requires minimizing

min
∑
i∈M

∣∣∣∣1−
∇F(~xi)
‖∇F(~xi)‖

�~εi,ω
∣∣∣∣
L∞

. (6.5)

This amounts to minimizing the maximum worst fit. However, L∞ is not equivalent
to L2 in nonlinear least-squares. So, some adjustment needs to be made to allow
nonlinear least-squares to compute this norm.

One approach to making an L∞ norm problem look like an L2 norm so it can
be solved using nonlinear least-squares is to iteratively “reweight” the residuals
of the equivalent L2 problem. The nonlinear least-squares problem is solved
to completion multiple times. At each iteration the residuals from the current
iteration combine weight from the previous iteration as follows:

εki,L∞(~xi) = res
(
wki,L∞×

∥∥∥∥1−
∇F(~xi)
‖∇F(~xi)‖

�~εi,ω
∥∥∥∥
L2

)
(6.6)

wk+1
i,L∞ =


wki ×

|εki (~xi)|∑
i∈[1,N]

|εki (~xi)|
, if

∣∣∣εki,L∞(~xi)
∣∣∣> 10−18

10−18, otherwise

giving new weights to be used at the next iteration. Since the objective function
is divided by the weights an extremely small weight can destabilize the numeric
solution. Of course if a weight is very close to zero then the point that it is
weighting is very close to the minimum. One approach to dealing with the stability
issue would be to simply remove the point as being at the minimum. Unfortunately
during the course of finding the global minimum that point could be moved away
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from the minimum and it could be important bring it back into play. Rather than
removing and adding the point we simply fix the smallest value that the weight can
have at any iteration to 10−18. This choice works well in practice. The entire loop
is executed until the norm of the difference between the values of the parameters
of the function change by less that 10−8. At this point we haven’t mentioned
an important issue. Recall that the Diffusion Tensor eigenvectors have can’t be
interpreted to have a direction in the usual vector sense. This can’t be ignored.
As a result it is necessary to have a method to give the eigenvectors a direction
and to be sure that the given directions result in a consistent handedness for the
orthogonal eigenvectors. The next section outlines an algorithm that conditions
the eigenvectors to give them these properties.

6.4.1 Conditioning the Vector Data

As described in Section 3.1, the eigenvectors of the Diffusion Tensor are orientation
or slope fields, rather than true vectors, as the direction the vector is pointing is
ambiguous. Finding stable functions for the Implicit Surfaces requires consistently
oriented vectors, however some previous work has been done to find consistent
orientations for normal vectors on surfaces defined by point clouds [76, 88].
[176] resolves the vector orientation consistency problem for surface normals by
formulating it as an Ising model and finding the solution using simulated annealing.
However, we are unaware of any work to date that attempts to consistently orient
volumetric vector data. As a first approximation and for speed and computational
simplicity, we extend the method in [76] to volumetric vector data. This involves
the following:

1. Construct a Riemannian (conformal) graph of the vector field.

a) Choose a spherical region around each point P0 of radius γ.

b) For all points within that sphere, calculate edge weights
wP0,Pj = 1−

∣∣〈ε0,εj
〉∣∣ where εj is associated with point Pj.



59

2. Construct a minimum spanning tree on this graph.

3. Perform a Depth-First Search on the tree.

a) Calculate
〈
εi,εj

〉
for each node visited in the graph.

b) If
〈
εi,εj

〉
< 0 and i < j, "flip" the orientation of the vector of εj where

j is the index of the newest node visited in the tree.

4. Repeat this for all three vector fields.

5. Adjust the combined vector fields to be a right-handed system.

While this is a reasonable way to construct an oriented vector field, it doesn’t
guarantee that all the vectors will be consistently oriented. Even more importantly,
in the presence of considerable torsion, as may be found in portions of the
corticospinal tract, the orientation of the vectors could be changing rapidly enough
that this method will fail to produce a "good" orientation for all vectors. Fortunately,
it is straightforward to detect this problem while computing the iterated least-
squares solution. In other situations the orientation may genuinely be ambiguous,
but we leave this for investigation at a later time.

There are an infinite number of implicit functions whose gradients would fit
the vector data. Some means is required to localize the estimate “near” or in
the “middle” of the data in order to properly constrain the function. One way to
approach this kind of constraint is to look for the foliation that most evenly divides
the data in a geometric sense. The function that locates this foliation is known
as a depth function. In the next section we define a new entity that is a robust
estimate of the location of the deepest surface in the data called the Weighted
Geometric Median Surface.
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6.5 Weighted Geometric Median Surface –
Location Constraint

Definition 6.1. The Weighted Geometric Median Surface is defined as

S= arg min
x∈M

N∑
i

widD(F(~µi),~xi) (6.7)

where F(~µi) is a foliation or implicit surface that is the "deepest" surface on

a manifold. The points on the surface that intersect the geodesic pathways are

designated ~µ. dD is a distance function based on the structure of the manifold

that the data is sampled from.

For example, dE(~µi,~xi) is Euclidean Distance. dK(~µi,~xi) is the Gaussian
Kernel projection used in Principal curves and surfaces. And dG(~µi,~xi) is the
Geodesic distance function used in our model:∑

i∈M

∣∣dG(F(~µ),~xi)~εω
∣∣
L1

(6.8)

The local topology is estimated using an ε-NN approach. The geodesic distances
are approximated by constructing a graph such that the edge weights are

dG(Ω) =G(dE(xi−xj),(ni ·nj)) (6.9)

where dE(xi−xj) is the Euclidian distance between voxels and ni ·nj is the inner
product of the normals of the data. G is a distance similar to [118]. The geodesic
paths are then approximated by applying Dijkstra’s Algorithm [44, 47].

6.5.1 Modified Weiszfeld Algorithm

A robust estimator of location in a Euclidean space is the Geometric Median
or the Fermat-Weber point [7, 9, 102]. The Geometric Median doesn’t take any
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additional structure other than location into account. We have extended the
Geometric Median to take additional structure into account resulting in what we
call the Weighted Geometric Median Surface. This is the surface that is the
"deepest" surface in a data set. Without loss of generality, we assume the weights
are all 1 and discuss only the Median Geometric Surface. The Median Geometric
Surface is estimated by computing a Manifold Geometric Median for each point
on the surface as follows. For each point µi on the surface, take an ε region around
that point and find the sum of geodesic distances to that region. Then, estimate a
new point µi by taking a single step of the modified Weiszfeld Algorithm [188]
to reduce the sum of distances. Shift µi by a step scaled by β:

µk+1 = µk−β

(
N∑
j=1

wiµ
k
i

dG(µk
i,ε

)

)

(
N∑
j=1

wi
dG(µk

i,ε
)

) . (6.10)

Then a new surface is estimated using µk+1 in the next iteration of IRNLS using
the L1 weighting scheme described in the next section.

6.5.2 Computing L1 using IRNLS

As with the L∞ norm in Section 6.4 we need to modify an L1 norm to look like
an L2 norm. Here again we use a reweighting scheme that simulates an L1 norm.

In the following the residual for the current iteration (k+1) is divided by the
square root of the residual from the previous iteration (k) the solver then squares
this ratio as a step to calculating its optimum value.

(
εk+1
√
|εk|

)2

=
(εk+1)2

|εk|
= |ε|. (6.11)

As a result the algorithm converges to the absolute value or the L1 norm of the
residuals instead of the L2 norm of the residuals. At each iteration the weights are
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estimated as follows:

εki,L1
(~xi) = res

(
wki ×dG(F(~µ),~xi)~εω

)
(6.12)

wk+1
i,L1

=


1√∣∣∣εki,L1
(~xi)

∣∣∣
, if
∣∣∣εki,L1

(~xi)
∣∣∣> 10−8

10−8 , otherwise.

(6.13)

Points with residuals ε≈ 0 contribute little to the solution of the minimization.
However, since we are taking the multiplicative inverse to create the new weights,
we get very large numbers. Setting 1

ε equal to a small number in these instances
greatly improves the stability of the solution.

6.6 Orthogonality Constraint

Up to this point the formulation has dealt with elements that model each vector
field independently. At this point these elements a brought together globally
by requiring that the gradients of the surface functions be orthogonal at each
point in the volume. When three vectors are orthogonal this means that the cross
produce of any two of them gives a vector that is parallel with the third vector.
Consequently, the absolute value of dot product of the third vector and and the
resultant from the cross product is equal to 1. It is necessary to subtract this value
from one to get a function that is 0 when the vectors are parallel. This constraint
required locally by the Riemann manifold assumption and globally to fulfill the
requirements of Dupin’s Theorem. Recalling that ~U(·) is the unit vector

∇f(x)(·)
‖∇f(x)(·)‖

with · ∈ {‖,⊥,} the next term to be minimized is

∥∥∥1−(~U‖ · (~U⊥× ~U))
∥∥∥
L2

. (6.14)

When the residuals of this term are 0, the implicit surfaces represented by the
functions are orthogonal at all points of intersection. The norm of this term is
already an L2 norm and needs no modification.
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6.7 Regularization

The final term is the regularization term. This can be thought of as calculating the
Hessian matrix for all points,

H(F(~xi)k,l,m) =




∂2F(~xi)

∂x2
1

∂2F(~xi)
∂x1∂x2

∂2F(~xi)
∂x1∂x3

∂2F(~xi)
∂x2∂x1

∂2F(~xi)

∂x2
2

∂2F(~xi)
∂x2∂x3

∂2F(~xi)
∂x3∂x1

∂2F(~xi)
∂x3∂x2

∂2F(~xi)

∂x2
3


 , (6.15)

and summing the results:

∑
i∈M

∣∣∣∣∣∣
∑

k,l,m∈H
H(F(~xi))k,l,m

∣∣∣∣∣∣
L2

. (6.16)

This term is similar to the energy term used in thin plate splines [178]. The
"rougher" F is, the larger this term becomes. Conversely, this term decreases as
F becomes smoother. Keeping F smooth while still allowing it to fit the data well
is the motivation for using this term. As with the orthogonality constraint, the
norm of this term is already an L2 norm and needs no modification.

6.8 Semi-Supervised Learning and the
Semiparametric SVM

All elements of the parametric portion of the SGM are now in a form that can be
solved as a Multi-Objective Nonlinear Least-Squares problem using a trust region
reflexive method implemented in the lsqnonlin function in Matlab [110]:
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min
w∈H,ξ(∗)∈Rm

1
2
‖w‖2 +

1
mν

m∑
i=1

(ξ∗i +ξi) (6.17)

subject to

−ξi 6 〈w,Φ(xi)〉+λF(xi)6 τ+ξ∗i
ξ(∗) > 0

where ‖w‖2 is a regularization term,Φ(xi) maps xi into high-dimensional feature
space, ξ∗i and ξi are slack variables that allow some flexibility in fitting points
between the hyperplanes, and τ= δ∗−δ is the distance between the hyperplanes
(we set δ= 0 and δ∗ = τ ). In practice, the map Φ(xi) is unknown. The kernel

trick allows Φ(xi) to be used implicitly rather than explicitly when finding this
mapping, i.e., K(xi,xj) =ΦT (xi)Φ(xj).

6.8.1 Semiparametric Slab SVM

The similarity metric is a product of five kernels. Each kernel defines a similarity
with a different component (or orientation) of the Diffusion Tensor (θ, φ,ψ), with
the distance between points (||x−xi| |L2), and invariant (π∈ {FA,MD,AD,ADC, ...}).
Each similarity kernel is a compact radial basis function and the final kernel is
constructed by taking the product of the similarity kernels. The individual kernels
are:

K1(x,xi) = k(−γ1 ∗ (wtd+ ||x−xi| |L2)) (6.18)

K2(x,xi) = k(−γ2 ∗ (1− |〈θ,θi〉|)) (6.19)

K3(x,xi) = k(−γ3 ∗ (1− |〈φ,φi〉|)) (6.20)

K4(x,xi) = k(−γ4 ∗ (1− |〈ψ,ψi〉|)) (6.21)

K5(x,xi) = k(−γ5 ∗ (1− |〈π,πi〉|)) (6.22)
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The product of these kernels,

K(x,xi) =
5∏
j=1

Kj(x,xi) (6.23)

is the kernel used in the SVM. Since we model the local structure using kernels,
we need to keep the support of the kernels local. To this end, we use radial basis
functions with compact support [197]. This is similar in spirit to using k-NN or
ε-NN to model local structure in other manifold learning algorithms [139, 163].
Note, for example the similarity to the model in [144], which was formulated as
an unsupervised regression model for estimating an implicit function.

At each iteration of the optimization problem the SVM is solved using the
previous iteration’s data and the current iteration’s estimate of F(xi). Then F is

set equal to ρ and the data are evaluated using C(x) =
N∑
i=1
αiK(~x,~xi). Points for

which C(~x)> 0 are in the affine hull of the Support Vector solution set. These
points are similar to the current training data based on the kernel similarity, and
are consistent with F as the equality constraints on the SVM. These points are then
added to the points considered to be part of the extracted model. Note: a given
point may be added, removed, or removed permanently as the model converges.

6.9 Discussion

This chapter described the multi-objective optimization problem and presented the
algorithm for fitting an SGM to data. The scalarized multi-objective optimization
problem was presented as was the concept of Pareto Optimal [114]. The individual
objective functions were reviewed and algorithms for fitting the data were outlined.
Finally, an algorithm for computing the full scalarized multi-objective optimization
function that fits the SGM to the tensor data was presented and the importance of
the modeler in determining when a given solution is acceptable was emphasized.

In the next chapter, Chapter 7, the specific elements needed to construct an
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SGM for modeling white matter volumetric structures is laid out.
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Chapter 7

Deriving Features and Extracting
Structural Information from the
SGM

7.1 Introduction: Traversing the Manifold

Many questions about white matter structure involve its geometric properties.
This chapter considers the use of the SGM for exploring white matter volumetric
structures geometrically and statistically. Recall that DTI data is collected using a
3D rectilinear grid. This grid bears no relationship to the global geometry of the
white matter structures that it is samples. The SGM takes the DTI data as input
and produces a global geometric model that reflects the global geometry of the
white matter structures that generated the DTI data, and produces a curvilinear
coordinate system that can be navigated in a number of ways to allow analysis
that could not easily be accomplished otherwise.

This chapter is divided into five parts that walk through the properties and uses
of the SGM. First, how to use the SGM to generate submanifolds that become the
framework for extracting structural information from the manifold for analyzing
white matter properties. Second, some examples are given that show how to
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use the SGM to map points in M3 7→ R3 and points in R3 7→M3. Third, we
describe how to use the SGM to extract intrinsic invariant geometric properties
of points on the manifold. Fourth, white matter connectivity is determined in
terms of properties of the SGM that allow the global partitioning of the data
into geometrically well-defined regions. Fifth, orientation statistics [109] are
presented as a means for testing how well the SGM fits the data and ways are
proposed for exploring small scale structure that might not be well described by
the SGM. Finally, a method for performing rigid body transforms on the SGM by
linear operations on the coefficients of SGM polynomials is presented. This is
a first step in a registration algorithm that is outlined in the final chapter of this
thesis.

7.2 Generating Submanifolds of the SGM
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Figure 7.1: Curves generated by intersecting surfaces.

Submanifolds of the SGM consist of points, curves, and surfaces. Recall that
the SGM is composed of families of orthogonal surfaces that foliate a manifold.
Each surface is a submanifold of M3:

M(ν‖,ν⊥,ν) = S‖(~x)∩S⊥(~x)∩S(~x) (7.1)
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where ν‖,ν⊥,ν may be thought of as the intrinsic coordinates of the manifold
and ~x are the extrinsic coordinates in R3 of the implicit functions. Each implicit
surface S ′(~x)‖ is defined at a given point x0 ∈ R3 as

ν ′‖ = S(~x0)‖, (7.2)

S ′‖(~x) = S(~x)‖−ν
′
‖ = 0,

ν ′⊥ = S(~x0)⊥, (7.3)

S ′⊥(~x) = S(~x)⊥−ν
′
⊥ = 0,

ν ′ = S(~x0), (7.4)

S ′(~x) = S(~x)−ν
′
 = 0.

Similar to the planes that define the Cartesian coordinate system in R3, the
intersection of these orthogonal surfaces define a codimension 2 submanifold that
in this case are points on the manifold:

P(ν‖,ν⊥,ν) = S ′‖(~x)∩S ′⊥(~x)∩S ′(~x) (7.5)

On the other hand, taking the orthogonal surfaces pairwise defines codimension 1
submanifolds that correspond to curves on the manifold:

C ′‖(t) =M(ν‖(t),ν
′
⊥,ν ′) (7.6)

= S‖(~x,t)∩S ′⊥(~x)∩S ′(~x)
C ′⊥(t) =M(ν ′‖,ν⊥(t),ν

′
) (7.7)

= S ′‖(~x)∩S⊥(~x,t)∩S ′(~x)
C ′(t) =M(ν ′‖,ν

′
⊥,ν(t)) (7.8)

= S ′‖(~x)∩S ′⊥(~x)∩S(~x,t)

where as in Equations 7.2, 7.3, and 7.4, ν ′‖,ν
′
⊥,ν ′ are constants or coordinates

on the manifold and ν‖,ν⊥,ν are variables. t is a monotonic, non-constant
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parameter of the manifold curve C. See Figure 7.1.

S(x) - ν  = 0⊩

S(x) - ν  = 0

S(x) - ν  = 0

⊥

ǁ ǁ

⊥

⊩

x0

Figure 7.2: Coordinates generated by intersecting surfaces. ν‖,ν⊥,andν are
defined in Equations 7.2, 7.3 and 7.4, respectively.

7.3 Mapping from Image Space to Manifold Space

The equations in the last section are mappings from R3 to the manifold space
M3. The inverse map allows sampling the manifold M3 using the diffusion data
collected on a rectilinear grid in R3. This results in a data set that is arranged in a
manner that reflects the structure of the submanifold. Scalar data derived from DT
imaging such as FA, MD and RA (see Equations 3.3, 3.2, and 3.4) or tensor shape
(Figure 7.9) are sampled from the 3D grid of image data. The data may also be
vectorial. These invariants each give different information about tissue properties
at a given voxel so it makes sense to organize them as a vector of features at each
structural point for subsequent analysis.

Bringing together Equations 7.2, 7.3, and 7.4 we see that mapping the coor-
dinates of points in R3 to points in M3 is equivalent to finding the intersection
of the level surfaces at the given point in M3. This amounts to evaluating each
surface function at the point x0 giving the manifold coordinates, ν ′‖, ν

′
⊥, ν ′. The

inverse mapping from M3 7→ R3 given ν ′‖,ν
′
⊥,ν ′ is the solution of the system of
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C (t)

t1
x0

x1
t2

p1

p2Ambient space

Manifold space

Figure 7.3: Back-sampling.
p1 = P(ν1

‖,ν
1
⊥,ν1

), p2 = P(ν2
‖,ν

2
⊥,ν2

) and C(t) are in the manifold space. ~x0

and ~x1 are points (ambient space) or voxels (image space). The small circles are
points along C(t) where the voxels (~x0 and ~x1) are mapped to the points ( p1 and
p2 ) in manifold space. The green squares represent scalar values that are mapped
from one space to the other.

simultaneous nonlinear equations:

S‖(~xβ)−ν
′
‖ = 0, (7.9)

S⊥(~xβ)−ν
′
⊥ = 0,

S(~xβ)−ν
′
 = 0,

for ~xβ. The value of the sampled data at xβ is associated with the manifold
at coordinates ν ′‖,ν

′
⊥,ν ′. The procedure for mapping data in voxel space to

manifold space involves traversing the submanifold (along geodesics for curves
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and surfaces) of the SGM and back-sampling ( Figure 7.3 )
In the next three sections the machinery developed in the previous sections is

used to sample the manifold in a variety of ways depending upon how we plan to
analyze the data. The primary aim is to describe how to sample the manifold for
use in Functional Data Analysis.

7.3.1 Sampling along Curves on the SGM

One method of sampling the manifold is to generate multiple curves on the
manifold and sample them where they intersect common orthogonal surfaces. For
example, Figure 7.4 depicts three curves that are used to sample the manifold
where they intersect with eight orthogonal surfaces.

S (x) - ν0 = 0

S (x) - ν3 = 0

S (x) - ν7 = 0

ǁ

ǁ

ǁ

C
C

C
ǁ

ǁ

ǁ

1

2

3

Figure 7.4: Three curves and eight surfaces produced by an SGM generated by
data from the corpus callosum of a test subject.
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S (x) - ν0 = 0

S (x) - ν4 = 0

ǁ

ǁ

Figure 7.5: Data on orthogonal surfaces summarized on a single curve. For
example, assigning the maximum FA or average FA on a surface to the curve at
the point of intersection.

7.3.2 Summarizing Volumetric Structure using a Single
Manifold Curve

Figure 7.5 depicts another method for sampling the manifold. This method
assumes the volumetric structure is roughly tubular and that projecting a measure,
for example the maximum FA value, on each surface to a single common curve is
sufficient to represent the statistics of interest on the manifold.

7.3.3 Sampling by Projecting onto a Surface along
Orthogonal Manifold Curves

Figure 7.7 depicts a volumetric structure that is more bilaterally extended than the
previous example. In this case a surface is chosen, for example the Median Surface
SM⊥ (see Equation 5.13), and measures are projected along the orthogonal curves
to the surface. Point-based statistics may then be used to analyze the surfaces.
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Alternatively, the SM⊥ may be sampled using curves tangent to and embedded
in the surface, and then analyzed by FDA. Given the surface SM⊥ , the family of
curves sampling the surface are given by

C‖(t,s) =M(ν‖(t),ν
′
⊥,ν(s)) (7.10)

= S‖(~x,t)∩S ′⊥(~x)∩S(~x,s).

Figure 7.6: An example of the Median Surfaces derived by fitting an SGM model
of the genu of the corpus callosum. The surface depicted in the left image are
Green: Median Surface orthogonal to C‖, Blue: Median surface orthogonal to
C⊥, and Red: Median orthogonal to C. The center image shows the curves
that project data onto the blue surface, and the right image shows the curves that
project data onto the red surface.

An example of three Median Surfaces, SM‖ (~x), SM⊥ (~x), and SM (~x), extracted
using the SGM is shown in Figure 7.6.

In this section establishes a method for traversing the manifold and sampling
the voxels in image space. The resulting data are consequently organized in a
manner that reflects the organization of the structure of the manifold. In the
next section the same machinery is used to traverse the manifold, but this time
instead of sampling data from image space the SGM allows the sampling of
position-independent geometric properties directly from the model.
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C
Cǁ
ǁ

S (x) - ν0 = 0ǁ

S (x) - ν8 = 0ǁ

S (x) - νM = 0⊥

C⊩

Figure 7.7: Sampling and summarizing data on the SM⊥ (~x) = S⊥(~x)−νM = 0
median surface. The magenta lines on the S‖ surfaces depict the intersection of
those surfaces with SM⊥ (x) median surfaces. Tensor data are then projected along
the C (yellow) curves to the SM⊥ surface. Once the data are projected to the
SM⊥ (~x) surface they may be organized according to the needs of a given analysis
method. Some examples of organization include a vector of data values ordered
by position along the curve and the maximum or average of data values along
each curve.
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7.4 Geometric Properties at Points on Implicit
Surfaces

We begin this section by looking at the geometric quantities that can be calculated
in closed form at each point based on the polynomials in the SGM. Letting
F ∈ {S‖,S⊥,S}, we start with a few preliminary definitions and then go on to
give closed form formulas for the three definitions of curvature and the formula
for torsion.

We begin with a description of our notation and a few definitions that allow
us to write the subsequent formulas more compactly. Preliminary definitions:

∇F=
(
∂F

∂x

∂F

∂y

∂F

∂z

)
= (FxFyFz) (7.11)

H(F) =∇(∇F) (7.12)

H(F) =




∂2F
∂x2

∂2F
∂x∂y

∂2F
∂x∂z

∂2F
∂y∂x

∂2F
∂y2

∂2F
∂y∂z

∂2F
∂z∂x

∂2F
∂z∂y

∂2F
∂z2




H∗(F) =



FyyFzz−FyzFzy FyzFzx−FyxFzz FyxFzy−FyyFzx

FxzFzy−FxyFzz FxxFzz−FxzFzx FxyFzx−FxxFzy

FxyFyz−FxzFyy FyxFxz−FxxFyz FxxFyy−FxyFyx


 (7.13)

Equation 7.11 gives the notation for the gradient of the function F. Equation
7.12 is the Hessian and Equation 7.13 is the adjoint of the Hessian. Next formulas
for curvature involving single surfaces only are presented, followed by formulas
based on manifold curves that depend on the intersection of pairs of surfaces.
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7.4.1 Mean Curvature from Surfaces

Mean curvature is defined as the mean of the principal curvatures at a point on a
surface and is an extrinsic measure of surface curvature:

KM =
∇F ·H∗(F) ·∇FT − |∇F|2Trace(H)

2|∇F|2 (7.14)

7.4.2 Gaussian and Principal Curvatures from Surfaces

Gaussian curvature is an intrinsic invariant whose value is not dependent on the
ambient space. For each surface at a given point, the Gaussian curvature is

KG =
∇F ·H∗(F) ·∇FT

|∇F|4 . (7.15)

In order to further characterize the local geometry we need to calculate the principal
curvatures. Given the mean and Gaussian curvature, the principal curvatures are

k1,k2 = KM±
√
K2
M−KG. (7.16)

If k1 and k2 are both positive we can interpret the Gaussian to be measuring the
amount of local expansion. If k1 and k2 are both negative we can interpret the
Gaussian to be measuring the amount of local contraction. If the signs are not
the same, the surface is locally hyperbolic. If k1 = k2 the point is called umbilic.
This should happen only at isolated points. If one principal curvature is 0, the
point is parabolic.

7.4.3 Curvature and Torsion from Implicit Curves

Curvature and torsion formulas presented in [63] can be used to calculate local
differential properties of the surfaces determined by the SGM. Torsion is a
particularly interesting property when analyzing the corticospinal and cortico-
bulbar or cortico-pontine tracts. These regions are known to undergo considerable
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torsion as the tract is traversed from the inferior to superior direction along the
C‖ curves of the SGM.

7.4.4 Curvature from Implicit Curves

The curvature at a given point is determined by the choice of surfaces determined
by the SGM. For example, choosing S(~x)‖∩S(~x)⊥, then

k=
|((∇S(~x)‖×∇S(~x)⊥) ·∇(∇S(~x)‖×∇S(~x)⊥))× (∇S(~x)‖×∇S(~x)⊥)|

|∇S(~x)‖×∇S(~x)⊥|3
(7.17)

An example of a curved volumetric structure is shown in Figure 7.8 (a).

7.4.5 Torsion from Implicit Curves

The torsion at a given point is determined by the choice of surfaces determined by
the SGM. Choosing S(~x)⊥∩S(~x), then

τ=
Det(T1T2T3)

|T1T2|2
(7.18)

where

T1 =∇S(~x)⊥×∇S(~x),

T2 = (∇S(~x)⊥×∇S(~x)) ·∇(∇S(~x)⊥×∇S(~x)),
T3 = (∇S(~x)⊥×∇S(~x)) ·∇(∇(∇S(~x)⊥×∇S(~x))) · (∇S(~x)⊥×∇S(~x))T

+(∇S(~x)⊥×∇S(~x)) ·∇(∇S(~x)⊥×∇S(~x)) ·∇(∇S(~x)⊥×∇S(~x)).

Figure 7.8 (b) shows an example from the experimental data of a volume that
has significant torsion. As can be seen, the torsion represents the rate of change
in the binormal or tertiary diffusion direction. See [51, 63, 155] for an analysis of
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the derivation of these and other closed form formulas and for a more in-depth
description of the geometric properties of implicit curves and surfaces.
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Figure 7.8: Volumes with orthogonal sampling surfaces that contain (a) high
curvature with low torsion and (b) low curvature with high torsion.

7.5 Rigid Body Transformation of the SGM

We briefly mention a final property of implicit polynomial representation. Recall-
ing Definition 4.3, compactification of R3 is accomplished by adding a point at
infinity. This means transforming the problem into the real projective space P3.
When necessary, the implicit functions representing the foliations of the manifold
are reformulated using homogeneous coordinates. The resulting manifold is both
compact and closed. The compactification of the SGM allows the SGM to be
translated and rotated by a set of linear transforms on the coefficients of the
SGM polynomials [164]. This means we can bring models describing volumetric
structures from different data sets into rigid alignment. Finally, the SGM is
transformed from PR3 7→ R3 by converting from homogenous coordinates back
to real coordinates. Analysis and exploration of this method is part of our future
work and is the first step in a proposed nonlinear registration method based on the
SGM.
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7.6 Estimating Connectivity

One question anatomists would like to ask is: given fibers originating in Region A,
what proportion of those fibers terminate in region B? Another way to consider this
question is: how can we geometrically partition the fibers into those that connect
regions A and B and those begin in A and do not end in B? Probabilistic approaches
can estimate a likelihood that a given voxel is on a path connecting two regions but
that doesn’t lead to an answer to this question. Even deterministic approaches to
estimating connectivity are essentially probabilistic because streamline trajectories
become more and more uncertain as the distance between the regions increases
so that counting streamlines or estimating streamline densities have the same
problem [14, 94].

Figure 7.11 illustrates this problem on the boundary of a connected volume
of fibers. The volume is defined as the intersection of the fibers that connect the
two ROIs. The cube in the figure represents a voxel whose fiber density we wish
to estimate. The red-shaded region is the portion of the cube that lies inside the
volume. Ideally, all of the streamlines passing through the cube and connecting
the ROIs will pass through the red-shaded region. Only streamlines that originate
within the fiber volume should terminate in the ROIs. For fibers passing through
the cube the fiber density is then proportional to the volume of the shaded region
divided by the volume of the cube. The same is true of cubes that lie entirely in the
fiber volume. However, due to propagation uncertainties that, as mentioned above,
increase with the distance between ROIs, these assumptions are often violated.

For example, in Figure 7.11 streamline 1 originates outside the fiber volume
but passes through the external portion of the cube and terminates in one of the
ROIs. Streamline 2 begins and ends outside ROIs but passes through the shaded
region. Streamline 3 begins and ends in the ROIs but passes through the external
portion of the cube. Streamline 4 begins in an ROI and passes through the shaded
region but fails to terminate in the other ROI. Only streamline 5 begins and ends
in both ROIs and remains entirely in the interior of the volume. The same analysis
applies for voxels that lie entirely in the volume. An approach to dealing with
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these problems is to estimate a fiber density per voxel. Many streamlines are
generated in each voxel and those that terminate in both ROIs are counted. An ad

hoc normalization is then applied to deal with the distance-related uncertainty.
Our approach leads to geometrically well-defined volumes that are fully

deterministic. To define a volume using the SGM, a boundary must be defined.
This is straightforward using the SGM and the curves that have been extracted,
as follows. Choose any orthogonal surface S‖−ν ′‖ = 0. Formulate a parametric
curve, b(t) = {ν⊥(t),ν(t)}. This curve is determined by stepping "around" the
edge of the orthogonal surface. For example Figure 7.9 shows two surfaces with
blue boundary traces. Either curve may be used to estimate the boundary. In fact,
since a given C‖(t) curve on the surface may be used as a common starting point,
multiple surfaces may be used to give a robust estimate of the boundary. Figure
7.10 has its entire surface defined by the red curve. The total volume is then the
volume of the voxels inside the surfaces defined by the boundary surface and the
intersection of the volume with the ROIs. It is important to keep in mind that the
surfaces are defined at the subvoxel level as is the resulting volume.

With this volume in hand we can then directly address the question posed at the
beginning of this section. The volume determined as described above is divided
by a volume determined by only one of the chosen ROIs. This is proportional
to the number of fibers originating in, for example, ROI A that also terminate in
ROI B divided by the volume of all of the fibers originating in ROI A.

Another complication needs to be considered. Nothing in the SGM requires
that the volume is uniformly dense. In fact, Figure 7.12 shows three samples
from SGM models of the right corticospinal tract from our experimental data. All
three are densely sampled. Clearly the left example does not entirely fill the space
inside the enclosed volume. Fortunately, given that the volume is well-defined,
we can estimate the portion of the volume that is "empty" using Monte Carlo
methods. Since all volumes may be estimated in this fashion, the ratio of the
volumes is still well defined.

Considering the geometric properties, this analysis implies that the SGM is not
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Figure 7.9: Blue lines around two of the level surfaces trace out their boundaries.
Any boundary of any level surface defines the surface of the volume modeled by
an SGM.

necessarily genus zero. This is an important property. For example, the presence
of a tumor or even normal tissue such as deep gray matter, could result in "holes"
in the manifold. Obviously this is also true for bifurcating volumetric structures.
We mention this here for completeness but leave it to future work for further
analysis.

There is one additional advantage of that SGM has over density or probability
based connectivity. The same techniques that were described above for sampling
along curves through a volume can be applied to estimating the what we call
the quality of the connectivity. The quality of the connectivity is estimated by
integrating the FA, MD or other scalar values along the curves through a volume.
We leave the precise definition to later work.
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1
2 3 4

Figure 7.10: This figure illustrates the properties of an SGM volume. Curves
1 and 4 begin and end outside of the volume and can never enter the volume.
Curves 2 and 3 start and end inside the volume and can never exit the volume.
The test box shown in black intersects the volume in the red-shaded region to help
distinguish between the interior and exterior of the volume.

7.7 Orientation Statistics

One of the questions we would like answered about the SGM is how well it fits
the data. Is the SGM too smooth to properly represent the underlying volumetric
structure? If the fit is good overall, are there areas where the model doesn’t fit well
and something needs to be done locally? The only fit we can really measure is
how well the local gradients match the tensor orientations. This comparison falls
under the aegis of directional statistics. If the SGM fits the tensor orientations
well we would expect the gradients to fall near the mean of the local orientation
distribution without the variance being too high. For example, the SGM may fit
the tensor orientations in a region well but there are subregions with significant
variability or bias. This may indicate either local changes in structure that may be
useful in refining the model or may reflect local pathology of the tissues. For a
general outline of the principles of orientation statistics see [53, 109]. We leave
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Figure 7.11: A bundle of streamlines associated with a volume. Examples of
different streamlines that enter and leave the volume are shown. Due to noise
and other factors it is difficult to determine how well the two ROIs are connected
by the streamlines. The usual practice is to generate many streamlines, make
adjustments for how far the ROIs are from each other, and define the connection
as a density estimate. The test box shown in black intersects the volume in the
red-shaded region to help distinguish between the interior and exterior of the
volume.

Figure 7.12: These three bundles are representative of the volumetric structure of
the right corticospinal tract from three different subjects. The SGM give a well
defined volume for these volumetric structures but the images suggest that the
volume may not be completely filled by the fibers. This suggests that the genus
of the volumetric structure may be higher than zero.
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this analysis for future work.

7.8 Discussion

In this chapter we explored properties of the SGM and related them to sampling the
original data in a variety of ways depending on the analysis method. In addition we
showed that having a global polynomial model allows the differential geometric
properties of the manifold to be derived in closed form. The SGM coefficients
can also be manipulated to effect rigid body transforms. We have a new measure
of connectivity and examined some of the properties of that definition.

Finally, we described using orientation statistics as a method for measuring
how well the SGM fits the data. Orientation statistics was also proposed as a
method to explore small-scale structure in the diffusion data that may reflect
small-scale fiber structures that are not be modeled well by the SGM.

In the next chapter we implement an SGM and use some of the sampling
methods we have described to analyze two white matter volumetric structures in
a data set containing nominally developing control subjects versus subjects with
Autism Spectrum Disorder.
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Chapter 8

SGM Implementation and
Experimental Evaluation

8.1 Introduction

An SGM was implemented as part of a suite of analysis programs. The suite
included software to (1) build SGM models, (2) implements sampling and mapping
functions, (3) outputs SGM volumes at voxel(in NIFTI format) and subvoxel
levels (in Matlab mat format), (4) outputs SGM curves, C‖,C⊥,C in Camino,
Trackvis formats, (5) maps choice of invariants such as FA onto SGM curves and
outputs each curve as a spline function ready for Functional Data Analysis, and
(6) provided a wrapper around third party FDA package to do the analysis and
generate reports.

For this set of experimental evaluations the software was used to extract models
of white matter structures of the brain from Diffusion MRI data sets. The data
sets were Diffusion Images from persons considered to be normally developing
and persons diagnosed with Autism Spectrum Disorder. The normally developing
persons were our control subjects and the persons with Autism Spectrum Disorder
were our test subjects. The white matter volumetric structures focused on were
the genu of the corpus callosum and the right corticospinal tract both of which
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have been associated with Autism Spectrum Disorder. Once the SGMs were
computed for each volumetric structure in each subject we use the sampling
methods described in Chapter 7 to sample the Diffusion MRI data and put it in a
form that allows analysis using Functional Data Analysis (FDA).

8.2 Algebraic Polynomials for Modeling SGM
Surfaces

The SGM surfaces, S‖, S⊥ and S, were modeled by algebraic polynomials. The
polynomials were weighed sums of global monomial basis functions. The weights
are the usual coefficients of polynomial functions and constructing the model is
the process of finding these weights. LettingN= order - 1 andD ∈ {‖,⊥,} and
~x= (x0,x1,x2) ∈ R3

SD(~x) =

N∑
i=0

N∑
j=0

N∑
k=0

β(i,j,k)x
i
0x
j
1x
k
2 (8.1)

β(i,j,k) =


0 , if i+ j+k >N

C , if i= j= k= 0

β(i,j,k) , otherwise

where β(i,j,k) are the weights and xi0,xj1,xk2 are the monomials raised to the powers
i, j,k. N is the degree of the polynomial. For these experiments the order of all
three polynomials is eight (degree seven) in three variables. The degree of the
polynomial was determined empirically on a test data set. Trials on a number of
different white matter structures and on a variety of data sets other than those
data sets used in this evaluation appear to result in reasonable models using order
eight polynomials. F(~x) in the SGM is

F(~x) = S‖(~x)∩S⊥(~x)∩S(~x). (8.2)
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All curves CD were defined by taking surfaces SD pairwise (D ∈ {‖,⊥,} are
space curves that, by Bézout’s Theorem, may be up to 49th degree polynomials.
Fortunately the SGM has sufficient control of model complexity that the effective
degree of the space curves is readily controlled.

The global portion of the SGM is presented in Equation 8.3. First however, a
few variables are defined that make the presentation more readable. Letting ~U‖

be the unit vector
∇S‖(~x)
‖∇S‖(~x)‖ ,

~U⊥ the unit vector ∇S⊥(~x)
‖∇S⊥(~x)‖ , and ~U the unit vector

∇S(~x)
‖∇S(~x)‖ . Let H(S‖), H(S⊥) and H(S) be the Hessian matrices with rows i and
columns j. Then

F(~x) = min
x∈M

{
λ1‖~U‖ ·~ε‖‖L∞+λ2

[
argmin
x∈M

‖dG(SM(~µ)
‖ (~x)|L1

]
(8.3)

+λ3‖~U⊥ ·~ε⊥‖L∞+λ4

[
argmin
x∈M

‖dG(SM(~µ)
⊥ (~x)‖L1

]

+λ5‖~U ·~ε‖L∞+λ6

[
argmin
x∈M

‖dG(SM(~µ)
 (~x)‖L1

]

+λ7

∥∥∥1−(~U‖ · (~U⊥× ~U))
∥∥∥
L2

+λ8‖
∑
i,j

H(S‖(~x))i,j‖L2

+λ9‖
∑
i,j

H(S⊥(~x))i,j‖L2

+λ10‖
∑
i,j

H(S(~x))i,j‖L2

}
.

8.2.1 Modeling Local Structure with the SGM Support
Vector Machine

The global polynomial portion of the model required the data to lie on a single
unknown manifold. Conversely, as indicated in Equation 8.4, the SGM Support
Vector Machine (SSVM) needs the SGM global function to help it "decide" if the
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data lie on a manifold that is consistent with the global polynomial. Therefore
some indication is needed of what data are initially part of the manifold that we
want to model. This is an example of semi-supervised manifold learning. In
addition to giving some examples of where to start, the SSVM needs a description
of how the data should be considered similar to one another. Since the SSVM
only selects which data to add "near" other data and "near" the SGM global
function the similarities need to be evaluated locally. Given those requirements
and the mathematical requirements for the SSVM, similarities are defined by
kernel functions that are local or compact. Scaling each kernel separately as
described below allows controlling how similar data points should be. In this way
the kernels "find" the local structure of the manifold guided by the SGM global
function.

Recalling Equation 6.17, let

〈w,Φ(xi)〉=K(•,•i) (8.4)

min
w∈H,ξ(∗)∈Rm

1
2
‖w‖2 +

1
mν

m∑
i=1

(ξ∗i +ξi) , (8.5)

subject to

−ξi 6K(•,•i)+λF(xi)6 τ+ξ∗i
ξ(∗) > 0,

Each similarity kernel is a compact radial basis function. The radial basis
functions chosen for this study were Gaussian inside a scaled interval and zero
outside of that interval. Recall that the three eigenvectors of the Diffusion Tensor
D are represented by ε‖,ε⊥,ε and the kernels are given by:

Kd(x,xi) = ε(−γ1∗(||x−xi||2)) (8.6)

K‖(~ε‖,~ε‖i) = ε
(−γ2∗(1−|〈~ε‖,~ε‖i〉|)) (8.7)

K⊥(~ε⊥,~ε⊥i) = ε(−γ3∗(1−|〈~ε⊥,~ε⊥i〉|)) (8.8)

KFA(x,xi) = ε(−γ4∗(1−|FA(~x)−FA(~xi)|)). (8.9)
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Kd(∗) controls the size of the neighborhood of the model. K‖(∗) is a similarity
metric for the difference in orientation between the ε‖ eigenvectors. K⊥(∗) is a
similarity metric for the difference in orientation between the ε⊥ eigenvectors.
Finally, KFA(∗) is a similarity metric for the diffusivity properties of the diffusion
MRI data. For these experiments KFA(∗) is the fractional anisotropy at each data
point. These kernels were combined into the kernel

K(•,•i) =
4∏
j=1

Kj(•,•i), (8.10)

where j ∈ {d,‖,⊥,FA}. Note: for these experiments our similarity kernels were
measuring the difference in orientation between tensors. Since the eigenvectors
of the tensor are orthogonal, the orientation of the tensor in R3 is fully determined
by any two of them.

8.3 SGM and Functional Data Analysis

When performing an analysis it is important that correlations between data points
be taken into account. For example, voxel-based methods assume that all voxels
are statistically independent [10]. However, as outlined in Section 2.2, white
matter is composed of continuous fibers and therefore measurements taken along
the fibers are likely to be highly correlated. Voxel-based methods also apply
Gaussian smoothing kernels to the diffusion data at each voxel. This has the
effect of reducing the effects of imperfect registration as well as increasing the
statistical power for subsequent analysis. Unfortunately, as pointed out previously
[135–137], if the data are already correlated in a given direction this kind of
smoothing introduces spurious additional correlations. A method of statistical
analysis that takes the kind of correlation in our data into account is Functional
Data Analysis (FDA).
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8.3.1 Choosing Sampling Surfaces

There are formal methods for picking corresponding sampling surfaces across
subjects but those remain part of our future work. Studies [60, 67] suggest that
analysis of white matter along the direction of the fibers is not very sensitive to
cross-subject alignment. A preliminary look at curve lengths in the data showed
that the curves in the structures modeled were similar in length. So, for the
purposes of this analysis, a simple approach is taken. Assuming good extracted
volumes by SGMs, a correspondence between structures is assumed to be the
Median Curve (MC) of each structure. An MC, CM‖ , is a curve determined by the
intersection of two median surfaces, SM⊥

⋂
SM . MCs were determined for given

structures in each subject. Then, each MC is partitioned into 200 evenly-spaced,
non-overlapping segments. Orthogonal sampling surfaces, S‖ were determined
for each MC, for each subject. The two sampling methods described below use
these surfaces to map FA values to sampling curves.

8.3.2 Functional Mapping

The simplest form of Functional Data Analysis [135, 136] assumes that the data
can be organized into a number of single parameter curves [135–137]. It is straight
forward to use an SGM to sample the voxel space of a white matter structure and
produce curves comprised of FA values.

For example using the following equation:

C‖(t,s) =M(ν‖(t),ν
′
⊥,ν(s)) (8.11)

= S‖(~x,t)∩S ′⊥(~x)∩S(~x,s).

an initial ~x defines a particular curve t that is the intersection S‖(~x,t)∩S ′⊥(~x). s
indexes along the curve. Then the mapping function M takes the manifold curves
and FA data and maps them to a curve with the discrete FA values. More formally,
M(C‖(t,s),FA(t,s)) 7→ CFA(t).
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The next step is to estimate a smooth function C of the FA values using the
CFA curves.

8.3.3 Functional Smoothing

The next step in preparing the data for analysis is smoothing. Previous work [133,
136] suggests smoothing the data using a penalized least-squares method:

S(t,C(t),λ) =
∑
j

(CFA(tj)−C(tj))
2 +λ

∫ (
dnC(t)

dtn

)2

dt (8.12)

where λ is a parameter that controls the amount of roughness allowed in the
solution. A choice of basis functions needs to be made as well:

C(t) =

K∑
k=1

βkφk(t) (8.13)

whereφk(t) is the kth basis function, βk is the kth weight and K is the number of
basis functions. Given that the data are effectively height functions of FA values
in the range of [0,1], B-splines were a reasonable choice for the basis functions.
With these choices made, the specific description for the functional data can now
be made.

As described in Section 8.3.1, the CFA(t) were sampled at 200 points and the
number of basis functions K were chosen as 190. The order of the B-splines was
set to 6. n, the order of the derivative used in the smoothing function, was set to
4. The analysis showed little sensitivity to these choices. A more important issue
is the choice of the smoothing parameter λ because the results of the analysis are
somewhat sensitive to the choice of λ. The value of λ was determined using a
combination of generalized cross validation [42] and empirical observation.
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8.3.4 Functional Registration

Determining theC‖(t) curves within a single subject is well defined using the SGM.
However, when analyzing the data between subjects using the approximation
methods described here, exact correspondence between orthogonal sampling is
uncertain. Functional registration or curve registration [137] compensates for
this uncertainty as well as providing a method to evaluate the sensitivity of the
analysis to this sampling method. The registration step used here consists of
calculating a functional mean curve using all of the data from both the control
and autism groups for a given structure. Then, data curves were registered using
methods described in [137]. Registration appears to reduce variance somewhat
but the results were identical with and without registration. One reason this might
be correct is the observed relative insensitivity of alignment errors along white
matter fibers noted in Section 8.3.1.

8.4 Experimental Design

Differences in white matter structure between persons diagnosed with Autism
Spectrum Disorder have been noted in a number of studies. Two white matter
structures that have been shown to exhibit such differences were chosen for
modeling and analysis: (1) a portion of the genu of the corpus callosum, and (2)
the right corticospinal tract. The genu has interesting internal structure because
it has a curved global shape and the cingulum is closely associated with it. An
SGM that models the genu exclusively requires that a few voxels specific to the
genu be indicated. In principal these additional voxels weren’t strictly needed but
using them greatly reduces the time need to compute an SGM. Large ROIs were
manually specified and used in post-processing to indicate which structure the
model should keep.

The sampling surfaces were chosen based on the method described in Section
8.3.1. Median Curve(MC)s were determined for given structures in each subject.
Then, each MC is partitioned into 200 evenly-spaced, non-overlapping segments.
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Orthogonal sampling surfaces, S‖ were determined for each MC, for each subject.

Sampling Method 1. Calculate the Median Curve CM‖ and the orthogonal sam-

pling surface Si‖ i= 1...200. Find the maximum FA value on each surface. Then

M(C‖(t),max(FA)) 7→ Cmax(FA)(t). The result is a single curve Cmax(FA)(t)

representing each structure in each subject.

Sampling Method 2. Calculate the Median Curve CM‖ and the orthogonal sam-

pling surface Si‖ i = 1...200. Use the SGM for each structure to generate a

large number N of curves C‖ randomly distributed in the structure volume. Then

construct the curves that are the intersection of each C‖ curve with the orthogonal

sampling surfaces. For each intersection point find the FA value at that point.

Then M(Cn‖ (t),FA) 7→ CnFA(t) where n ∈ {1, ...,N}. The output is sets of N CFA

curves. Each set of N curves samples the volume of a single structure.

CFA(t) curves were produced for each sampling method. First derivative
curves (C ′FA(t)) and second derivative curves (C ′′FA(t)) were calculated as well.
This allows the exploration of the distribution of FA values, the rate of change in
the FA values and the "acceleration" in the rate of change.

8.4.1 Data

The data used in this evaluation were provided by the Waisman Laboratory for
Brain Imaging and Behavior University of Wisconsin-Madison. After initial
registration and tensor reorientation the data sets were resampled to an isotropic
resolution of 1mm x 1mm x 1mm. The tensor and FA maps were then calculated
using the Camino software package [39]. Finally all of the visualizations shown
were a combination of Trackvis [182], fslview [150] and Matlab [110]. Functional
Data Analysis was performed using Matlab code described in [134]. In the next
section an analysis of the genu of the corpus callosum is presented.
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8.5 FA Maps of the Input Data

Figures 8.1 and 8.2 were FA maps of sagittal view slices through the midline of the
brain for nine subjects from the control group and nine subjects from the autism
group. The corpus callosum (cc) is the large, white horizontal structure. Notice
that there is considerable variation in the shape of the cc near the genu. The usual
methods of analysis would require further registration or using large smoothing
kernels to do analysis whereas our analysis proceeds without further registration.
The FDA analysis focuses on the genu of the cc located on the right end of the
cc in each image, and labeled in red. To further emphasize that these extracted
volumes were only roughly aligned, see Figures 8.3 and 8.4. Figure 8.3 show
two views of the overlapping genu volumes of the control subjects and Figure
8.4 depicts two views of the overlapping genu volumes of the autism subjects.
Perfectly aligned volumes would result in monochrome images.

genu genu genu

genu genu genu

genu genu genu

Figure 8.1: Sagittal view slices through the midline of the brain for nine control
subjects. Notice the variation in shape of the region labeled genu.
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genu genu genu

genu genu genu

genu genu genu

Figure 8.2: Sagittal view slices through the midline of the brain for nine autism
subjects. Notice the variation in shape of the region labeled genu.

Figure 8.3: Two views of the overlapping volumes of extracted portions of the
genu for the control group. Each subject’s volume is a different color. A perfect
registration would show only one color.
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Figure 8.4: Two views of the overlapping volumes of extracted portions of the
genu for the autism group. Each subject’s volume is a different color. A perfect
registration would show only one color.

Figure 8.5: Four views of an SGM model of the genu of the cc of a control subject.
Green shows the voxels of the SGM volume, and SGM curves through the volume
are shown in red.
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Figure 8.6: Four views of an SGM model of the genu of the cc of a control subject.
Green shows the voxels overlaying the SGM volume, and SGM curves through
the volume are shown in red.

Figure 8.7: Four views of an SGM model of the genu of the cc of an autism
subject. Green shows the voxels overlaying the SGM volume, and SGM curves
through the volume are shown in red.
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Figure 8.8: Four views of an SGM model of the genu of the cc of an autism
subject. Green shows the voxels overlaying the SGM volume, and SGM curves
through the volume are shown in red.
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8.6 Sampling the Genu

In the course of analyzing a data set it is important and useful to visualize elements
of the data set. Once an SGM has been computed for the genu in each subject, the
overall organization of the tracts modeled by the SGM can be viewed by sampling
the volume with sets of C‖. Figures 8.5 and 8.6 show a set of C‖ curves traced
through the body of the genu of a control subject. The shaded green areas are
the voxels representing the volume extracted by the SGM. Likewise, Figures 8.7
and 8.8 represent the organization of the white matter fibers by C‖ curves traced
through the body of the genu of a subject with autism.

Figure 8.9 shows and axial and coronal views of the genu and the orthogonal
SGM curves. This visualization gives a sense of the global organization of the
white matter fibers in terms of smooth functions of the three sets of eigenvectors
of the Diffusion Tensor field.
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Figure 8.9: (top left) C‖ curves superimposed over the genu on an axial view FA
map. ( top right) C curves superimposed over the genu on an axial view FA map.
(bottom left) C‖ curves superimposed over the genu on a coronal view FA map. (
bottom right) C⊥ curves superimposed over the genu on a coronal view FA map.
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8.7 Analyzing the Genu – Sampling Method 1

The genu of the corpus callosum is one of the regions that has been shown to exhibit
differences in white matter composition between people with normal development
and people with Autism Spectrum Disorder [5, 177]. Sampling Method 1, as
depicted in Figure 8.10, is used to generate the functional data for this analysis.
This results in sixteen smoothed max(FA) curves representing the control group
and thirteen smoothed max(FA) curves representing the autism group. Figure
8.11 shows plots of these FA curves. The curves were registered to the mean
curve (see Figure 8.12) and the results plotted in Figure 8.13. T-tests compared
the curves generated using Sampling Method 1. No significant differences were
found between control and autism groups when simply comparing the distribution
of max(FA) values along the curves. However, the F ′(t) and F ′′(t) curves do
show statistically significant differences at the .01 significance level on the right
side of genu. The biological interpretation of the these differences remain to be
determined.

S (x) - ν0 = 0

S (x) - ν4 = 0

ǁ

ǁ

Figure 8.10: Genu of the corpus callosum: Sampling Method 1 – Maximum FA
from each orthogonal surface projected onto CM‖ .
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Figure 8.11: Unregistered Maximum FA F(t) curves of the genu for the control
subjects on the left and the autism subjects on the right.
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Figure 8.12: Genu of the corpus callosum: Mean Curve of the maximum FA
curves projected onto CM curve. This is the reference curve for registering both
the control and test data.
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Figure 8.13: Maximum FA F(t) curves of the genu (left) control and (right) autism
subjects.
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Figure 8.14: Genu: Maximum FA values Functional t-test controls vs autism for
F(t). At around t= 30 the pointwise t-statistic reached significance however that
statistic doesn’t take correlation of the data along the curves into account. For the
functional t-test there is no statistically significant difference between the control
and autism curves.
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Figure 8.15: Genu: Maximum FA F ′(t) indicates the rate of change with respect
to t in the FA curves. (left) control subjects (right) autism subjects.
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Figure 8.16: Genu: Maximum FA values Functional t-test controls vs autism for
F ′(t). At t= 25 and t= 35 the pointwise t-statistic reached significance however
that statistic doesn’t take correlation of the data along the curves into account.
For the functional t-test there is a statistically significant difference at the .01
significance level, between the control and autism curves.
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Figure 8.17: Genu: Maximum FA F ′′(t) indicates the "acceleration" in the change
with respect to t in the FA curves. (left) control subjects, (right) autism subjects.
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Figure 8.18: Genu: Maximum FA values Functional t-test controls vs autism
for F ′′(t). At around t= 23,30,40 the point-wise t-statistic reached significance
however that statistic doesn’t take correlation of the data along the curves into
account. For the functional t-test there is a statistically significant difference at
the .01 level between the control and autism curves.



107

8.8 Analyzing the Genu – Sampling Method 2

Sampling Method 2 as depicted in Figure 8.19 was used to generate the functional
data for this analysis. For this analysis the curves sampled from the control group
were bulked together and sampled randomly to get 1000 curves that represent
the entire control group of subjects. The curves from the autism group was
also bulked and sampled randomly to get 1000 curves that represent the entire
autism group of subjects. This results in smoothed FA curves representing the
control group and smoothed FA curves representing the autism group. The curves
were registered to the mean curve and the results plotted in Figure 8.20. T-tests
compared the curves generated using Sampling Method 2. The F ′(t) and F ′′(t)
curves were generated by taking the first and second derivatives of the F(t) curve,
respectively. Most of F(t) showed significant differences between the control and
autism groups when simply comparing the distribution of FA values along the
curves. F ′(t) showed statistically significant differences at the .01 significance
level on most of the curve. F ′′(t) showed statistically significant differences at the
.01 significance level at the left and right ends and just right of the center of the
genu. The biological interpretation of these differences remains to be determined.

S (x) - d0 = 0ǁ

ǁ

S (x) - d6 = 0

S (x) - d2 = 0

ǁ

Figure 8.19: Sampling multiple curves through the genu using a common set of
orthogonal surfaces.
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Figure 8.20: Genu – (left) control subjects. (right) autism subjects. Sampling
method 2. F(t) curves.
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Figure 8.21: Genu fully sampled volume – Functional t-test controls vs autism
for F(t). Most of the curve showed statistically significant differences at the .01
significance level.
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Figure 8.22: Genu – (left) control subjects. (right) autism subjects: Sampling
method. 2. F ′(t) curves.

t

F
'(

t)
α
: 

t-
st

a
ti

st
ic

0 5 10 15 20 25 30 35 40 45

1

2

3

4

5

6

7

Observed Statistic
pointwise critical value
maximum critical value

Figure 8.23: Genu fully sampled volume – Functional t-test controls vs autism
for F ′(t). Most of the curve showed statistically significant differences at the .01
significance level.
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Figure 8.24: Genu – (left) control subjects. (right) autism subjects: Sampling
method. 2 for F ′′(t) curves.
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Figure 8.25: Genu fully sampled volume – Functional t-test controls vs autism
for F ′′(t). Three areas along the curve show statistically significant differences at
the .01 significance level. They are the left and right ends of the genu and just
right of the center of the genu.
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Figure 8.26: Corticospinal registration. Two views of the overlapping volumes
of SGM volumes of portions of the corticospinal tract for the control group. A
perfect registration would show only on color.

8.9 Sampling the Corticospinal Tract

Once an SGM has been computed for the right side of the corticospinal tract
in each subject, the overall organization of the tracts modeled by the SGM can
be viewed by sampling the volume with sets of C‖. Figures 8.5 and 8.6 show
a set of C‖ curves traced through the body of the right corticospinal tract of a
control subject. The shaded green areas are the voxels representing the volume
extracted by the SGM. These figures were generated by data from the control
group. Likewise, Figures 8.7 and 8.8 represent the organization of the white
matter fibers by C‖ curves.
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Figure 8.27: Corticospinal registration. Two views of the overlapping SGM
volumes of portions of the corticospinal tract for the autism group. Perfect
registration would show only one color.



113

Figure 8.28: Corticospinal track: The top image is a combination of cortico-pontine
and cortico-bulbar fibers extracted simultaneously by an SGM superimposed onto
sagittal and axial view FA maps, respectively. The bottom image is the cortico-
pontine tract superimposed on an axial view FA map.
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Figure 8.29: Four views of an SGM volume and modeling of the right corticospinal
tract of a control subject. Green shows voxels overlaying the SGM volume and
SGM C‖ curves through the volume are shown in red.
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Figure 8.30: Four views of an SGM volume and modeling of the right corticospinal
tract of a control subject. Green shows voxels overlaying of the SGM volume and
SGM C‖ curves through the volume are shown in red.
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Figure 8.31: Four views of an SGM volume and modeling of the right corticospinal
tract of an autism subject. Green shows voxels overlaying the SGM volume and
SGM C‖ curves through the volume are shown in red.
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Figure 8.32: Four views of an SGM volume and modeling of the right corticospinal
tract of an autism subject. Green shows voxels overlaying the SGM volume and
SGM C‖ curves through the volume are shown in red.
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Figure 8.33: Corticospinal track: Three views of the right corticospinal tract with
3 orthogonal SGM surfaces and C‖ curves.
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8.10 Analyzing the Right Corticospinal tract –
Sampling Method 1

The right corticospinal tract is one of the regions that has been shown to exhibit
differences in white matter composition between people with normal development
and people with Autism Spectrum Disorder [26]. Sampling Method 1, as depicted
in Figure 8.10, was used to generate the functional data for this analysis. This
resulted in sixteen smoothed max(FA) curves representing the control group and
thirteen smoothed max(FA) curves representing the autism group. The curves
were registered to a mean curve and the results plotted in Figure 8.34. T-tests
compared the curves generated using Sampling Method 1.

No significant difference was found between the control and autism groups
when simply comparing the distribution of max(FA) values along the curves. Addi-
tionally, the F ′(t) and F ′′(t) curves showed no statistically significant differences
at the .01 significance level on the right side of genu.
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Figure 8.34: Corticospinal track: F(t) =max(FA(t)) curves for (left) control
subjects, and (right) autism subjects.
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Figure 8.35: Corticospinal track: Max(FA) values Functional t-test controls vs
autism for F(t). For the functional t-test there was no statistically significant
difference between the control and autism curves.
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Figure 8.36: Corticospinal track: F ′(t) = ∆max(FA(t)) curves for (left) control
subjects, and (right) autism subjects.
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Figure 8.37: Corticospinal track F ′(t): Functional t-test for controls vs autism.
For the functional t-test there was no statistically significant difference between
the control and autism curves.
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Figure 8.38: Corticospinal track: F ′′(t) =∆2max(FA(t) curves for (left) control
subjects, and (right) autism subjects.
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Figure 8.39: Corticospinal track F ′′(t): Functional t-test Controls vs autism. For
the functional t-test there were no statistically significant differences between the
control and autism curves.
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Figure 8.40: Corticospinal track: Sampling Method 2 Sampling surfaces were
generated by: (1) taking t uniform steps along the CM‖ (t) curves and (2) at
each step t an orthogonal surface, S‖(t) was calculated. Additional curves were
randomly generated. FA values were mapped onto each curve based on the the
locations determined by the intersection of that curve and the sampling surfaces.
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8.11 Analyzing the Right Corticospinal Tract –
Sampling Method 2

Sampling Method 2, as depicted in Figure 8.40 was used to generate the functional
data curves, F(t), for this analysis. The curves from the control group were bulked
together and a random subset of 1000 curves was selected. The curves from the
autism group were also bulked and a random subset of 1000 curves was selected.
The curves were registered to the mean curve and the results plotted in Figure
8.20. T-tests were the used to test for statistically significant differences between
the two groups. The F ′(t) and F ′′(t) curves were generated by taking the first and
second derivatives of the F(t) curve respectively.
F(t) showed significant differences between control and autism groups in the

superior and inferior portions of the tract. F ′(t) showed statistically significant
differences at the .01 significance in the superior, middle and inferior portions
of the tract. F ′′(t) also showed statistically significant differences at the .01
significance at three areas in the tract. The alignment of the volumes of the
subjects as depicted in Figures 8.26 and 8.27 was not very good. It’s also clear
that the large ROIs used to define the tract contained more than one structure. The
biological interpretation of the these differences remains to be determined.
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Figure 8.41: Corticospinal track: FA F(t) curves for (left) control subjects, and
(right) autism subjects.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

 t

 t−
st

at
is

tic

Cortico−spinal tract F(t)

 

 

 Observed Statistic

 pointwise critical value

 maximum critical value 

Figure 8.42: Corticospinal track full sampled volume: F(t) = FA(t). Pairwise
Functional t-test Controls vs autism for F(t). The functional t-test finds statistically
differences between the control and autism curves at the .01 significance level in
the superior and inferior portions of the tract.
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Figure 8.43: Corticospinal track: F ′(t) =∆FA(t) curves for (left) control subjects,
and (right) autism subjects.
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Figure 8.44: Corticospinal track full sampled volume: F ′(t) pairwise functional t-
test controls vs autism groups. The t-test showed statistically significant differences
at the .01 significance level in the superior, middle and inferior regions of the
tract.
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Figure 8.45: Corticospinal track full sampled volume: F ′′(t) = ∆2FA(t), curves
for (left) control subjects, and (right) autism subjects.
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Figure 8.46: Corticospinal track full sampled volume: F ′′(t) pairwise functional
t-test for controls vs autism for F ′′(t). The functional t-test finds statistically
differences between the control and autism curves at the .01 significance level in
three portions of the tract.
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8.12 Discussion

This chapter presented SGM design choices that went into building of software
suite an implementation of SGM. The software suite was used to analyze a
Diffusion MRI data set and is able to detect, and localize group differences
in two white matter structures that have been implicated in Autism Spectrum
Disorder. Further work needs to be done to confirm that the analysis is biologically
meaningful.

The suite included software to (1) build SGM models, (2) implements sampling
and mapping functions, (3) outputs SGM volumes at voxel(in NIFTI format)
and subvoxel levels (in Matlab mat format), (4) outputs SGM curves, C‖,C⊥,C
in Camino, Trackvis formats, and Matlab mat format (5) maps users choice of
invariants such as FA onto SGM curves and outputs each curve as a spline function
ready for Functional Data Analysis, and (6) provides a wrapper around third party
FDA package to do the analysis and generate reports.
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Chapter 9

Discussion and Future Work

This thesis presented a new approach to modeling white matter structures Semi-
parametric Geometric Modeling. Semiparametric Geometric Modeling is a natural
foundation for partitioning, modeling and analyzing the local, global, and vol-
umetric properties of white matter structure. Unlike all current methods, the
SGM inculcates the full structural information available from the data and from
assumptions based on the global organization of white matter in the brain into
a nonlinear manifold embedded in R3. This geometric model can be queried to
extract geometric and scalar invariants based on the geometry of the white matter
rather than on the imaging organization of the data’s raw 3D rectilinear grid. The
model can partition white matter structures into well defined geometric volumes,
surfaces, curves, and points.

9.1 Review of Major Contributions

1. A novel method for embedding a nonlinear manifold defined by a second

order tensor field in R3.

2. A novel method for modeling the foliations of a manifold defined by a

vector field by a single implicit polynomial function that represents a family

of implicit surfaces. This problem has previously been formulated as a
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local dynamic problem and solved by PDEs. That method suffers from

sensitivity to noise and ignores global structure. Instead, the problem is

formulated here as a static global problem that is solved by fitting the

gradients of a function with global basis functions and “localizing” the

function using the Geometric Median Surface. Chapters 4 and 5 laid out the
basics of foliation theory as applied to vector fields. Modeling of foliations
by families of implicit functions was introduced as well. Finally, the use
Geometric Median Surface as a method of localizing the implicit functions
to the data was laid out and justified.

3. A novel robust depth function called a Geometric Median Surface (GMS).

The GMS generalizes the geometric median point to parametric surfaces

in vector fields. Chapter 5 introduced the Geometric Median Surface as a
depth function and introduced its use in localizing implicit polynomials to
the manifold that the data was sampled from.

4. A semi-supervised Support Vector method for clustering data on manifolds.

This is an extension of the Slab SVM to a single class classifier. It clusters in

a manner similar to single-link hierarchical clustering. Data is iteratively

added to a labeled class based on compact kernel functions. Chapters 5
and 6 defined the Semi-supervised Slab SVM and motivated the use of
compact kernels the provided local similarity functions for clustering data
from multiple manifolds to the specific manifold that they were sampled
from. Chapter 8 presented specific kernels and evaluated the use of this
method in an analysis of a Diffusion Weighted MRI data set.

5. The SGM manifold model whose local structure is determined by a semi-

supervised support vector model and whose global volumetric structure

is a function of global, intersecting families of implicit surfaces. For

example, in R3 for a manifold determined by a second-order tensor, the

global volumetric structure amounts to the intersections of three families

of orthogonally-intersecting implicit functions. Chapters 5 described the
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formulation of the SGM and and Chapter 6 presented the multi-objective
optimization approach to fitting the SGM to the data. Chapter 8 presented the
formulation of kernels, implicit algebraic polynomial, smoothing functions
and constraint functions. The SGM was evaluated in as set of experiments
that analyzed a Diffusion Weighted MRI data set.

6. A structural query method to organize data on an SGM manifold for statis-

tical analysis. For example Functional Data Analysis to analyze fractional

anisotropy (FA) data along white matter fibers. Chapter 7 introduced
methods for querying geometric properties of the SGM. Additionally this
chapter outlined the methods for mapping information from the rectilinear
voxel space to the nonlinear manifold space of the white matter structures.
Connectivity was

7. A model that allows analytic calculation of local torsion, curvature and

other differential geometric quantities at any point in the volume modeled by

an SGM. Chapter 7 introduced methods for querying geometric properties
of the SGM

8. A model that allows for rigid body transformations, for example rotations

and translations, of an extracted volumetric structure by linear transforms

of the coefficients of the implicit functions that are the output of the SGM.

Chapter 7 introduced methods for querying geometric properties of the
SGM

9. A new definition of white matter connectivity is defined based on the SGM’s

ability to partition white matter structures into well defined volumes. Chapter
7 introduced methods for querying geometric properties of the SGM. Those
properties include well defined volumes that can be used to partition white
matter connecting specific region into non-overlapping volumes.
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9.2 Future Work

The Diffusion Tensor has been a useful starting point for demonstrating SGMs it
is only the simplest example. More sophisticated imaging techniques can provide
more complete information about the local organization of white matter tissue that
can be used to extend the SGM into regions of the brain where Diffusion Tensor
information is ambiguous. Additionally, it would be useful to extend both the
analysis techniques and modeling techniques that relax the orthogonality requires
for local organization.

Also, recall that element of the internal structure of the manifold have a well
defined total ordering. This is a valuable property when attempting to register
volumes. Any registration method should not change to ordering of for example
surfaces in the volume. If it did then the method has in some sense creased or
torn the manifold. As part of future work a registration method based on smooth
nonlinear warping of SGM manifolds will be explored.

Modeling manifolds defined by tensor fields is a very general approach. For
example other venues for this approach are multidimensional wind velocity
patterns, foliation patterns in metamorphic and sedimentary rock formations. Also
this technique would be useful in geoimaging techniques where, like diffusion
imaging the data can be very noisy but the is significant underlying structure.
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