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Abstract

A novel scene reconstruction technique is presented, different from previous approaches in its ability to cope with large

changes in visibility and its modeling of intrinsic scene color and texture information. The method avoids image corre-

spondence problems by working in a discretized scene space whose voxels are traversed in a fixed visibility ordering. This

strategy takes full account of occlusions and allows the input cameras to be far apart and widely distributed about the environ-

ment. The algorithm identifies a special set of invariant voxels which together form a spatial and photometric reconstruction

of the scene, fully consistent with the input images. The approach is evaluated with images from both inward-facing and

outward-facing cameras.

1 Introduction

The problem of acquiring photorealistic models of an environment from a set of input images has sparked recent interest in

the computer vision community [47, 12, 31, 3, 35, 33] as a result of new graphics-oriented applications, like telepresence

and virtual walkthroughs, that require the visualization of real objects and scenes. The central task is to synthesize images

from new camera viewpoints of an observed scene. An ideal solution yields an image, for every camera viewpoint, that is

photorealistic, i.e., is indistinguishable from what a real observer would see from the same viewpoint.

In this paper, we seek to define what photorealism means with respect to scene reconstruction techniques, and to present

a practical algorithm for computing photorealistic scene reconstructions from images. While our focus is 3D reconstruction,

our approach is equally useful as a method for obtaining dense pixel correspondence for use in image-based view synthesis

techniques [8, 28, 30, 40, 5, 1]1. As a step towards this goal, we propose two criteria that a photorealistic 3D reconstruction

technique should meet and describe an algorithm for generating such a reconstruction from a set of photographs:

� Photo Integrity: The 3D reconstruction should reproduce the input images when projected to the input viewpoints,

preserving color, texture and pixel resolution.

�This research has been supported in part by the National Science Foundation under Grant No. IRI-9530985, and by the Defense Advanced Research
Projects Agency and Rome Laboratory, USAF, under Agreement No. F30602-97-1-0138.

1Numerous authors have argued that correspondence information is sufficient to synthesize new views of a scene, i.e., explicit 3D reconstruction is not
required. However, the problem of obtaining correspondence that is sufficiently accurate for this task remains an area of active research.

1



� Broad Viewpoint Coverage: To enable accurate reprojections over a wide range of target viewpoints, the reconstruction

should integrate numerous and widely-distributed input images.

The photorealistic scene reconstruction problem, as presently formulated, raises a number of unique challenges that push

the limits of existing reconstruction techniques. Photo integrity requires that the reconstruction be dense and sufficiently

accurate to reproduce the original images. This criterion poses a problem for existing feature- and contour-based techniques

that do not provide dense shape estimates. While these techniques can produce texture-mapped models [47, 31, 3], accuracy

is ensured only in places where features have been detected. The second criterion means that the input views may be far

apart and contain significant occlusions. While some stereo methods [4, 17, 32] can cope with limited occlusions, handling

visibility changes of greater magnitude appears to be beyond the state of the art.

Instead of approaching this problem as one of shape reconstruction, we formulate a color reconstruction problem, in which

the goal is an assignment of colors (radiances) to points in an (unknown) approximately Lambertian scene. As a solution,

we present a voxel coloring technique that traverses a discretized 3D space in a generalized “depth-order” to identify voxels

that have a unique color, constant across all possible interpretations of the scene. This approach has several advantages over

existing stereo and structure-from-motion approaches to pixel correspondence and scene reconstruction. First, occlusions

are explicitly modeled and accounted for. Second, the cameras can be positioned far apart without degrading accuracy or

run-time. Third, the technique integrates numerous images to yield dense reconstructions. Fourth, and most important, the

method is shown to produce high quality synthetic views for a wide range of real input sequences and target viewpoints.

The remainder of this paper is structured as follows. Section 1.1 discusses related work on scene-space reconstruction

techniques and summarizes capabilities and limitations of existing solutions. Section 2 introduces the voxel coloring paradigm

as a means for determining correspondence and visibility in scene space. Section 3 defines the notion of color invariants and

describes their importance for voxel coloring. Section 4 presents an efficient algorithm for computing a voxel coloring us-

ing a layering strategy, and Section 5 presents experimental results from applying the algorithm to real and synthetic input

images.

1.1 Related Work

The voxel coloring algorithm presented in this paper works by discretizing scene space into a set of voxels that is traversed

and colored in a special order. In this respect, the method is similar to Collins’ Space-Sweep approach [9, 10] which performs

an analogous scene traversal. In the latter approach, a plane is swept through the scene volume and votes are accumulated for

points on the plane that project to edge features in the images. Scene features are identified by modeling the statistical likeli-

hood of accidental accumulation and thresholding the votes to achieve a desired false positive rate. This approach is useful in

the case of limited occlusions, but does not provide a general solution to the visibility problem. In addition, the Space-Sweep

approach generates shape estimates only where edges were detected, i.e., it does not produce a dense reconstruction.

Seitz and Dyer [39] described a similar edge-based voting technique that used linear subspace intersections instead of a

plane sweep to obtain feature correspondences. In this approach, each point or line feature in an image “votes” for the scene

subspace that projects to that feature. Votes are accumulated when two or more subspaces intersect, indicating the possible
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presence of a point or line feature in the scene. A restriction of this technique is that it detects correspondences only for

features that appear in all input images.

Katayama et al. [21] described a related method in which images are matched by detecting lines through slices of an

epipolar volume [6, 2], noting that occlusions can be correctly modeled by labeling lines in order of increasing slope. Our

voxel traversal strategy yields a similar scene-space ordering but is not restricted to linear camera paths. However, their

algorithm uses a reference image, thereby ignoring points that are occluded in the reference image but visible in other input

images.

Narayanan et al. [33, 19] built a dome of cameras in order to reconstruct 3D models from time-varying imagery. They

addressed the problem of occlusions by considering local clusters of cameras and computing stereo reconstructions from

each cluster. The resulting partial models are subsequently merged [33, 11] to form a more complete reconstruction. This

approach has proven to be most successful when the partial reconstructions to be merged are individually quite accurate,

e.g., as obtainable by high-end laser range scanners. While Narayanan et al. reported very good results, more research is

needed to assess the applicability of these methods for noisier stereo-derived models. A disadvantage of the method is that

the original images are not used in the merging process so it is difficult to assess the photo integrity of the reconstructions.

Zitnick and Webb [50] described a scene space stereo technique that detects and reconstructs scene regions that appear

unoccluded in a set of input images. They noted that the correspondence problem is ill-posed in the presence of occlusion,

but can be solved when occlusion does not occur. By posing the problem as one of 3D surface extraction, they described

how unoccluded regions may be identified and used to solve the correspondence problem for these regions.

Fua and Leclerc introduced a mesh-based stereo method [16] that evolves an initial mesh to be projectively consistent

with a set of calibrated input images, using both shape-from-shading and stereo cues. Their consistency metric is similar to

that which is used in this paper, except for their inclusion of a smoothness term to minimize deviations of the mesh from

a plane. In contrast to the voxel coloring technique that we present in this paper, the mesh-based approach requires a good

initial guess to converge properly, i.e., the mesh vertices should project to within a few pixels of their true locations[16], and

the topology must be known a priori. These limitations are overcome using the voxel-based formulation presented in this

paper.

Subsequent to the first publication of the voxel coloring technique [41], other promising multi-image 3D reconstruction

techniques have recently emerged [46, 36, 13, 24]. Of these, most closely related are the level-set approach of Faugeras

and Keriven [13] and the Space Carving approach of Kutulakos and Seitz [24]. The former approach formulates the 3D re-

construction procedure as a level-set evolution problem [43] in which a system of partial differential equations is iteratively

solved on a dense voxel grid. In the Space Carving approach [24], a solid volume of voxels is progressively carved until con-

vergence to a consistent scene reconstruction. Both of these methods provide many of the same advanges of voxel coloring

and remove the constraint on camera geometry used in this paper. The price, however, is a significant penalty in run-time

and ease of implementation. Unlike [13, 24], the voxel coloring algorithm operates in a single pass through the scene volume

and has run-time complexity that is independent of the complexity of the scene being reconstructed. These properties enable

reconstructions at near-real-time rates and are not shared by the level-set and Space Carving approaches.
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Also related are recently developed panoramic stereo [30, 20] algorithms that avoid field of view problems by matching

360 panoramic images directly. Panoramic reconstructions can also be achieved using our approach, but without the need

to build panoramic images (see Figs. 5(b) and 13).

Our objective in this paper is to synthesize new views of a scene from a set of input views that are widely distributed about

the environment. Existing techniques are generally not well-suited for providing the correspondence information sufficient

for this purpose, due to problems with occlusion, camera separation, or concavities. In particular, these approaches do not

guarantee consistent reconstructions when occlusion is present, even under idealized conditions.

For instance, suppose we had two or more views V0; : : : ; Vn of a perfect Lambertian scene S under constant illumination,

in which all internal and external camera parameters were precisely known. Furthermore, suppose all sources of error could

be ignored, including those due to camera calibration, image quantization, and noise. While we could not hope to recover

the true scene due to the aperture problem [34], we might reasonably expect to compute a consistent reconstruction, i.e.,

one corresponding to some scene S 0 that appears identical to S from the input viewpoints V0; : : : ; Vn. However, existing

algorithms do not guarantee consistent reconstructions when occlusion is present.

We believe that this shortcoming is due to the difficulty of reasoning about occlusion in image space, and instead advocate

a scene space formulation for determining correspondence information. The advantages of this approach are two-fold: (1)

it provides a framework for representing and analyzing the space of consistent scenes, and (2) the physical relations giving

rise to occlusion are easily apparent and formalized. Consequently, scene space algorithms can be devised to take occlusions

explicitly into account, and hence provide guarantees on the consistency of reconstructions.

2 The Voxel Coloring Problem

In this section we introduce a new scene space framework for scene reconstruction from multiple basis (input) viewsV0; : : : ; Vn.

In contrast to most existing approaches that solve for pixel correspondence as an initial step, we instead directly reconstruct a

colored, voxel-based 3D scene that is consistent with all of the basis views. This scene can either be reprojected to synthesize

new views as in [41], or used to compute correspondence maps for image-warping methods such as [8, 28, 30, 40, 38]. The

approach has the unique feature that it ensures a consistent scene and set of image correspondence maps in the presence of

arbitrary changes in scene visibility.

The voxel coloring problem is to assign colors (radiances) to voxels (points) in a 3D volume so as to achieve consistency

with a set of basis images, as shown in Fig. 1. That is, rendering the colored voxels from each basis viewpoint should repro-

duce the original image as closely as possible. More formally, a 3D scene S is represented as a set of opaque Lambertian

voxels (volume elements), each of which occupies a finite homogeneous scene volume centered at a pointV 2 S, and has

an isotropic radiance color(V ;S). We assume that the scene is entirely contained within a known, finite bounding volume.

The set of all voxels in the bounding volume is referred to as the voxel space and denoted with the symbol V . An image is

specified by the set I of all its pixels, each centered at a point p 2 I, and having irradiance color(p;S). For now, assume

that pixels are infinitesimally small.
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Figure 1: Voxel Coloring. Given a set of basis images and a grid of voxels, we wish to assign color values to voxels in a way
that is consistent with all of the images.

Given an image pixel p 2 I and scene S, we refer to the voxelV 2 S that is visible in I and projects to p byV = S(p).

A scene S is said to be complete with respect to a set of images if, for every image I and every pixel p 2 I, there exists a

voxelV 2 S such thatV = S(p). A complete scene is said to be consistent with a set of images if, for every image I and

every pixel p 2 I,

color(p; I) = color(S(p);S) (1)

We use the symbol @ to denote the set of all consistent scenes. We may now define the voxel coloring problem formally:

Voxel Coloring Problem: Given a set of basis imagesI0; : : : ; In of a static Lambertian scene and a voxel space

V , determine a subset S � V and a coloring color(V;S), such that S 2 @.

In order to solve this problem we must consider the following two issues:

� Uniqueness: Multiple voxel colorings may be consistent with a given set of images. How can the problem be well-

defined?

� Computation: How can a voxel coloring be computed from a set of input images without combinatorial search?

Observe that a consistent voxel coloring exists, corresponding to the set of points and colors on surfaces of the true Lam-

bertian scene2. Rarely, however, is the voxel coloring unique, given that a set of images can be consistent with more than

one 3D scene. Determining a scene’s spatial occupancy, i.e., S, is therefore an ill-posed task because a voxel contained in

one consistent scene may not be contained in another (see Fig. 2). Furthermore, a voxel may be contained in two consistent

2This argument holds only in the limit, when voxels are infinitesimally small, or else when the true scene is sampled, i.e., representable as a finite
collection of axis-aligned cubes.
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scenes, but have different colors in each (see Fig. 3). Consequently, additional constraints are needed in order to make the

problem well-posed.

Computing voxel colorings poses another challenge. Observe that the underlying space is combinatorial: anN �N �N

grid of voxels, each with M possible color assignments yields 2N
3

possible scenes and MN3

possible color assignments.

Clearly, a bruce-force search through this space is not feasible.

3 Color Invariants

Given a multiplicity of solutions to the voxel coloring problem, the only way to recover intrinsic scene information is through

invariants—properties that are satisfied by every consistent scene. For instance, consider the set of voxels that are contained

in every consistent scene. Laurentini [26] described how these invariants, called hard points, could be recovered by volume

intersection from silhouette images. Hard points provide absolute information about the true scene but are relatively rare;

some images may yield none (see, for example, Fig. 2). In this section we describe a more frequently occurring type of

invariant relating to color rather than shape.

A voxelV is a color invariant with respect to a set of images if: (1)V is contained in a scene consistent with the

images, and (2) for every pair of consistent scenes S and S 0,V 2 S \S 0 implies color(V;S) = color(V;S 0).

Unlike shape invariance, color invariance does not require that a point be contained in every consistent scene. As a result,

color invariants are more prevalent than hard points. In particular, it will be shown that the union of all color invariants itself

yields a consistent scene, i.e., a complete voxel coloring, as depicted in Fig. 4. Therefore, the voxel coloring problem can

be reformulated as a well-posed problem by solving for the consistent scene corresponding to the set of color invariants. In

order to make the problem tractable, however, additional constraints are needed.

3.1 The Ordinal Visibility Constraint

Note that color invariants are defined with respect to the set @ of all consistent scenes—a combinatorial space. Clearly,

an explicit search through this space is not computationally feasible. In order to make the problem tractable, we introduce

a novel geometric constraint on camera placement relative to the scene that simplifies the analysis. This ordinal visibility

constraint enables the identification of the set of color invariants as a limit point of@. As such, they can be computed directly,

via a single pass though the voxel space.

LetP andQ be scene points and I be an image from a camera centered atC. We sayP occludesQ ifP lies on the line

segmentCQ. We require that the input cameras be positioned so as to satisfy the following constraint:

Ordinal visibility constraint: There exists a real non-negative function D : <3 ) < such that for all scene

pointsP andQ, and input images I, P occludesQ in I only if D(P) < D(Q).

We call such a functionD occlusion-compatible. For some camera configurations, it is not possible to define an occlusion-

compatible function. However, an occlusion-compatible function does exist for a broad range of practical configurations. For
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Figure 2: Spatial Ambiguity. Both voxel colorings appear identical from these two viewpoints, despite having no colored
voxels in common.

88
88

88
88

88
8
8 88

8888

88
88

88
88

88
8
8 88

8888

88
88

Figure 3: Color Ambiguity. Both voxel colorings appear identical from these two viewpoints. However, note the presence
of a voxel (second row, center) that has a different color assignment in the two scenes.
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Figure 4: Color Invariants. Each of these six voxels has the same color in every consistent scene in which it is contained.
The collection of all such color invariants forms a consistent voxel coloring denoted S , as depicted above. Note that the
voxel with two color assignments in Fig. 3 is not contained in S.

(a) (b)

Figure 5: Compatible Camera Configurations. Both of the following camera configurations satisfy the ordinal visibility con-
straint: (a) an overhead inward-facing camera moved 360 degrees around an object, and (b) a rig of outward-facing cameras
distributed around a sphere.
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instance, suppose the cameras are distributed on a plane and the scene is entirely below that plane, as shown in Fig. 5(a). For

every such viewpoint, the relative visibility of any two scene points depends entirely on which point is closer to the plane, so

we may defineD to be distance to the plane. More generally, the ordinal visibility constraint is satisfied whenever no scene

point is contained within the convex hull C of the camera centers. Here we use the occlusion-compatible functionDC(P),

defined to be the Euclidean distance fromP to C. For convenience, C is referred to as the camera volume. Fig. 5 shows two

useful camera configurations that satisfy this constraint. Fig. 5(a) depicts an inward-facing overhead camera rotating 360�

around an object. Ordinal visibility is satisfied provided the camera is positioned slightly above the object. The constraint

also enables “panoramic” configurations of outward-facing cameras, as in Fig. 5(b).

3.2 Properties of Color Invariants

To establish that color invariants exist, let I0; : : : ; In be a set of images for which the ordinal visibility constraint is satisfied.

For a given image point p 2 Ij define Vp to be the voxel in fS(p) j S consistentg that is closest to the camera volume.

We claim thatVp is a color invariant. To establish this, observe thatVp 2 S impliesVp = S(p), for ifVp 6= S(p), S(p)

must be closer to the camera volume, a violation of our assumptions. It follows from Eq. (1) thatVp has the same color in

every consistent scene, i.e.,Vp is a color invariant.

Note that the preceding argument demonstrated not only that color invariants exist, but that every pixel in the basis images

has a corresponding color invariant. We denote the collection of these color invariants as S :

S = fVp j p 2 Ii; 0 � i � ng

It is easily shown that S is a consistent scene. Note that S is complete, since it contains a voxel corresponding to each

pixel in the basis images. To show that it is consistent, for each V 2 S , choose p 2 Ii, 0 � i � n, such thatV = S(p).

Define

color(V;S) := color(p; Ii) (2)

To show that this coloring is well defined, suppose p 2 Ii and q 2 Ij are two points such that S(p) = V = S(q). Let S

be a consistent scene such thatV 2 S. By the definition of S, it follows that S(p) = V = S(q). Hence, by Eq. (1),

color(p; Ii) = color(V;S) = color(q; Ij )

Therefore Eq. (2) is a well-defined voxel coloring and is consistent with the basis images.

Fig. 4 shows S for the pair of images in Figs. 2 and 3. These six voxels have a unique color interpretation, constant in

every consistent scene. They also comprise the closest consistent scene to the cameras in the following sense—every point

in each consistent scene is either contained in S or is occluded by points in S. An interesting consequence of this distance

bias is that neighboring image pixels of the same color produce cusps in S, i.e., protrusions toward the camera volume. This

phenomenon is clearly shown in Fig. 4, where the black and gray points form two separate cusps. Also, observe that S is
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not a minimal reconstruction; removing the two closest points in Fig. 4 still leaves a consistent scene.

In summary, the following properties of color invariants have been shown:

� Every voxel in S is a color invariant

� S � @, i.e., S is a consistent scene

� S represents a limit point of @, corresponding to the consistent scene that is closest to the camera volume

4 A Voxel Coloring Algorithm

We now describe how to compute S via a single pass through a discretized scene volume, by exploiting the ordinal visibility

constraint. This constraint limits the possible basis view configurations, but the benefit is that visibility relationships are

greatly simplified. In particular, it becomes possible to partition the scene into a series of voxel layers that obey a monotonic

visibility relationship: for every input image, voxels only occlude other voxels that are in subsequent layers. Consequently,

visibility relationships are resolved by evaluating voxels one layer at a time.

4.1 Layered Scene Decomposition

To formalize the idea of visibility ordering, we define the following partition of 3D space into voxel layers of uniform distance

from the camera volume:

Vd = fV j D(V ) = dg (3)

V =

r[

i=1

Vdi (4)

where d1; : : : ; dr is an increasing sequence of numbers and D is an occlusion-compatible function.

For the sake of illustration, consider a set of views positioned along a line facing a two-dimensional scene, as shown in

Fig. 6 (a). Choosing D to be orthogonal distance to the line gives rise to a series of parallel linear layers that move away

from the cameras. Notice that for any two voxelsP andQ,P can occludeQ from a basis viewpoint only ifQ is in a higher

layer than P. The simplification of visibility relationships for this special case of colinear views was previously noted by

Katayama et al. [21].

The linear case is easily generalized for any set of cameras satisfying the ordinal visibility constraint. Fig. 6 (b) shows

a layer partition for the case of outward-facing cameras. This type of camera geometry is useful for acquiring panoramic

scene visualizations, as in [30, 20]. One valid set of layers corresponds to a series of rectangles radiating outward from the

camera volume. Layer 0 is the axis-aligned bounding box B of the camera centers and the subsequent layers are determined

by uniformly expanding the box one unit at a time. This set of layers corresponds to an occlusion-compatible function given

by the L1 distance to B.
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Figure 6: Layered Scene Traversal. Voxels can be partitioned into a series of layers of increasing distance from the camera
volume. (a) Layers for cameras along a line. (b) Layers for cameras in a plane.

Decomposing a 3D scene into layers can be done in the same manner. In the 3D case the layers become surfaces that

expand outward from the camera volume. An especially useful layering strategy is the 3D analog of Fig. 6(b), in which each

layer is an axis-aligned cube. The advantage of this choice of layers is that layers are computed and traversed very efficiently.

4.2 Voxel Consistency

To compensate for the effects of image quantization and noise, suppose now that the images are discretized on a grid of finite

non-overlappingpixels. If a voxelV is not fully occluded in imageIj , its projection overlaps a nonempty set of image pixels,

�j . Without noise or quantization effects, a consistent voxel should project to a set of pixels with equal color values. In the

presence of these effects, we evaluate the correlation �V of the pixel colors to measure the likelihood of voxel consistency.

Let s be the standard deviation and m the cardinality of
n[

j=0

�j . One possible choice of correlation function is specified by

thresholding the color space error:

�V = s (5)

Alternatively, a statistical measure of voxel consistency can be used. In particular, suppose the sensor error (accuracy of

irradiance measurement) is normally distributed3 with standard deviation �0. The consistency of a voxel can be estimated

using the likelihood ratio test, distributed as �2 with n� 1 degrees of freedom [15]:

�V =
(m� 1)s2

�2
0

(6)

3Here we make the simplifying assumption that �0 does not vary as a function of image intensity.
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If �0 is unknown, it can be estimated by imaging a homogeneous surface and computing the standard deviation s0 of m0

image pixels. In this case, Eq. (6) should be replaced with

�V =
s2

s2
0

(7)

which has an F distribution with m� 1 and m0 � 1 degrees of freedom.

4.3 A Single-Pass Algorithm

In order to evaluate the consistency of a voxel, we must first compute �j , the set of pixels that overlapV’s projection in Ij .

Neglecting occlusions, it is straightforward to compute a voxel’s image projection, based on the voxel’s shape and the known

camera configuration. We use the term footprint, following [49] to denote this projection, corresponding to the intersection

with the image plane of all rays from the camera center intersecting the voxel. Accounting for occlusions is more difficult,

however, and we must take care to include only the images and pixel positions from whichV should be visible. This difficulty

is resolved by using the ordinal visibility constraint to visit voxels in an occlusion-compatible order and marking pixels as

they are accounted for.

Initially, all pixels are unmarked. When a voxel is visited, �j is defined to be the set of unmarked pixels that overlapV’s

footprint in Ij . When a voxel is evaluated and found to be consistent, all pixels in �j are marked. Because of the occlusion-

compatible order of voxel evaluation, this strategy is sufficient to ensure that �j contains only the pixels from which each

voxel is visible, i.e., S(p) = V for each p 2 �j . Note that by assumption voxels within a layer do not occlude each other.

Therefore, the pixel marking phase can be delayed until after all the voxels in a layer are evaluated.

The complete voxel coloring algorithm can now be presented as follows:
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S = ; Initialize the reconstruction

for i = 1; : : : ; r do Iterate through the layers

for every V 2 Vdi do Iterate through voxels in the layer

for j = 0; : : : ; n do Project the voxel to each image

compute footprint � of V in Ij

�j = fp 2 � j p unmarkedg

end for j

compute �V Evaluate voxel consistency

if

n[

j=0

�j is not empty and �V < thresh then

S = S [ fVg Color the voxel

� = � [

n[

j=0

�j Remember image pixels to mark

end if

end for V

mark pixels in �

end for i

The threshold, thresh, corresponds to the maximum allowable correlation error. An overly conservative (small) value

of thresh results in an accurate but incomplete reconstruction. On the other hand, a large threshold yields a more complete

reconstruction, but one that includes some erroneous voxels. Instead of thresholding correlation error, it is possible to op-

timize for model completeness. In particular, a completeness threshold tcomp may be chosen that specifies the minimum

allowable percentage of image pixels left unmarked. For instance, tcomp = 75% requires that at least three quarters of the

(non-background) image pixels correspond to the projection of a colored voxel.

Given tcomp, we seek the minimum value of thresh that yields a voxel coloring achieving this completeness threshold.

Since completeness increases monotonically with thresh, it is sufficient to run the single-pass algorithm for a succession

of increasing values of thresh, stopping when tcomp is achieved. Alternatively, a binary search on thresh may be used to

decrease the number of iterations.

4.4 Discussion

The voxel coloring algorithm visits each of the N3 voxels exactly once and projects it into every image. Therefore, the time

complexity of voxel coloring is: O(N3n). To determine the space complexity, observe that evaluating one voxel does not

require access to or comparison with other voxels. Consequently, voxels need not be stored in main memory during the

algorithm; the reconstruction will simply be output one voxel at a time. Only the images and one-bit mark masks need to be

allocated. The fact that the space and time complexities of voxel coloring are linear in the number of images is essential so

that large numbers of images can be processed at once.

The algorithm differs from stereo and feature tracking techniques in that it does not perform window-based image correla-
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tion during the reconstruction process. Correspondences are found during the course of scene traversal by voxel projection.

A disadvantage of this searchless strategy is that it requires very precise camera calibration to achieve the triangulation ac-

curacy of stereo methods. The effects of calibration and quantization errors are most significant at high-frequency regions

such as image edges. Preserving high-frequency image content requires a higher voxel sampling rate because of Nyquist con-

siderations. However, smaller voxels result in fewer pixels being integrated in the correlation step and are therefore more

sensitive to calibration errors. An extension would be to compensate for high-frequency regions in the correlation step, for

instance by detecting and treating edges specially.

Accuracy and run-time also depend on the voxel resolution, a parameter that can be set by the user or determined auto-

matically to match the pixel resolution, calibration accuracy, and computational resources. An extension would be to use

hierarchical representations like octrees [37, 45] in which the voxel resolution is locally adapted to match surface complex-

ity.

Like previous work in stereo, voxel coloring makes use of the Lambertian assumption to simplify correlating pixels from

different viewpoints. While this assumption provides a reasonable model for matte surfaces that scatter light approximately

uniformly in all directions, it is not well-suited for reconstructing highly specular surfaces. Because specularities are not

explicitly modeled, they will cause artifacts in the reconstruction, caused by the removal of surface voxels on the specularity

that are deemed inconsistent with the Lambertian model. It may be possible to mitigate these artifacts by identifying specular

highlights as a preprocessing step [7, 22] or by using a consistency criterion that models non-Lambertian effects [42, 24].

Importantly, the voxel coloring approach reconstructs only one of the potentially numerous scenes consistent with the

input images. Consequently, it is susceptible to aperture problems caused by image regions of near-uniform color. These

regions cause cusps in the reconstruction (see Fig. 4), since voxel coloring yields the reconstruction closest to the camera

volume. This is a bias, just like smoothness is a bias in stereo methods, but one that guarantees a consistent reconstruction

even with severe occlusions.

4.5 Optimizations

Much of the work of the algorithm lies in the computations of �j and �V. For simplicity, our implementation used a square

mask to approximate voxel footprints, and Eq. (5) to test voxel consistency. Alternative footprint models are discussed in

the volume rendering literature, e.g., [49, 25].

While our implementation did not make use of this, additional speedups are possible by exploiting the uniform discretiza-

tion of space and simple layer geometry. Choosing planar or polyhedral layers enables the use of texture-mapping graphics

hardware to calculate voxel footprints, an entire layer at a time. This strategy enables more accurate estimates of voxel foot-

prints and offloads most of the computation to the graphics co-processor. For instance, the projection by�i of a plane layer

Vu;v = V0;0 + uDX + vDY
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can be expressed in matrix form by�iVu;v = Hi[u v 1]
T , where the 3� 3 homographyHi is given by

H = [�iDX j�iDY j�iV0;0]

Instead of projecting the layer onto each image, it is preferable to reverse-map each image onto the layer by computing

Îi =H
�1

i Ii

This procedure allows the voxel projections to be directly integrated; the footprint of voxelVu;v in Ii is simply the pixel at

position [u v 1]T 2 Îi. This reverse-mapping strategy is similar to that of Collins [9], who used a diffusion operator in place

of the texture-mapping formulation.

5 Experimental Results

In order to evaluate the performance of the voxel coloring algorithm for view synthesis, it was applied to images of a variety

of real scenes. Images of synthetic scenes were also used to facilitate analysis of error characteristics, and to simulate camera

configurations that were not physically realizable in the lab.

5.1 Results on Real Images

The first experiment demonstrates the view synthesis capabilities of the voxel coloring algorithm, as applied to images of real

objects. Calibrated images were captured with the aid of a computer-controlled pan-tilt head and a fixed overhead camera, as

shown in Fig. 8. This image-acquisition strategy is similar to that used in [45]. An object was placed on the head and rotated

360 degrees in front of a color camera (Sony XC-999 with 1/2” CCD sensor and 12mm, F1.4 lens) positioned approximately

30cm horizontally from the object’s center and 25cm vertically above its base. Tsai’s method [48] was used to calibrate the

camera with respect to the head, by rotating a known object and manually selecting image features for three pan positions.

The calibration error was approximately 3%. Fig. 7 shows selected images for two objects: a toy dinosaur (6cm x 8cm x

10cm) and a rose. In each case 21 input images (640�486 resolution) were captured by rotating the object nearly 360 degrees

in increments of about 17 degrees. A problem with this acquisition approach is that the illumination effectively changes as

the object rotations, thereby violating the Lambertian assumption. To compensate, the error threshold was set relatively high:

18% pixel correlation error was allowed for the dinosaur, and 12% for the rose.

Table 1 compares sizes, run times (on a 250MHz MIPS R4400 processor), and reprojection errors for voxel colorings

computed from the dinosaur toy at four different resolutions. Square voxels were used and the grid volume was held constant.

The resolution was specified by the grid dimensions, indicating the total number of voxels in the volume (width x depth x

height). Each row in Table 1 represents a resolution doubling, i.e., an 8-fold increase in the number of voxels, relative to the

previous row. The run time increases proportionately, although not quite by a factor of 8 due to an additive overhead factor

of the algorithm. These run times do not include image acquisition, calibration, or background thresholding. The “Voxels
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Figure 7: Selected basis images for a dinosaur toy (top) and a rose (bottom). 21 images were taken in all, spanning close to
a 360� rotation of each object.

Figure 8: Image Acquisition Setup. Basis images were captured by placing an object on a calibrated pan-tilt head and rotating
the object in front of a stationary video camera. The camera was placed above the object to satisfy the ordinal visibility
constraint.
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Grid Dimensions Voxels Evaluated Voxels Colored Run Time Reprojection Error

20� 24� 29 13,920 902 3 sec 9.38%
41� 49� 58 116,522 4,898 11 sec 8.01%
83� 99� 116 953,172 21,174 62 sec 7.48%

166� 199� 233 7,696,922 71,841 435 sec 7.20%

Table 1: Voxel Resolution Effects. This table compares the size, run time, and reprojection error for voxel colorings of the
dinosaur toy using different grid sizes. Each row represents an 8-fold increase in the number of voxels relative to the previous
row. The corresponding models are shown in Fig. 9.

Colored” column indicates the number of voxels in the final reconstruction. Notice that the voxels colored column increases

more slowly than the voxels evaluated column. This is attributed to the fact that the voxel coloring algorithm reconstructs

only points on the surface, i.e., not in the interior of the object. It would therefore be expected that for manifold surfaces, the

number of voxels colored would increase only by a factor of 4 when the resolution is doubled. The final column of Table 1

gives the reprojection error, which measures the root-mean-squared error of pixels in synthesized images for each of the 21

input viewpoints. Clearly, increasing the voxel resolution yields a significant improvement in reprojection error.

Fig. 9 shows the voxel colorings of the dinosaur toy described in Table 1. To facilitate reconstruction, a black background

was used and the images were thresholded to eliminate most of the background points. While background segmentation is

not strictly necessary, leaving this step out results in background-colored voxels scattered around the edges of the scene vol-

ume. The background threshold may be chosen conservatively since removing most of the background pixels is sufficient

to eliminate this background scattering effect. Fig. 9(c) shows the highest resolution reconstruction from a viewpoint cor-

responding to one of the input images. For comparison, the original image is also shown in Fig. 9(a). Note that even fine

details such as the wind-up rod on the dinosaur were reconstructed, as seen more clearly in (g).

Fig. 9(d-g) compare reconstructions from a new viewpoint, different than the basis views, for each of the voxel resolutions

reported in Table 1. The resolution doubles at each step from (d) to (g). Note that even the lowest resolution model, shown

in (d), preserves the rough features of the model and produces a very reasonable reprojection. The fact that this model was

computed in 3 seconds suggests that the algorithm is potentially suitable for interactive applications like teleconferencing, in

which models must be generated in real time. Increasing the resolution adds fine details in shape and texture and decreases

the blocky artifacts caused by large voxels, as seen in (e-g). For comparison, Fig. 11 shows the shaded underlying voxel

grids without color information. Note that color greatly augments the visual quality of the reconstruction.

Results for the rose are shown in Fig. 10. (a) shows an input image and (b) a synthesized view for the same viewpoint,

demonstrating the photo integrity of the reconstruction. The rose represents a difficult case because it has little texture and

is made up of surfaces like leaves and petals that are extremely thin. The reconstruction, consisting of approximately 70,000

voxels, captures the appearance of the rose very accurately, and preserves most of these fine features. (c) and (d) show syn-

thesized views from new views that are close to and far away from the basis views, respectively. Overall, the image in (d)

is quite good, but it exhibits some interesting artifacts. Specifically, the leaves appear to contain holes when viewed from

below. These holes are not visible from the basis viewpoints and so were not filled in by the algorithm—they represent

unreconstructible regions in the scene.
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Input Image Thresholded Image Model Reprojection
(a) (b) (c)

902 voxels 4,898 voxels 21,174 voxels 71,841 voxels
(d) (e) (f) (g)

Figure 9: Voxel Coloring of a Dinosaur Toy. Original image (a) is thresholded (b) to eliminate most of the background pixels.
The voxel coloring (c) was computed from 21 thresholded images of the object undergoing a 360� rotation. (d-g) show the
reconstruction from a new viewpoint at different voxel resolutions, where the voxel width is progressively doubled.
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(a) (b)

(c) (d)

Figure 10: Voxel Coloring of a Flower. Input image (a) is shown next to the projection of a voxel coloring for the same
viewpoint (b). The reconstruction (70K voxels) captures image appearance very accurately for new views, such as (c), that
are near the input viewpoints. Artifacts become more prevalent when the new viewpoint is far away from the input views,
as in (d).
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902 voxels 4,898 voxels 21,174 voxels 71,841 voxels
(d) (e) (f) (g)

Figure 11: Shaded (top) and colored (bottom) voxel models of a dinosaur toy at different resolutions.

(a) (b) (c)

Figure 12: Comparison of voxel coloring and silhouette-based reconstruction. Input image (a) is shown next to reconstruc-
tions rendered at the same viewpoint. (b): voxel coloring reconstruction. (c): silhouette-based reconstruction.

20



Figure 13: Placement of input camera viewpoints for a panoramic synthetic room scene. The camera positions and scene
are shown together, from a frontal (left), and overhead (right) perspective.

Because background segmentation was used in the first two experiments, we had the opportunity to compare the quality

of the reconstructions with silhouette-based methods such as volume intersection [29, 45, 26, 44]. To perform this compar-

ison, we reconstructed the flower model twice, once with a threshold of 12%, and once with a threshold of 1. Note that an

infinite threshold produces a reconstruction that is consistent only with the silhouettes, i.e., color information is not used in

the computation. Fig. 12 compares an input image with both of these reconstructions. Note that the silhouette-based model

is too conservative–it contains voxels that lie outside the true shape. These errors lead two two noticeable artifacts: first, the

silhouette model is too large. Second, the coloring of the model is of very poor quality because points on the model project to

pixels of different colors in different views and therefore cannot be colored consistently. In contrast, voxel coloring provides

a way of ensuring color consistency by allowing the user to provide an upper bound on the allowable color-space reprojection

error for each voxel on the model (12% in the example in Fig. 12(c)).

5.2 Results on Synthetic Images

In order to evaluate the performance of the voxel coloring algorithm for panoramic scenes, basis images were generated

by placing several cameras in a synthetic room scene. The room consisted of three texture-mapped walls and two shaded

figures. The figures, a bust of Beethoven and a scanned Cyberware model of a human figure, were illuminated diffusely from

a downward-oriented light source at infinity. 24 cameras were placed at different positions and orientations inside the room,

as shown in Fig. 13.
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The geometry of this scene and the camera configuration would pose significant problems for previous image-based recon-

struction methods. In particular, the room interior is highly concave, making accurate reconstruction by volume intersection

or other contour-based methods impractical. Furthermore, the numerous cameras and large amount of occlusion would cre-

ate difficulty for most stereo approaches. Notable exceptions include panorama-based stereo approaches [30, 20] that are

well-suited for room reconstructions. However, these methods require that a panoramic image be constructed for each cam-

era location prior to the stereo matching step, a requirement that is avoided by the voxel coloring approach. This requirement

does not enable camera configurations such as the one shown in Fig. 13.

Fig. 14 compares the original and reconstructed models of the room from new viewpoints. The reconstruction contained

320,000 colored voxels, out of approximately 50 million candidate voxels examined, and required 45 minutes to compute.

The voxel coloring reproduced images from the room interior extremely accurately, as shown in (b). A pixel correlation

error threshold of 2.4% was used to account for image quantization. As a result of these errors, some fine details were lost,

e.g., in the face of the Beethoven bust. The overhead views (d) and (f) more clearly show some discrepancies between the

original and reconstructed models. For instance, the reconstructed walls are not perfectly planar, as some points lie just off

the surface. This point drift effect is most noticeable in regions where the texture is locally homogeneous, indicating that

texture information is important for accurate reconstruction. The quality of the overhead view shown in (d) is especially

commendable, given that the viewpoint is very far away from the input views. The extreme overhead view (f) is worse than

that of (d) but clearly shows that the overall shape of the scene was very well captured by reconstruction.

A second set of experiments was conducted to evaluate the sensitivity of the approach to factors of texture density, image

noise, and voxel resolution. To simplify the analysis of these effects, the experiments were performed using a 2D implemen-

tation of the voxel coloring method for which the scene and cameras lie in a common plane. Fig. 15(a) shows the synthetic

scene (an arc) and the positions of the basis views used in these experiments.

Texture is an important visual cue, and one that is exploited by voxel coloring. To model the influence of texture on re-

construction accuracy, a series of reconstructions were generated in which the texture was systematically varied. The spatial

structure of the scene was held fixed. The texture pattern was a cyclic linear gradient, specified as a function of frequency �

and position t 2 [0; 1]:

intensity(t) = 1� j1� 2 � frac(� � t)j

frac(x) returns the fractional portion of x. Increasing the frequency parameter � causes the density of the texture to in-

crease accordingly. Fig. 15(b-j) show the reconstructions obtained by applying voxel coloring for increasing values of �.

For comparison, the corresponding texture patterns and the original arc shapes are also shown. In (b), the frequency is so

low that the quantized texture pattern is uniform. Consequently, the problem reduces to reconstruction from silhouettes and

the result is similar to what would be obtained by volume intersection [29, 45, 26]. Specifically, volume intersection would

yield a closed diamond-shaped region; the reconstructed V-shaped cusp surface in (b) corresponds to the set of surfaces of

this diamond that are visible from the basis views.

Doubling � results in a slightly better reconstruction consisting of two cusps, as shown in (c). Observe that the recon-

struction is accurate at the midpoint of the arc, where a texture discontinuity occurs. Progressively doubling � produces a
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(a) (b)

(c) (d)

(e) (f)

Figure 14: Panoramic room scene reconstruction. Renderings of the true scene are shown at left and the reconstructed scene
at right. (a) and (b): an input viewpoint, from inside the room. (c) and (d): a new viewpoint from above the room. (e) and
(f): an extreme overhead view. Fidelity is best near the input viewpoints and degrades smoothly as the camera moves further
away.
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original surface

reconstruction

texture

basis cameras

original surface

(c) (d)(b)

(a)

(f) (g)(e)

(i) (j)(h)

Figure 15: Effects of Texture Density on Voxel Reconstruction. (a): A synthetic arc is reconstructed from five basis views.
The arc is textured with a cyclic gradient pattern with a given frequency. Increasing the frequency makes the texture denser
and causes the accuracy of the reconstruction to improve, up to a limit. In the case of (b), the texture is uniform so the problem
reduces to reconstruction from silhouettes. As the frequency progressively doubles (c-j), the reconstruction converges to the
true shape, until a certain point beyond which it exceeds the image resolution (i-j).
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series of more accurate reconstructions (d-h) with smaller and smaller cusps that approach the true shape. When � exceeds

a certain point, however, the reconstruction degrades. This phenomenon, visible in (i) and (j), results when the projected

texture pattern exceeds the resolution of the basis images, i.e., when the Nyquist rate is exceeded. After this point, accuracy

degrades and the reconstruction ultimately breaks up.

Fig. 15 illustrates the following two points: (1) reconstruction accuracy is strongly dependent upon surface texture, and

(2) the errors are highly structured. To elaborate on the second point, reconstructed voxels drift from the true surface in a

predictable manner as a function of local texture density. When the texture is locally homogeneous, voxels drift toward the

camera volume. As texture density increases, voxels move monotonically away from the camera volume, toward the true

surface. As texture density increases even further, beyond the limits of image resolution, voxels continue to move away from

the cameras, and away from the true surface as well, until they are ultimately eliminated from the reconstruction.

We next tested the performance of the algorithm with respect to additive image noise. To simulate noise in the images,

we perturbed the intensity of each image pixel independently by adding a random value in the range of [��; �]. To com-

pensate, the error threshold was set to �. Fig. 16 shows the resulting reconstructions. The primary effect of the error and

corresponding increase in the threshold was a gradual drift of voxels away from the true surface and toward the cameras.

When the error became exceedingly large, the reconstruction ultimately degenerated to the “no texture” solution shown in

Fig. 15(b). This experiment indicates that image noise, when compensated for by increasing the error threshold, also leads

to structured reconstruction errors; higher levels of noise cause voxels to drift progressively closer to the cameras.

The final experiment evaluated the effects of increasing the voxel size on reconstruction accuracy. In principle, the voxel

coloring algorithm is only correct in the limit, as voxels become infinitesimally small. In particular, the layering strategy is

based on the assumption that points within a layer do not occlude each other. For very small voxels this no-occlusion model

is a reasonable approximation. However, as voxels increase in size, the model becomes progressively less accurate. It is

surprising, therefore, that the algorithm appears to produce good results even for very large voxel sizes, as seen in Fig. 9(d-

e).

To more carefully observe the effects of voxel size, we ran the voxel coloring algorithm on the scene in Fig. 15(a) for

a sequence of increasing voxel sizes. Fig. 16 shows the results—the reconstructions are close to optimal, up to the limits

of voxel resolution, independent of voxel size. Again, this empirical result is surprising, given the obvious violation of the

layering property which is the basis of the algorithm. Some effects of this violation are apparent; some voxels are included

in the reconstruction that are clearly invisible, i.e., totally occluded by other voxels from the basis views. For instance, ob-

serve that in the reconstruction for voxel size = 10, the top-left and top-right voxels could be deleted without affecting scene

appearance from the basis views. These extra voxels are artifacts of the large voxel size and the violation of the layering

property. However, these effects are minor and do not adversely affect view synthesis in that adding these voxels does not

change scene appearance for viewpoints close to the input images.
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noise: � = 0 voxel size = 1

noise: � = 1 voxel size = 2

noise: � = 2 voxel size = 3

noise: � = 3 voxel size = 4

noise: � = 5 voxel size = 5

noise: � = 10 voxel size = 10

noise: � = 15 voxel size = 20

Figure 16: Effects of Image Noise and Voxel Size on Reconstruction. Image noise was simulated by perturbing each pixel
by a random value in the range [��; �]. Reconstructions for increasing values of � are shown at left. To ensure a full recon-
struction, the error threshold was also set to �. Increasing noise caused the voxels to drift from the true surface (shown as
light gray). The effects of changing voxel size are shown at right. Notice that the arc shape is reasonably well approximated
even for very large voxels.
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6 Discussion

This paper addressed the problem of view synthesis from numerous basis views distributed widely about a scene. This prob-

lem is especially challenging due to the difficulty of computing reliable correspondence information from views that are far

apart. A main goal was to determine intrinsic ambiguities and limitations of what is reconstructible, and also to derive a

practical algorithm for correspondence computation and view synthesis.

A primary contribution of this paper was the voxel coloring framework for analyzing ambiguities in image correspon-

dence and scene reconstruction. A similar theory was previously developed for the special case of volume intersection, i.e.,

reconstruction from silhouettes [26, 23, 27]. The results in this paper can be viewed as a generalization of the volume inter-

section problem for the broader class of textured objects and scenes. The voxel coloring framework enabled the identification

and computation of color invariants—points having the same color in every possible scene reconstruction, consistent with

a set of basis images.

A second important contribution was the voxel coloring algorithm for computing pixel correspondence from a set of basis

images. A key element was the ordinal visibility constraint, a novel constraint on the configuration of camera viewpoints

that enabled an efficient solution to the correspondence problem. This is the first practical algorithm capable of generating

provably-consistent dense correspondence maps from a set of input images, in the presence of occlusion. It is therefore

useful not just for view synthesis, but for other applications that require correspondence, e.g., motion analysis and 3D scene

reconstruction.

The algorithm has several novel features that make it especially attractive for view synthesis tasks:

� Generality: The low-level voxel representation can approximate any surface type and easily models discontinuities.

It is therefore well-suited for modeling real-world objects and scenes of complex geometry and topology.

� Flexible Acquisition: The cameras may be arbitrarily far apart without degrading reconstruction accuracy. Indeed,

the algorithm performs best when cameras are distributed widely about the scene.

� Panoramic Visibility: The voxel coloring method can synthesize views for any camera position and orientation. The

fact that it is applicable for both inward- and outward-facing camera configurations makes it well-suited for a wide

variety of scenes, from small objects to panoramic room interiors.

� Insensitivity to Occlusion: Changes in visibility are fully modeled by the algorithm and impose no performance

penalty.

� Efficiency: The algorithm performs only a single pass through the scene volume and exploits regular operations that

can be performed using texture-mappinggraphics hardware. We are currently investigating a real-time implementation

of the algorithm that would run on existing graphics workstations. The technique is also space efficient in that only

surface voxels are stored, i.e., voxels that are visible in at least one basis image.

� Scalability: By varying the voxel size, the algorithm can be tailored to available computing resources. Empirical

evidence demonstrates that the algorithm performs well for a range of different voxel sizes.
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While the ordinal visibility constraint is needed to support a single-pass algorithm, it also rules out certain input camera

configurations. Although the scene can surround the cameras, as in the room scene in Fig. 14, the cameras cannot surround

the object or scene. This is not a serious limitation in controlled lab environments where the camera configuration may be

designed with the ordinal visibility constraint in mind. For instance, in our experiments the cameras were raised slightly

above the scene to be reconstructed (Fig. 8). However, it could be problematic for other situations, e.g., it would not allow

reconstruction from a video sequence obtained by walking all the way around a large object with a video camera. We are

currently investigating methods for handling these types of camera motions and configurations. One solution would be to

segment the basis images into sets that individually satisfy the ordinal visibility constraint, run the algorithm on each set sep-

arately, and then merge the results. Automatic methods for performing this segmentation task would simplify this approach.

Another possible approach would be to extend the voxel coloring algorithm to directly handle general camera configurations,

e.g., by using a multi-pass approach [24].

The results in Section 5 indicate that low-contrast regions and noise produce reconstruction errors, e.g., cusps, that are

highly structured. For view synthesis tasks, this is a potential disadvantage, since structured noise can produce perceptible

artifacts. The fact that these errors are deterministic and well-understood indicates that they are potentially detectable, and

thus could be attenuated. One solution would be to perform a post-processing phase, analogous to dithering [14], in which

errors are diffused to mitigate these artifacts. An alternative method would be to identify textureless regions and other error

sources in the basis images and treat these features specially in the reconstruction process.

Two key challenges for future work are modeling specularities and transparency. Strong specularities cause noticeable

artifacts in reconstructions obtained by voxel coloring due to the inherent limitations of the underlying Lambertian model. It

may be possible to remove these artifacts by enriching the consistency criterion to include non-Lambertian effects, e.g., by

solving for surface normal and reflectance in the reconstruction process. This is a topic that we are currently investigating

[42, 24]. A second challenge is modeling transparency effects, caused both by variations in surface opacity as well as mixed-

pixels caused by image discretization [46]. Transparency is problematic because multiple scene points generally contribute to

the color of a single image pixel. Consequently, scene consistency cannot be evaluated on a point-by-point basis, as proposed

in this paper. Promising initial results by Szeliski and Golland [46], indicate that global optimization methods provide a

potential solution the transparency problem and are worthy of future study.

The notion of color invariance bears resemblence to the problem of color constancy (c.f. [18]) which has a long history

in the computer vision literature. The color constancy problem is to determine, from one or more images, a description

of scene material properties (e.g., surface reflectance) that does not depend on scene illumination. However, invariance to

illumination is quite different than the notion of color invariance used in this paper; in the latter case, illumination is held fixed.

Rather than separating reflectance from illumination, color invariants encode scene radiance directly, which is sufficient to

synthesize new views of the scene with illumination held constant.
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