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Abstract

In this paper we present a framework combining differ-
ential geometry and scale-space to show that local geomet-
ric invariants of image contours such as tangent, curvature
and derivative of curvature can be computed directly and
stably from the raw image itself.

To solve the problem of noise amplification by differen-
tial operations, scale-parameterized local kernels are used
to replace differential operations by integral operations,
which can be carried out accurately when we adopt a con-
tinuous image model. We also show that tangent estimation
along contours can be made quite accurately using only
eight tangent estimators (a w /4 quantization) when con-
tour location is known, and high precision and efficiency
in computation can be achieved for each of the invariants
regardless of the differential order involved.

1 Introduction

Image contours exhibit good correspondence between
raw images and the physical world at early stages of visual
perception. However, it is known that the structure of an
image contour is not unique and can be defined at various
scales. Generally the processes of locating and represent-
ing image contours consist of (i) identifying the location of
contours, and (ii) modeling the structure of contours and
computing the modeling parameters.

In order to make the structure of image contours ex-
plicit, two methods are commonly employed: (i) local edge
detection followed by global curve tracing [10] and (ii)
global interpolation or energy optimization [6]. The major
problem with the first approach is its strictly 1-D sequential
processing model and data dependency, e.g., the estima-
tion of curvature depends exclusively on the current edge
locations and estimated tangents along the edge, which, in
turn, depends on the resolution provided by the edge detec-
tor. In this model any error produced in early stages will
propagate to and is amplified by all the later stages. Hence
higher order geometric invariants of image contours (e.g.,
curvature) are considered noisy and unstable computation-
ally. The alternative approach generates closed-form curve
models by either interpolating edge points or by globally

minimizing error-energy functions. The former inherits the
errors generated in the edge-detection process and the lat-
ter requires a careful design of energy functions to stabilize
the results, and both do not perform well across tangent or
curvature discontinuities.

To solve these problems, we propose first to replace the
discrete image model by a continuous one based on the
sampling theorem (a continuous signal can be fully recov-
ered from its discrete counterpart if the sampling frequency
is higher than the Nyquist rate). This continuous model is
predicated by always using imaging devices with a reso-
lution higher than the highest resolution that will ever be
needed for the computation. Next, by applying scale-space
theory [11], the differential operations can be replaced by
integral operations so that the inherent problem of noise
amplification can be avoided (as previously observed by
[3, 8]). This advantage comes with the expense of expand-
ing the spatial range of computation as the order of dif-
ferentiation increases, but because of the adoption of the
continuous image model all the operations can be carried
out without quantization error.

With the help of the theoretical framework, we can de-
rive expressions directly relating various local geometric
invariants to the raw image. We show that these expres-
sions also embody algorithms for highly efficient and sta-
ble computations for the invariants. The invariants being
considered include tangent, curvature and derivative of cur-
vature along a contour. We also show how these invariants
might be used by a local model of curves such as local
canonical form to locally represent image contours.

2 Theoretical Framework
2.1 Image Model

An image is modeled traditionally by 7 (x, y) with x and
y taking only integer values in the range of (0, N —1). This
discrete model is not adequate in computing local differen-
tial invariants and should be replaced by an ensemble of
images parameterized by a scale-space parameter o as fol-
lows:

Io(x,y) = Yoolx, y; o) * I(x,y), ey
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Figure 1: ¢ kernel and its differentiations.

where Yoo(x, y; o) is the 2-D Gaussian kernel and * is
the convolution operator. The raw image I (x, y) can be
viewed as corresponding to the finest resolution (the in-
ner scale [3]) available from the optical front-end (e.g.,
retina) [7]. The 1-D Gaussian kernel o is defined as:
Yo(x; o) = exp (—%) /~/2mo. The i-th order differen-
tiation of ¥y (x; o) will be denoted by ¥; (x; o). Since the
2-D Gaussian kernel is separable, we have v;; (x, y; o) =
Yi(x; 0)¥;(y; o). The kernel ¥ and its first-, second- and
third-order differentiations are depicted in Figure 1.

The Gaussian as the kernel of scale-space has the im-
portant property:

itJ
F[lﬁoo(x, yio)sI(x, y)]=vij(x,y;0)«I(x,y).
x'oy/
)

It is this convolution property that allows us to replace dif-
ferential operations on the image by integral operations
when the image is parameterized into a scale-space.
2.2 Contour Model

Given a well-defined curve c(s) parameterized by the
curve length s in 2-D Euclidean space, the Serret-Frenet
formula holds in the neighborhood of a given s :

t'(s) = kn(s), n'(s) = —«t(s), 3)

where ¢(s) and n(s) are the tangent and normal vectors of
c(s) at s, and « is the curvature of the curve at s. Using
Eq. (3) the first three terms of the Taylor expansion of ¢(s)
(up to the second-order differentiation) can be expressed
directly in terms of «, «’, £(s) and n(s) :

c(so+e€) = c(so)+ (e — /c263/3!) t(so)
n (K62/2 + K/€3/3!> n(so) + R. (4)

This is the local canonical form of the curve ¢. The im-
plication of this form is that the curve can be decomposed
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Figure 2: Contour defined by the response of im-
age to ¢/ kernel at a particular orientation.

locally into components along the Frenet frame (¢, n) and
these components, up to a third-order approximation, can
be expressed in terms of x and «’ (derivative of « with re-
spect to s). In fact, the fundamental theorem of the local
theory of curves asserts that « (s) is all we need to specify
the curve uniquely (up to a rigid transform) [2].

3 Computation of Contour and Invariants
3.1 Contours

Letx” = xcosf + ysinf and y" = —x sin6 + y cosé.
Define a 2-D antisymmetric receptive field [9] with orien-
tation 6 as

P(x,y.0:0) 2 —yo1(x", Y"1 0). )

A local image contour with orientation 6 at scale o is de-
fined to be a distribution of irradiance I (x, y) such that

[(VP(x,y,0;0) -n)x1(x,y)]=0
and
[P(x,y,0;0)*I(x,y)] #0, (6)

where n = (sinf, —cos®) is the normal vector to the
contour. The term (VP - n) is the directional derivative
of P(x,y,0; o) in the direction of n and has the explicit
form: Y2 (x”, y"; 0) = Yo(x"; o)Y2(y”"; o). This defini-
tion originates from the fact that the response of the image
to kernel P has maximum rate of change when moving in
the direction orthogonal to 6 (see Figure 2). The additional
condition is there to exclude those uniform contrast areas
of the image. Note that Yo(x", y"; o) is in the form of
a Gabor filter [1]. The location (x, y) defined by Eq. (6)
is the maximum response of the antisymmetric kernel P
along the direction n and is analogous to the output of an
oriented edge detector using the Gabor kernel.

In the following we will drop the o term in various ex-
pressions when deemed appropriate with the understanding
that we are dealing with a particular scale o.



3.2 Tangential Field Along Contours

The tangent vector along an image contour at (x, y) and
scale o is defined as the unit vector with orientation # such
that
A OP(x,y,0;0)
P(x,y,0;0)= 29 *
This definition is motivated by the property that when ker-
nel P(x, y, 0) is aligned with the local image contour (with
orientation ), the response of convolving the kernel with
the image will be maximum. Define the kernel associated
with ®(x, y, 0) as

I(x,y)=0 (7

IP(x,y,0
$(x.y.0) = % — Gy ®

For a given point (x, y), the orientation space at this point
is defined as:

V(0;0) =¢(x,y,0:0)*I(x,y). C))

Since 6 is a continuous parameter, the orientation of the
tangent can only be estimated by quantizing the orienta-
tion space, i.e., we need to determine the resolution of the
orientation space in order to locate zero points accurately.

Physiological evidence suggests a quantization resolu-
tion of /18 (36 quantizations) for the mammalian vision
system [5]. We will show that a resolution of 7 /4 (8 quan-
tizations) is sufficient if we assume a step edge model.

The orientation space at (0, 0) for a horizontal step edge
is given by

sin 6
V2ro’

(10)
where the edge is going from 1 to 0 when crossing from the
negative y-axis to the positive y-axis. The above expres-
sion is the output of applying the local kernel ¢ (x, y, 8)
to the step edge image. We would like to find the 6 that
defines the tangential field without the knowledge of the
closed-form solution (which is sin 6 for step edge but un-
known otherwise).

Since the sinusoidal function is linear around the zero
point, we can estimate the resolution needed by estimat-
ing the linearity of the sinusoidal function in the range
(—m, ). If we denote the two points around zero as 6~
and @7 for negative and positive orientation samples, then
the error between the linear approximation and the actual
sinusoid will be (see Figure 3)

6~ sinft — 6T sinf~

= . 11
¢ sinf+t —sinf~ (D)

0 00
W(G;a):/ / d(x,y,0;0)dxdy =

Hence, by keeping #~ and 6 within 7 /4 we can keep the
estimated error of the zero point within 1.3° for this case.
The estimated zero point 6 (x, y) is
D(x,y,0M)07 — d(x,y,07)0T
O(x,y) = —
D(x,y,0t) — d(x,y,07)
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Figure 3: Response of a step edge to ¢ kernel,
with linear estimation of the zero-crossing point.

3.3 Curvature Along Contours

By definition, the curvature « is d6/ds, where s is
the natural parameter (curve length). For a given tangen-
tial field, 6(x, y), and using the chain rule and implicit

differentiation, we have k = V6 - (cos#, sinf). Simi-
lar formula holds for ®(x, y, ) (defined in Eq. 7) and it
is straightforward to show that V6 = —V®/dy. Hence

Kk ==V t/Py.

For simplicity we will use subscripts to denote deriva-
tives, for example, ®y for 0®/d6. Since P (x, y, 0) is de-
fined as ¢ (x, y,0) * I(x,y), we can directly associate ®
with the kernel ¢ and, subsequently, ¥;;. The explicit ex-
pressions for (VO - ¢) is yo(x”, ¥") * I (x, y), which is
invariant with respect to rotations. We then have the ex-
plicit form of curvature at (xo, yo), which can be directly
used for computation:

r r
(X0, o) = Y2o(x", y") x I (x, y) (13)
Vo1 (x", y7) * I (x, y)

A similar formulation of curvature is proposed by Koen-
derink et al. [8] for image blob boundary defined by iso-
luminance (the neighborhood around a point on an image
contour can indeed be approximated by an iso-luminance
contour). However the tangent orientation cannot be com-
puted accurately in their formulation and their expression
of curvature for image contours requires a third-order dif-
ferential to approximate.

3.4 Derivative of Curvature Along Contours

The same method used to derive curvature can also be
applied to formulate higher-order geometric invariants. In
particular, we are interested in the derivative of curvature,
«', since it is also part of the expression of the local canon-
ical form. The differentiation of curvature with respect to
curve length is

dk

I = Qxxcosz@—l—éyy sin29—|—29” sin 6 cos 0
B ) )

+ (=0 sin @ + 0y cosO)«. (14)
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synthetic shapes. Smithsonian archive.
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Figure 6: Comparison between theoretical and
computed tangent of an ellipse.

We have already derived (0, 6y) as — (P, ®y)/Py. Sim-
ilarly, we can derive 0y, 6y, and 0y, in terms of various
orders of differentiation of ®. The derivative of curvature
can then be expressed in terms of first and second order
differentiation of ®(x, y, 6). Using Eq. (8) we can directly
compute @y, Pxy and ¢yy. If we define A = —VO -n/Dy.
it then can be shown

dk
= —k

15 s (V30" Y)Y % I(x, »).  (15)

This formula can also be derived by applying the direc-
tional derivative of « in the ¢ direction.

4 Implementation and Examples

We use the images in Figure 4 and 5 to illustrate the im-
plementation. The scale-orientation space is initially par-
titioned into 4 x 4 cells, i.e., using four scale partitions
spanning from o = 1.5 to 4 and four orientation parti-
tions from 6 = 0 to 2. This partition scheme enables us
to locate contours through operations in Fourier domain,
which is equivalent to performing operations uniformly in
the spatial domain. At this stage 6 is treated as a quantized
parameter and does not get estimated. Next, the orientation
space is repartitioned into eight cells and the tangent field
is estimated along the contours. In this second pass 8 is
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Figure 7: Comparison between theoretical and es-
timated curvature along an ellipse.
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Figure 8: Curvature for shapes image.

treated as a continuous parameter, and the computation is
conducted in the spatial domain at those contour points.

For the ellipse in the image of shapes, the theoretical
and estimated tangents are shown in Figure 6. The orien-
tation is plotted against the curve length along the ellipse.
Similar comparison is also done for curvature and is shown
in Figure 7. The result of curvature computation for this
image is shown in Figure 8. We also compute the curva-
ture for the vase image along part of the boundary and the
top (an ellipse) of the vase and the result is shown in Fig-
ure 9. The highest peak of the curvature comes from the
concave discontinuity near the vase handle.

5 Discussion

We have shown that for each of the invariants in the
local canonical form of an image contour, a set of local
kernels can be derived to compute the invariant directly
from the raw image. The steps are (i) compute image
contours using the kernel (VP - n) (Eq. (6)), (ii) com-
pute the vector tangential fields for 7 (x, y) and express
them in the form of (x, y, ), where the vector field ¢ is
(cos B, sinf) (Eq. (7)) and (iii) for points where the tan-
gential field is non-vanishing, compute curvature (Eq. (13))
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Figure 9: Curvature on boundary of vase.

and then, derivative of curvature (Eq. (15)).

The kernels derived above for computing local geomet-
ric invariants along image contours can all be found in bio-
logical systems [5, 9] though the antisymmetric kernels are
not as populated as the symmetric ones, and they can all be
derived from the Gaussian kernel and expand their kernel
sizes as the differential order increases. These properties
suggest possible connections between the computation of
geometric information and the hierarchical organization of
natural visual systems. In the rest of this section we con-
sider some details of the computation in our approach.

5.1 Scale and Size of Kernels

When a signal is considered continuous in the modeling
process, scales are bounded only by the object systems be-
ing modeled. However, when the model is converted to the
sampling domain, the range of scales is also dictated by the
conversion process, and the kernels of the receptive fields
will increase in size due to this conversion.

The expressions of ¥;(x; o) should all be normalized
so that the total area is unity. This is important since they
function as filters on images. In order to maintain this prop-
erty, the normalization factor is proportional to the order of
differentiation. This implies an expansion of the filter size
if a constant numerical precision is to be kept. This in-
crease of kernel size also constrains the range of scales be-
cause the bandwidth of the sampled image is constrained
by the Nyquist rate. In fact, the image dimension deter-
mines both the upper and lower bound of the scales. If the
scale is taken to be multiples of o (e.g., scale = o, with
a € I) in the Gaussian kernel, then the upper bound is
Omax = N/2a, where the image size is N x N. On the
other hand, taking N as the Nyquist rate dictates the scale
lower bound to be oy, = /7.

5.2 Contour and Tangent Computations

Theoretically, we can use Eq. (6) to compute the tangent
6. However, as indicated earlier, we can compute image
contours in the Fourier domain by treating 8 as a quantized

parameter. This greatly increases the efficiency of com-
putation at the price of being less precise in estimating 6.
On the other hand, after potential contours are located, we
need only compute the geometric properties at these con-
tour points and, because of the sinusoidal property indi-
cated by Eq. (10), we can estimate 6 with great precision.

6 Conclusions

We showed in this paper that various local geometric
invariants of image contours can be computed directly and
reliably from the raw image. This approach not only elimi-
nates the drawbacks of error propagation and amplification
in conventional approaches but also improves the precision
of the results drastically. All of the computations are local
without sacrificing the resolution and without resorting to
global processes such as energy minimization, which are
computationally expensive.

Being able to accurately and reliably compute higher or-
der differential invariants such as derivative of curvature al-
lows us to explore the connection between perception and
these geometric invariants (e.g., curve partition and per-
ception [4]). This also makes 2-D visual processes such as
perceptual organization more meaningful.
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