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Abstract. 2D curve representations usually take algebraic forms in ways not re-
lated to visual perception. This poses great difficulties in connecting curve repre-
sentation with object recognition where information computed from raw images
must be manipulated in a perceptually meaningful way and compared to the rep-
resentation. In this paper we show that 2D curves can be represented compactly
by imposing shaping constraints in curvature space, which can be readily com-
puted directly from input images. The inverse problem of reconstructing a 2D
curve from the shaping constraints is solved by a method using curvature shap-
ing, in which the 2D image space is used in conjunction with its curvature space
to generate the curve dynamically. The solution allows curve length to be deter-
mined and used subsequently for curve modeling using polynomial basis func-
tions. Polynomial basis functions of high orders are shown to be necessary to
incorporate perceptual information commonly available at the biological visual
front-end.

1 Introduction

The first goal of visual perception is to make the structure of the contrast variation in the
image explicit. For stationary images, the structure is organized through the curvilinear
image contours. From the point of view of information theory, the probability that an
image contour is formed by some random distribution of contrast is extremely small and
thus is highly informative. For the contour itself, it is also more meaningful to identify
the part of the image contour that is more informative than other parts of the same
contour. Though this principle is important from either the view of information theory
or data compression, it is nonetheless essential to inquire about the inverse problem,
i.e., how can the less informative part be recovered from the more informative part?
This paper is about both problems in the 2D curve domain with main emphasis on the
inverse problem.
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Methods for representing 2D curves are usually segment-based with each segment
defined by either a straight line (polygon) or a parameterized curve (spline). The seg-
mentation points that separate segments are determined from properties computed along
the curve, among them curvature is the most commonly used [4, 5]. However, the prop-
erties for curve segmentation are generally highly sensitive to scale changes because
the computation is commonly conducted after the contours are identified, which is no-
toriously dependent on the scale used. This problem can be avoided by using methods
that compute the curvature along the contour directly from the image and a carefully
designed selection scheme for the scales used in the computation [11].

Curvature has been considered to be one of the major perceptual properties of 2D
shapes [2, 5, 10]. It is invariant to rigid transformations and can be computed by our
physiological system [3, 7]. It has been used extensively in shape matching [8] and
object recognition [6] as well as for shape modeling in both 2D [9] and 3D [1].

From these observations regarding a 2D curve and its perception, the problem of 2D
curve modeling can be formulated as a two-stage process: first, the perception-based
selection of the local parts on the curve to be modeled, and second, the measurement
of relevant modeling parameters regarding the shape. In this paper we also formulate
the inverse problem of constructing a curve from a given set of parameters that has
been selected previously as modeling parameters. The combination of the significance
of curvature in visual perception and the importance of geometrical modeling of image
contours is motivation for developing a new framework for 2D curve representation and
reconstruction using curvature.

2 Background

2.1 Direct Curvature Computation from an Image

Curvature computation on image contours is generally sensitive to noise due to the
way the computation is conducted, i.e., compute curvature from contour detected. This
problem can be remedied greatly by computing curvature directly from an image at
a tentative contour position [11]. The method can be extended to the computation of
higher-order differential invariants such as the derivative of curvature, which will be
used extensively in this paper.

Let I(x, y) be the input image. A 2D Gaussian kernel is separable and defined
by ψ00(x, y;σ) = ψ0(x;σ)ψ0(y;σ), with σ being a scale parameter and ψ0(x;σ) =
(1/

√
2πσ) exp(−x2/2σ2) an 1D Gaussian kernel. The ith-order and jth-order differ-

entiations of ψ with respect to x and y are given by ψij(x, y;σ) = ψi(x;σ)ψj(y;σ). It
can be shown that the curvature at location (x0, y0) of an image contour is given by

κ(x0, y0) =
ψ20(x

r , yr) ∗ I(x, y)
ψ01(xr , yr) ∗ I(x, y) (1)

where ∗ is the convolution operator and (xr , yr) = (x cos θ+y sin θ,−x sin θ+y cos θ)
with θ being the orientation of the contour. The derivative of curvature is then given by

dκ/ds = κλ−(ψ30(x
r, yr)∗I(x, y))/Φθ, whereΦ(x, y, θ;σ)

4
= −(∂ψ01/∂θ)∗I(x, y),

λ = −∇Φ ·n/Φθ, and Φθ = ∂Φ/∂θ with n being the unit normal vector to the contour.
An example of the curvature computed in this way is shown in Figure 1.



Fig. 1. The curvature along the contour of an airplane image.

2.2 Geometry of 2D Curves

Given a curve c(s) = (x(s), y(s)) parameterized by its curve length s, the fundamental
theorem of differential geometry for planar curves enables us to describe the curve
uniquely (up to a rotation θ0 and a translation (a, b)) using its curvature κ(s). This is
explicitly formulated by the intrinsic equations: x(s) =

∫
cos(θ(s)) ds + a, y(s) =∫

sin(θ(s)) ds + b, θ(s) =
∫
κ(s) ds + θ0 with three boundary conditions given to

specify (a, b) and θ0. The curve κ(s) is the curvature space for c(s).
Hence the problem of shape representation in 2D image space is equivalent to the

representation of the function κ(s) in curvature space. The primary difficulty in using
the intrinsic equations directly in curve reconstruction from curvature space is that there
is no well-defined computational procedure for constraining the shape in either the 2D
image space or the curvature space from the changing shape in the other space. In other
words, when taking into account noise, both spaces are unstable by themselves. How-
ever, by incorporating both spaces into a reconstruction algorithm, satisfactory results
can be achieved.

We will subsequently consider the following geometrical parameters of a curve.
Given a smooth curve c(s) that is C2 continuous, two points P0, P1 on c(s) at s0, s1
are such that the respective curvatures κ(s0), κ(s1) are curvature extrema, i.e., κ′(s0) =
κ′(s1) = 0. The points P0, P1 are called feature points for c(s) (Figure 2).

Given this background, the problem of 2D shape representation using feature points
will be to locate the curvature extrema along a curve and construct the curve using
these extremal points. Traditionally this goal is achieved through piecewise interpola-
tion using cubic splines and matching boundary conditions at the knots. However, this
approach is unable to incorporate the higher-order constraints of κ and κ′. The other
problem is the relatively straight segments provided by this model, requiring more knots
for more curved regions. This fact may not be favorable when the scale-space factor is
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Fig. 2. The geometrical factors that determine a 2D curve.

taken into account, which requires a more or less even distribution of knot positions
along the curve at a given scale. These problems can be alleviated by using higher order
splines. Another problem is the extra feature points inserted by the basis functions. To
solve this problem, a different approach that works on both image space and curvature
space is required.

The parameter used for the interpolation is also problematic, especially when curve
length parameterization is required. For a given image, the curve length along an image
contour can generally be estimated quite accurately, and the relevant geometrical and
modeling parameters can be computed. However, the inverse problem of finding the
curve from a given set of boundary conditions does not provide information on curve
length. The method presented in the next section provides the curve length information
as one of its results. This information can then be used for modeling the curve using the
high-order polynomial basis functions presented in Section 4.
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Fig. 3. Dynamical moves for a curve segment
between two convex points.
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Fig. 4. Dynamical moves for a curve segment
between one convex and one concave point.

3 Curve Representation by Curvature Space Shaping

Given two feature points, P0, P1, on an unknown curve c(s) in an image and their
associated tangent orientations, θ0, θ1, as well as their signed curvatures, κ0, κ1, we



now present a method to solve the problem of finding the curve that satisfies the given
boundary conditions with the property that there is no computable curvature extremum
in between P0 and P1 other than those at P0 and P1.

Let the osculating circle at P0, P1 be C0, C1 respectively, and the tangent line be-
tween C0, C1 in the direction of t0 = (cos θ0, sin θ0) be g01 (the unit vector g along
g01 at the C0 end has the property g · t0 > 0). Among the four tangent lines, g01 is
chosen to be one of the two non-crossing ones closest to P0 if κ0κ1 > 0, and one of
the two crossing ones if κ0κ1 < 0. The curve c(s) is constructed by dynamically mov-
ing stepwise from P0 along a direction that will gradually changed into the direction
of t1 = (cos θ1, sin θ1) while gradually changing the curvature of corresponding oscu-
lating circle in the process (Figures 3 and 4). Since c(s) is unknown, the curve length
between P0 and P1 cannot be determined in advance. Rather, we use the length of the
tangent line g01 as an initial estimate for the curve length.

Let the desired steps for reaching P1 from P0 be n, and let the length of tangent
line gi at each step be sg

i for i = 1, . . . n. The direction of movement at each step i
is determined by the corresponding θi and gi by (ti + gi)/2, i.e., move half way in
between ti and gi. The curvature κi of the osculating circle Ci is given by κ0 + (κ1 −
κ0)/n. The distance di to be moved consists of a movement along gi followed by a
movement alongCi and is given by di = sg

i /(n− i+1). The orientation change caused
by this movement is then given by ∆θ = κidi = (κ1 − κ0)di/n. This is formulated in
such a way that if the estimated curve length sg

i is indeed the curve length, then at each
step we will move precisely 1/(n − i + 1) of the curve length and will complete our
journey in n steps. The curve length is thus given by

s =
n∑

i=1

sg
i

n− i+ 1

κ′(s0) = 0
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Fig. 5. The curvature space for a curve seg-
ment with two convex points.
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Fig. 6. The curvature space for a curve seg-
ment with one convex and one concave point.



The corresponding curvature spaces of the curves in Figures 3 and 4 are given in
Figures 5 and 6, respectively. Under the solvability conditions explained in the next
section, it can be shown that the movement will approach P1 in n steps with the desired
boundary conditions, and the following limits can be established:

lim
n→∞

Pn = P1, lim
n→∞

θn = θ1, lim
n→∞

kn = k1

Each of the n segments of curve c(s), according to the curvature space, is a par-
tial arc on the osculating circle Ci with constant curvature κi (Figure 7), which can
be approximated by a piecewise straight segment. Even though the curves have great
similarity, their curvature spaces have completely different shapes. This illustrates the
difficulty in working from only one of the spaces. In comparison, a constant curvature
segment can better track the tangent line and converge faster to the destination than
the straight segment counterpart because the osculating circle at each point bends to-
ward rather than away from the line. This implies fewer steps are required and better
precision.
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Fig. 7. The two segment models of a curve.

3.1 Solvability Conditions

There are two conditions governing whether this problem has a solution. One corre-
sponds to the “sidedness” of the object, since the sign of curvature is defined according
to which side of the object the normal vector lies by the Frenet equation t′ = κn. The
tangent line gi gives an estimate of the curve length of c(s) and at the same time defines
on which side the object lies. It is unsolvable when the boundary conditions create an
impossible object. The other condition of solvability is whether during the process the
curvature enters an area in which extra extrema have to be created. These areas are de-
noted unsolvable in Figures 5 and 6. These two unsolvability conditions are illustrated
in Figure 8.



�
0

s0

�
0

�
1

s1 �
0

�
0

s0

s1

� (s)

�
1

C1 C1

� (s)

C0 C0

Fig. 8. The two unsolvability conditions between two convex points.

4 Curve Representation by Polynomial Basis

The curve length of an arbitrarily parameterized curve c(t) is s =
∫
|c′(t)| dt. From this

formulation it is clear that if c(t) is represented by polynomial basis functions, its curve
length will not be polynomial, and vice versa. Hence, to use a polynomial basis we can
either work in the image space of c(t) = (x(t), y(t)) by fitting the boundary conditions
c0, c1, θ0, θ1, κ0, κ1, κ′0, κ

′
1, or work in curvature space through the intrinsic equations

on the same set of boundary conditions. Both methods result in a set of highly nonlinear
equations with the existence of a solution questionable. In this section we introduce a
compromise method using polynomial basis functions in image space that satisfy all
the boundary conditions but do not guarantee that new curvature extrema will not be
inserted in the models.

4.1 Curves from Hermite Splines

The Hermite polynomials Hi,j(t) of order L with i = 0, . . . , L and j = 0, 1 satisfy
the cardinal property: Hk

i,0(0) = δki, H
k
i,0(1) = 0, Hk

i,1(0) = 0, Hk
i,0(1) = δki, where

the superscript k indicates the order of differentiation. This set of equations defines
polynomials of order 3 for L = 1, of order 5 for L = 2, and of order 7 for L = 3.

The cardinal property is useful for fitting boundary conditions of various differential
orders. We will consider here the case of first, second and third order differentials. Let
P i

j be the ith derivative of the curve at P j = c(tj). The curve segment connecting the
two points (t = t0, t = t1) using Hermite splines is

c(t) =

1∑

j=0

l∑

i=0

P i
jHi,j(

t− t0
t1 − t0

), l = 1, . . . , 3

This formulation is given in terms of the differentials at two boundary points, which
are not readily available since the problem is given the conditions of location (P 0,P 1),
orientation (θ0, θ1), curvature (κ0, κ1), and differential of curvature (κ′0, κ

′
1). Since the

estimation of P i
j is generally noisy, it is necessary to use curve length as a parameter.

Hence, the curvature κ = x′y′′ − x′′y′ and κ′ = x′y′′′ − x′′′y′ since (x′)2 + (y′)2 = 1.
Given κ and κ′ allows us freedom to choose two additional conditions to fix x′′, y′′

and x′′′, y′′′. This can be done arbitrary since the problem itself does not dictate these
conditions.



Fig. 9. The image contour of the airplane
in Figure 1.
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Fig. 10. The curvature space and extrema for the air-
plane contour.

5 Examples

For the airplane contour in Figure 9, the curvature space is given in Figure 10, in which
the curvature extrema are identified. The corresponding feature points are also marked
in Figure 9. These points are the component partition points in which the concave points
separate components while the convex points mark the partition of different segments
within the same component. One of these components with feature points within the
segment identified is shown in Figure 11. The curve length is estimated from the curve
computed using the method of curvature shaping, and subsequently used in the repre-
sentation by Hermite basis functions. Three different orders of the basis functions were
used. Bases of order 3 used the location and tangent orientation information only. Bases
of order 5 also matched boundary conditions for the curvature, while Hermite bases of
order 7 satisfied the additional condition that these points are actually feature points
with extremal curvature.

6 Discussion

6.1 Scale Space

Scale space manifests its effect mostly in computation. From the formulation in Sec-
tion 2.1, it can be observed that after the image contours are computed, the effect of
the 2D scale-space kernel parameterized by rectangular Cartesian coordinates is equiv-
alent to the effect of an 1D scale-space kernel parameterized by curve length. This is
because the image contour is computed by orienting the kernel ψ01 in the direction of
the contour [11]. This essentially creates a “curvature scale space” [9], in which varia-
tions within a fixed scale are gradually lost when the scale getting coarser. This results
in a separation of feature points on the curve with a distance proportional to the scale
used for the computation. Hence, even though the curvature κ(s) is a highly nonlinear



Fig. 11. Parts of the airplane represented by Hermite basis of order 3(· · · ), 5 (−·),7 (−−), com-
pared to the original (—).

function of x(s) and y(s) and its shape cannot be exactly predicted for a given scale,
the feature points with extremal curvature can nonetheless be located by searching the
curvature space of finest scale and partitioning the curve with segments of length pro-
portional to the scale without actually computing the curvature scale space for coarser
scales.

6.2 Perceptual Boundary Conditions

The measure of distance in biological visual perception is provided by comparison be-
tween a reference length and what is to be measured, i.e., there is no intrinsic metric.
This renders computations using distance measure (such as optical flow and curvature)
imprecise. On the other hand, an orientation measure has built-in mechanisms with a
certain degree of precision. From these observations, the primary measurement of the
local shape of a curve will be the position and orientation relative to a 2D Cartesian
coordinate system, while curve length and curvature are much less precise in terms of
measurement. Hence the primary boundary conditions related to perception are loca-
tions and orientations. However, we do show that when secondary boundary conditions
such as curvature and its derivative are available, the representation is much more com-
pact and precise. For example, by using cubic or quintic Hermite bases for the compo-
nent in Figure 11, precision can be augmented by adding more knot points. However, it
is not clear which ones to choose since there is no special attribute in curvature space
to facilitate this choice.

6.3 Component Partitions Using Curvature Space

There are two different kinds of information presented through the curvature space
when the whole contour is considered. The prominent ones are actually component



partition points (negative extrema) of the shape or segment partition points (positive
extrema) within a component. This can be seen in Figures 1 and 10. Feature points for
each segment have to be identified within the segment rather than compared to every
segment in the contour, and their extremal property is essential to the modeling. The
inadequacy of lower-order Hermite bases to represent a curve segment is clearly seen
in Figure 11, since these do not take into account the extremal property at these points.

7 Conclusions

A compact description of a smooth curve was presented in this paper, based on curve
features that are perceptually-important. The geometrical model of these features was
defined by location, orientation and curvature, with the additional property that the cur-
vature reaches extremal values at feature points. Being able to describe compactly an
object contour is of great importance in object recognition, especially when the descrip-
tion is independent of the viewpoint. We also develop a method to identify the curve
from a given set of perception-based boundary conditions at prescribed feature points.
One of the results is a good estimation of curve length that can subsequently be used by
polynomial basis functions for curve modeling. However, to satisfy the given boundary
conditions, much higher-order polynomials are needed than what are commonly used.
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