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Approximation orders of FSI spaces in L2(IRd)

C. de Boor, R. A. DeVore, A. Ron

1. Introduction

Given a subset Φ ⊂ L2(IRd), the shift-invariant, or SI, space S(Φ) generated by
Φ is the smallest closed subspace of L2(IRd) that contains the set

E(Φ) := {φ(· − α) : φ ∈ Φ, α ∈ ZZd}

of all shifts of Φ; i.e., S(Φ) is the L2-closure of the finite span of E(Φ). We use the
abbreviations FSI (for ‘finitely generated’) and PSI (for ‘principal’) in case Φ is a finite
set, respectively a singleton, {φ}. In the latter case, we write S(φ) rather than S({φ}).

FSI spaces play a role in several areas of Analysis. The most relevant to the present
article are Multivariate Approximation Theory (in particular, Box Splines), and Wavelets
(in one or more dimensions), particularly, multiwavelets.

In the above-mentioned and other areas, the FSI space S(Φ) serves as a possible
source of approximants for certain subspaces of L2(IRd) (e.g., Sobolev spaces). The basic
criterion then for assessing the approximation properties of S(Φ) is the asymptotic decay
of the error when approximating from dilates of this space. Precisely, let

Sh := {f(·/h) : f ∈ S(Φ)}

be the h-dilate of S(Φ). Given k > 0, we say that Φ (or, more correctly, S(Φ)) provides
approximation order k if

(1.1) dist(f, Sh) = O(hk), all f ∈W k
2 .

Here, dist is the L2-distance between a function and a subset, and W k
2 := W k

2 (IRd) is the
usual potential space. The problem of determining the highest possible approximation
order provided by S(Φ) was first suggested by Strang and Fix in their seminal paper [SF].
We forgo reviewing here to any extent the rich literature concerning the approximation
orders of shift-invariant spaces, and refer instead the interested reader to the introduction
and bibliography of [BR2] and [BDR1]. Specific discussions of the literature that are
pertinent to the present paper can be found in the sequel.

Following a suggestion of Babuška, [SF] studies the possibility that the approximation
orders of the FSI space S are already realized by some PSI subspace S(ψ) of it. Such a
function ψ (which need not be unique) is sometimes referred to as a ‘superfunction’ for S,
and we thus refer to this direction of study as ‘superfunction theory of FSI spaces’. The
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approach is particularly successful if the superfunction is computable and has favorable
properties similar to the generating set Φ (e.g., is compactly supported if the elements of Φ
are). The superfunction approach exploits the fact that the study of approximation orders
of PSI spaces, as well as the construction of useful approximation schemes from such spaces,
is simpler than for their FSI counterparts. Specifically, the problem of characterizing the
L2-approximation order of PSI spaces was completely solved in [BDR1: Theorem 1.6]; in
other norms, a complete characterization of the approximation orders of PSI spaces is yet
to be found; however, the recent results of Johnson [Jo1], [Jo2] come very close to that
target.

The present paper is exclusively devoted to the study of approximation orders of
FSI spaces. Two of our previous papers, [BDR1] and [BDR2], treat this problem as well
(though not exclusively). In what follows, we first briefly discuss the results obtained in
these other articles, and then describe the contribution of the present paper to the topic.

Our studies in [BDR1] and [BDR2] of the approximation orders of FSI spaces were
focused on the superfunction approach. The basic result on the matter is Theorem 1.9 of
[BDR1], a special case of which, of much use in the present paper, is as follows.

Result 1.2. Let S be a closed shift-invariant subspace of L2(IRd). Let ψ be the orthogonal

projection onto S of the sinc-function

g : ω 7→ (2π)d/2
d∏
j=1

sin(πωj)
πωj

.

Then, the approximation order provided by S is the same as the approximation order

provided by its PSI subspace S(ψ).

Improvements of Result 1.2 may be sought for two different reasons. First, even in
case S is generated by a ‘nice’ set Φ, it is not true that the superfunction ψ in the result
must inherit any of these favorable properties. Second, the result does not provide any
recipe for the construction of ψ. Section 4 of [BDR2] deals with these two problems. We
state here only its result for the case when S is a local space, i.e., S is generated by finitely
many compactly supported functions. Here and below, reference to S(Φ) being local means
that the Φ mentioned is a finite set of compactly supported functions.

Result 1.3. Let S(Φ) be a local space. Then there exists a finite linear combination ψ of

the elements of Φ such that the PSI space S(ψ) provides the same approximation order as

that provided by S.

Note that the superfunction of this latter result is certainly compactly supported.
Moreover, an explicit construction of (one of the many) possible ψ is given in [BDR2].
Still, one should keep in mind the following: while ψ in Result 1.3 is compactly supported,

2



its mean value may be 0. From an Approximation Theory point-of-view, this is a major
drawback. For, it forces any useful approximation scheme that uses the shifts of ψ to be
unstable: the coefficients used to approximate, say, a bounded function, can grow at ∞.

When writing [BDR2], our primary example of a FSI space was one generated by
several box splines. In this case, the fact that the compactly supported superfunction has
zero mean value seems to be unavoidable. However, recent examples of FSI spaces (such
as the ones considered in [HSS] and [CDP]) are of a different character. In fact, these
articles treat a generating set Φ whose shifts are linearly independent. Under a linear
independence assumption, and in fact under a much weaker assumption, the superfunction
results can be greatly improved. In particular, we will prove (in Section 4; see Theorem 4.2)
the following theorem which says that, under conditions that we presently consider to be
‘mild’ (though we were unwilling to think of them so in the past), spaces whose generators
decay suitably at infinity contain a superfunction with non-zero mean-value which is a
finite linear combination of shifts of those generators. In the statement of the theorem and
later, we make use of the abbreviation

(1.4) Zk := {j ∈ ZZd+ : |j| :=
d∑
i=1

ji < k}.

Theorem 1.5. Let Φ be a finite subset of L2(IRd) whose elements are O(| · |−ρ) at infinity

for some ρ > k+d and assume that S(Φ) provides approximation order k. For each φ ∈ Φ,

let

φ◦ :=
∑
j∈ZZd

φ(· − j)

be the periodization of φ. If Φ◦ := {φ◦ : φ ∈ Φ} is linearly independent, then there exists

a unique function ψ that has all the following properties:

(a) ψ is spanned by the Zk-shifts of Φ;

(b) The zero-moment of ψ equals 1; its j-moments, j ∈ Zk\{0}, all are zero;

(c) S(ψ) provides approximation order k.

Under the stronger assumption that the generators are compactly supported, this
theorem is essentially proved, by rather different means, in [J2] (and announced in [J1]).
Furthermore, under the assumption that the shifts of Φ are stable, the above result can be
found in [LJC: Theorem 5.3] (and is proved there for any p ∈ [1 . .∞]).

Remark. We recall from [BDR1: Theorem 1.14] the following. If ψ̂ is bounded on some
neighborhood of the origin (a condition obviously satisfied by the ψ in this theorem), then
(c) of Theorem 1.5 implies that ψ satisfies the Strang-Fix conditions of order k, i.e.,
ψ̂ has a zero of order k at each α ∈ 2πZZd\{0} (in the sense that ψ̂/| · −α|k is bounded in
some neighborhood of α).
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Remark. More general results than Theorem 1.5 (see Theorem 4.2) are stated and proved
in the present paper, though they require a modification of the assumption that Φ◦ be
linearly independent. Such possible modification is the content of the next remark.

Remark. The linear independence of Φ◦ is equivalent to the linear independence of the
set

{φ̂|2πZZd
: φ ∈ Φ}

of restrictions to 2πZZd of the φ̂’s. Indeed, for φ ∈ Φ, the discrete Fourier transform φ̂◦ of φ◦

satisfies φ̂◦(j) = φ̂(2πj) by the Poisson summation formula, and the linear independence
of Φ◦ is equivalent to the linear independence of Φ̂◦. This linear independence requirement
is significantly weaker than L2-stability (known also as the Riesz basis property) of shifts
of Φ (cf. [BDR2]): the latter property is characterized by the linear independence of

{φ̂|
θ+2πZZd

: φ ∈ Φ},
for every real θ. The linear independence assumption on the shifts of Φ, used in [HSS]
and [CDP], is even stronger than the Riesz basis property. Firstly, it assumes Φ to be
compactly supported. Secondly, it is characterized ([JM]) by the linear independence of
the sequences

{φ̂|
θ+2πZZd

: φ ∈ Φ},
for every complex θ (note: the Fourier transform of a compactly supported φ is entire).

As an application of our “superfunction” results of Section 4, we provide (in Section 5)
a characterization of the approximation order of multivariate refinable FSI spaces in terms
of their refinement mask. Recall that Φ ⊂ L2 is dyadically refinable if there exists a
square matrix M , indexed by Φ and with 2π-periodic entries, such that

Φ̂ = M(·/2)Φ̂(·/2).

One result in Section 5 states that (under conditions that are somewhat stronger than
those of Theorem 1.5, but still weaker than the Riesz basis assumption) the refinable Φ
provides approximation order k iff there exist trigonometric polynomials τ = (τφ : φ ∈ Φ)
such that (a): τ(2·)M has a zero of order k at each ξ ∈ {0, π}d\0; (b): τ − τ(2·)M has a
zero of order k at 0, and (c) τ(0) 6= 0. The theorem explains the “sum-rules” phenomenon
currently highlighted in the literature (cf., e.g., [HSS]): with yj := Djτ(0), |j| < k, and
τ as above, the above characterization can be converted, by an application of Leibniz’
formula to the equalities Dj(τ(2·)M)(ξ) = 0, ξ ∈ {0, π}d\0, and Dj(τ − τ(2·)M)(0) = 0,
to the equivalent formulation “there exist (yj : |j| < k) such that y0 6= 0, and, further,

∑
j′≤j

(
j

j′

)
2|j

′|yj′Dj−j′M(ξ) = 0, ξ ∈ {0, π}d\0, |j| < k,
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and

yj −
∑
j′≤j

(
j

j′

)
2|j

′|yj′Dj−j′M(0) = 0, |j| < k. ”

In fact, while we have chosen to outline the above for dyadically refinable functions, the
actual result in Section 5 applies to functions that are refinable with respect to general
dilation matrices.

Remark. It should be emphasized that, in this paper, ‘approximation order’ always refers
to that provided by the corresponding stationary ladder, Sh := S(Φ)(·/h), as defined in
[BDR1]. In the case of refinable functions with dilation matrix s, one may also be interested
in the approximation order of the nested sequence Vj := S(Φ)(sj ·). This latter notion of
approximation order is investigated by Jia in [J3], [J4] for a compactly supported singleton
Φ = {φ} and for general dilation matrices. In general, the two notions of approximation
order differ. However, if we assume the dilation to be isotropic (in particular, if the dilation
is dyadic), then there is a simple rigid connection between the two notions, and results in
terms of one notion can be equivalently formulated in terms of the other. In view of that,
it is correct to attribute the PSI compact support case of Theorem 1.5 to [J4].

The superfunction ψ of Theorem 1.5 is said there to be ‘unique’. Of course, that
uniqueness is in terms of the particular properties asserted in that theorem. For specific
applications, other superfunctions with slightly different properties may be desired. For
example, if Φ is refinable with a mask M whose entries are trigonometric polynomials,
then, for certain applications, it is desirable to know that there is a generator φ ∈ Φ
and a corresponding superfunction ψ so that the vector ψ ∪ (Φ\φ) is still refinable (and
generating), with the entries of its mask still polynomials. Such an assertion can, offhand,
not be made for the superfunction of Theorem 1.5 (regardless of the choice of φ), but is
proved in Section 5 (Corollary 5.5) for the superfunction obtained in another superfunction
result (Theorem 4.12) in Section 4.

While putting together the arguments for the new superfunction observations outlined
above, we realized that there is a handy way to characterize approximation orders of FSI
spaces directly in terms of the generating set Φ. In fact, that observation extends to
the more general case of non-stationary FSI ladders. These characterizations, which are
valid without any restriction on the finite set Φ (other than the obvious restriction, that
Φ ⊂ L2(IRd)), are presented and proved in the next section, and their efficacy is illustrated
in Section 3 by using them to compute, once again, the exact approximation order of the
space of C1-cubics on the 3-direction mesh.
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2. A characterization of the approximation order of FSI spaces

In this section, we characterize the approximation order of the FSI space directly and
explicitly in terms of any particular generating set for it. The characterization extends to
the non-stationary case, whose definition is given in the sequel, in a way that is analogous
to the non-stationary PSI extensions. The argument we use in the proof of the main
result invokes our two main observations from [BDR1], viz., the characterization of the
approximation orders of PSI spaces, and the superfunction results such as Result 1.2.

We recall the definition of the bracket product of f, g ∈ L2(IRd):

[f, g] :=
∑

α∈2πZZd

f(· + α)g(· + α),

i.e., the 2π-periodization of fg. The sum converges in L1 on compact sets. Given a finite
Φ ⊂ L2(IRd), the Gramian G := GΦ of Φ is the square matrix indexed by Φ whose
(φ, ϕ)-entry ((φ, ϕ) ∈ Φ × Φ) is the corresponding bracket product:

G(φ, ϕ) := [ϕ̂, φ̂];

notice the inverted order, here and in [RS], as compared to the definition of G in [BDR2]
(forced upon us because we have, following the customary treatment of inner products,
made the bracket product skew-linear in its second argument).

In our use of the Gramian, we adopt the convention of treating Φ as a sequence to
which we may apply, on the left or the right, matrices of compatible sizes to produce
other sequences. This convention permits us to write

∑
φ∈Φ cφφ̂ as cΦ̂ or Φ̂c. Further, if

A = (aφ,ϕ) is a matrix with rows and columns indexed by Φ, then Φ̂AΦ̂ =
∑
φ,ϕ∈Φ aφ,ϕφ̂ϕ̂.

With this, we recall from [BDR2: Theorem 3.9] that the Fourier transform ψ̂ of the
orthogonal projection ψ of f ∈ L2(IRd) onto S(Φ) can be written

(2.1a) ψ̂ = τ Φ̂ = Φ̂τ

with the 2π-periodic function τ satisfying

(2.1b) τ = G−1 [f̂ , Φ̂]

at every point at which G is invertible, and with

[f̂ , Φ̂] := ([f̂ , φ̂] : φ ∈ Φ).

Here is the main result of this section.
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Theorem 2.2. Assume that the Gramian G = GΦ for some generating set Φ for the FSI

space S is invertible a.e. in some neighborhood of the origin. Then S provides approxima-

tion order k if and only if the function

ΛΦ : ω 7→
√

1 − (Φ̂G−1Φ̂)(ω)

is such that | · |−kΛΦ ∈ L∞(B) for some neighborhood B of the origin.

Example. If Φ is the singleton {φ}, then the function ΛΦ reduces to

ω 7→ (1 − |φ̂|2
[φ̂, φ̂]

(ω))1/2,

where here and below, as in [BDR1], we interpret 0/0 to be 0. The above theorem thus
covers, as a special case, the characterization of the approximation order provided by
stationary PSI ladders that we obtained in [BDR1: Theorem 1.6].

Proof of Theorem 2.2. From Result 1.2, we know that, with ψ the orthogonal
projection of the sinc-function g onto S, S(ψ) provides the same approximation order as
S. We will show that, near the origin, the map

Λψ : ω 7→ (1 − |ψ̂|2
[ψ̂, ψ̂]

(ω))1/2

coincides with ΛΦ. Our present FSI theorem will then follow from its special PSI case, i.e.,
Theorem 1.6 of [BDR1].

To compute Λψ, note that the error, g − ψ, in the orthogonal projection ψ of g to S
is necessarily perpendicular to S(ψ), hence, e.g. by [BDR1: Lemma 2.8], [ĝ − ψ̂, ψ̂] = 0,
i.e., [ĝ, ψ̂] = [ψ̂, ψ̂]. Since ĝ is the characteristic function of the cube [−π . . π]d, this shows

that, for ω near the origin, ψ̂(ω) = [ψ̂, ψ̂](ω), hence

(2.4) |ψ̂(ω)|2/[ψ̂, ψ̂](ω) = ψ̂(ω)

there. Thus it only remains to show that, for ω near the origin,

ψ̂(ω) = (Φ̂G−1Φ̂)(ω) =
∑
φ,ϕ∈Φ

φ̂(ω) G(ω)−1(φ, ϕ) ϕ̂(ω).

But this is evident since, by assumption, G(ω) is invertible for a.e. ω in some neighborhood
of the origin, hence we have with (2.1), for any such ω,

(2.5) ψ̂(ω) = Φ̂(ω)G(ω)−1[ĝ, Φ̂](ω),

while ĝ = 1 near the origin, hence [ĝ, Φ̂](ω) = Φ̂(ω) there.
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Remark. The assumption of invertibility of the Gramian a.e. in some neighborhood
of the origin is simply a convenience. The theorem remains true without this assumption

provided the symbol G(ω)−1 is interpreted to mean any right inverse of G(ω) as a map to

ran[Φ̂∗](ω), with [Φ̂∗](ω) : f 7→ ([f, φ̂](ω) : φ ∈ Φ). Indeed, recall from [BDR2: Result 3.7]
that, with the notation

ϕ̂‖ω := (ϕ̂(ω + 2πα) : α ∈ ZZd),

the Fourier transform ψ̂ of the orthogonal projection ψ of g ∈ L2(IRd) to S(Φ) has the
form Φ̂τ , with

(Φ̂τ)‖ω = Φ̂‖ωτ(ω) :=
∑
ϕ∈Φ

ϕ̂‖ωτϕ(ω)

the `2-projection of ĝ‖ω onto span Φ̂‖ω, all ω ∈ [−π . . π]d. In other words, for any ω ∈
[−π . . π]d, ψ̂(ω) = Φ̂‖ωτ(ω) is the orthogonal projection of ĝ‖ω ∈ `2 onto the range of the
linear map

V : CΦ → `2(ZZd) : c 7→ Φ̂‖ωc =
∑
ϕ∈Φ

ϕ̂‖ωcϕ.

Let
V ∗ : `2(ZZd) → CΦ : x 7→ (〈x, φ̂‖ω〉 : ϕ ∈ Φ).

Then G(ω) = V ∗V maps CΦ onto ranV ∗ = ran[Φ̂∗](ω) (since V ∗ is 1-1 on ranV and
dim ranV ∗ = dim ranV ), hence, as a map to ranV ∗, it has right inverses. Let C be any
such right inverse. Then Q := V CV ∗ is the orthogonal projector of `2(ZZd) to ranV =
span Φ̂‖ω (since ranQ ⊂ ranV while V ∗(id −Q) = 0). Consequently,

ψ̂‖ω = Q ĝ‖ω = Φ̂‖ω C ([ĝ, ϕ̂](ω) : ϕ ∈ Φ),

since V ∗ĝ‖ω = (〈ĝ‖ω, ϕ̂‖ω〉 : ϕ ∈ Φ) and 〈ĝ‖ω, ϕ̂‖ω〉 = [ĝ, ϕ̂](ω). This gives (2.5) with
G(ω)−1 replaced by C.

The following corollary was established in the course of the proof of the theorem (see
(2.4)):

Corollary 2.6. Let S be an FSI space. Let ψ be the orthogonal projection of the sinc-
function onto S. Then S provides approximation order k if and only if the function

ω 7→ |ω|−k(1 − ψ̂)1/2(ω)

is essentially bounded around the origin. Also, in any case, 0 ≤ ψ̂ ≤ 1 near the origin.

As we mentioned before, the characterization of approximation order that was ob-
tained here extends to the non-stationary case. In the non-stationary case, each space in
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the ladder (Sh)h is still the h-dilate of some FSI space, but that FSI space may depend on
h, i.e.,

Sh = S(Φh)(·/h)
for some h-dependent Φh ⊂ L2(IRd). The notion of ‘approximation orders’ is defined here
exactly as in the stationary case (cf. (1.1)), and the approximation orders are attributed
to the ladder S = (Sh)h. The extension of the above result to the non-stationary case is
done exactly in the same manner non-stationary extensions were dealt with in [BDR1].
We state these results without further comment.

Theorem 2.7. Let S be a non-stationary FSI ladder, i.e., the space Sh is the h-dilate

of the FSI space S(Φh), with Φh an h-dependent finite subset of L2(IRd). Let Gh be the

Gramian of Φh, assumed to be invertible a.e. on some fixed neighborhood of the origin.

Then, the ladder S provides approximation order k if and only if, for some h0 > 0, the

functions

(h+ | · |)−k
√

1 − Φ̂hG−1
h Φ̂h , h < h0,

are bounded in L∞(B), for some neighborhood B of the origin.

3. An application: bivariate C1 cubics on 3-direction mesh

In this section only, let S denote the space of bivariate C1-cubics on the 3-direction
mesh. This space was shown in [BH1] to provide approximation order 3 only, even though
Π3 is contained locally in it. This result made clear that the approximation order of a FSI
space might be harder to ascertain than originally thought. It is therefore worthwhile to
show how Theorem 2.2 provides the exact approximation order for this space.

In the interest of brevity, we refer the reader to [BH1], [BH2] as a source for any
missing details and for prior literature concerning this particular S, which consists of all
piecewise cubic functions in C1(IR2) for the 3-direction mesh, i.e., with breaklines

IR{i1, i2, i3} + ZZ2

involving the three ‘directions’

i1 := (1, 0), i2 := (0, 1), i3 := (1, 1).

This space is obviously shift-invariant. It is shown in [BH2] that its approximation power
equals that of

Sloc := S(Φ),
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with Φ comprising the three C1-cubic box splines for the 3-direction mesh. These are
obtained by convolving the hat function (or, ‘Courant’ element, or, linear 3-direction
box spline) M111 with the characteristic function of the parallelepiped spanned by two of
the three directions. It follows that Sloc is generated by the Frederickson elements

ϕi := χ
Ti

∗M111, i = 1, 2,

where the star indicates convolution, and T1, T2 are the two triangles obtained by cutting
the unit square [0 . . 1]2 by the ‘north-east’ diagonal.

In order to apply Theorem 2.2, it is enough to determine the order to which the
function √

1 − Φ̂G−1Φ̂

vanishes at 0, with Φ = (ϕ1, ϕ2) and, correspondingly,

G =
(
g11 g12
g21 g22

)
,

where
gij := [ϕ̂j , ϕ̂i].

Since S consists of piecewise cubics, its approximation order cannot be bigger than 4.
Hence it is sufficient to compute the Taylor coefficients of

(3.1) f := Φ̂G−1Φ̂ =
Φ̂

(
g22 −g12
−g21 g11

)
Φ̂

detG

to terms of degree 7 (inclusive), but these coefficients must be computed exactly. It turns
out that detG has a zero of order 4 at the origin. Since f is a rational function of the ϕ̂i
and the gij , this means that we need (nothing more than) the exact Taylor coefficients to
degree 11 (inclusive) of the ϕ̂i and the gij .

This is a simple task for the ϕ̂i since they can be given in closed form, as follows (with
T1 the triangle with vertices 0, i2, i3, and with w := u+ v):

ϕ̂1(u, v) = i
(v(1 − e−iw) − w(1 − e−iv))(1 − e−iu)(1 − e−iv)(1 − e−iw)

(uvw)2

while
ϕ̂2(u, v) = ϕ̂1(v, u).

For the gij = [ϕ̂j , ϕ̂i], we go the following route. Since

[ϕ̂, φ̂] =
∑
α∈ZZ2

eiα·a(α)
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with

a(α) :=
∫

IR2
ϕ(x− α)φ(x)dx,

and the ϕi are compactly supported, gij is a trigonometric polynomial. Further, its coef-
ficients

aij(α) =
∫

IR2
ϕj(x− α)ϕi(x)dx

are the values at α ∈ ZZ2 of the function

Nij := ϕj(−·) ∗ ϕi = M222(· + 3i3) ∗


χ
T1

∗ χ
T2
, i = j;

χ
T1

∗ χ
T1
, i = 1, j = 2;

χ
T2

∗ χ
T2
, i = 2, j = 1,

hence N21(s, t) = N12(t, s), with M222 = M111 ∗M111 the bivariate box spline with di-
rections (i1, i1, i2, i2, i3, i3). (The shift by −3i3 ensures that 0 is the center of the support
of Nij , as it should be.) In particular, the Nij are obtainable from the continuous piece-
wise quadratic functions Fij := χ

Ti
∗ χ

Tj
by two-fold convolution with each of the three

directions, i1, i2, i3, followed by a shift. Such convolutions can be expressed as simple,
linear, local operations on the BB-net of a piecewise polynomial on the 3-direction mesh,
involving only simple rational numbers, hence can be easily carried out exactly even in
floating-point arithmetic. Here, the BB- (or, Bernstein-Bézier-)net (see, e.g., [BH1]) for a
continuous piecewise polynomial of degree k on the 3-direction mesh is the function defined
on k−1ZZ2 whose restriction to any triangle of the mesh provides the Bernstein-Bézier coef-
ficients, with respect to that triangle, of the polynomial piece associated with that triangle.
For example, with bij the BB-net bij for χ

Ti
∗ χ

Tj
,

b11 : ZZ2/2 → C :α 7→
{

1
2 , α = (1

2 , 1), (1
2 ,

3
2 ), (1, 3

2 );
0, otherwise,

b12 = b21 : ZZ2/2 → C :α 7→
{

1
2 , α = (1, 1);
0, otherwise,

and b22(i, j) = b11(j, i).
These calculations eventually lead to

(N21(i− 3, j − 3) : i, j = 1, . . . , 5) =




1 1 0 0 0
28 160 28 0 0
28 622 622 28 0
1 160 622 160 1
0 1 28 28 1


 /(2 · 7!)

11



and

(N11(i− 3, j − 3) : i, j = 1, . . . , 5) =




3 18 3 0 0
18 494 494 18 0
3 494 1950 494 3
0 18 494 494 18
0 0 3 18 3


 /(4 · 7!)

(with Nij(α) = 0 otherwise), and, in view of N12(i, j) = N21(j, i) and N22 = N11, that is
all we need.

From this information, we computed that f of (3.1) has the form

f(u, v) = 1 − (uvw)2

12 · 7!
+ h.o.t.,

thus verifying that the approximation order of bivariate C1-cubics on the 3-direction mesh
is exactly 3.

4. Superfunctions in FSI spaces

We now turn our attention to the second purpose of this paper: establishing improved
‘superfunction results’, under ‘mild’ conditions on the generating set Φ. The precise as-
sumption on Φ we shall make is formalized in the following definition.

Definition 4.1. Let Φ be a finite subset of L2(IRd), and let k be a positive number. We

say that Φ has the Strong Property H(k) if the following two conditions are met:

(a) For some neighborhood B of the origin, each φ̂, φ ∈ Φ, as well as each entry of the

Gramian G of Φ, is k times continuously differentiable on B + 2πZZd.
(b) G(0) is invertible.

Discussion. The Gramian G is 2π-periodic, hence the differentiability assumption with
respect to it is actually demanded only around the origin. In any event, condition (a) here
is ‘mild’, and is satisfied if (but not only if) each function φ ∈ Φ decays at ∞ at a rate
O(| · |−ρ), for some ρ > k + d. For the diagonal entries of G, this smoothness is shown in
the proof of Proposition 4.1 in [R3] by showing that, for any suitably small neighborhood
B of the origin,

∑
j∈2πZZd ‖|φ̂|2‖Ck(j+B) < ∞ in case φ ∈ L2(IRd) vanishes to some order

ρ > k+d at ∞. By Schwarz’ Inequality, this implies that also
∑
j∈2πZZd ‖φ̂ϕ̂‖Ck(j+B) <∞.

Therefore (proceeding as in [R3]), [φ̂, ϕ̂] =
∑

j∈2πZZd φ̂(·+j)ϕ̂(·+j) is k times continuously
differentiable on B.

The more discriminating condition is (b): since G(0) is the Gramian matrix of the
sequence Φ̂|2πZZd

, that condition is equivalent to the linear independence of Φ̂|2πZZd
, which,
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as mentioned in the introduction, is equivalent to the linear independence of the finite
function set Φ◦ (of Theorem 1.5), if that set is well-defined. Thus, in view of the remark
at the end of the introduction, requirement (b) here holds if (but not only if) the shifts of
Φ are L2-stable, a fortiori whenever these shifts are linearly independent.

Remark. Property H(k) appears previously in the article [R3], and is defined there
differently. Roughly speaking, the definition in [R3] is as follows: “S(Φ) satisfies the H(k)
property if it provides approximation order k to the entire Sobolev space, the moment
it provides approximation order k to some non-zero smooth function”; see [R3] for the
precise definition. While our definition here and the definition there may seem to be
entirely unrelated, the proof of Proposition 4.2 of [R3] shows that our definition here is
stronger (i.e., implies) the definition of [R3], whence the terminology ‘Strong H(k)’.

The following theorem is the main result of this section, and contains Theorem 1.5 as
a special case. Recall the definition Zk := {j ∈ ZZd+ : |j| < k} from (1.4).

Theorem 4.2. Let k be a positive integer, and let Φ be a finite subset of L2(IRd) that

satisfies the Strong Property H(k). If S(Φ) provides approximation order k, then there

exists a unique function ψ that satisfies the following three properties:

(a) It is a linear combination of the Zk-shifts of Φ.

(b) Its mean value is 1, and, further, Djψ̂(0) = 0, j ∈ Zk\{0}.
(c) Its corresponding PSI space S(ψ) provides approximation order k.

Proof. Let ψ0 be the orthogonal projection of the sinc-function g onto S(Φ).
Since we assume that S(Φ) provides approximation order k, Result 1.2 implies that S(ψ0)
provides that same approximation order. Furthermore, from (2.1), ψ̂0 = τ Φ̂, with τ =
(τφ : φ ∈ Φ) a 2π-periodic function which equals G−1[ĝ, Φ̂] around the origin. Here,
[ĝ, Φ̂] = ([ĝ, φ̂] : φ ∈ Φ). Since G is k times continuously differentiable at the origin, and
since G(0) is non-singular, G−1 is well-defined and k times continuously differentiable on

some neighborhood B of the origin. Also, near the origin, [ĝ, Φ̂] = Φ̂, and Φ̂ is k times
differentiable there, and therefore τ , hence ψ̂0, is k times continuously differentiable around
the origin. Invoking Corollary 2.6, we conclude that Djψ̂0(0) = δj , j ∈ Zk. In particular,
τ(0) 6= 0.

We have just argued that the 2π-periodic τφ in the representation ψ̂0 = τ Φ̂ are k
times continuously differentiable around the origin. Therefore, we can find trigonometric
polynomials τ̃ = (τ̃φ : φ ∈ Φ) such that
(a) the spectrum of each τ̃φ lies in Zk;
(b) τ − τ̃ vanishes to order k at the origin.

We now define a function ψ by

(4.3) ψ̂ := τ̃ Φ̂.
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It trivially follows that ψ̂ − ψ̂0 vanishes to order k at the origin (as a matter of fact, at
each α ∈ 2πZZd), and hence ψ satisfies conditions (a) and (b) of the theorem. It remains
to show that ψ provides approximation order k, and that it is unique.

Approximation order: Given any function η whose Fourier transform η̂ is k times
differentiable around the origin, and is non-vanishing there, Theorem 1.6 of [BDR1] shows
that the PSI space S(η) provides approximation order k if and only if

[η̂, η̂] − |η̂|2 =
∑

α∈2πZZd\0
η̂(· + α)η̂(· + α) =: ‖η̂‖2

0

has a zero of order 2k at the origin. In particular, this condition holds for η̂ = ψ̂0 = τ Φ̂
since S(ψ0) provides approximation order k. Further, since η̂ 7→ ‖η̂‖0(t) is a seminorm, we
have pointwise

(‖τ̃ Φ̂‖0 − ‖τ Φ̂‖0)2 ≤ ‖(τ̃ − τ)Φ̂‖2
0 ≤ ‖G0‖2‖τ̃ − τ‖2

2,

with G0 := (
∑

α∈2πZZd\0 φ̂(· + α)ϕ̂(· + α) : ϕ, φ ∈ Φ), with ‖ · ‖2 the norm in `2(Φ) and
‖G0‖2 the associated matrix norm. Since, by construction of τ̃ , ‖τ̃−τ‖2 has a zero of order
k at the origin, as does ‖τ Φ̂‖0, it follows that so does ‖τ̃ Φ̂‖0, which is what we needed to
show.

Uniqueness: Let ψ be any function satisfying (a-c). By (c) (see the Remark following
Theorem 1.5), ψ satisfies the Strang-Fix conditions of order k, hence, for j ∈ Zk, Djψ̂ = 0
on 2πZZd\{0}, while, by (b), Djψ̂(0) = δj for j ∈ Zk. In short,

(4.4) (Djψ̂)(α) = δαδj , α ∈ 2πZZd, j ∈ Zk.

By (a), ψ̂ = τ Φ̂ for some smooth 2π-periodic τ . Therefore, from (4.4) and Leibniz’ formula,

(4.5)
∑

0≤j′≤j
(Dj′τ)(0)

(
j

j′

)
Dj−j′Φ̂(α) = δαδj , α ∈ 2πZZd, j ∈ Zk.

On multiplying through, for each φ ∈ Φ, by φ̂(α) and then summing over α, we obtain the
system of equations

(4.6) G(0)vj +
∑
j′<j

Qj,j′(0)vj′ = δjΦ̂(0), j ∈ Zk,

for the quantities

(4.7) vj := Djτ(0), j ∈ Zk,
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with

(4.8) Qj,j′(φ, ϕ) :=
(
j

j′

)
[Dj−j′ϕ̂, φ̂], φ, ϕ ∈ Φ.

Since G(0) is invertible by assumption (i.e., by (b) of the Strong Property H(k)), (4.6) is
a block-triangular linear system, with invertible diagonal blocks, hence uniquely solvable.
Invoking now (a) in full detail, τ is a trigonometric polynomial with frequencies from Zk,
hence is uniquely determined by the information (4.7), hence so is ψ̂. Therefore, finally,
conditions (a-c) determine ψ uniquely.

The argument just given provides the following.

Corollary 4.9. Let Φ be a finite collection of functions in L2 that satisfies the Strong

Property H(k). Then, Φ provides approximation order k if and only if there exist vectors

v := (vj : j ∈ Zk) (each in CΦ) that satisfy∑
0≤j′≤j

(
j

j′

)
vj′D

j−j′Φ̂(α) = δαδj , α ∈ 2πZZd, j ∈ Zk.

Moreover, these vectors necessarily uniquely solve the linear system (4.6).

Perhaps the most striking corollary of Theorem 4.2 is the following characterization
of FSI ladders that provide approximation order 1. The result should be primarily viewed
as ‘negative’: without satisfying its condition, the FSI ladder (that is known to satisfy the
technical Strong Property H(1)) cannot provide any positive approximation order.

Corollary 4.10. Let Φ be a finite subset of L2 that satisfies the Strong Property H(1).

Then S(Φ) provides approximation order 1 if and only if there exists a function ψ in spanΦ
whose PSI ladder provides approximation order 1.

Proof. The ‘only if’ condition follows directly from Theorem 4.2, the ‘if’ statement
is trivial.

In the case when the functions of Φ decay at a rate O(| · |−ρ) at ∞ for some ρ > k+d,
the differentiability conditions on the Gramian and Φ̂ that are required in Strong Property
H(k) are automatically satisfied; see the Discussion following Definition 4.1. In that event,
the technical conditions imposed on Φ can be simplified to obtain the following result:

Corollary 4.11. Assume that, for some positive integer k and some ρ > k+ d, each φ in

the finite Φ ⊂ L2 decays at ∞ at a rate O(|·|−ρ). Assume also that the set Φ̂|2πZZd
is linearly

independent. Then the characterization of approximation order k that was established in

Corollary 4.9 is valid.

Theorem 4.2 proves, under the assumptions made in it, that the superfunction ψ ex-
ists and is unique. In particular, the uniqueness depends on the specification that certain
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derivatives of ψ̂ vanish at the origin, and this may be useful when constructing approxima-
tion maps based on the shifts of ψ (cf., e.g., [BR1]), but may be less important for other
applications. Specifically, for a certain application concerning a change of generating sets
for a refinable FSI space (that we describe in the next section), the following superfunction
result, which differs only slightly from Theorem 4.2, is found useful.

Theorem 4.12. Let k be a positive integer, and let Φ be a finite subset of L2(IRd) that

satisfies the Strong Property H(k). If S(Φ) provides approximation order k, then there

exists φ0 ∈ Φ and, for this φ0, a unique function ψ that satisfies the following three

properties:

(a) It differs from φ0 by a linear combination of the Zk-shifts of Φ\φ0.

(b) Its mean-value is not zero.

(c) Its corresponding PSI space S(ψ) provides approximation order k.

Proof. Since the Strong Property H(k) implies the Strong Property H(`) for every
` < k, Theorem 4.2 supplies, for each ` = 1, . . . , k, the unique element ψ` in the span S`
of the Z`-shifts of Φ with the property that ψ̂` has a zero of order ` at every α ∈ 2πZZd\0
while Djψ̂`(0) = δj , j ∈ Z`. Moreover, by the Strong H(k) property, the Zk-shifts of the
elements of Φ form a linearly independent sequence, hence form a basis for their span Sk.
Therefore, with ∆ the forward-difference operator, also the sequence

(4.13) (∆jφ : φ ∈ Φ, j ∈ Zk)

is a basis for Sk. Further, for each φ ∈ Φ, the coefficient cφ,0 of φ = ∆0φ in the unique
representation of ψ` with respect to the basis (4.13) does not depend on `. To see this,
express ψk in terms of the basis (4.13), and evaluate the Fourier transform of that repre-
sentation on 2πZZd. Since the Fourier transform of ∆jφ vanishes on 2πZZd for all j 6= 0,
we obtain that

(4.14) ψ̂k =
∑
φ∈Φ

cφ,0φ̂, on 2πZZd.

However, regardless of the value of k, ψ̂k = δ0 on 2πZZd, and this property already deter-
mines uniquely the coefficients in (4.14) since G(0) is invertible by assumption.

Let φ0 be any φ ∈ Φ for which c0 := cφ,0 is nonzero and consider the sequence

F := (fj := ∆jψ` : |j| = k − `, ` = 1, . . . , k − 1).

Then
fj ∈ c0∆jφ0 + span(Wj , V ),
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with
Wj := (∆j′φ0 : j′ > j, j′ ∈ Zk)

and
V := (∆jφ : j ∈ Zk, φ ∈ Φ\φ0).

Since c0 6= 0, one concludes that the sequence (φ0, F, V ), obtained from (4.13) by replacing
W0 there by F , is also a basis for Sk.

In particular, ψk has a unique representation

(4.15) ψk =: c0φ0 + f + v,

with f in the span of F , v in the span of V , and c0 6= 0. However, for each fj ∈ F , f̂j
vanishes k-fold at each α ∈ 2πZZd\0 (ψ̂` has a zero of order ` at each of these points, and
the difference operator is of order k− `, hence its symbol vanishes to that order on 2πZZd).
Also, since ` < k here, fj has mean-value zero, and consequently, for f in (4.15), f̂ (as all
functions in span F̂ ) vanishes on 2πZZd and has a zero of order k at each α ∈ 2πZZd\0. In
view of the known properties of ψk, it follows that the Fourier transform of the function

ψ := φ0 + v/c0

does not vanish at 0, but vanishes to order k elsewhere on 2πZZd. But this implies that
S(ψ) has approximation order k: indeed, with ‖ · ‖0 the semi-norm introduced in the proof
of Theorem 4.2, we need to show that ‖ψ̂‖0 has a k-fold zero at the origin. This folllows
from the fact that, pointwise a.e., ‖c0ψ̂‖0 ≤ ‖ψ̂k‖0 + ‖f̂‖0: indeed, ‖ψ̂k‖0 has a k-fold zero
at the origin since ψk provides approximation order k. The complementary fact, i.e., that
‖f̂‖0 also has such a zero, is proved by showing that the transform of each of the functions
fj = ∆jψ` ∈ F has such a zero; for that, note that, pointwise, ‖f̂j‖0 = |tj |‖ψ̂`‖0, with tj
the symbol of ∆j , hence vanishing to order |j| = k − ` at 0. At the same time, since ψ`
provides approximation order `, ‖ψ̂`‖0 has a zero of order ` at the origin. Altogether, this
proves that ‖f̂j‖0, hence ‖f̂‖0, hence ‖c0ψ̂‖0 have the required zero at the origin, thereby
that ψ provides the corresponding approximation order.

It remains to prove that ψ is uniquely determined. For this, let ψ′ be of the form

(4.16) ψ′ = φ0 + v′, v′ ∈ spanV,

with nonzero mean-value and with ψ̂′ vanishing k-fold at every α ∈ 2πZZd\0. Note that
for j′ ≤ j, Dj′ f̂j(0) 6= 0 if and only if j′ = j. This implies that there is some f ′ in spanF
for which Dj(ψ̂′ − f̂ ′)(0) = 0, for every j ∈ Zk\0. Remembering that f̂ ′, as any function
in span F̂ , vanishes to order k everywhere on 2πZZd\0, and vanishes at 0, we see that

ψ′′ := (ψ′ − f ′)/ψ̂′(0)
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satisfies all the conditions imposed on the ψ in Theorem 4.2, hence, necessarily, ψ′′ = ψk.
In particular, from (4.15) and from (4.16),

(φ0 + v′ − f ′)/ψ̂′(0) = ψk = c0φ0 + f + v,

with c0, f ∈ spanF , and v ∈ spanV uniquely determined, and f ′ ∈ spanF , v′ ∈ spanV .
Since (φ0, F, V ) is linearly independent, this implies that, necessarily, v′ = v/c0.

5. An application: refinable FSI spaces

The FSI spaces that appear in the context of wavelets and uniform subdivisions are
not given explicitly in terms of a generating set Φ. Rather, a matrix M , known as the
mask, whose rows and columns are indexed by the unknown set Φ and whose entries are
2π-periodic functions, is given, with the basic assumption that Φ is refinable with respect
to the mask M , i.e., that, almost everywhere,

Φ̂(s∗ω) = M(ω)Φ̂(ω).

Here, s is a d× d integer matrix which is assumed to be expansive, i.e., its spectrum lies
outside the closed unit disc.

In this setting, it is desirable to analyse properties of Φ and S(Φ) in terms of the
readily available information, viz., the mask M .

The problem of characterizing the approximation orders of refinable FSI spaces via the
relevant mask is addressed in [HSS], [P] and [JRZ] (see also the relevant article [CDP]).
The analysis in these papers is carried out under one or more of the following assumptions:
(a) d = 1, i.e., the functions in Φ are univariate.
(b) The entries of M are either trigonometric polynomials ([HSS], [JRZ], forcing the

functions in Φ to be compactly supported), or are smooth ([P], forcing Φ to decay
suitably).

(c) The shifts of Φ are either linearly independent ([HSS]) or L2-stable ([P]) (the reference
[JRZ] requires, in the absence of the linear independence of the shifts, some knowledge
on the dependence relations among the shifts of Φ).

(d) The dilation is dyadic, i.e., s = 2I.
Thus, an attempt to compute approximation orders, with the aid of the mask only via

the above-mentioned results, may require a mask-characterization of linear independence
and L2-stability. Such results exist for a univariate singleton Φ (cf. [JW], [R2]). Less is
known at present in more than one variable (cf. [H1] and [LLS]), and/or when Φ contains
more than one function (cf. [H2], [S], [W]). It seems from these references that a mask-
characterization of linear independence for FSI spaces (univariate or not) is non-trivial: it is
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even hard to determine, by inspecting the mask only, whether the cardinality of Φ is ‘right’,
i.e., whether S(Φ) cannot be generated by fewer functions. (It should be emphasized,
though, that the problem of characterizing the stronger property of orthonormality of the
shifts of Φ, or, more generally, the bi-orthogonality of the shifts of Φ and the shifts of
another refinable (dual) system, is more accessible, cf. §3 of [S]).

In what follows, we invoke the results of the previous section for the study of the
above problem. Our analysis is carried out in any number of dimensions d, and under a
Strong H(k) property. As mentioned in the Discussion following the Definition 4.1 of that
property, the first condition of that property is satisfied if each φ ∈ Φ decays at ∞ at a rate
O(| · |−ρ), ρ > k+d, with k the desired approximation order. This condition is also implied
by smoothness assumptions on the entries of M around the origin, hence can be verified
by inspecting the mask entries. The other condition in that property, viz. the invertibility
of G(0), was already explained to be significantly weaker than the condition of linear
independence, or even of stability. However, we still do not provide here a viable way for
checking this relatively mild condition via the mask M only. We hope that Hogan’s work
will serve in this direction. In any event, one should keep in mind that the invertibility of
G(0) is not only weaker than linear independence and stability, but also, once Φ is given,
is easier to check than any of the properties of approximation order, linear independence
and/or stability.

The conditions we assume in the first part of this section on Φ are somewhat stronger
than the ones assumed in the Strong H(k) Property:

(5.1) Conditions. We assume that
(α) Each φ ∈ Φ decays at ∞ at a rate O(| · |−ρ), for some ρ > k + d, with k the approxi-

mation order studied.
(β) One of the two following conditions:

(β1) The Gramian G = GΦ is invertible at the origin, i.e., Φ̂|2πZZd
is linearly indepen-

dent.
(β2) The Gramian G is invertible at each ξ ∈ 2πs∗−1ZZd, i.e., Φ̂|

ξ+2πZZd
is linearly

independent for each such ξ.

Discussion. The decay assumption (α) above implies (a) of Strong Property H(k),
while (β1) here is identical with (b) of that property, hence the combined assumption
(α+ β1) is a bit stronger than the H(k) property. The alternative assumption (β2) is, of
course, more demanding than (β1). However, it is still significantly weaker than a stability
or linear independence assumption, and may also be more easily verified than these other
two.

In the statement of the next result, we use the symbol

Γ
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to denote any set of representers of the quotient group 2π(ZZd/s∗ZZd). For example, in
case the dilation is dyadic, we can choose Γ = {0, 2π}d.
Theorem 5.2. Let Φ ⊂ L2 be a finite refinable set with mask M and dilation matrix s.

Assume further that (α) and (β2) of (5.1) hold. Then the following two conditions are

equivalent:

(a) Φ provides approximation order k.

(b) There exists a sequence τ = (τφ : φ ∈ Φ) of 2π-periodic trigonometric polynomials,

each with spectrum in Zk, such that, with t := τM(s∗−1·), the following is true:

(b1) t(0) 6= 0.

(b2) t has a zero of order k at each of the points Γ\{0}.
(b3) τ − t(s∗·) has a zero of order k at the origin.

Moreover, the implication (b)=⇒(a) holds under the weaker assumption that merely (β1)

(rather than (β2)) of (5.1) holds.

Proof. We first assume (α+ β2) of (5.1), and prove the implication (a) =⇒ (b).
Assuming that Φ provides approximation order k, we let ψ be the superfunction of Theo-
rem 4.2, and τ be the trigonometric polynomials of the representation ψ̂ = τ Φ̂. Note that
ψ decays at ∞ at a ρ-rate, since it is a finite combination of the shifts of Φ. In particular,
ψ̂ is k times differentiable everywhere, hence, since it provides approximation order k, it
must satisfy the Strang-Fix conditions of that order.

Since t = τM(s∗−1·), we have

ψ̂(ω) = t(ω)Φ̂(s∗−1ω),

a fact essential to our proof that these τ, t satisfy condition (b) of the present theorem.
One of these three required conditions, viz. (b1), is obvious: since we know that ψ̂(0) = 1,
we obtain that t(0) 6= 0. We now prove that the other two conditions in (b) here follow,
too.

Fix ξ ∈ s∗−1Γ\0. Then, for any α ∈ 2πZZd, s∗(ξ + α) is in 2πZZd\0, hence ψ̂ has a
zero of order k at s∗(ξ + α), and we know that, for every j ∈ Zk,

Dj(tΦ̂(s∗−1·))(s∗(ξ + α)) = 0.

Using Leibniz’ formula, together with the 2π-periodicity of t(s∗·), we get

∑
j′≤j

Dj′t(s∗ξ)
(
j

j′

)
(s−1D)j−j

′
Φ̂(ξ + α) = 0, all α ∈ 2πZZd.

We now proceed as in the proof of uniqueness in Theorem 4.2. Multiplying this, for each
φ ∈ Φ, by φ̂(ξ + α) and summing over α gives the system of equations

(5.3) G(ξ)vj +
∑
j′<j

Qj,j′(ξ)vj′ = 0, j ∈ Zk,
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for the quantities
vj := Djt(s∗ξ), j ∈ Zk,

with

Qj,j′(φ, ϕ) :=
(
j

j′

)
[(s−1D)j−j

′
ϕ̂, φ̂], φ, ϕ ∈ Φ,

and G(ξ) invertible by (β2). Hence the coefficient matrix in (5.3) is block-triangular with
invertible diagonal blocks, therefore invertible, hence Djt(s∗ξ) = 0 for all j ∈ Zk. This
proves (b2).

Condition (b3) is implied by a similar argument: the properties of the ‘superfunction’
ψ of Theorem 4.2 imply that F := ψ̂ − ψ̂(s∗·) has a zero of order k at all points of 2πZZd.
On the other hand, F = (τ−t(s∗·))Φ̂. Repeating the argument in the preceding paragraph,
with t replaced by the 2π-periodic τ − t(s∗·), and with ξ = 0, implies that τ − t(s∗·) has
the required zero at the origin. This completes the proof of the implication (a)=⇒(b).

We now assume (α+ β1) from (5.1), and prove that (b)=⇒(a). Consider the function
ψ defined by ψ̂ := τ Φ̂ = tΦ̂(s∗−1·). First, by assumption (b2), t has a zero of order k at
each point in Γ\0, and, since t is 2πs∗ZZd-periodic, it follows that ψ̂ has a zero of order k at
each point in 2πZZd\2πs∗ZZd. Second, from assumption (b3) we conclude that ψ̂(s∗·) − ψ̂

vanishes to order k at each point of 2πZZd. Using that fact for α ∈ 2π(ZZd\s∗ZZd), we see
that both ψ̂(s∗·)− ψ̂ and ψ̂ have zeros of order k at such α, and hence ψ̂(s∗·) also has such
a zero there; i.e., ψ̂ has zeros of order k at each point of 2πs∗(ZZd\2s∗ZZd). Proceeding
by induction, we conclude (from the expansiveness of s) that ψ satisfies the Strang-Fix
conditions of order k. Therefore, since ψ decays at a ρ-rate, it remains to show (cf., e.g.,
[BDR1: Corollary 5.15]) that ψ̂(0) 6= 0, in order to conclude that ψ provides approximation
order k, which trivially implies that Φ provides that order k. Note that, so far, we have
not used (β1) of (5.1).

By (b1) and (b3), τ(0) 6= 0, hence, with (β1) of (5.1), ψ̂|2πZZd
= τ(0)Φ̂|2πZZd

is not zero.

However, we already proved that ψ̂ = 0 on 2πZZd\0. Hence, ψ̂(0) 6= 0.

We now turn our attention to a second application to refinable functions of the super-
function results of Section 4. This application deals with changing a generating set for a
refinable function space S := S(Φ). In various applications, one would like to replace the
original refinable Φ by another generating set Φ0 for the space S, so that the new vector
Φ0 contains a superfunction ψ as one of its elements. If the relation between Φ and Φ0 is
given as

Φ̂0 = U Φ̂

for some transition matrix U (whose entries are 2π-periodic), and if Φ is refinable with
mask M and dilation matrix s, then one easily computes that Φ0 is refinable with mask

(5.4) M0 := U(s∗·)MU−1.
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Corollary 5.5. Let Φ be refinable with mask M . Assume that, for some positive k, Φ
satisfies the Strong H(k) property. Then there exists a function ψ in the finite span of

E(Φ) such that:

(a) ψ is a superfunction, i.e., S(ψ) provides approximation order k′ ≤ k if S(Φ) does so.

(b) ψ̂(0) 6= 0.

(c) There exists φ0 ∈ Φ such that the vector Φ0 := ψ ∪ (Φ\φ0) is refinable with mask M0

of the form

M0 = U1MU2,

where the entries of Uj , j = 1, 2, are trigonometric polynomials.

The highlight in this corollary is the trigonometric polynomiality of the entries of the
transition matrices: this guarantees that the entries of M0 are trigonometric polynomials
in case the entries of M are. The superfunction in the corollary is chosen below to be that
from Theorem 4.12. In contrast, the superfunction of Theorem 4.2 does not seem to yield
a result as clean as Corollary 5.5: if one replaces any one φ0 ∈ Φ by ψ from that result, the
resulting transition matrix U2 cannot be guaranteed to have polynomial entries (regardless
of the choice of φ0; compare with (5.4)).

The corollary above is used in [PR] in the context of factorization of univariate masks,
and estimating the smoothness of refinable functions via their masks. In that latter context,
another highlight of the above corollary is that the adjunction of the superfunction ψ to the
generating set results in the removal of some generator φ0, but in no other change to any
of the remaining generators: this proves to be significant when one attempts to study one
by one the smoothness of each of the original generators. Theorem 4.2 could still be used
inductively to yield the original factorization technique of [P]. However, that technique
shuffles completely the entire generating set, leaving no hope for a separate study of the
smoothness of each individual entry.

Proof of Corollary 5.5: We take ψ and φ0 to be as in Theorem 4.12. Then conditions
(a-b) of the current corollary follow directly from assertions in Theorem 4.12. We then
note that

ψ̂ = φ̂0 +
∑

φ∈(Φ\φ0)

τφφ̂,

where, for every φ ∈ (Φ\φ0), τφ is some trigonometric polynomial with spectrum in Zk.
This means that, upon ordering Φ in any way that puts φ0 first, and ordering Φ0 corre-
spondingly (i.e., ψ first, no change in the rest), we obtain that

Φ̂0 = U Φ̂,

with the matrix U differing from the identity matrix only in its first row, whose diagonal
entry is 1 and the other entries being τφ, φ ∈ Φ\φ0. Now, Φ0 is indeed refinable with mask
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M0 = U1MU2, with U1 obtained by dilating the above U , and U2 by inverting the above
U . The polynomiality of U1, thus, is not in question. The polynomiality of U2 follows from
the special structure of U : indeed, U2 also differs from the identity in the first row only:
that first row has again 1 as the diagonal entry, and −τφ, φ ∈ Φ\φ0, elsewhere.
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