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ABSTRACT. We show that the Ly-approximation order of surface spline interpolation
equals m + 1/p for p in the range 1 < p < 2, where m is an integer parameter which specifies
the surface spline. Previously it was known that this order was bounded below by m + 1/2
and above by m + 1/p. With h denoting the fill-distance between the interpolation points
and the domain Q, we show specifically that the Lp(€2)-norm of the error between f and its
surface spline interpolant is O(h™*1/P) provided that f belongs to an appropriate Sobolev
or Besov space and Q C R? is open, bounded and has the C?™._regularity property. We also
show that the boundary effects (which cause the rate of convergence to be significantly worse
than O(h?™)) are confined to a boundary layer whose width is no larger than a constant
multiple of h |log h|. Finally, we state numerical evidence which supports the conjecture that
the Ly-approximation order of surface spline interpolation is m + 1/p for 2 < p < oo.

1. Introduction

Given a scattered set of points & C R% and data f|:, the scattered data interpolation

problem is that of finding a ‘nice’ function s, defined on R?, which interpolates the data;
that is, which satisfies

(1.1) s(&) = f(§) for all £ € E.

Surface spline interpolation is one approach to this problem. It was defined by Duchon
[8] as the solution of the following variational problem. For an integer m > d/2, let H™
denote the space of distributions f for which D*f € Ly := Ly(R%) for all |a] = m and
define the seminorm

flgm == @0)¥2 | Y DS,

|a|=m

1991 Mathematics Subject Classification. 41A05, 41A25, 65D05, 41A63.
Key words and phrases. interpolation, surface spline, approximation order, scattered data.
This work was supported by Kuwait University Research Grant SM-10-00

Typeset by ApS-TEX



2 APPROXIMATION ORDER OF SSI

where the positive integers 7o are determined by the equation |z[*™ = > laf=m Tal?%,

z € R*. Let II} denote the space of polynomials over R? whose total degree does not
exceed k. Duchon proved that if Z is any subset of R? satisfying

(1.2) q(2) # {0} for all ¢ € IT,,_1\0

(ie = is not contained in the zero set of any nontrivial polynomial in IL,, 1), then for any
f € H™, there exists a unique s € H™ which minimizes |s|;.» subject to the interpolation
conditions (1.1). The function s is called the surface spline interpolant to f at = and will
be denoted by T=f. Let ¢ : R? — R be the radially symmetric function given by

#(2) { |2 if d is odd
xTr) =

2™ log|z| ifdiseven

In case E is a finite set satisfying (1.2), Duchon showed that T=f can be expressed as the
unique function which satisfies the interpolation conditions (1.1) and has the form

¢+ 3 Aed(-— )

§eE

where ¢ is a polynomial in II,,_; and the coefficients {\¢} are subject to the auxiliary
conditions

Z Aep(§) = 0 for all p € I, .

¢eE

We mention that surface spline interpolation can be generalized by replacing ¢ with any
radially symmetric function which is conditionally strictly positive definite of order m. In
the literature, this generalization goes by the name of Radial basis function interpolation
for which the reader is referred to the surveys [10], [7] and [11].

In order to discuss the approximation power of surface spline interpolation, let us assume
that  is an open, bounded subset of R? and that the interpolation points = are contained
in Q :=closure({2). The fill distance from = to € is defined by

h:=h(Z,Q) := sup inf |z — ¢|.
zcQEEE

Definition. A scattered data interpolation method f|: — s provides Ly-approzimation
of order v > 0 if for every open, connected and bounded Q C R?, having a C* boundary,
and for every f € C*°(R?), we have

17 = 5ll, oy = O as b 0.

The largest (or supremum of all) such v is the L,-approzimation order of the method.

The above definition is designed to reflect the rate at which s will converge to f, in the
L,(€Q)-norm, under very favorable circumstances. Results about the approximation order
found in the literature usually assume much less regarding the smoothness of the boundary
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and the smoothness of the data function f. However, the assumptions are sufficiently weak
to disallow ‘special cases’ where, for example, f is assumed to satisfy certain boundary
conditions, or f is restricted to a certain class of entire functions, or the interpolation
points = are assumed to satisfy some quasi-uniform condition.

Duchon [9] has shown that the approximation order of surface spline interpolation
is at least v, := min{m,m — d/2 + d/p} for 1 < p < oco. He actually showed that
Ilf — T5f||Lp(Q) = o(h") for all f € H™ whenever the domain Q has the cone property
(see the following section for the details). Duchon’s error analysis was eventually general-
ized by Wu and Schaback [21] and Wendland [20] to apply to a large family of radial basis
function interpolation methods. At the same time, there were efforts to understand the
special case when Q = R¢ and = = hZ®. Although this special case is quite different from
the desired setup, it was a tempting case because it falls in line with the very successful
theory of approximation from shift-invariant spaces (see [5]). It was shown by Buhmann
(6] and Jia and Lei [12] that the Ly-approximation order of surface spline interpolation
in this special case equals 2m. Recently, Matveev [16] obtained the same result without
assuming = to be the grid hZ< (yet still maintaining Q = R?). The reader will notice
the rather large discrepancy between the values of v, and 2m, the latter being at least
twice the former. For some time, it wasn’t clear whether the value vy, was excessively low
due to limitations of Duchon’s approach or whether there was some essential difference
between the case of a bounded domain € and the case where Q = R?. That the latter is
in fact the case was shown by the author [13] by proving that the L,-approximation order
of surface spline interpolation does not exceed m + 1/p for 1 < p < oco. Subsequently,
the author [15] has improved Duchon’s original error estimate to the extent of showing
that the L,-approximation order of surface spline interpolation is at least -y, + 1/2. The
estimate ||f —T=f[|, o) = O(h"11/2) was obtained assuming that Q has the uniform

C?™_regularity property (see [1, p. 67]) and that f belongs to the Besov space B;f‘;“”

(see section 2 for this definition). Noting that this improved lower bound of -y, +1/2 agrees
with the upper bound of m + 1/p at p = 2, we see that the Lo-approximation order of
surface spline interpolation equals m + 1/2.

The main purpose of the present contribution is to further improve this lower bound
to the extent of showing that the Lj,-approximation order of surface spline interpolation
equals m +1/p for 1 < p < 2. Since this is known for p = 2, once we establish it for p = 1,
it will be possible to obtain the result for the range 1 < p < 2 by interpolation. We will
show that if Q is open, bounded and has the uniform C?™-regularity property, then

If - TEf”Ll(Q) < const(m, Q)" ||f||W2m+1(Rd)

whenever f € Wt (R?) and h is sufficiently small. Here W[(A) denotes the Sobolev
space of all distributions f for which

1 lwrcay = D ID*fllg, ) < oo
lee| <k

Our approach to this result can be described in fairly simple language. Let us first state
clearly our assumptions and a few definitions for later reference.
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Assumptions 1.3. We assume that the data function f belongs to Wi"t1(R?). We
assume 2 is an open, bounded subset of R? having the uniform C?™-regularity property
(see [1, p. 67]) and Z is a finite subset of Q which satisfies (1.2). We let h = h(Z, ) denote
the fill distance from Z to €2, and we define 2’ and Z" by

!/

2 := hZN\(Q+ hB) and E" := EU

[1]

For each { € 2", let L¢ denote the Lagrange function defined by

L¢ = Tange,

where g is any function in H™ satisfying g¢(£) = 1 and g¢(E"\¢) = {0}.

The error f — T=f can be written, first of all, as (f — Tznf) + (Tevf — T=f). Since
=2 C &7, it follows that T= f = T=+T=f and hence we obtain

f-Tef=(f—-Tanf)+Tan(f —T=f) =1+ II.

To express the error in the above form was first suggested by Mike Powell and can be
found in Bejancu [3]. That I decays like O(h™*!) can be obtained by interpolating between
results of Duchon [9] and Matveev [16]. For I, we imitate Bejancu’s approach, and express
II in terms of the Lagrange basis as

(1.4) IT=Tei(f —Taf) = Y (f — Taf)(©)Le.

geEH

That the right side converges meaningfully and that equality indeed holds in (1.4) will be
shown in section 3. Since f — Tx vanishes on E, the sum in (1.4) is actually over £ € Z'.
We will employ a crucial lemma of Matveev which shows that the Lagrange functions L¢
admit a certain exponential decay. The basic idea in estimating the L;(€2)-norm of I7 is
then to say that if £ € E is close to €2, then (f — T=f)(£) is small (using the results of
[15]) and if £ € E is far from €, then the L;(2)-norm of L, is small due to its exponential
decay. This description is somewhat oversimplified because the sharp error estimate in [15]
is in the Lo(Q2)-norm rather than the Ly, (€2)-norm, but there is, nevertheless, a somewhat
complicated way of organizing the sum in (1.4) so as to obtain the result that the L;(£2)-
norm of IT decays like O(h™*1).

An outline of this paper is as follows. In section 2, we state the definitions and related
results from the literature which will be subsequently needed. Section 3 is devoted to
justifying (1.4) by showing that Tz~ f equals its Lagrange expansion ) ..z f(§)L¢. The
main results of the paper are in section 4 where it is shown that the L,-approximation order
of surface spline interpolation is m + 1/p for 1 < p < 2. The proof of one key proposition
has, for the sake of clarity, been postponed until section 5. Lastly, in section 6, we give a
result which shows that surface spline interpolation provides L,-approximation of order
2m, except in a shrinking boundary layer. We also provide some numerical evidence which
supports the conjecture that the L,-approximation order of surface spline interpolation is
m+1/p for 2 < p < co.
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Throughout this paper we use standard multi-index notation: D% := 8‘9:;1 66:(32 . aia‘jd .

1 2 d
The natural numbers are denoted N := {1,2,3,...}, and the non-negative integers are
denoted Ny. For multi-indices o € NZ, we define |o| :== a1 + az + - -+ + ag, while for
z € R?, we define |z| := /22 + 22+ --- +22. The Fourier transform of an integrable

function f is defined by f(w) i= [pa—w(2)f(z)dz, where e,(z) := €™®. The space
of compactly supported C'*® functions whose support is contained in A C R? is denoted
C°(A). The open unit ball in R? is denoted B := {z € R? : |z| < 1}. If p is a distribution
and g is a test function, then the application of y to g is denoted (g, ). We employ the
notation const to denote a generic constant in the range (0,00) whose value may change
with each occurrence. An important aspect of this notation is that const depends only on
its arguments if any, and otherwise depends on nothing.

2. Results from the Literature
In this section we state the definitions and results from the literature upon which the

present contribution builds. The Fourier transform plays an essential role in defining
certain function spaces which we will need. For example, it follows from the Plancherel

theorem that for f € H™, |f|ym = ‘ Hmf‘ . For s > 0, let W* denote the Sobolev

L2 (RH\0)
| fllws = H(1 + H2)s/2ﬂ

space of f € Lo for which

< Q.
L,

For k € Ny it can be easily shown, using the Plancherel theorem, that W* = W} (R?)
(with equivalent norms). Another important family of spaces which are defined using the
Fourier transform are the Besov spaces.

Definition 2.1. Let Ag := B, and for k € N, let Ay, := 2¥B\2*~!B, where B := {z €
R? : |z| < 1}. The Besov space B;,q, v €R, 1< q < oo, is defined to be the set of all

tempered distributions f for which fis a locally integrable function and

< 0.
£4(No)

113, =277

Ly (Ag)

The above defined spaces W7 and Bl o are complete. The following continuous embed-
dings can be found in [18] (they are also easy to prove from the definitions):

By, = B3, if 51> s2,
By, —W*=DBj,  ifq<2<qs s>0, and

W — B; = W?» ifs;>5> 53 >0.

In particular, if s > 0, then W* = B3 , (with equivalent norms).
We begin with results of Matveev. The following theorem is proved in [16, page 130].
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Theorem 2.2. There exists v € (0,1) (depending only on d and m) such that if a € A C
R? satisfy ro := h(A,R?) < oo and r3 := dist(a, A\{a}) > 0, then for all r > 0,

||TA9||W5”(Rd\(a+TB)) < const(d, m)yr/r2rg/2_m(1 +19)™,

where g is any function in H™ satisfying g(a) = 1 and g(A\{a}) = {0}.

An important consequence of this theorem is the exponential decay of our Lagrange
functions L¢ defined in Assumptions 1.3.

Corollary 2.3. Assuming Assumptions 1.3, there exists ¢ > 0 (depending only on d,m)
such that for & € =/, the Lagrange function L¢ satisfies the decay estimate

|L¢(z)| < const(d,m) exp(—c |z — ¢&| /h), =z € R%.

Proof. 1t suffices to prove the corollary for the special case h = 1 since the general case
can then be obtained by scaling both = and  and employing the identity T}-1 4(g(h-)) =
(Tag)(h-); so assume h = 1. Let £ € =/, and note that the assumptions in force ensure
that ¢ := A(E",R?) < (2 ++/d/2) and dist(¢,E"\{¢}) > 1. By Theorem 2.2, there exists
v € (0,1) (depending only on d, m) such that ||L£||W2m(Rd\(g+rB)) < const(d,m)v" for all

r > 0. Define ¢ := —logrv > 0. Let z € R¢\{¢} and put r := [¢ — z|. Since m > d/2, it
follows from the Sobolev Embedding Theorem [1, p. 97] that

1 Le (@) < 1Lellp  mayetrmyy < const(dsm) | Lellwm @a g4rmy)
< const(d, m)v" = const(d, m)e” =l

g

In the following, we use D™g to denote the vector (D“g)|q|=m, and adopt the notation
D7l = 3 1D%ll
loe|=m
The following is proved in [16, Theorem 6.

Theorem 2.4. If A C R? satisfies § := h(A,R?) < oo, then for all 1 < p < oo and
f e w2m(Rd) N H™,

1 = Tl g, ey < const(d,m, p)&™ [ D™ ||, -

The results of Duchon employ domains having the cone property; the following is equiv-
alent to the standard definition of the cone property.

Definition 2.5. A set Q C R? is said to have the cone property if there exists eq,rq €
(0,00) such that for all z €  there exists y €  such that |z — y| = eq and

(I-t)x+ty+rotBCQ Vte|0,1].

The following is proved in [9].
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Theorem 2.6. Let 2 C R? be open, bounded and have the cone property. There exists
ho > 0 (depending only on m,d,eq,rq) such that if h := h(Z,Q) < hg, then

If = T=fllp, @) < const(d,m, eq, ro) A2 | f|

forall f e H™, 2 < p < .
We need the following corollary.
Corollary 2.7. If A C R? satisfies § := h(A,R?) < oo, then

If = Tafll, < const(d,m)6™ |f|ym for all f € H™.

Proof. Let B denote the unit ball in R? centered at the origin. By Theorem 2.6 there
exists ho > 0 such that if Z C B satisfies h = h(E, B) < hg, then

If = Tefllp,m < const(d, m)h™ |f|gm forall f € H™.

Let A C R? satisfy § := h(A,R?) < oo and for r > 0 put A, := BN (A/r). Let f € H™
and put g := f — T4 f. Then for r sufficiently large

1f = Tafll sy = N9 pam = la(r) = Ta, (9 1, 5y
< const(d, m)rd/2(5/r)m lg(r)| gm = const(d, m)0™ |g| gm < const(d,m)o™ |f|gm -

The proof is then completed by taking the limit as r — oco. O

Since W™ C H™ and the norm ||-||;;; is stronger than the seminorm || ;,., Corollary
2.7 remains valid with |f|,. replaced by || f||;m- Similarly, the case p = 2 of Theorem
2.4 remains valid if HDszHL2 is replaced by ||f|ly2m. Interpolating (see [4, p. 301,302]
and [19, p. 39,40]) between these results yields the following.

Corollary 2.8. If A C R? satisfies 6 := h(A,R?) < oo, then for all v € [m,2m] and
few?,

1 = T Ly qsey < constlds m, )87 1 f -

In the following two theorems, it is assumed that 2 C R? is open, bounded and has the
uniform C?™-regularity property (see [1, p.67]). The first theorem is [15, Theorem 6.1]
and the second is [15, Theorem 1.5].

1/2

200 AN

Theorem 2.9. If f € B;’jl““, then for all |a| = m, D*Tqf € B

1D°Tafllpyz < const(S.m) /] pgsnvs
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Theorem 2.10. There exists hy > 0 (depending only on Q,m) such that if f € 3;71*1/2

and Z C Q satisfies h :== h(Z,Q) < hy, then
Tof — Taf|gm < const(Q, m)hl/? |fll gm+1/2 and

1f = Tefllr, @) < const(Q, m)h /2 [fll gnsire for all 1 <p < o0,

where v, := min{m,m — d/2 + d/p}.
The following is proved in [15, Lemma 6.4]

Lemma 2.11. Let A be an open subset of R® having a bounded boundary and the uniform
C'-regularity property. There exists € > 0 (depending only on A) such that if r € [1,00),
v € (0,7] and h € (0,ev/r], then

mq((0A+ hB) N (z + vB)) < const(A)hy?¥™! Vz € R?,

where my denotes Lebesque measure in R®.

3. Justifying (1.4)

With Assumptions 1.3 in force, our first task is to justify (1.4); that is, to prove
Proposition 3.1. For all f € H™,
= f =) f(€)Le,
SEEII
where the sum on the right converges uniformly and absolutely on compact sets.

Following Matveev [16], we define

1z = Wl gam + | Flgm s £ € H™,

where B denotes the unit ball in R? centered at the origin. It is shown in [16, Lemma 4]
that ||| zm is a complete norm on H™ and that for all { > 1,

||f||Wm rB S COTLSt(d,m’C)CT ||f||Hm ’ f € Hmar > 0
5" (rB)

Applying the Sobolev embedding theorem then yields

(3-2) 1l rmy < const(d,m, Q) | fllgm , f€H™,7>0.

One important consequence of this estimate in conjunction with Corollary 2.3 is that for

functions f € H™ the sum Z f(§)L¢ converges uniformly and absolutely on compact
geEH
sets (choose ¢ with 1 < ¢ < e®/™).
It is obvious that the conclusion of Proposition 3.1 holds for functions f € H™ having
compact support (as Tz~ is a linear operator). We show in the following result that this
conclusion also holds for polynomials in II,,,_;.
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Lemma 3.3. For all g € 11,,_1,
Terg=q= Y q(&)Le.

€€'—H

Proof. We may assume without loss of generality that ¢ is a homogeneous polynomial of
degree k < m. Since |q|g. = 0, it is clear that Teng = ¢q. Let o € C°(R?) be such that
o =1 on B. The exponential decay of L¢, as described in Corollary 2.3, ensures that

Z q(§)Le(x) = hm Z (&) Le(z)
£€:H ge'“ll
for all z € R?. Note that
|1D*™ (o))l = | D*™[o(e-)a(e)]
Hence, by Theorem 2.4,

= g?m—k HD2m[aq]HLoo —0 ase—0.

Iz

o(e)q — Z o(e€)q(€)Le —+0ase—0.

=
¢es .

O

Let H™ denote the closure of C°(R?) +11,,,_; in H™. We now show that the conclusion
of Proposition 3.1 holds for all f € H™. That T=~ is a bounded operator on H™ can be
seen by noting, for f € H™, that [Tz f|ym < |f|gm and that

1T fllL, ) < WLy + 1F = T fllL, @ay
< ||f||L2(B) + const(m, 2, E) |f‘L2(Rd) < const(m, €, B) || f]| grm »
where we have used Corollary 2.7 in the second inequality.
Lemma 3.4. If f € H™, then

wn f = Z (&

»—cll

Proof. Let f € H™, say f,, — f in H™ with f,, € C°(R?) +11,,_1. With ¢ as in Corollary
2.3, let ¢ satisfy 1 < ¢ < e“’? and note that estimate (3.2) yields
1)~ (@)
zERY C|w|
It now follows from Corollary 2.3 that

an L£_>Zf

’"Il '—II

— 0 as n — oo.

uniformly on compact sets as n — o0o. Since Tgu is a bounded operator on H™, it follows
that Tz f,, — T=vf in H™. Moreover, in view of (3.2), we see that Tz f, — T=rf
uniformly on compact sets as n — oo. Our desired conclusion now follows from the fact
that TE”fn == deEu fn(g)Lg fOI‘ a,].]. n. I:l

So, with Lemma 3.4 in view, in order to prove Proposition 3.1, it suffices to prove that

m _ pym,
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Lemma 3.5. H™ =H™.

Proof. Since H™ is complete and contains both C°(R?%) and Il,,_1, it is clear that H™ C
H™, so we concentrate on the opposite inclusion. Let o € C°(2B) satisfy 0 = 1 on B
and |lo|[, = 1. Let f € H™, and define the distribution ¥ by

(g9,7) ::/ (9 - O-Pm—lg)fu g € CP(R?),
RA\0

where P,,_1g denotes the Taylor polynomial of degree m — 1 to g at 0. Note that the
integrand is absolutely integrable since it is compactly supported and
|9(w) = 0 Pp_1g9(w)| = O(Jw|™) as |w| — 0.

Since 7 is the sum of a compactly supported distribution and an integrable function, it
follows that 7 is a tempered distribution and that v has at most polynomial growth. Note
that if |a| = m and g € C°(R?), then

(g, (D)) = ()9, 7)| < /

R4\ 0

" 7], gy = 19112 17150 -

By the Riesz representation theorem and the Plancherel theorem, D*v € L, for all |a| = m;;
consequently, v € H™. Since ¥ = f on R*\0 and v, f € H™, it follows that f = v + ¢ for
some g € II,,,_1. We will show that v € H™. For € > 0, define v, by

<llgllz,

~

(g, 72) = / (9= Pn_19)f, g€ CX(RD).
Rd\eB

Since C°(R?) is dense in WJ* and the norm ||||W2m is stronger than ||| gm, it follows that
W3 C ‘H™. Consequently, since v, € Wo" + 11,,,_1, it follows that v, € H™ for all € > 0.
We will show that

lv — vel|lgm — 0 as e — 0.

Note that

~

@77 = [ (g-aPur)f. geC®),
eB\0
For the seminorm we have
v = el g = |17 ]

If z € B, then |(e; — P_165)(w)| < const(d, m) |w|™ and consequently

v—uv)(z)| = (27)" % {eg, U — )| < const(d, m
( )(@)| = (2m) =" [( )| < consi( )/eB\O

—0ase—0.
L, (eB\0)

w]™ [ Fw)] dw

—0ase—0.

< const(d,m) |11, m H"'mﬂ

Therefore, ||V — v¢||gm — 0 and hence f =v+qg € H™. O

Lo(eB\0)
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4. The Error Analysis

Let Assumptions 1.3 be in force. As mentioned in the introduction, we express the error
between f and its surface spline interpolant T=f as

(4.1) f=T=f=(f-Tan )+ (Taf - T=f).

The first term on the right side of (4.1) is easily estimated:

Lemma 4.2.
||f - E”f||L1(Q) < ConSt(m3 Q)hm+1 ||f||Wm+1 ’

Proof. Since  is bounded, we have ||f — Tz f|| 1, () < const(Q) ||f — Tz f||;,. Appealing

to Corollary 2.8, with v = m + 1, and noting that h(Z"”,R%) < (2 + v/d/2)h completes the
proof. [

We desire a similar estimate for the latter term on the right side of (4.1). Since 2 C E”
and by Proposition 3.1, this term can be expressed as

(4.3) wnf = Taf =Ten(f = Tef) = Y (f = Taf)E)Le = Y (f — T=f)(€)Le,

== gex!

where the last equality arises because f —T=f = 0 on =Z. Our plan for estimating the
L,(Q2)-norm of the latter sum in (4.3) is to partition the sum over Z’ into countably many
sub-sums each involving points of =’ which are roughly equidistant to 2. We then carefully
estimate the L;(€2)-norm of each sub-sum and finally sum the obtained estimates. Our
partitioning of Z’ employs parallel domains to  which we now define.

For € > 0, let 2. denote the parallel domain

Q. := Q+¢B,

where B := {z € R? : |z| < 1}. Since Q has the uniform C?™-regularity property, it follows
that €2 has the cone property as well. We show that this property is passed on to €2..

Proposition 4.4. Let e > 0. If Q has the cone property with parameters eq and rq, then
so does Q2.

Proof. Let z € Qc, say x = x¢g + x1 where 2o €  and |z1| < €. Since zy € (2, there exists
Yo € Q satisfying |z¢ — yo| = eq and

(1 —=t)zo+tyo+rotB CQ Vte|0,1].
Put y = yo + 21 € Q.. Then |z — y| = eq and since |z1| < &, we have
(1—t)x+ty+rotB =[(1—1t)xo+tyo +ratB]+z1 C Q. Vte€[0,1].

0

We define some parallel bands around (2.
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Definition 4.5. For k£ € N, let F}, be defined by

Fy:={z € R? : hk < dist(z, Q) < h(k + 1)} = Qpk11) \Qnk-
Lemma 4.6. Let ¢ be as in Corollary 2.3. If £ € E' N F}, then
||L5||L1(Q) < const(d, m)hdkd_le—ck.

Proof. Let £ € Z' N F. Since Q — ¢ is contained in R*\hkB, it follows from Corollary 2.3
that

||L£||L1(Q) < Const(d, m) He—CH/h)

e o]
= const(d, m)/ td-te=ct/h gy
hk

= const(d, m)hd/ t4=te=ct dt < const(d, m)hlkI"te =k
k

Ly (RI\hkB)

where we have used integration by parts repeatedly to obtain the last inequality. [

Assumptions 1.3 ensure that  is bounded and has the uniform C?™-regularity property.
The following lemma, however, requires only that  be bounded and have the uniform C*-
regularity property.

Lemma 4.7. For all k € N, #(Z' N Fy) < const(Q)h1 k1.
Proof. First note that for distinct j,1 € Z¢, the balls j + B/2 and [+ B/2 are disjoint, and

hence
='NFy)+ hB/2)
mgq(hB/2)

(4.8) #(E'NFEy) = mal( = const(d)h~%my((E' N Fy) + hB/2)

< const(d)h™mq (02 + h(k + 2)B),

as (' N Fy) + hB/2 C 0+ h(k + 2)B. Let p be the smallest natural number for which
Q C pB. Let € > 0 be as in Lemma 2.11 with A = 2, and assume, without loss of
generality, that ¢ < p. We consider first the case when h(k 4+ 2) < e. Put v :=7r:=2p
and z := 0, and note that (0Q + h(k + 2)B) N (z + vB) = 0 + h(k + 2)B. It thus
follows from Lemma 2.11 that mq(02 + h(k + 2)B) < const(Q2)h(k + 2). Hence, by
(4.8), #(Z' N Fy) < const(Q)h'~%k. Turning now to the remaining case, assume that
h(k +2) > e. Then 0Q+ h(k +2)B C (p+ h(k + 2))B C const(2)hkB, and therefore
mq(0Q + h(k + 2)B) < const(2)(hk)? < const(Q)hk?. Employing (4.8), we see that
#(Z' N Fy) < const(Q)pk4. O

Proposition 4.9. If g is a function defined on Z' N Fy,, then

Z g(&)Le < const(m, Q)h(a+1)/2}3d/2-1=ck I9lle, mnmy . k€N

E'NF,
66 N k Ll(Q)



MICHAEL JOHNSON 13

Proof. 1t follows from Lemma 4.6 that the left side of our inequality is bounded by
const(d, m)hdkd= e~k 191l¢, (z/n - Using the Cauchy-Schwarz inequality, we obtain

191le, zrnEy < VH#E N Fe) 19, znr,): and finally complete the estimate by applying
Lemma 4.7. O

The proof of the following proposition is rather long and technical; for the sake of
continuity we postpone it to section 5.

Proposition 4.10. There exists hg > 0 (depending only on m and Q) such that if h < hy,
then

1F = T=f sy @nm,) < const(m, QRO D2EmHI2 | fl 40, keN.

Lemma 4.11. Let hg > 0 be as in Proposition 4.10. If h < hg, then
1Tz f — Tefllp, ) < const(m, QL™ || fllyrma -

Proof. Assume h < hg. Then

Tz f = Tefllp, @) = > (f —T=f)(€)Le , by (4.3),

£es! L1(9)

<D (F-Tef(©)Le
k=1||¢

EE'NFy L(9)

< const(m, Q)h(d+1)/2 Z |34/2= 1=k || f — T=fllsy(=nry,) > by Proposition 4.9,
k=1

< const(m, Q)p™ ! Z kmt2d=le=ck || £|| i1 , by Proposition 4.10,
k=1
= const(m, Q)h™*! 1 lwrmes -
U
In view of (4.1), Lemma 4.2, and Lemma 4.11, we have proved the following.
Theorem 4.12. There ezists hg > 0 (depending only on m and ) such that if h < hy,
then
If = T=fllp, ) < const(m, QL™ || Flyrmss -

Let us now revoke Assumptions 1.3. Interpolating (see [4, p. 300-302,311] and [19, p.
44,45]) between Theorem 4.12 and Theorem 2.10 (p = 2) yields the following.

Theorem 4.13. Let Q C R? be open, bounded and have the uniform C?™ _reqularity prop-
erty. There exists hg > 0 such that if Z is a finite subset of Q with h := h(Z,Q) < hy,
then

1f = T=fllL, @) < const(m, @ p)h™ /7 || fl| gt

for all f € By:tP 1< p<2.
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5. Proof of Proposition 4.10

In this section we do not assume Assumptions 1.3 unless stated otherwise.

Definition. For a measurable function g : R — C and € > 0, we define the maximal
function M.g by

Meg(x) = ”g“Loo(w—f-eB) :

The following is essentially proved in [14, p. 416—418].

Theorem 5.1. Let m be an integer greater than d/2, and let k > 0 with the case d = m =
k =1 excluded. Let G C R? have t/ie cone property. There exists 6g > 0 (depending only
on d, m, k,eq,rq) such that if = C G satisfies 6 :== h(E,G) < dg, then

(4) IMsgll,, (@ < const(d,m,rq,eq)0™ P4 gy and

(@) |Msgllp, @y < const(d,m, K, ra,eq)s™ /P42 g1l g+

for all g € W™ satisfying 9|z = 0 and for all p € [2, ¢].

We mention that (ii) is to be understood in the sense that the right side is only finite
when g € BYyIF,

2,00

Proof. We employ ‘Case 1’ of the proof of [14, Theorem 4.1], with s = 0 and v = 0, to
obtain

5m+d/p—d/2

||g||Lp(G) < ||M69||LP(G) < const(d,m,rg,€c) g/l m

which proves (i). Using instead v = K, we obtain (ii) in exactly the same way provided
k € (0,m). But the general case x > 0 follows from this except in the excluded case
d=m=x=1. O

In the following, we use D™g to denote the vector (D®g)|q|=m, and adopt the notation

ID™gllx = D ID%llx -

la|=m

Corollary 5.2. Let m be an integer greater than d/2, and let k > 0 with the case d = m =
k =1 excluded. Let p > 0 and let G C pB have the cone property. There exists 61 > 0
(depending only on d,m, k, p,eq,rc) such that if A C G satisfies § := h(A, G) < 01, then

@) Msglly, ) < const(d,m, p,rG,eq)d™ P~ | D™g||, and

(5m+n+d/p—d/2 ”Dm

(17) 1Ms9llp, () < const(d,m, K, p,ra, ) g||B§1°o

for all g € H™ satisfying 94 = 0 and for all p € [2, ).

Again, (ii) is to be understood in the sense that the right side is only finite when
D%g € B3, for all |a| = m.
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Proof. We first prove (ii). For the sake of brevity, let us employ the abbreviation ¢ =
const(d, m, K, p,rq,ec). Duchon has shown (see [9, p. 328-330]) that for each integer
n > d/2, there exists §,, > 0 (depending only on d, n,eg, r¢) such that § < §,, implies that
there exists a subset N,, C A which is correct for interpolation on II,,_; and for which the

interpolation operator Zy, : C(R?) — II,,_; (defined by (Zy, f)‘ N f‘ N ) satisfies

VZn Flln By < const(d,n, p, d,) 1fllz.(pp) forall fe C(R?), and
1f = Zn, Fllwyp 2y < const(d,n, p,6n) |flggn for all f € H™.

Let do be as in Theorem 5.1, and put m := [m+ k+ 1] and 07 := min{do,gm,gm, p}. Let
A C G be such that § < §; and let NV,,, N5 C A be as described above. Assume g € H™
satisfies 94 = 0 and ||Dmg||BS < 00. In view of Theorem 5.1, it suffices to show that

there exists g € B;’}Ot” such that
(53) G, =9, 0 [Tl5g2x < cIDglpy .

where Gs := G + 0B. Let n € C°(2B) satisfy n = 1 on B, and define go € H™ by

m-tK

go = ng. Put g1 := g — go € By'[", and note that ||gl||B;no+on < const(d, m) ”DmQHBgoo-
Put gy := Zn._go € II;z—1. Then we have the estimates

lgollz_. (o) < ¢llgollr . om) < cllgrllr om) T cllglls oy (note Iy,,g =0)
< cllgillppin +cllg = Inmdllwp 2oy < D™ 9llpy  +clglym < cllD™gllpy

and [|go — QO||W2W(2pB) < ¢lgolpm < C||Dm9||B;7oo-
Using a strong m-extension operator E for 2pB (see [1, p.83-86]), we obtain F(go — qo) €

W™ satisfying E(go — qo) = (90 — qo)|2pB and

|2pB
1E(90 — q0)[lw= < const(d,m, p) [|g0 — CI0||W2W(2pB) :

Let 0 € C°(3pB) satisfy 0 = 1 on 2pB, and define g := E(go—qo) + 91 +0qo- Theng =g
on 2pB (which contains Gs) and

191l g+ < cllE(g0 = qo)llwm + 91/l gp~ +cllaollz, o) < cIP™9llpy

which, in view of (5.3), proves (ii). By replacing m with m, B;”Ljo” with W™, and Bf
with Lo, the above proof can be easily adapted to prove (i). O

Lemma 5.4. For every f € H™ there exists q € 11,,,_1 such that

I(f — q)(x)| < const(d, m)(1+ |z[)™= Y™ |f| ... for all z € RE.
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Proof. Let f € H™ and let v be as defined in the proof of Lemma 3.5. Recall that f = v+q,
where g € I1,,,_1. We proceed now to estimate |(f — q)(x)| = |v(x)| for z € R?. Since ¥ is
the sum of a compactly supported distribution and an integrable function, it follows that

/R o R0 Fw)

where kg (w) = (e; — 0Pn-1€:)(w) = ex(W) — 3 4 1<m Da(if(o)a(w)wa. Since |e;| = 1
and max|q|<m |D%€5(0)| < const(d,m)(1+ |x|)™ !, we have the crude estimate |k, (w)| <
const(d,m)(1+ |z|)™~! for all w € R%. Noting that D%k, (0) = 0 for all || < m, it follows
from Taylor’s theorem that for w € B,

2m)? [v(z)| = (e, 7)| =

<Jirm

Ly |f|Hma

o) < const(d, m) [wf™ max | Dkl 5y < eonst(d,m) ™ (1+ [«])"

Put p, := (14 |z|)~/™. Employing these two estimates on R?\p, B and p, B, respectively,
yields

7, = D™ b+ I
2(R¥\p, B) Lg(pr)
< const(d,m)(1 + |33|)2m_2/ lw|~*™ dw 4 const(d, m)(1 + |J;|)2m/ 1dw
Rd\pm me

= const(d, m)(1 + |z|)*™2p2=2™ 4 const(d, m)(1 + |z|)?™ p2
= const(d,m)(1 + |3:|)2m_d/m

which completes the proof. [
In the following result we again employ the notation A, := A+ rB for r > 0.

Proposition 5.5. Let A be an open (possibly unbounded) subset of RY having the cone
property with parameters ra4,e4 € (0,1]. Then

m—d/(2m)
1+r
) (1711 ty + 17110

TA

1l a. < const(d, m) (

for all f € H™ and r > 0.

Proof. Let x € A, with » > 0. Then there exists y € A such that |z —y| < 1+ r and
y+raB C A. We may assume, without loss of generality, that y = 0 since otherwise we
can replace A with A —y and f with f(-+ y). Let ¢ € II,,_1 as described in Lemma 5.4.
Then

@) < |(f = @)(@)| + la(2)] < const(d,m)(L+ 7)™ [ fl g + llall o153y -
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It is easy to see (using the fact that all norms on a finite dimensional space are equivalent)
that [|pl[;__ 5y < const(d, m)tm 1 Ipllr, (B for all p € I,y and ¢ > 1. Replacing p with

p(-/t) yields [jp|,_ ) < const(d, m)tm—t IPllr. (B¢ for all p € I,y and ¢ > 1. Hence,

147
< t(d
”anoo((l-l-r)B) < const(d, m) ( -

m—1
) lalls_m
1+7r

m—1
" ) (||f — 4l ram ”f“Loo(rAB))

< const(d, m) (

14+r\" !
< const(d, m) ( - ) (‘f|Hm + ||f||Loo(A)> i

m—d/(2m
Thus |f(x)| < const(d, m) ( 1t~ ez A + [ f|gm |, since m—1 < m—d/(2m)
= I LOO(A) H I ’

TA

which completes the proof. [
Lemma 5.6. Let G C R? have the cone property. If g € C(R?) and 1 < p < oo, then

191le, (hzing) < const(d,ra,eq)(1+ h=/P) 1Mrglly, g for all h> 0.

Proof. There exists v € (0,1/2] (depending only on rg and eg) such that for all x € G
and t € (0,rg], there exists y € G such that

y+vtBCGN(z+tB/2).

Let h > 0 and put Ay := Z?N A7'G and h := min{h,rg}. It follows from the above
observation that for each j € Ap, there exists y; € G such that y;+vhB C GN(hj+hB/2).
Noting that Mpg(z) > |g(hj)| whenever j € A, and = € y; + vhB, we see that

1Ml 0o > 19(h3)| vol(WhB)P > const(d, rc, ea) lg(hj)| Y.

Hence,
—d .
||9||e,,(hzde) < const(d,rg,eq)h /p H] — ||Mh9||Lp(yj+u@B)He (An)
< const(d,rg,eq)(1 + h™4/P) Hth”Lp(G) J

since the balls {y; + vhB : j € A} are pairwise disjoint subsets of G. O

Proof of Proposition 4.10. Let Assumptions 1.3 be in force and assume without loss of
generality that eq,rq € (0,1]. For the sake of brevity we employ the abbreviation ¢ =
const(m, ). Let hg be the smaller of hy from Theorem 2.6 and h; from Theorem 2.10.
Let ;1 be as in Corollary 5.2 with s := 1/2. We consider first the case h(k+ 1) > 6;. Note
that

If - TEf||e2(E'ka) <SV#ENF)|f- T5f||Loo(9h(k+1))

< ch(1=D/2 /2 | f — T5f||Loo(Qh(k+1))
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by Lemma 4.7. It follows from Proposition 5.5 and Theorem 2.6 that

If = T5f||Loo(Qh(k+1)) <c(l+h(k+1)"™(f - TEf”LOO(Q) +1f - TEf|Hm)
< c(L+ Ak +1)" [flam < c(hR)™ | Fllwmes -

Combining these two estimates yields || f — T=f|l,, @ nr,) < chmt(A=d)/2m+d/2 || ||
We turn now to the case h(k + 1) < §;1. Put G := Qp41). Then by Proposition 4.4, G
has the cone property with eq = €q and rg = rq. Note that by Lemma 5.6

1F = Teflley@nry < If = Tefllgmzingy < ™2 (IMu(f = T2 /)l ) -

Writing My, (f — Tef) < Mp(f — Taf) + Mp(Tof — T=f), we analyze the two terms

separately. Since W™*! is continuously embedded in Bj" a 12 we have I f ||g;’11/ 2 <

const(d,m) || f|lyym+:. By Theorem 2.9, we have [|[D™Tqfl| 512 < c||f|lgm+1/2. Since
2,00 2,1

f—=Taf =0o0n Q and §(Q2,G) < h(k+ 1) < 01, we have by Corollary 5.2 that

IM(f = Ta )1, < c(h(k + )™ 2 ID™(f = Taf)llgsz < c(ik)™ 2| fllyms -
By Theorem 2.10, [Tof — T=f|gm < ch'/? || | gm+1/2. Hence, by Corollary 5.2 we have
2,1
IMr(Tof = T=f)lL, @) < c(h(k+1))" ID™(Taf = Tef)llL,
< c(hk)™ |Tof = T=flgm < c(hk)™ 2 || fllyymss -

Combining the above estimates completes the proof. [

6. The width of the affected boundary layer

In this section we assume Assumptions 1.3 with the following modifications:
Regarding f, we assume that f € W2™(R?) N H™, and regarding 2, we assume only that
Q is open, bounded and has the uniform C!-regularity property.

Definition. For r > 0, let 2_,. denote the sub-domain

Q_, :={z € Q:dist(z,00) > r}.

Matveev [17] has shown that for a fixed » > 0
(6.1) If =T=flly @ ) = O(R*™) as h— 0

(see also [3]). Our purpose here is to show that (6.1) is still valid when r equals a sufficiently
large constant multiple of h [log h|. We will thus show that as far as the order of convergence
is concerned, the boundary effects (which degrade the rate of convergence) are confined
to a boundary layer no wider than a constant multiple of A |log h|. Before coming to this
result, we prove the following lemma which employs the sets Fy, := Qpg41)\Qnk-
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Lemma 6.2. If g is a function defined at least on Z' and r > 0, then
> g(©Le < const(d, m) (k+ /)" "e=E W g, gy
ECENFY, Loo(© 1)

where c is as in Corollary 2.3.

Proof. Let r > 0 and let z € Q_,.. For £ € {k,k+1,...}, let Gy be the annulus defined by
Gp={yeRt: (WM+r)<|y—z| < (h(+1)+7)},

and note that F, C U2, Gy. Using the same argument as was used to prove (4.8), we can
show that

#((hZh) N Gy) < const(d)h™%my(Gy + hB/2)
= const(d)h™ ((h(£ +3/2) + )% — (h(£ — 1/2) +1)%)
< const(d)h=%(2h) (h(£ + 3/2) + )%~ < const(d)(£ + r/h)*?

Therefore
Yo g@Le)| <) D) @) Le(x)|
EEE'NFY I=k EEE'NFLNG,

B'NFy) exp(—c(£+r/h)), by Cor. 2.3,

oo (B

< const(d, m Z (L+7r/h) d 1”9”2

< const(d,m)(& + 1/ g, oy exp(—c(k + r/h)).

(8

g

Theorem 6.3. Let c be as in Lemma 2.3 and define k := (2m — 1 + d)/c. There exists
ho > 0 (depending only on m,) such that if h := h(E,Q) < hy and r := kh|logh|, then

If ~T=fllp oy < constm, Q> [l VF € W2RE) N H™,

Proof. Let hy be as in Theorem 2.6 and assume without loss of generality that hy < 1.
Assume h < hg. Let f € W2™(R%) N H™ and note, as before, that

f—-Tsf=f—Tanf+ T (f — T=f).
It follows from Theorem 2.4 that

I = Ter ey < const(d, B £l sy -
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By Proposition 3.1, we can write the latter term as T (f — Taf) = D¢z 9(§)L¢, where
g:= f—T=f. We then employ Corollary 2.3 to obtain

||T511(f —T,_l ||Loo(Q s = Z ‘g |||L§||LOO(Q r)

o
< const(d,m Z# (' N Fy) ||g||Loo(Qh(k+1)) e~clktr/h)
k=1

where F}, is as defined in section 4. By Theorem 2.6 and Proposition 5.5, we have

19015 gy < COMSEOR, Q)L+ BR)™ | F] 0

Therefore, by the above and Lemma 4.7,

1T (f = Te )|,y < const(m, Q)Y B4k + hk)™ e ®H/m) ||
k=1

< const(m, QR =Y " kmrdemclhtrloshl | gl = const(m, QB2 || f[ly2m -
k=1

which completes the proof. [J

7. A numerical experiment

For 2 < p < oo it is known that the L -approximation order of surface spline interpo-
lation is bounded below by m +1/2 + d/p — d/2 and bounded above by m + 1/p. For the
purpose of directing future research, it is helpful to have an opinion, based on experimental
evidence, as to which bound is closer to the true value. The simplest case for experimen-
tation is m = d = 2 which is known as thin-plate spline interpolation. Note that the
above-mentioned bounds on the L,,-approximation order of thin-plate spline interpolation
are 3/2 and 2, respectively. The basic idea in a numerical experiment is to choose a domain
Q) C R? having a very smooth boundary and choose a very smooth data function f, and
then compute the Lo (€2)-norm of the error f — Tz f for several choices of the interpolation
points Z. One then tries to identify a relation of the form

If = Tefll; o) = ah®

where h := h(=, Q). If the experimental results fit the above relation well, for a particular
choice of the constants a and b, then the experiment leads one to expect that the L.-
approximation order of thin-plate spline interpolation is close to b.

Let us choose Q := {(z,y) € R? : 22 + y2 < 1} to be the open unit ball in R? and we
choose f to be the homogeneous polynomial

flx,y) i=a* —2?y?,  (2,y) € R
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For simplicity, we assume that the interpolation points = satisfy the condition

7.1 h < const min — &',
(7.1 < const_in_[€ ¢

It follows from Theorem 6.3 that if x; > 0 is sufficiently large and k9 > 0, then

where t := kh(ks + |logh|) and A; := {(z,y) € R? : 1 —t < |(z,y)| < 1}. Thus, in our
experiment, it suffices to observe the L., (A¢)-norm of f — T f. Moreover, it can be shown,
using the techniques of section 6, that if Z9; denotes =M Ay, then

| T=f — TE2tf||Loo(At) = O(h4) as h — 0.

Thus, in our experiment, it suffices to observe the L. (A¢)-norm of f — Tw,, f. This
reduction is significant because the cardinality of Zo; is likely to be much less than the
cardinality of 2 which means that computing 7T%,, f is far easier than computing Txf.
Given a large integer N, we define = as follows:

For each r € (0, 1], let K, denote the

N if272<r<1

K, := ) ) )
# { [279N] if2792<r<297l j€N

equispaced points on the circle z2 + y2 = r2, one being (r,0). We then define
== UK, : 7 € {1,1 = 21/N, 1 — 47 /N, ...} 1 (0,1]}.

With k1 := 3, ko := 0.347 and for the values N € {125,251, 502,1005,2010}, we have
numerically computed Tz,, f and measured

Ey = ||f - TE2tf||Loo(At) and By ~ ”f - TEztf“Loo(At\At/Q)’

where the interpolation equations were solved using a domain decomposition technique
proposed by Beatson, Light and Billings [2]. Here are the results:

N h #HE  H#E, E, E;

125 .03510 2112 1500 3.325x 1072 1.8x10~*
251  .01759 8397 3765 8.465x10™* 1.0x107°
502 .008828 33497 9036 2.143 x 10~* 1.4x 107
1005 .004414 134047 21105 5.383 x 10~% 7.4 x 107?
2010 .002209 536047 48240 1.350 x 10~° 2.4 x 10710

The fact that E; decays very fast with A indicates that our choice of x; and ko are
appropriate. The obtained values of Ey fit the formula Ej ~ 2.722 h? quite well. Precisely,
we can write

Ey = 2.722 k" | with by € [1.997,2.003].

On the basis of this experiment, I conjecture that the Ly,-approximation order of surface
spline interpolation is m + 1/p for 2 < p < oco.
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