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Abstract. Mourrain [Mo] characterizes those linear projectors on a finite-dimensional polyno-
mial space that can be extended to an ideal projector, i.e., a projector on polynomials whose
kernel is an ideal. This is important in the construction of normal form algorithms for a poly-
nomial ideal. Mourrain’s characterization requires the polynomial space to be ‘connected to 1’,
a condition that is implied by D-invariance in case the polynomial space is spanned by mono-
mials. We give examples to show that, for more general polynomial spaces, D-invariance and
being ‘connected at 1’ are unrelated, and that Mourrain’s characterization need not hold when
his condition is replaced by D-invariance.

By definition (see [Bi]), ideal interpolation is provided by a linear projector whose
kernel is an ideal in the ring IT of polynomials (in d real (IF = IR) or complex (IF = C)
variables). The standard example is Lagrange interpolation; the most general example
has been called ‘Hermite interpolation’ (in [M] and [Bo]) since that is what it reduces to
in the univariate case.

Ideal projectors also occur in computer algebra, as the maps that associate a polyno-
mial with its normal form with respect to an ideal; see, e.g., [CLO]. It is in this latter
context that Mourrain [Mo] poses and solves the following problem. Among all linear
projectors N on

with range the linear space F, characterize those that are the restriction to II;(F) of an
ideal projector with range F'. Here,

0;:=0%, e = :k=1d), j=0d,

2000 Mathematics Subject Classification: Primary 41A05, 41A10, 41A63; Secondary 13P10.
The paper is in final form and no version of it will be published elsewhere.

(1]



2 C. DE BOOR
with
d
0 TF S F:xe 2 = H a:(j)o‘(J)
j=1
a handy if nonstandard notation for the monomial with exponent «, with

aeﬂi ={aeZ:a(j)>0,j=1d}.

I also use the corresponding notation
D;

for the derivative with respect to the jth argument, and
d .
D= D5V, aezl.
j=1

To state Mourrain’s result, I also need the following, standard, notations. The (total)
degree of the polynomial p # 0 is the nonnegative integer

degp := max{|al : p(a) # 0},

with
p =y ()*Bl),
and
o =Y ali),
J
while

M., :={pell:degp < n}.

THEOREM 1 ([Mo]). Let F be a finite-dimensional linear subspace of 11 satisfying Mour-
rain’s condition:

(2) feF = felli(FNIlcdegs),

and let N be a linear projector on 111 (F) with range F. Then, the following are equivalent:
(a) N is the restriction to II1(F') of an ideal projector with range F'.
(b) The linear maps M; : F' — F : f+— N(();f), j = 1:d, commute.

For a second proof of this theorem and some unexpected use of it in the setting of
ideal interpolation, see [Bo].

Mourrain’s condition (2) implies that, if F' contains an element of degree k, it must
also contain an element of degree k — 1. In particular, if F' is nontrivial, then it must
contain a constant polynomial. This explains why Mourrain [Mo] calls a linear subspace
satisfying his condition connected to 1. Since the same argument can be made in case F’
is D-invariant, i.e., closed under differentiation, this raises the question what connection
if any there might be between these two properties.

In particular, for the special case d = 1, if F' is a linear subspace of dimension n and
either satisfying Mourrain’s condition or being D-invariant, then, necessarily, F' = I1.,,.
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More generally, if F' is an n-dimensional subspace in the subring generated by the linear

polynomial
d

(oy) B = Frae (o) =) a(i)y()

Jj=1

for some y # 0, then, either way,
F=ran[(-,y)/ "t :j=1m] = {Z(-,y)j_la(j) caeF"}.
j=1

As a next example, assume that F' is a monomial space (meaning that it is spanned
by monomials). If such F' is D-invariant, then, with each ()® for which oo — ¢ € Zi, it
also contains ()*~/ and therefore evidently satisfies Mourrain’s condition.

Slightly more generally, assume that F' is dilation-invariant, meaning that it con-
tains f(h-) for every h > 0 if it contains f or, equivalently, F' is spanned by homogeneous
polynomials. Then every f € F is of the form

f:: fT+f<dcgf7

with f; the leading term of f, i.e., the unique homogeneous polynomial for which

deg(f — f1) < deg f,
hence in F' by dilation-invariance, therefore also
f<dcgf € F<dcgf =Fn H<dcgf7

while, by the homogeneity of f1,
d

> 0;Ds(f1) = (deg ) 4

j=1
(this is Euler’s theorem for homogeneous functions; see, e.g., [Enc: p281] which
gives the reference [E: §225 on pl54]). If now F is also D-invariant, then D;(f;) €
F.4eg f, hence, altogether,

felli(Feaegr), fE€F

In other words, if a dilation-invariant finite-dimensional subspace F of 1l is D-invariant,
then it also satisfies Mourrain’s condition.
On the other hand, the linear space

ran[()ov ()1107 ()111] = {()Oa + ()Lob + ()1710 ta,b,ce IF}

fails to be D-invariant even though it satisfies Mourrain’s condition and is monomial,
hence dilation-invariant.

The final example, of a space that is D-invariant but does not satisfy Mourrain’s
condition, is slightly more complicated. In its discussion, I find it convenient to refer to

supp p

as the ‘support’ of the polynomial p = ) _ ()*p(c), with the quotation marks indicating
that it is not actually the support of p but, rather, the support of its coefficient sequence,



4 C. DE BOOR

p. The example is provided by the D-invariant space F' generated by the polynomial
p=0""+0%+0"
hence the ‘support’ of p is
suppp = {(1,7),(3,3),(5,0)}

(see (4) below). Here are a first few elements of F:

hence

DyDap = 700° + 90>, D3p = 420° + 60",
also

Dip =60 +20°°,  DyDZp= 420" +18()",

etc. This shows (see (4) below) that any g € II1(F<qeg p) having some ‘support’ in supp p
is necessarily a weighted sum of ()1 D1p and ()2D2p (and, perhaps, others not having any

‘support’ in suppp), yet (p,()1D1p, ()2D2p) is linearly independent ‘on’ suppp, as the
matrix

11 7
1 3 3
1 50
(of their coefficients indexed by « € suppp) is evidently 1-1. Consequently,
p & i (Fedegp),

i.e., this F' does not satisfy Mourrain’s condition.
This space also provides the proof that, in Theorem 1, one may not, in general, replace
Mourrain’s condition by D-invariance.

PROPOSITION 3. Let F' be the D-invariant space spanned by
p=0""+0>+ 0>
Then there exists a linear projector, N, on Iy (F) with range F for which (b) but not (a)
of Theorem 1 is satisfied.
Proof. For a, 8 € Zi, set
[a..f] = {yeZL:a<y<p},

with

0 <y = a(j) < (), j=1d.
With this, we determine a basis for F' as follows.

Since D%*p is a positive scalar multiple of ()13, we know, by the D-invariance of F,
that

{0°:¢el(0,0).. (L3} c F.
This implies, considering D?°p, that (), hence also ()2, is in F. Hence, altogether,

F =TIz, ¢ ran[D%p : a € [(0,0) .. (1, 3)]],
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with
Iy :=ran[()" : v € T

and
=0 :=1[(0,0)..(1,3)]U{(2,0),(3,0)}.

This provides the convenient basis

for F, indexed by

namely

The following schema indicates the sets suppp, Zo, and =1, as well as the sets 9=
and 0= defined below:

X X ®: suppp

1 @ x 0: Zo

1 1 x 1: =

1 1 X +: 650
(4) 1 1 x X 02

0 0 + ®

0 0 +

0 0 + +

0 0 0 0 4+ ®

Now, let N be the linear projector on II; (F') with range F and kernel ran[bz], with
bz obtained by thinning

[b=, ()1b=, ()2bz]

to a basis [bz, bz] for II; (F). This keeps the maps M; : F — F : f — N((); f) very simple
since, as we shall see, for many of the £ € E, (),b¢ is an element of the extended basis
[b=, bz], hence N either reproduces it or annihilates it.

Specifically, it is evident that the following are in F', hence not part of by:

()1b£7 §€ [(070) . (07 2)]7

(O2be, € €[(0,0)..(1,3)],
with ()2be € F for & = (0,3),(1,3) since D(*9~¢p and ()$+(273) are in F. Further, for
each
¢ € 0=y U 0=y,
with
0Z0 = {(2,3),2,2),(2,1),(3,1),(4,0)}, 05 = {[2,4) .. (2,7, (1,8), (0,8)},

there is £ € = so that, for some j, ( — & = ¢;. Set, correspondingly,

be = ();be-
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Then, none of these is in F, and, among them, each bs is the only one having some
‘support’ at ¢, hence they form a linearly independent sequence. Therefore, each such b¢
is in by.

The remaining candidates for membership in bz require a more detailed analysis. We
start from the ‘top’, showing also along the way that (b) of Theorem 1 holds for this F'
and N by verifying that

(5) M1M2 = M2M1 on bg

for every £ € E.

& =(1,7): As already pointed out, both ()1b1,7 and ()2b1,7 are in bz, hence (5) holds
trivially for & = (1,7).

€=1(0,7),(1,6): Both ()1bo,7 = %7 +3()*3+5()>° and ()2b1,6 = 7()1" + 3()>3 have
their ‘support’ in that of p = by 7 = ()17 + ()3% + ()%, while, as pointed out and used
earlier, the three are independent. Hence ()1bo,7, ()2b1,6 € bz, while we already pointed
out that ()2bo7, ()1b1,6 € bz, therefore (5) holds trivially.

¢ = (0,6),(1,5): Both ()1bo,s = 7()"% +9()** and ()2b1,5 = 42()"° + 6()>? have
their ‘support’ in that of by 6 = 7()*% 4 3()*2, but neither is a scalar multiple of by g.
Hence, one is in bz and the other is not. Which is which depends on the ordering of the
columns of [bz, ()1bz, ()2b=]. Assume the ordering such that ()2b1,5 € bz. Then, since we
already know that ()1b15 € bz, (5) holds trivially for & = (1,5). Further, ()1bo6 =
4b1)6 — (1/2)()2()1)5, hence M1b076 = 4b176, while we already know that ()2b1,6 S bz
therefore, MyMibg g = 0. On the other hand, ()abos = 7()®7 4 3()>3 has its ‘support’ in
that of b7 = ()%7 + 3()>2 + 5()*° but is not a scalar multiple of it, hence is in bz, and
therefore already Mabo g = 0. Thus, (5) also holds for £ = (0, 6).

€ = (0,5),(1,4): Both ()1bo5 = 42()1° +18()*! and ()2b14 = 210()1° + 6()>! have
their ‘support’ in that of by 5 = 42()15 + 6()>! but ()*! = b3 was already identified
as an element of bz, hence neither ()1bo s nor ()2by 4 is in bz. But, since ()*! € by,
and so b1)5 = Nb1)5 = N(42()1’5), we have Mlboy5 = b1)5 and M2b174 = 5b175. Since we
already know that ()1b1,5 € bz, it follows that M; M2by 4 = 0 while we already know that
()1b1,4 € bz, hence already M1by 4 = 0. Therefore, (5) holds for £ = (1,4). Further, we
already know that ()ab1 5 € bz, hence MaMbg 5 = 0, while ()2bo 5 = 42()*6 + 18()%? has
the same ‘support’ as by g = 7()>¢ + 9()%2 but is not a scalar multiple of it, hence is in
bz and, therefore, already Mabg 5 = 0, showing that (5) holds for & = (0, 5).

&= (0, 4)2 ()2b0)4 = 210()0"5 + 18()2’1 = 5b0_]5 — 721)2)1, with b2)1 € by, hence ()2b0)4 is
not in bz and M2b0)4 = 51)0)5, therefore M1M2b0’4 = 5M1b0_]5 = 5b1_]5, the last equation
from the preceding paragraph. On the other hand, ()1bp4 = 210()1* +18()3° = by 4 +
12()3_]0, with both b1’4 and bg’o in F, hence ()1()0_]4 is not in bz, and M1b074 = b1’4 + 121)3’0,
therefore, since ()2bs 0 = b3 € bz, MaM1boa = Maby 4 = 5b1 5, the last equation from
the preceding paragraph. Thus, (5) holds for £ = (0,4).

& =(1,3): We already know that ()1b1,3 = bz 3 € bz and therefore already M1by 3 = 0,
while ()21)173 = ()1’4 = (b174 - 6b370)/210 € F, therefore 210M1M2b1)3 = M1b1)4 = 0, thus
(5) holds for £ = (1, 3).

For the remaining £ € Z, each be is a monomial, hence ();b¢ is again a monomial, and
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either in F' or not and, if not, then its exponent is in
0=y = {(2,3),(2,2),(2,1),(3,1),(4,0)}.
Moreover, ()1()2be is in F iff ()2()1be is. Hence, (5) also holds for the remaining € € E.
This finishes the proof that, for this F and N, (b) of Theorem 1 holds.
It remains to show that, nevertheless, (a) of Theorem 1 does not hold. For this,
observe that ()*! and ()*° are in ker N, as is, e.g., ()ab16 = 7()1"7 + 3()>3, hence p =
OY7 + ()33 4 ()>9 is in the ideal generated by ker N, making it impossible for N to be

the restriction to IT; (F') of an ideal projector P with range F' since this would place the
nontrivial p in both ker P and ran P. m
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