A sharp upper bound on the approximation order of smooth bivariate pp functions

C. de Boor and R.Q. Jia

Introduction

It is the purpose of this note to show that the approximation order from the space

 $\Pi_{k,\Delta}^{\rho}$

of all piecewise polynomial functions in C^{ρ} of polynomial degree $\leq k$ on a triangulation Δ of \mathbb{R}^2 is, in general, no better than k in case $k < 3\rho + 2$. This complements the result of [BH88] that the approximation order from $\Pi_{k,\Delta}^{\rho}$ for an arbitrary mesh Δ is $k+1$ if $k \geq 3\rho+2$.

Here, we define the **approximation order** of a space S of functions on \mathbb{R}^2 to be the largest real number r for which

$$
dist(f, \sigma_h S) \leq const_f h^r
$$

for any sufficiently smooth function f, with the distance measured in the L_p -norm $(1 \leq$ $p \leq \infty$) on \mathbb{R}^2 (or some suitable subset G of \mathbb{R}^2), and with the **scaling map** σ_h defined by

$$
\sigma_h f := f(\cdot/h).
$$

In particular, the approximation order from $\Pi_{k,\Delta}^{\rho}$ cannot be better than $k+1$ regardless of ρ and is trivially $k + 1$ in case $\rho = -1$ or 0. Thus, an upper bound of k is an indication of the price being paid for having ρ much larger than 0.

It turns out that the upper bound to be proven here already holds when Δ is a very simple triangulation, viz. the **three-direction mesh**, i.e., the mesh

$$
\Delta:=\bigcup_{i=1}^3{\rm I\!Re}_i+{\rm Z\!}^2
$$

with

$$
e_1 := (1,0), e_2 := (0,1), e_3 := (1,1) = e_1 + e_2.
$$

A first result along these lines was given in **[**BH831**]** where it was shown that the approximation order of $\Pi_{3,\Delta}^1$ (with Δ the three-direction mesh) is only 3, which was surprising in view of the fact that all cubic polynomials are contained locally in this space. [J83] showed the corresponding result for C^1 -quartics on the three-direction mesh and **[**BH832**]** provided upper and lower bounds for the approximation order of

$$
S:=\Pi_{k,\Delta}^{\rho}
$$

for arbitrary k and ρ .

For $2k - 3\rho \le 7$, the approximation order of S was completely determined in [J86]. Since it is easy to determine the approximation order of any space spanned by the translates of one box spline (**[**BH82/3**]**) with the aid of quasi-interpolants, it is tempting to consider, more generally, **local** approximations from S , i.e., approximations to the given f which are linear combinations of box splines in S , with the restriction that the coefficient of any particular box spline should depend only on the behavior of f near the support of that box spline. The resulting approximation order has been termed the **local approximation order** of S in **[**BJ**]**. The local approximation order of S was entirely determined in **[**J88**]**. In particular, it is shown there that the local approximation order of S can never be full, i.e., equal $k + 1$. It is also conjectured there that the local approximation order equals the approximation order when $k < 3\rho + 2$. In addition, it is shown in [J88] that the approximation order of S is at least k when $k \geq 2\rho + 2$. This, together with the result to be proved here and the result from **[**J86**]**, gives the precise approximation order for S for $\rho \leq 5$ and all k. Finally, the fact that the approximation order from S is only k when $k = 3\rho + 1$ was demonstrated in [BH88] for $\rho = 1, 2, 3$.

In all of these references cited, only the approximation order with respect to the max-norm was considered.

In addition to the notation already defined in the course of the above introduction, we also use the following: We denote by

$$
\Pi_k \qquad (\Pi_{< k})
$$

the collection of all polynomials of total degree $\leq k \leq k$. We denote by

 $\langle y, \cdot \rangle$

the linear polynomial whose value at $x \in \mathbb{R}^2$ is the scalar product $\langle y, x \rangle$ of y with x. We write

$$
D_y := y(1)D_1 + y(2)D_2
$$

for the (unnormalized) directional derivative in the direction y , with D_i the partial derivative with respect to the *i*th argument, $i = 1, 2$. Thus,

$$
D_i = D_{e_i},
$$

but we use this abbreviation also for $i = 3$, and use, correspondingly, the convenient abbreviation

$$
D^{a} := \prod_{i=1}^{3} D_{i}^{a(i)},
$$

with $a \in \mathbb{Z}_+^3$. For such a, we write

$$
|a| := \sum_i a(i).
$$

Correspondingly, we write

$$
\tau^a := \prod_{i=1}^3 \tau_i^{a(i)} \quad \text{and} \quad \nabla^a := \prod_{i=1}^3 \nabla_i^{a(i)},
$$

with

$$
\tau_i f := f(\cdot + e_i) \quad \text{and} \quad \nabla_i := 1 - {\tau_i}^{-1}.
$$

Finally, we denote by $p(D) := \sum_{\alpha} c(\alpha) D^{\alpha}$ the constant coefficient differential operator associated with the polynomial $p = \sum_{\alpha} c(\alpha)(\alpha^{\alpha}$. For example,

$$
D_i = \langle e_i, D \rangle.
$$

Main Result

The main result of this note is the following

Theorem. The approximation order of $S := \prod_{k,\Delta}^{\rho}$ (in any L_p , $1 \le p \le \infty$) is at best k *when* $k < 3\rho + 2$, $\rho > 0$ *and* Δ *is the three-direction mesh.*

In this section, we outline the proof, leaving the verification of certain technical Lemmata to a subsequent section.

The proof uses the same ideas with which the special cases $\rho = 1$ and 2 were handled in **[**BH831**]**, **[**J83**]**, and **[**BH88**]**, respectively, i.e., the construction of a local linear functional which vanishes on $\Pi_{k,\Delta}^{\rho}$ but does not vanish on some homogeneous polynomial of degree $k+1$ and whose integer translates add up to the zero linear functional. But the construction of the specific linear functional follows the rather different lines of **[**J86**]**.

To begin with, recall from **[**BH832**]** that the approximation order of S equals that of

$$
S_{\rm loc} := \text{span}\{M_{r,s,t}(\cdot - j) : j \in \mathbb{Z}^2, M_{r,s,t} \in S\}.
$$

(To be precise, the proof of Proposition 3.1 in $[BH83₂]$ can be modified to show that if r is an upper bound on the approximation order of S_{loc} , then it is also an upper bound on the approximation order of S, while the converse is trivial since $S_{\text{loc}} \subseteq S$.) Here, $M_{r,s,t}$ is the box spline $M(\cdot, \Xi)$, i.e., the distribution $f \mapsto \int_{[0..1)^{r+s+t}} f(\Xi t) dt$ (cf., e.g., [BH82/3]), with direction matrix

$$
\Xi := [\underbrace{e_1, \dots, e_1}_{r \text{ times}}, \underbrace{e_2, \dots, e_2}_{s \text{ times}}, \underbrace{e_3, \dots, e_3}_{t \text{ times}}].
$$

Further, the linear functional will be constructed from linear functionals of the form $f \mapsto \int_T p(D)f$, with

$$
T := \{ x \in \mathbb{R}^2 : 0 < x(2) < x(1) < 1 \}
$$

a triangle in the three-direction mesh Δ , and with p a homogeneous polynomial of degree k. Such functionals vanish on $\Pi_{\leq k}$, hence also vanish on any $M_{r,s,t}$ with $r + s + t - 2 < k$. It is proved in [BH83₂] that, for $k > 2\rho + 1$, S_{loc} is spanned by the integer translates of the box splines of degree $\lt k$ in S and the box splines M_{α} with α in

$$
A := A_1 \cup A_2 \cup A_3,
$$

where

$$
A_1 := \{ (k - \rho + 1 - i, 0, \rho + 1 + i) : i = 1, ..., k - 2\rho - 1 \},
$$

\n
$$
A_2 := \{ (\rho + 2 - i, i, k - \rho) : i = 1, ..., \rho + 1 \},
$$

\n
$$
A_3 := \{ (0, \rho + 1 + i, k - \rho + 1 - i) : i = 1, ..., k - 2\rho - 1 \}.
$$

(These are exactly the box splines whose restriction to the line $e_1 + \mathbb{R}(e_2 - e_1)$ coincide there with a(n appropriately scaled univariate) B-spline of degree k for the knot sequence in which each of 0, 1/2, 1 occurs exactly $k - \rho$ times.) This implies that it is sufficient to require our linear functional λ to vanish on $M_{\alpha}(-j)$ for $\alpha \in A$ and $j \in \mathbb{Z}^2$ in order to ensure that $\lambda \perp S_{\text{loc}}$.

(1)Lemma. *For* $\beta := (1, 1, 0)$ *, there exists a set* B of $\rho + 1$ *homogeneous polynomials of degree* k so that, on $T + \mathbb{Z}^2$,

(2)
$$
p(D)M_{\alpha} = c_{p,\alpha} \nabla^{\alpha-\beta} M_{\beta}, \quad p \in B, \ \alpha \in A,
$$

with the constants $c_{p,\alpha}$ *satisfying*

$$
c_{p,\alpha} = 0, \qquad \alpha \in A_3.
$$

Here and below, we follow the convenient convention that $\nabla^{\gamma} = 0$ if $\gamma(i) < 0$ for some i.

(3)Lemma. *For* $\gamma := (1, 0, 1)$ *, there exists a set* C of $\rho + 1$ *homogeneous polynomials of degree* k *so that, on* $T + \mathbb{Z}^2$,

(4)
$$
p(D)M_{\alpha} = c_{p,\alpha} \nabla^{\alpha-\gamma} M_{\gamma}, \quad p \in C, \ \alpha \in A,
$$

with the constants $c_{p,\alpha}$ *satisfying*

$$
c_{p,\alpha} = 0, \qquad \alpha \in A_3.
$$

Now note that M_β and M_γ agree on all of $T + \mathbb{Z}^2$ with the characteristic function

 χ_T

of the triangle T. Thus,

$$
p(D)M_{\alpha} = c_{p,\alpha} \left\{ \frac{\nabla^{\alpha-\beta}}{\nabla^{\alpha-\gamma}} \right\} \chi_T \quad \text{on } T + \mathbb{Z}^2, \text{ for } p \in \left\{ \frac{B}{C} \right\}.
$$

Further,

$$
\nabla_2 \nabla^{\alpha-\beta} = \nabla_2 \nabla_3 \nabla^{\alpha-(1,1,1)} = \nabla_3 \nabla^{\alpha-\gamma}.
$$

Thus, if

(5)
$$
\sum_{p \in B \cup C} w(p)c_{p,\alpha} = 0 \text{ for all } \alpha \in A_1 \cup A_2,
$$

then

$$
JM_{\alpha} = 0 \quad \text{on } T + \mathbb{Z}^2 \text{ for all } \alpha \in A,
$$

with

(6)
$$
J := \sum_{p \in B} w(p) \nabla_2 p(D) + \sum_{p \in C} w(p) \nabla_3 p(D)
$$

(since $c_{p,\alpha} = 0$ for $p \in B \cup C$ and $\alpha \in A_3$). Here, we may (and do) choose $w \neq 0$, since $\#(B\cup C)=2\rho+2 > k-\rho=\#(A_1\cup A_2).$

Next, we construct some $g \in \Pi_{k+1}$ for which $Jg = 2$. For this, note that $p(D)\Pi_{k+1} \subset$ Π_1 for any $p ∈ B ∪ C$, while $∇_i = D_i$ on Π_1 . This implies that

$$
J = \sum_{p \in B \cup C} w(p)\tilde{p}(D) \qquad on \ \Pi_{k+1},
$$

with

$$
\tilde{p} := p \begin{cases} \langle e_2, \cdot \rangle, & p \in B; \\ \langle e_3, \cdot \rangle, & p \in C. \end{cases}
$$

(7) Lemma. If $k > 2\rho + 1$, then the sets B and C in (1) and (3) can be so chosen that ${\lbrace \tilde{p} : p \in B \cup C \rbrace}$ *is a linearly independent subset of* Π_{k+1} *.*

To make use of this lemma, we need to restrict attention to the case $k > 2\rho + 1$. We do this by, possibly, *decreasing* ρ (and, hence increasing S) to force the inequality $k > 2\rho + 1$. Of course, we must make sure that we still have $k < 3\rho+2$. Assuming that ρ' is the largest integer for which $k > 2\rho' + 1$, we have $k \le 2\rho' + 3 < 3\rho' + 2$ except, possibly, when $\rho' \le 1$, hence $k \leq 5$. But, for $k \leq 5$ and $\rho \geq 1$, the approximation order of S is known ([J86], **[**BH88**]**) to satisfy our theorem's claim.

Thus, for $k > 5$, we may assume without loss of generality that $k > 2\rho + 1$, hence use the lemma to conclude, from the fact that $w \neq 0$, that $J = q(D)$ on Π_{k+1} for some *nontrivial* homogeneous polynomial q of degree $k+1$. This implies that J maps Π_{k+1} onto Π_0 , hence $Jg = 2$ for some $g \in \Pi_{k+1}$.

Since $JM_\alpha = 0$ on $T + \mathbb{Z}^2$, and J commutes with any integer shift, it follows that the linear functional

$$
\lambda: f \mapsto \int_T Jf
$$

vanishes on S_{loc} , but takes the value 1 on that particular polynomial g. Further, λ has the form

$$
\lambda = \lambda_2 \nabla_2 + \lambda_3 \nabla_3
$$

with

$$
\lambda_i: f \mapsto \int_T p_i(D)f,
$$

for some homogeneous polynomials p_i of degree k. This shows that

$$
\sum_{j\in\mathbb{Z}^2}\lambda\tau^j=0,
$$

in the sense that, for any compact set, there is some n_0 so that any sum $\sum_{j\in\mathbb{Z}^2\cap[-n..n]^2}\lambda\tau^j$ with $n>n_0$ has no support in that compact set.

We make use of λ in the following more precise fashion. Define

$$
H_{i,n} := \sum_{j=1}^n \tau_i^j.
$$

Then $H_{i,n} \nabla_i = \tau_i^n - 1$. Therefore,

$$
\lambda^{(n)}:=\lambda\sum_{j\in{\bf Z\!^3\cap[1..n]^3}\tau^j=\lambda_2(\tau^n_2-1)H_{1,n}H_{3,n}+\lambda_3(\tau^n_3-1)H_{1,n}H_{2,n}
$$

has support only in

$$
T_n := T + \sum_{j \in \mathbb{Z}^3 \cap [0..n]^3} \sum_i j(i) e_i =: T + I,
$$

and is, more explicitly, of the form

$$
f \mapsto \sum_{j \in I} \int_{T+j} (b(j)p_2(D) + c(j)p_3(D))f,
$$

with $b(j), c(j) \in \{-1, 0, 1\}$ for all j. (Put differently, the mesh functions b and c are first differences of the discrete box spline associated with the three directions e_1, e_2, e_3 , hence are piecewise constant.) Since $\tau^j g \in g + \Pi_k$ and $\lambda^{(n)}$ vanishes on Π_k , this implies that $\lambda^{(n)}g = n^3$. Further, as a functional on, say, $\Pi_{k+1,\Delta}^0 \subset L_1([-1..2n+1]^2)$, $\lambda^{(n)}$ has norm

 $\|\lambda^{(n)}\| \leq \text{const}_k,$

since, on each $T + j$, any f of interest (i.e., any $f \in S + \text{span } g$) reduces to a polynomial of degree $\leq k+1$, hence

$$
|\int_{T+j} p_i(D)f| \le \text{const}_k \int_{T+j} |f|
$$

with const_k derived from Markov's inequality.

Let now $h := 1/n$ and set $\sigma : f \mapsto f(\cdot/h)$. We are interested in a lower bound for the $L_p(G)$ -distance of g from $S_h := \sigma S$. Since $||f||_1(G') \leq \text{const}_{G'}||f||_p(G') \leq \text{const}_{G'}||f||_p(G)$ for any bounded subset G' of G, it is sufficient to restrict attention to $p = 1$ and bounded G. Moreover, after a translation and a scaling, we may assume that the domain G of interest contains $[-h..(2n+1)h]^2$. Then $\|\lambda^{(n)}\sigma^{-1}\| \leq \text{const}_k h^{-2}$, and $\lambda^{(n)}\sigma^{-1} \perp S_h$, while $\lambda^{(n)}\sigma^{-1}g = \lambda^{(n)}g(\cdot h) = h^{k+1}\lambda^{(n)}g = h^{k-2}$. Consequently,

dist₁(g, S_h)
$$
\geq \lambda^{(n)} \sigma^{-1} g / \|\lambda^{(n)} \sigma^{-1}\| \geq h^{k-2} / (\text{const}_k h^{-2}) = \text{const } h^k
$$
,

for some h-independent positive const. This finishes the proof of the theorem.

Proof of the technical lemmata

We take B and C from the set of polynomials

$$
p_a:=\prod_{i=1}^3\langle e_i,\cdot\rangle^{a(i)}
$$

with $a \in \mathbb{Z}_+^3$, $|a| = k$.

For the computation of $p_a(D)M_\alpha$, we rely entirely on the differentiation formula **[**BH82/3**]**

$$
D_{\xi}M(\cdot,\Xi)=\nabla_{\xi}M(\cdot,\Xi\backslash\xi)
$$

valid for any particular direction ξ from the direction set Ξ for the box spline $M(\cdot,\Xi)$, and on the fact that the (closed) support of the box spline $M(\cdot,\Xi)$ is the set

$$
\sum_{\xi\in\Xi}[0..1]\xi.
$$

We choose B to consist of the $\rho+1$ polynomials p_a with $a(3) = k-\rho$. Then $a(3) \ge \alpha(3)$ for any $\alpha \in A$, hence

(8)
$$
p_a(D)M_\alpha = \nabla_3^{\alpha(3)} p_{a(1),a(2),a(3)-\alpha(3)}(D)M_{\alpha(1),\alpha(2),0}.
$$

Since $\alpha(2) = 0$ for $\alpha \in A_1$ and $\alpha(1) = 0$ for $\alpha \in A_3$, this shows that $p_a(D)M_\alpha$ has no support in $T + \mathbb{Z}^2$ when $\alpha \in A_1 \cup A_3$, hence (2) holds for this case with $c_{p,\alpha} = 0$. For the remaining case, $\alpha \in A_2$, we have $\alpha(3) = k - \rho = \alpha(3)$, and therefore, more explicitly than (8),

$$
p_a(D)M_\alpha = \nabla_3^{\alpha(3)} D_1^{a(1)} D_2^{a(2)} M_{\alpha(1),\alpha(2),0},
$$

and this has support in $T + \mathbb{Z}^2$ if and only if $a(i) < \alpha(i)$ for $i = 1, 2$. Since $a(1) + a(2) =$ $\alpha(1) + \alpha(2) - 2$, this condition is met if and only if $\alpha = a + \beta$ with $\beta = (1, 1, 0)$, and in that case we get

$$
p_a(D)M_\alpha=\nabla^{\alpha-\beta}M_\beta.
$$

This finishes the proof of (1)Lemma.

The verification of (3) Lemma proceeds analogously. We choose C to consist of the $\rho + 1$ polynomials p_a with $a(2) = k - \rho$. Then $a(2) \ge \alpha(2)$ for any $\alpha \in A$, hence

(9)
$$
p_a(D)M_\alpha = \nabla_2^{\alpha(2)} p_{a(1),a(2)-\alpha(2),a(3)}(D)M_{\alpha(1),0,\alpha(3)}.
$$

Since $\alpha(1) = 0$ for $\alpha \in A_3$, this shows that $p_a(D)M_\alpha$ has no support in $T + \mathbb{Z}^2$ when $\alpha \in A_3$, hence (4) holds for this case with $c_{p,\alpha} = 0$. For the remaining case, i.e., for $\alpha \in A_1 \cup A_2$, we make use of the fact that $D_2 = D_3 - D_1$ to write (9) in the form

$$
p_a(D)M_{\alpha} = \nabla_2^{\alpha(2)} \sum_j c_j D_1^{j(1)} D_3^{j(3)} M_{\alpha(1),0,\alpha(3)},
$$

with the sum over all j of the form $(a(1) + r, 0, a(3) + t)$ with $r + t = a(2) - a(2)$. Thus, $j(1) + j(3) = \alpha(1) + \alpha(3) - 2$, hence the only terms with some support in $T + \mathbb{Z}^2$ are of the form $j(i) = \alpha(i) - 1$ for $i = 1, 3$, and in that case,

$$
D_1^{j(1)} D_3^{j(3)} M_{\alpha(1),0,\alpha(3)} = \nabla^{\alpha(1)-1,0,\alpha(3)-1} M_{\gamma}.
$$

As to (7) Lemma, we note first that $\tilde{B} := \{\tilde{p} : p \in B\}$ is linearly independent since it consists of the sequence

$$
\langle e_2, \cdot \rangle \langle e_3, \cdot \rangle^{k-\rho} \{ \langle e_1, \cdot \rangle^j \langle e_2, \cdot \rangle^{\rho-j} : j = 0, \dots, \rho \},\
$$

and e_1, e_2 form a basis for \mathbb{R}^2 . Analogously, $\tilde{C} := \{\tilde{p} : p \in C\}$ is linearly independent since it consists of the sequence

$$
\langle e_2, \cdot \rangle^{k-\rho} \langle e_3, \cdot \rangle \{ \langle e_1, \cdot \rangle^j \langle e_3, \cdot \rangle^{\rho-j} : j = 0, \dots, \rho \},
$$

and e_1, e_3 form a basis for \mathbb{R}^2 . Thus it is sufficient to prove that span \tilde{B} has only trivial intersection with span \tilde{C} . But this follows from the facts (obtainable by substituting e_3-e_2 for e_1 and collecting terms) that

$$
\tilde{B} \subset \text{span}\{ \langle e_2, \cdot \rangle^{1+j} \langle e_3, \cdot \rangle^{k-j} : j = 0, \dots, \rho \}
$$

and

$$
\tilde{C} \subset \text{span}\{ \langle e_2, \cdot \rangle^{k-j} \langle e_3, \cdot \rangle^{1+j} : j = 0, \dots, \rho \},\
$$

since $k - \rho > \rho + 1$, by assumption.

Acknowledgement We are grateful to Sherman Riemenschneider for a very careful reading of the ms and various helpful comments.

References

- **[BH82/3]** C. de Boor and K. Höllig, B-splines from parallelepipeds, *J. d'Anal. Math.* **42** $(1982/3), 99-115.$
- [BH83₁] C. de Boor and K. Höllig, Approximation order from bivariate C^1 -cubics: A counterexample, *Proc. Amer. Math. Soc.* **87** (1983), 649–655.
- **[BH83₂]** C. de Boor and K. Höllig, Bivariate box splines and smooth pp functions on a threedirection mesh, *J. Comput. Applied Math.* **9** (1983), 13–28.
- **[BH88]** C. de Boor and K. Höllig, Approximation power of smooth bivariate pp functions, *Math. Z.* **197** (1988), 343–363.
	- **[**BJ**]** C. de Boor and R.Q. Jia, Controlled approximation and a characterization of local approximation order, *Proc.Amer.Math.Soc.* **95** (1985), 547-553.
	- **[**J83**]** R.Q. Jia, Approximation by smooth bivariate splines on a three-direction mesh, in *Approximation Theory IV*, C.K. Chui, L.L. Schumaker and J. Ward eds., Academic Press, New York, 1983, pp. 539–545.
	- **[**J86**]** R.Q. Jia, Approximation order from certain spaces of smooth bivariate splines on a three-direction mesh, *Trans. Amer.Math.Soc.* **295** (1986), 199–212.
	- **[**J88**]** R.Q. Jia, Local approximation order of box splines, *Scientia Sinica* **31** (1988), 274– 285.