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Introduction

It is the purpose of this note to show that the approximation order from the space

Πρ
k,∆

of all piecewise polynomial functions in Cρ of polynomial degree ≤ k on a triangulation
∆ of IR2 is, in general, no better than k in case k < 3ρ + 2. This complements the result
of [BH88] that the approximation order from Πρ

k,∆ for an arbitrary mesh ∆ is k + 1 if
k ≥ 3ρ + 2.

Here, we define the approximation order of a space S of functions on IR2 to be the
largest real number r for which

dist (f, σhS) ≤ constfhr

for any sufficiently smooth function f , with the distance measured in the Lp-norm (1 ≤
p ≤ ∞) on IR2 (or some suitable subset G of IR2), and with the scaling map σh defined
by

σhf := f(·/h).

In particular, the approximation order from Πρ
k,∆ cannot be better than k + 1 regardless

of ρ and is trivially k + 1 in case ρ = −1 or 0. Thus, an upper bound of k is an indication
of the price being paid for having ρ much larger than 0.

It turns out that the upper bound to be proven here already holds when ∆ is a very
simple triangulation, viz. the three-direction mesh, i.e., the mesh

∆ :=
3⋃

i=1

IRei + ZZ2

with
e1 := (1, 0), e2 := (0, 1), e3 := (1, 1) = e1 + e2.

A first result along these lines was given in [BH831] where it was shown that the
approximation order of Π1

3,∆ (with ∆ the three-direction mesh) is only 3, which was sur-
prising in view of the fact that all cubic polynomials are contained locally in this space.
[J83] showed the corresponding result for C1-quartics on the three-direction mesh and
[BH832] provided upper and lower bounds for the approximation order of

S := Πρ
k,∆

for arbitrary k and ρ.
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For 2k − 3ρ ≤ 7, the approximation order of S was completely determined in [J86].
Since it is easy to determine the approximation order of any space spanned by the translates
of one box spline ([BH82/3]) with the aid of quasi-interpolants, it is tempting to consider,
more generally, local approximations from S, i.e., approximations to the given f which
are linear combinations of box splines in S, with the restriction that the coefficient of any
particular box spline should depend only on the behavior of f near the support of that
box spline. The resulting approximation order has been termed the local approximation
order of S in [BJ]. The local approximation order of S was entirely determined in [J88].
In particular, it is shown there that the local approximation order of S can never be full,
i.e., equal k + 1. It is also conjectured there that the local approximation order equals
the approximation order when k < 3ρ + 2. In addition, it is shown in [J88] that the
approximation order of S is at least k when k ≥ 2ρ + 2. This, together with the result
to be proved here and the result from [J86], gives the precise approximation order for S
for ρ ≤ 5 and all k. Finally, the fact that the approximation order from S is only k when
k = 3ρ + 1 was demonstrated in [BH88] for ρ = 1, 2, 3.

In all of these references cited, only the approximation order with respect to the
max-norm was considered.

In addition to the notation already defined in the course of the above introduction,
we also use the following: We denote by

Πk (Π<k)

the collection of all polynomials of total degree ≤ k (< k). We denote by

〈y, ·〉

the linear polynomial whose value at x ∈ IR2 is the scalar product 〈y, x〉 of y with x. We
write

Dy := y(1)D1 + y(2)D2

for the (unnormalized) directional derivative in the direction y, with Di the partial deriva-
tive with respect to the ith argument, i = 1, 2. Thus,

Di = Dei
,

but we use this abbreviation also for i = 3, and use, correspondingly, the convenient
abbreviation

Da :=
3∏

i=1

D
a(i)
i ,

with a ∈ ZZ3
+. For such a, we write

|a| :=
∑

i

a(i).
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Correspondingly, we write

τa :=
3∏

i=1

τ
a(i)
i and ∇a :=

3∏
i=1

∇a(i)
i ,

with
τif := f(· + ei) and ∇i := 1 − τi

−1.

Finally, we denote by p(D) :=
∑

α c(α)Dα the constant coefficient differential operator
associated with the polynomial p =

∑
α c(α)()α. For example,

Di = 〈ei,D〉.

Main Result

The main result of this note is the following

Theorem. The approximation order of S := Πρ
k,∆ (in any Lp, 1 ≤ p ≤ ∞) is at best k

when k < 3ρ + 2, ρ > 0 and ∆ is the three-direction mesh.

In this section, we outline the proof, leaving the verification of certain technical Lem-
mata to a subsequent section.

The proof uses the same ideas with which the special cases ρ = 1 and 2 were handled in
[BH831], [J83], and [BH88], respectively, i.e., the construction of a local linear functional
which vanishes on Πρ

k,∆ but does not vanish on some homogeneous polynomial of degree
k+1 and whose integer translates add up to the zero linear functional. But the construction
of the specific linear functional follows the rather different lines of [J86].

To begin with, recall from [BH832] that the approximation order of S equals that of

Sloc := span{Mr,s,t(· − j) : j ∈ ZZ2,Mr,s,t ∈ S}.
(To be precise, the proof of Proposition 3.1 in [BH832] can be modified to show that if r
is an upper bound on the approximation order of Sloc, then it is also an upper bound on
the approximation order of S, while the converse is trivial since Sloc ⊆ S.) Here, Mr,s,t is
the box spline M(·,Ξ) , i.e., the distribution f 7→ ∫

[0..1)r+s+t f(Ξt) dt (cf., e.g., [BH82/3]),
with direction matrix

Ξ := [e1, . . . , e1︸ ︷︷ ︸
r times

, e2, . . . , e2︸ ︷︷ ︸
s times

, e3, . . . , e3︸ ︷︷ ︸
t times

].

Further, the linear functional will be constructed from linear functionals of the form
f 7→ ∫

T
p(D)f , with

T := {x ∈ IR2 : 0 < x(2) < x(1) < 1}
a triangle in the three-direction mesh ∆, and with p a homogeneous polynomial of degree
k. Such functionals vanish on Π<k, hence also vanish on any Mr,s,t with r + s + t− 2 < k.
It is proved in [BH832] that, for k > 2ρ + 1, Sloc is spanned by the integer translates of
the box splines of degree < k in S and the box splines Mα with α in

A := A1 ∪ A2 ∪ A3,
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where
A1 := {(k − ρ + 1 − i, 0, ρ + 1 + i) : i = 1, . . . , k − 2ρ − 1},
A2 := {(ρ + 2 − i, i, k − ρ) : i = 1, . . . , ρ + 1},
A3 := {(0, ρ + 1 + i, k − ρ + 1 − i) : i = 1, . . . , k − 2ρ − 1}.

(These are exactly the box splines whose restriction to the line e1 + IR(e2 − e1) coincide
there with a(n appropriately scaled univariate) B-spline of degree k for the knot sequence
in which each of 0, 1/2, 1 occurs exactly k − ρ times.) This implies that it is sufficient to
require our linear functional λ to vanish on Mα(· − j) for α ∈ A and j ∈ ZZ2 in order to
ensure that λ ⊥ Sloc.

(1)Lemma. For β := (1, 1, 0), there exists a set B of ρ + 1 homogeneous polynomials of
degree k so that, on T + ZZ2,

(2) p(D)Mα = cp,α∇α−βMβ, p ∈ B, α ∈ A,

with the constants cp,α satisfying

cp,α = 0, α ∈ A3.

Here and below, we follow the convenient convention that ∇γ = 0 if γ(i) < 0 for some
i.

(3)Lemma. For γ := (1, 0, 1), there exists a set C of ρ + 1 homogeneous polynomials of
degree k so that, on T + ZZ2,

(4) p(D)Mα = cp,α∇α−γMγ , p ∈ C, α ∈ A,

with the constants cp,α satisfying

cp,α = 0, α ∈ A3.

Now note that Mβ and Mγ agree on all of T + ZZ2 with the characteristic function

χ
T

of the triangle T . Thus,

p(D)Mα = cp,α

{∇α−β

∇α−γ

}
χ

T
on T + ZZ2, for p ∈

{
B
C

.

Further,
∇2∇α−β = ∇2∇3∇α−(1,1,1) = ∇3∇α−γ .

Thus, if

(5)
∑

p∈B∪C

w(p)cp,α = 0 for all α ∈ A1 ∪ A2,
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then
JMα = 0 on T + ZZ2 for all α ∈ A,

with

(6) J :=
∑
p∈B

w(p)∇2p(D) +
∑
p∈C

w(p)∇3p(D)

(since cp,α = 0 for p ∈ B ∪ C and α ∈ A3). Here, we may (and do) choose w 6= 0, since
#(B ∪ C) = 2ρ + 2 > k − ρ = #(A1 ∪ A2).

Next, we construct some g ∈ Πk+1 for which Jg = 2. For this, note that p(D)Πk+1 ⊂
Π1 for any p ∈ B ∪ C, while ∇i = Di on Π1. This implies that

J =
∑

p∈B∪C

w(p)p̃(D) on Πk+1,

with

p̃ := p

{ 〈e2, ·〉, p ∈ B;
〈e3, ·〉, p ∈ C.

(7)Lemma. If k > 2ρ + 1, then the sets B and C in (1) and (3) can be so chosen that
{p̃ : p ∈ B ∪ C} is a linearly independent subset of Πk+1.

To make use of this lemma, we need to restrict attention to the case k > 2ρ+1. We do
this by, possibly, decreasing ρ (and, hence increasing S) to force the inequality k > 2ρ+1.
Of course, we must make sure that we still have k < 3ρ+2. Assuming that ρ′ is the largest
integer for which k > 2ρ′ + 1, we have k ≤ 2ρ′ + 3 < 3ρ′ + 2 except, possibly, when ρ′ ≤ 1,
hence k ≤ 5. But, for k ≤ 5 and ρ ≥ 1, the approximation order of S is known ([J86],
[BH88]) to satisfy our theorem’s claim.

Thus, for k > 5, we may assume without loss of generality that k > 2ρ + 1, hence
use the lemma to conclude, from the fact that w 6= 0, that J = q(D) on Πk+1 for some
nontrivial homogeneous polynomial q of degree k +1. This implies that J maps Πk+1 onto
Π0, hence Jg = 2 for some g ∈ Πk+1.

Since JMα = 0 on T +ZZ2, and J commutes with any integer shift, it follows that the
linear functional

λ : f 7→
∫

T

Jf

vanishes on Sloc, but takes the value 1 on that particular polynomial g. Further, λ has the
form

λ = λ2∇2 + λ3∇3

with
λi : f 7→

∫
T

pi(D)f,

for some homogeneous polynomials pi of degree k. This shows that∑
j∈ZZ2

λτ j = 0,
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in the sense that, for any compact set, there is some n0 so that any sum
∑

j∈ZZ2∩[−n..n]2 λτ j

with n > n0 has no support in that compact set.
We make use of λ in the following more precise fashion. Define

Hi,n :=
n∑

j=1

τ j
i .

Then Hi,n∇i = τn
i − 1. Therefore,

λ(n) := λ
∑

j∈ZZ3∩[1..n]3

τ j = λ2(τn
2 − 1)H1,nH3,n + λ3(τn

3 − 1)H1,nH2,n

has support only in
Tn := T +

∑
j∈ZZ3∩[0..n]3

∑
i

j(i)ei =: T + I,

and is, more explicitly, of the form

f 7→
∑
j∈I

∫
T+j

(b(j)p2(D) + c(j)p3(D))f,

with b(j), c(j) ∈ {−1, 0, 1} for all j. (Put differently, the mesh functions b and c are first
differences of the discrete box spline associated with the three directions e1, e2, e3, hence
are piecewise constant.) Since τ jg ∈ g + Πk and λ(n) vanishes on Πk, this implies that
λ(n)g = n3. Further, as a functional on, say, Π0

k+1,∆ ⊂ L1([−1..2n + 1]2), λ(n) has norm

‖λ(n)‖ ≤ constk,

since, on each T + j, any f of interest (i.e., any f ∈ S + span g) reduces to a polynomial
of degree ≤ k + 1, hence

|
∫

T+j

pi(D)f | ≤ constk

∫
T+j

|f |

with constk derived from Markov’s inequality.
Let now h := 1/n and set σ : f 7→ f(·/h). We are interested in a lower bound for the

Lp(G)-distance of g from Sh := σS. Since ‖f‖1(G′) ≤ constG′‖f‖p(G′) ≤ constG′‖f‖p(G)
for any bounded subset G′ of G, it is sufficient to restrict attention to p = 1 and bounded
G. Moreover, after a translation and a scaling, we may assume that the domain G of
interest contains [−h..(2n+1)h]2. Then ‖λ(n)σ−1‖ ≤ constkh−2, and λ(n)σ−1 ⊥ Sh, while
λ(n)σ−1g = λ(n)g(·h) = hk+1λ(n)g = hk−2. Consequently,

dist 1(g, Sh) ≥ λ(n)σ−1g/‖λ(n)σ−1‖ ≥ hk−2/(constkh−2) = consthk,

for some h-independent positive const. This finishes the proof of the theorem.
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Proof of the technical lemmata

We take B and C from the set of polynomials

pa :=
3∏

i=1

〈ei, ·〉a(i)

with a ∈ ZZ3
+, |a| = k.

For the computation of pa(D)Mα, we rely entirely on the differentiation formula
[BH82/3]

DξM(·,Ξ) = ∇ξM(·,Ξ\ξ)
valid for any particular direction ξ from the direction set Ξ for the box spline M(·,Ξ), and
on the fact that the (closed) support of the box spline M(·,Ξ) is the set

∑
ξ∈Ξ

[0..1]ξ.

We choose B to consist of the ρ+1 polynomials pa with a(3) = k−ρ. Then a(3) ≥ α(3)
for any α ∈ A, hence

(8) pa(D)Mα = ∇α(3)
3 pa(1),a(2),a(3)−α(3)(D)Mα(1),α(2),0.

Since α(2) = 0 for α ∈ A1 and α(1) = 0 for α ∈ A3, this shows that pa(D)Mα has no
support in T + ZZ2 when α ∈ A1 ∪A3, hence (2) holds for this case with cp,α = 0. For the
remaining case, α ∈ A2, we have α(3) = k − ρ = a(3), and therefore, more explicitly than
(8),

pa(D)Mα = ∇α(3)
3 D

a(1)
1 D

a(2)
2 Mα(1),α(2),0,

and this has support in T + ZZ2 if and only if a(i) < α(i) for i = 1, 2. Since a(1) + a(2) =
α(1) + α(2) − 2, this condition is met if and only if α = a + β with β = (1, 1, 0), and in
that case we get

pa(D)Mα = ∇α−βMβ .

This finishes the proof of (1)Lemma.
The verification of (3)Lemma proceeds analogously. We choose C to consist of the

ρ + 1 polynomials pa with a(2) = k − ρ. Then a(2) ≥ α(2) for any α ∈ A, hence

(9) pa(D)Mα = ∇α(2)
2 pa(1),a(2)−α(2),a(3)(D)Mα(1),0,α(3).

Since α(1) = 0 for α ∈ A3, this shows that pa(D)Mα has no support in T + ZZ2 when
α ∈ A3, hence (4) holds for this case with cp,α = 0. For the remaining case, i.e., for
α ∈ A1 ∪ A2, we make use of the fact that D2 = D3 − D1 to write (9) in the form

pa(D)Mα = ∇α(2)
2

∑
j

cjD
j(1)
1 D

j(3)
3 Mα(1),0,α(3),
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with the sum over all j of the form (a(1) + r, 0, a(3) + t) with r + t = a(2) − α(2). Thus,
j(1) + j(3) = α(1) + α(3) − 2, hence the only terms with some support in T + ZZ2 are of
the form j(i) = α(i) − 1 for i = 1, 3, and in that case,

D
j(1)
1 D

j(3)
3 Mα(1),0,α(3) = ∇α(1)−1,0,α(3)−1Mγ .

As to (7)Lemma, we note first that B̃ := {p̃ : p ∈ B} is linearly independent since it
consists of the sequence

〈e2, ·〉〈e3, ·〉k−ρ{〈e1, ·〉j〈e2, ·〉ρ−j : j = 0, . . . , ρ},
and e1, e2 form a basis for IR2. Analogously, C̃ := {p̃ : p ∈ C} is linearly independent
since it consists of the sequence

〈e2, ·〉k−ρ〈e3, ·〉{〈e1, ·〉j〈e3, ·〉ρ−j : j = 0, . . . , ρ},
and e1, e3 form a basis for IR2. Thus it is sufficient to prove that span B̃ has only trivial
intersection with span C̃. But this follows from the facts (obtainable by substituting e3−e2

for e1 and collecting terms) that

B̃ ⊂ span{〈e2, ·〉1+j〈e3, ·〉k−j : j = 0, . . . , ρ}
and

C̃ ⊂ span{〈e2, ·〉k−j〈e3, ·〉1+j : j = 0, . . . , ρ},
since k − ρ > ρ + 1, by assumption.
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