Error Bounds for Spline Interpolation

GARRETT BIRKHOFF & CARL DE BOOR

1. Introduction. In [1], Ahlberg and Nilson proved the convergence of
the second derivatives of (cubic) spline interpolations to a given periodic
function f(x) & C?, as the mesh-lengths tend to zero on asymptotically uniform
meshes. Using different methods, convergence of the third derivatives is proved
below when f”/(z) is absolutely continuous. Moreover the assumption of
periodicity is dispensed with, and the hypothesis of asymptotically uniform
mesh-spacing is relaxed.

Specifically, let f”/(z) be absolutely continuous on [0, 1]. For any partition
7:0=2z,<2z < --- <z, =10f [0, 1], let the “piecewise cubic”’ interpolating
spline function (for w) be defined as usual ([2], [3]) by the condition that
s(x) € C* and

® @) =s@), i=0,---,n; f0)=50), O =s5Q.

(A spline function with joints z; is a function s(z) ¢ C® which is equal
to a cubic polynomial on each interval [z;_, , z;] between successive joints.)
We define the cardinal functions C;(x) for spline interpolation on = as the
spline functions which satisfy

2) Ci(x;) = &, , Ci0) = Ci(1) =0, 1=1,--+,n—1.
By definition, the error in spline interpolation is

® () = f(x) — s@).

If p,(x) denotes the cubic polynomial which satisfies p,(z,) = f(z;) and
pix) = f'(z) for k = 0, n, then the error in spline interpolation to f(z) is
the same as that in spline interpolation to g(z) = f(z) — p,(z), which satis-
fies dg’’(x) = df'"’(z) and g(0) = ¢’(0) = g(1) = ¢’1) = 0; hence we can
assume

@ f0) = 7'©) = f1) = f'(1) = 0,

without essential loss of generality.
For such functions, we have

0 @) = [ GG, v e,

0
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where G(z, y) is the Green’s function for the boundary value problem defined
by f"(x) = h(zx) and (4). Explicitly, G(z, y) is given by
(6) Gz, y) = (@ — y)i/3! — Pz, v),

where, for fixed y, P(z, y) = 21 — y)’(z + 2zy — 3y)/6 is the cubic poly-
nomial in z such that G(0, y) = G.(0, y) = G(1, y) = G.(1, y) = 0. The func-
tion (z)[ is defined by

(@)f = {“’k’ z2z0

0, 2<0

Hence, considered as a function of z or y alone, G(z, y) is a spline function
with exactly one joint at z = y.
Likewise, for functions satisfying (4) we have

n—1
@ s(z) = gf(x.»)c’a(x),
whence, by (3), (5), and the preceding paragraph,

n—1

®) e(r) = fo l [G(x, y) — Z_“; Ci(x)G(z: , y)} df'"’(y).

Using (8), and special properties of the cardinal functions, we will bound the
r derivatives e’ (z) of orders r = 0, 1, 2, 3.

2. Properties of cardinal functions. For convenience, we will define the
mesh-ratio bound M , by
9) M, = |r|/min Az, , |r] = max Az, , Az; = x4, — ;i ,

and we will write ||f|| = max |f(z)| on [0, 1]. The main result of this section
will be that each cardinal function C;(z) decays exponentially away from z; ,
and that |C:(z)| is bounded in [z, , %;.+.] by a constant K’ depending only
on M, . The proof will use some qualitative properties of the signs of the C;(z)
and their derivatives, which will be established in a series of lemmas.

Lemma 1. If p(x) is a cubic polynomial which vanishes at 0 and h + 0, then

10) p'®) = —2p’(0) — h(p"(0)/2), and p"'(R)/2 = —%p’(O) — 2(p"(0)/2).

Indeed, p(z) = p’O)z + (p”(0)/2)z" — B7*[p'(0) + (p”(0)/2)h]a’, from
which (10) follows.

Corollary 1. For i =+ §j + 1, j, Ci(x) satisfies
(11) Ci(xiv) = —2Ci(z;) — Az;(CV(z;)/2),
Cl(@i+1)/2 = —3/Az;)Cl(x;) — 2(C¥(x,)/2).
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The significance of equations (11) is clear: they are recursive relations on
the vectors {C’(x;), C’(z;)/2}, whose coefficients constitute the negative matrix

[—2 —Ax,].

Corollary 2. Fort =1, --- ,n — 1, C;(x) satisfies
(12a) Ci)C¥(x;) 2 0, for j<i,

(12b) Cix)Ci(x;) =0, for j> 4.

The proof forj = 0, 1, --- , ¢ — 1 is by induction on j. For j = 0, it follows
from (2). Since the coefficients in (11) are all negative, the condition (12a)
that Ci(z;) and C/’(z;) have the same sign implies that C/(z;+.) and C}(z;4+,)
have the same sign, namely, the reverse of that of C/(z;) and C%(x;). The

proof for j > 7 is obtained by changing z to —zx, which reverses the sign of
Ci(x)CY ().

Corollary 3. Fori =1, --- ,n — 1, C;(z) satisfies
13) [Ciz)| < 3 |Ci@in)l, F<i—1, [Cll)| <3ICiw), >4

The first inequality follows from (12a) and (11), with the observation that
C¥(xo) += 0 (otherwise, by (11), Ci(z) = 0), hence C¥’(z;) *+ 0, j < 4. The
second inequality follows then by symmetry about z; .

The exponential decay of each |C;(z)| away from z; follows from Corollary
3 unless Az; increases exponentially away from z; as a function of |j — 1], at
a rate comparable with the exponential decrease of |C/(x;)|.

Lemma 2. Let S(x) be any spline function with joints at the x; , which satisfies
S.‘-l = S;.n = 0, Sg = h > 0, :—1‘S£il 2 07 S:«H'S“'l § Oy

where Si—l = S(x.'_l), S:il = S"(x“;), etc. Then S:' < 0, S:Ll ; O, S£+1 § 0,
and S(x) = 0 on [xi-1 , Tisil.

Proof. By direct computation:

(14a) S} = 3h/Az;—, — 28I, — 38i.,Ax,, ,
(14b) S} = —3h/Ax; — 28,y + 38,47, ,
(14c¢) 348z, 8!’ = 3h/Az;,_, — 38i., — S’ Az, ,
(14d) 3Az.8)" = 8h/Az; + 38, — Sihidz,,
and so

(15) St + 38V Az, = 8l — 38U.A; .

Now suppose S/_, < 0. Then S!., = 0 by assumption, hence by (14a),
(14c), S > 0 and S > 0. If now S/,, > 0, then S/}, = 0, so by (14a), S} < 0,
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a contradiction. Likewise, if S7,;, < 0, then 8%, =2 0,80 S, + % Az;,8” = 0
by (15), again a contradiction. Hence Si_, = 0. By symmetry about z; it
follows that S!,, < 0. Hence S!’, and S/, are nonnegative. Since the second
divided difference S(x:- , #: , Z:.+1) is negative, one has S/’ < 0.

Suppose next that for some z ¢ [z;-, , 2], S(z) < 0. If 8/, = 0, then
S8"(x) < 0in (%, , z:), but S(xi-y , z, z;) > 0, a contradiction. If, on the
other hand, 8!2, > 0, then, since 8/_, = 0, there exists y ¢ (z;-, , z;) such that
S() > 0forte (x;—,, y). But then ;S(:c._1 , ¥, z) <0, S(y, z, z;) > 0, which
implies that the linear function S"'(z) has two distinet zeros in (z;_, , ;) with-
out being identically zero, a contradiction. Hence S(z) > 0, z ¢ (z;-, , z.].
By symmetry about z; , it follows that S(z) > 0 identically on (z; , ;41).

Lemma 3. Let T'(x) be a spline with a joint at x; , such that
(16) Tiv=T; =T, =0, 2, =0, fs1 = 0.
Then T(x) = 0 in [x;—, , z.].

Proof. With A = 0, since T'; = 0, (14a)—-(14¢) give
17 Ty + 2(Az;—, + Az )T! + Az, Tl = 0.

If T:_, < 0, then it follows as in Corollary 2 of Lemma 1, that T} > 0,
T =z 0, so T},; < 0, a contradiction. Therefore T_, = 0. Hence, if now
T; = 0, then by (17), T%_, = T%,, = 0, so T'(z) = 0, which completes the
proof for this case. Otherwise, by (17), T < 0, and so since T'; = 0, there is
ay e (Ti-1, x;) such that T(z) > 0, z e (y, z;). But then the assumption that
T(x) < 0 for some z £ (x;-; , ¥) would imply T'(z;,,z,y) > 0, T(z, y, z:) <O,
hence with 777, < 0, the linear function 7"'(z) had two distinct zeros
in [x;-, , ;] without being identically zero, which is impossible.

Corollary 1. LetM =M, .Fori =1, -+ ,n — 1:

MM 4 1)
(18) 0=Cix) =L on [xiy,%in], where L =3 "3(7?%%’
(19) in(xi—l)l = L/Axi—l ’ iC (v“”)] L/Ax’ '

By Corollary 2 of Lemma, 1, C;(z) satisfies the hypotheses on S(z) in Lemma
2, hence the first inequality in (18) follows from that lemma. To prove the
second inequality for x ¢ [x;_, , z:], let U(x) be the spline with a joint at z; such
that U,.y = Uiy = U2, = Ul,, =0,U; = 1. Then T(x) = U(x) — C:(x)
satisfies the hypotheses of Lemma 3, since by Lemma 2, as applied to C;(z),
Cir, 20,0, <0.Hence 0 = C;(x) = U(x) on [x;—1 , z:]. Since U,_, = 0,
one has

U) £ Ari-, max U'(y).

[#i—1,24]

Applying Lemms 2 to U(z) gives U} < 0. But UiZ, = 0, hence U"(z) < O
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in ;-1 , ), and so

3 (Awies + Az.)? 1 (M + 1)
") = U, =

Jrax U') = Ui = e 30, T dan,, = ders CG/M) + 4
and (18) follows now for z ¢ [z;-, , z:;]. The first inequality of (19) is an im-
mediate consequence. The remaining statements follow from symmetry about . .

Corollary 2. Fort =1, .-+ ,n — 1,

(202) ICi@)| = |Ci(x))] Aw; on [x;, Tl ji>t,
(20b) IC,(x)I = [Cf(xi)l Az;y on [z, ], j<t—1.

Let j > 1, and assume without loss of generality that C/'(z;) < 0. Then
by Corollary 2 to Lemma 1, C/(z;) = 0, C}(z;+1) < 0, and the proof of Lemma
3 shows that C;(x) = 0 on [z; , z;+1). Moreover Ci(z;) = Ci(z), = & [z; , Z;+1];
hence (20a) follows. By symmetry about z; , (20b) then follows from (20a).

3. More inequalities. We can now prove our first main result.

Theorem 1. There exists a constant K = K(M,) depending on M, alone
such that

@1) fo 6@ dz < K a].

Proof. For j < 7, by (20b) and (13),
IC.@)| = |Cilz))| Azj—y £ 277 |Cllwi-n)| ATy
for z ¢ [x;_, , z,;]. Hence, by (19),
(22) |C.@)| £ 27" LAz;—,/bx,—y < 277VLM,
where L = L(M,) is given by (18). Consequently

[(e@a=3[" 0ol

i—1
< > 27MLM Az, + LAz, < M, + 1)L |x|,
i=1

since Y5 27 = 2 and Az;_, £ |x|. Combining the preceding inequality with
a like inequality for j > ¢, we get (21) with K = (40, -+ 2)L. Since L is given
by (18), we have K < 3M (M, + 1)
Alternatively, we can bound the integral in (21) in terms of the maximum
ratio of successive mesh-lengths. Indeed,
i-1

Z 21’-(¢-1>Agci_l < Az, 125 21‘—(1’-1)(_4521;—_1).

i=1 i=1 ACC,;._l

Now choose R, such that R7* £ Az,/Az;.y £ R, ,%1 =1, .-+, n. I for the
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given partition 7, R, < 2p < 2, then

i—1 _ AIE _ i—1 il iy 1
21‘ (&-1)( i l) é 21 (¢ I)R(a 1)-7 __S_ .
> aoa) S & i 1—,

Therefore

x4 2
‘/; |Ci(x)] dz = |=| (2 — + l)L,

where L is given by (18) with M = R, . This proves the

Corollary. If R, < 2, then there exists a constant K depending on R. alone,
such that (21) holds.

Now recall that the interpolation error is given by (8) as
1 n—1
@ = [ 6w 0 - T cwee, | ao.
Lemma 4. The following identity is valid:

@3) ¥ 0@, 1) = 3 6, 2)00).

i=1

Proof. By (3), (6), and (7), one has
n—1 n—1

e e, =3 (5 e, )00 = 3 06 200,

i=1

Corollary 1. The third derivative of the error exists and satisfies

25) @) = [ Ge, ) d"w), whore
(25) Gi(z, y) = 58';‘3 Gz, y) — :2: [5%33 G(z, x‘):lco(y)

The differentiation under the integral is justified by Leibniz’ Rule (cf. Kaplan,
Advanced Calculus, p. 219) since Gs(x, y) is piecewise continuous. Note that
here and in the following we use the normalization

@£=F’x§9
0, <0
Corollary 2. For fized z € (0, 1), there exists j & [1, n — 2] such that
(26) Gs(z, y) = 9@) — 9)Ci®) — 9(@i41)Cia(W),
where ||g]| £ 1, g@y) = 0 for y ¢ @1, Tj+a)-
Proof. It follows from (6) that

;%;a Gz, y) = @ — y)f — 1 — »’A + 2y).
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Let z e [71-1 , %), and choose jsuch that 0 = j — 1 <k = j+ 2 < n. Let
hy) = L{y; %j—1 , Z; , ZTis1 , Zj+z) be the third divided difference in z
of L(y;2) = (¢ — y)2on {z;_,, %; , Tis1, Zj+2}. Then h(y) is a spline function
which is equal to (x — ¥)? for y ¢ (i~ , T;+2) and lies between 0 and 1 inside
[Zi-1, Tis2). Hence with g(y) = (x — 9)? — h(y), one gets

n—1
Gs(z, y) = gly) — Z_; 9()C.),
and Corollary 2 follows.

4. Error bounds. Two bounds for ¢/’/(x), the third derivative of the error
(i.e., the error in the third derivative) can now be derived. Since spline func-
tions have a piecewise continuous third derivative, the error in the third deriva-
tive will be in general bounded away from zero unless f(x) e C*. Before proving
a rather sharp converse to this statement, we first establish a stronger result
valid for f(z) e C*.

Theorem 2. Let f(z) ¢ C*, and let e(x) be the error (3), incurred when f(z) is
interpolated by a spline function on a given partition r : 0=z, < 2, < + -+ < z,=1.
Then there exists a constant K,(M ,) dependent on M , alone such that

@ eIl = [If*]- KoM ) =]
Proof. Let z e (0, 1) be fixed. Then by Corollary 2 to Lemma 4

1 Z{4e 1
f |Gs(z, y)| dy = f dy + 2 max f IC:()| dy,
0 Zi—1 ii+1 Y0

for some j ¢ [1, n — 2]. Let K be the constant of Theorem 1. Then
with K,(M.) = 3 + 2K,

1
[ 16 vl ay = K1) I,
therefore, with (26),

e’ (z)] = ‘ fo 1 Gs(z, ) df"’(y)\ = (Il fo 1 |Gs(z, v)| dy

= ”f"” K,(M,) |7"|: ze (0, 1).

Theorem 2 follows since ¢’/(0) = ¢'"/(0+), ¢”’(1) = ¢'’(1—).

To find corresponding bounds for the rt derivative ¢ when r < 3, observe
that, by Rolle’s theorem, there exist £} with

O=L=sH<HE< - <ELaSk =1,
such that e (&) = 0,4 =1, --+ , n, — 1, and max; At} < (r + 1) |=|. Hence
Erl'+1

@8) 7@l = fe . T dy = A8 T, welE £l

4
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SO
(29) el < ¢+ 1) [« [le"*2], = <3.

Corollary. Under the hypotheses of Theorem 2, there exist constants K,.(M,)
depending on M . alone such that

(30) eIl = [l K+ |=]*™",  r=0,1,2,3.

If 7, is a sequence of partitions of [0, 1] such that |r,| — 0 while M,, < M
stays bounded, then Theorem 2 implies for the corresponding error e,(z) of
spline interpolation that

(31) lei’’(x)| — 0, uniformly on [0, 1],

if f(x) ¢ C*. We now make the weaker assumption that f’/(r) is continuous
and of bounded variation on [0, 1], which is implied by the assumption made
at the outset that f”’(z) is absolutely continuous. Convergence can still be
proved under this assumption by a more careful analysis of the integral (25).

Theorem 3. Let " (x) be absolutely continuous on [0, 1]. Let {w,} be a sequence
of partitions of [0, 1] such that |r,| — 0 while M,, < M asn — . Let e,(z) be
the error incurred when f(x) is interpolated by a spline function on =, . Then

(31 le’(@)] — 0, wuniformly on [0,1], as n— .
Proof. Let ¢ > 0 be given. Since f’/(z) is absolutely continuous there
exists & > 0 such that forallI = [a,b] C [0, 1], withb — a < §

32) [ @l <.

Since |m,] — 0, there exists N such that for n = N, |r| < 6. Let
nown = N,m,:0=2,<z, < -+ <2, =1,and z ¢ (0, 1). By Corollary 2
to Lemma, 4

Gi(z, y) = g(v) — 9(=)C;¥) — 9(;+1)C;41(y),
where ||g|| = 1, g(y) = 0 for y ¢ (&;—1 , Zj+2), for some j & [1, n — 2]. Hence

[ owara

@) = |[ e, 4 |5

+ ' fo "o, df”’(y)l + I fol Cinnl) df'"(y)l'

But

[cwaw|s 5[ cwirw)

m

s 3 max je@l [l

i=1 [zj—1,zj
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Hence, by choice of n, and by the proof of Theorem 1,
[ cwarw
where K (M) depends on M alone. Therefore

le’""@)| = B + 2K(M)),

and the Theorem follows now since ¢’’’ (0) = ¢’’(0+), ¢’’(1) = €'’ (1-).

= e K(M),

Remark. In view of Corollary 2 of Theorem 1, the preceding results remain
true if the condition of (uniformly) bounded mesh ratio is replaced by the
condition that the ratio of any two adjacent mesh-lengths is less than 2.

The preceding results were announced in Abstract 64T-296 of the Notices
Am. Math. Soc., in which Mr. de Boor’s name was omitted by mistake.

The authors wish to thank Messrs. Hermann Burchard and D. H. Thomas for
many helpful criticisms.
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