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Convergence of Bivariate Cardinal Interpolation 

Carl de Boor, Klaus H611ig and Sherman Riemenschneider 

Abstract. We give necessary and sufficient conditions for the convergence of cardi- 
nal interpolation with bivariate box splines as the degree tends to infinity. 

1. Introduction and Statement of Main Results 

For a set of vectors ~, = {~l, �9 �9 �9 , ~.} with ~.eZ", the box spline M~ is the func- 
tional on Co(R m) defined by [1], [2] 

n 

As becomes apparent from its Fourier transform 

(2) 37/:(y) = sin (~.y/2) 
" , = ,  ~, 'y12  ' 

the box spline is a natural generalization of the univariate cardinal spline. 
Motivated by I. J. Schoenberg's beautiful results [7-9], we have studied cardinal 

interpolation for box splines. The first question is whether the interpolation problem 
is correct; i.e., whether there exists, for any continuous bounded function f ,  a unique 
bounded spline 

/~fES.-:= span { M e ( . - j ) :  j ~ Z  m} 

that interpolates f a t  the lattice points, i.e., 

&f(k) = f(k), keZ" .  

Clearly a necessary condition is that the translates of the box spline M~ be linearly 
independent. We conjecture that this is also sufficient or, equivalently, that 

(3) P-.(x) := E M~(j)eox > 0 
j ~  Z "  
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holds i f  and only i f  the box splines M~(" - j ) ,  j e Z  ~, form a basis for S~. So far, the 
positivity of P has been proved only in the bivariate case [3, Theorem 4]. 

In this paper we continue our investigation in [3] concerning the convergence of 
bivariate cardinal spline interpolation as the degree tends to infinity. We obtain the 
bivariate analogue of the following result, which is due to F. B. Richards, I. J. 
Schoenberg and S. D. Riemenschneider. 

Theorem [5,6,8]. 
(i) If  the Fourier transform o f f  is a tempered distribution with supp f C ( - 7r, 70, 

then the (univariate) cardinal spline interpolants Imf of  degree m converge locally 
uniformly to f" i.e., for any a > O, 

Il f - l m f  ll~,i . . . .  j ~ o ,  m --" o o .  

(ii) If  a sequence of (univariate) cardinal splines sm of degree m converges uni- 
formly to a bounded function f on R as m ~ oo, then supp f c_ [ _ r ,  r] .  

Up to symmetry, bivariate cardinal interpolation is correct iff the vectors in E are 
chosen from the set {(1, 0), (0, 1), (1, 1)}. We assume from now on that E is of this 
form and refer to it by n = (n~, n 2, n3)eZ3+, where n~ is the multiplicity of the cor- 
responding vector in E. 

One might expect that ( -7 r ,  7r) 2 plays the role of the interval ( -~r ,  ~r) in the 
bivariate analogue of the above theorem. However, the situation is more complicated. 
There is a continuum of different fundamental domains and the convergence of I~ de- 
pends on just how the components of n go to infinity. 

Denote by n' the "middle"  component of n, i.e., the second number in any ordering 
of n~,n2,n3. We write 

n ~ N  

if a sequence n(m), meN,  satisfies 

(nl) n'(m) ~ oo as m --* oo, 

(n2) lim n(m) _ Ne[0,  oo]3 
m-. o~ n'(m) 

We assume further that 

(n3) I nl := nt + n2 + n3 -< c(n')c, 

where c is some positive constant. Examples of admissible sequences are 

(T,1,T), n(m) = (m,2m,3m) with N = 1 3 

n(m) = (1,m,m 2) with N = (0,1,oo). 

The assumption (n3) excludes degenerate cases such as n(m) = (1,m,m !). 
The role of the interval ( - 7r,~r) is played by certain domains fl~r corresponding to 

the limit of the sequence n. For Ne[0,oo) 3 they are defined by 

(4) fiN := {27rx: 0 < ai~,j(x) < 1 for j e J } ,  
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where J := {-4-(1,0),-4-(0,1), 4 - ( 1 , -  1)} and for x = (u,v), j = (k,f), 

(5) aN.j(x):= \ u + k ]  \ v + e ]  \ u + v + k + g  

Clearly, the set fin iS bounded by the curves UN.j := {21rx: aN.j(X) = 1 }, jeJ.  If  one 
of  the components of N equals o% the sets fin as well as the curves I'Nj have to be 
interpreted as the appropriate limits (cf. Proposition 2). A qualitatively correct picture 
of fin is given in Fig. 1. Figure 2 shows a few special cases. Of  particular interest 
is the symmetric case N = (1,1,1). 2~1,0 

-2~r i~r 

Fig. 1 

-- '--) 

3~" ~" 
, 2) 

N = (1,1,1) N -- (1,0,1) N = (1,1,~) 

(r, - 2 r )  

Fig. 2 
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A detailed discussion of the properties of the sets fin is given in [3]. We merely 
note that they are fundamental domains, i.e., up to a set of measure zero, their trans- 
lates 2r j  + fiN, J e  z2, form a partition of R ~. 

Our first result is an extension of Theorem 5.2 of [3] to include interpolation of data 
with power growth as was done in [7] for the univariate case. 

Theorem 1. Assume that the Fourier transform o f f  is a tempered distribution with 
supp.f C fin. If  the sequence n satisfies (nl)-(n3), then, for any t ~ Z ~ ,  the partial 
derivative D~Inf of the cardinal interpolant converges locally uniformly on R 2 to D~f 
as n---, N. 

As for the univariate case, the converse of the above theorem holds with " C  fiN" 
replaced by " _  ~N": 

Theorem 2. Assume that the sequence n satisfies (nl)-(n3). l f  a sequence of cardinal 
splines s,~Sn converges locally uniformly to f and if Isn(x)l -< b(1 + Ixl)b for all n 
and some b > O, then supp f c ~s. 

We may relax the assumption (n2). Clearly any subsequence of n also satisfies (nl) 
and (n3). If {No} are the limit points of the sequence n/n' ,  then one has to replace 
the set fin in the theorems by N f~o. Figure 3 shows the intersection fin and the 
union flu of all possible limit sets. 

fin 
~t.J 

~ (21r,-lr) 

Fig. 3 

2. Proofs 

We assume throughout that the sequence n satisfies (nl)-(n3). We denote by c various 
positive generic constants that do not depend on n. These constants may change even 
within the same line. Further, we set 

(1) dn(x) := dist (x, #f~n) 

and denote by Xn the characteristic function of the set f~. 
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Denote by L.ESn the fundamental spline that interpolates the data 60.k, kEZ 2. It is 
easily seen [3] that L, decays exponentially at infinity. Therefore, if we assume, for 
example, that 

(2) If(x) I _< c(1 + Ixl) c, 

then we can write the cardinal interpolant in Lagrange form 

(3) I , f =  2_af( j )L , ( ' - j ) .  
j ~ Z  2 

The proofs of Theorems 1 and 2 are based on the following estimate for the Fourier 
transform of L,, which will be derived at the end of this section. 

Theorem 3. 
d~(x) > e 

(4) 

For any e > 0 and aeZ2+ there exists n~ such that for n' >_ n~ and 

ID'~(L,(x) - Xu(X)) I _< (1 + cdu(x)) -"' 

Proof of Theorem 1. Denote by ~S [4] the space of rapidly decreasing test functions 
7,~C~(R2). The assumptionfe~" and suppf  C flu implies (2) and hence the repre- 
sentation (3) is valid for the cardinal interpolant. 

Set 

f,r := Z f(j)e-iJ'. 
I J l  < g 

Since fis is a fundamental domain that contains supp 3 ~, the values 

f ( - j )  = (2r)-2(3 ~, eiJ ") 

are the Fourier coefficients off.  Therefore ) r  converges in ~ '  to the periodic exten- 
sion o f f :  

i~  + 
j E Z  2 

This means that there exists 7 e Z  2 such that for any ~b~S, 

I<J ~~ -),~, ~>1 = o(1).llffll,, as K--, 0% (5) 

where 

Note that (5) implies 

(5') 

II~bll, := max sup l y~D~t~(y)l. 
c~,~-~ 7 y E R  ~ 

I<~,  ~>1 -< cIl~ll,, 
uniformly in K. Putting ~(y) := (iy)'e ~y, we can write 

(21r)2(D'q"f)(x) = x~,lim I s~L,~o = x~,lim (fr,L,~o) 
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s incef is  of power growth and/:~ decays exponentially away from fiN; h e n c e / ~  e~S. 
Further, with w a cut-off function in r satisfying 

supp w c B,(flN) and w = 1 on B~/2(flN) 

and e > 0 to be chosen below (and B~(G) the open ball of  radius r around G), we 
have 

(27r)2(D~f)(x) = (] ,  w~p), 

since supp j~ c_ f~N" Thus 

(2r)2D~(f  - l , f ) (x )  = (],w,p) + lim < f - f x ,  wL,9)  + lim <it,(1 - w)/:,,p). 
K ~ o *  K ~ o o  

Since suppj  ~ e f t # ,  the first term can be estimated using Theorem 3 with 
:= dist (supp f ,  OflN)/2. Since (2r j  + supp ] )  N supp w = J~ for j ~ 0 and 

suppj ~ t3 supp (1 - w) = 0, the second term equals 

lim ( jT~163 = 0. 
K ~ o a  

As to the third term, note that dist(supp(1 - w), fiN) > r which by (4) implies 

11(~ - w ) L , p l l . . , - , ' o  as n-- 'N.  

It follows that 

D ~ ( f  - L f ) ( x )  

tends to zero, uniformly for bounded x (cf. definition of ~o). �9 

Proof  of  Theorem 2. Let ~ : S  and assume that supp ~o fh fiN = ft. If the se- 
quence s~S~  converges locally uniformly to f,  then (2) holds and we have 

n ~ N  ~ [j[ -< K 

Let A := + denote the Laplace operator. Since L. together with all 

its derivatives vanishes at infinity, we have 

( s~(j)Ln( " - J),~ ) = ( s.(j)e -O L.,• ) 

= ((1 + I Jl 2) -2-b/2s,(j)e-U',(1 - A)2+b/2(/,,~o)), 

and we assume without loss of generality that b is an even integer. Applying Theorem 
3 with e = dist(supp ,p, ~N) > 0 we have, for sufficiently large n ' ,  

I( .  �9 . ) l  < c(1 + IJlZ)-Z[sup(1 + IJl2)-b/21s.(j)l](1 + ce)-"ll~ll,. 
Y 

It follows that (~ ,p)  = 0. �9 

For the proof of Theorem 3 we make use of the following precise estimates for/~, 
and the numbers a,.: which were derived in [3]. 
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Theorem 4 [3, Theorem 5.2]. 

(6) I/~,(x)-X,,(x)l <- c[l +cd,,(x)]-"'. 

Proposition 1. [3, Prop. 5.2, Lemmas 6.5, 6.6]. Set 
J '  := { + ( 1 , 1 ) , • 1 7 7  Then for 2rcxefl,,, we have 

I 
(1 + c dist(2rx, P,u f) fl,,))-',  j e J  

(7) la.,j(x) l < (1 + c dist(2rx, - j /2 ) ) - " ' ,  j e J '  

(1 +cljl)-"', j ~ Z 2 \ { J  U J" tO 0}. 

Proposition 2. [3, Prop. 5.1]. ft, depends continuously on n in the Hausdorff 
topology. 

The reader who compares these statements with those in [3] will notice that we have 
changed the notation slightly. Note that the estimate (6) is stronger than the assertion 
of Theorem 3 for a = 0, because the constants c in (6) do not depend on the distance 
of x to Off.. 

We need the analogue of estimate (7) for the derivatives of a.u. 

Lemma 1. For any 6 > O, there exist constants q,  c and no(6) such that for all 
n' >_ n o and 27rx~fl,, 

I 
[1 + c dist(27rx, I',, u t3 fl,,)] -",  j e J  

(8) [D'~a.4(x) l <- c~(1 + c6)"' [1 + c dist(27rx, - j / 2 ) ] - ' ,  j~J '  

[1 + c l j l ] - " ' ,  j e Z 2 \ { J  1.3 J' LI 0}. 

The proof of this lemma is technical and we postpone it until the end. 

Proposition 3. Let x' = x + j,  with j e Z 2 \ O  and 27rx~fl,. Then for some c and for 
any 6 > O, there exist constants c~ and no(6) such that for all n' >_ no, 

(9) IO~'a.u(x) l <_ c~(1 + c~5)'[1 + cd.(2rx')] -"' 

For a = 0 this is Proposition 5.4 in [3]. There we bounded the terms in square 
brackets on the right-hand side of (8) by [1 + cd,(2rcx')], which appears on the right- 
hand side of (9). Clearly, the case ct ~ 0 can be treated in the same way. 

Proof of Theorem 3. Since 

I _ P.(2rx) = Z a.u(x), 
[..(2rx) )~/.(2rx) j~z 2 

we have, for I t~l = 1, 

(2r)D~/~.(27rx) = -L .  (27rx)2 Z D"a.u(x)" 
j:~0 
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For arbitrary tx :# 0 it follows that 

(10) (2~') I~lD~/~(2rx) = 

Z Z caDa's ." 
j ~ O  ,61+,~:t < r 

Let us first assume that 2xxefL. We claim that for any ~ > 0 there exists c~ such 
that 

(11) ID~L.(27rx)[ _ c~(1 +c6) ' [1  +cd.(2rx)]-', 27rx~fl.. 

For ~ = 0 this is a weaker statement than the assertion of Theorem 4. Using induction 
on I otl it is sufficient to show that 

Z D'~a.#(x) 
j r  

can be bounded by the right-hand side of (11). Lemma 1 yields 

_ e~(1 + e~5)'.~ [1 +cd.(27rx)]-', jEJ U J', I D'%,j(x) l ( (1 + c l J l )  -o', j z2\{J u J' u 0}. 

Summing this inequality over j~Zz\O finishes the proof of (11). 
Second, let x' = x +j, with 21rx~fl,. Then, writing 

/~.(27rx') = M.(27rx) hT/.(27rx') = s 
P.(ZTrx') hT/.(2~rx) 

we see that 

D~s = Z c~D~'.(27rx) D~-aa.J(x). 

Therefore, by (11) and Proposition 3, D~L, can be estimated by 

(12) ID"s _< c,(1 + ctS)'(1 + cd~(27rx'))-', 

x' = x + j ,  27rxefl.. 

Theorem 3 easily follows from the estimates (11) and (12): Let e > 0 and assume that 
du(27rx) > e. We choose n~ so that dist(Ofl.,OflN) < e/2 for n' > n~. Now (11) and 
(12) give (4), since we can choose ~ sufficiently small. �9 

Proof of Lemma 1. In proving (8) we make use of the symmetries of the mesh. If 
A is a linear transformation that leaves the set J invariant, we have 

an,Aj(Ax) = a,r,j(X), 
where h is the appropriate permutation of n.Similarly, 

A[2. = ft,-. 

From this one can check (cf. [3, Section 3]) that one may assume, by changing n if 
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necessary, that x =: (u,v) lies in the first quadrant. Further, since the roles of  u and 
v may be interchanged and 2rxr C fl (cf. Fig. 3), we shall assume throughout 
this proof  that 

(13) 0_< v < u_< �89 

By definition (5) of  a,.~ in Section 1, we have 

(14) [O~a,,j(u,v)[ < 

[ lul,.,-~, I vl,.:-~, lu+ol,.,-~, ] 
~a lu+kl,.,+~.lv+el,,~+a, lu+v+k+el,,~+~.. 

where the sum is taken over  all t3 that satisfy 

0 _< /3, < n,, u = 1,2,3, 

6 

Z ~  = ot I + c~2, (15) ,=~ 

I 
k = O  p =  1 

B~ = -/~3+, in case e = 0 p = 2 

k + f  = 0 p = 3. 

This last restriction comes from the fact that for k = 0, for example,  the factor 
(u/(u + k))", is equal to 1, and hence does not figure in the differentiation. To esti- 
mate the individual summands  in (14), we consider four cases. Unless 
(k,e)e {(0, - 1 ) , ( -  1,1)} [cases (ii)(b),(c) below], we bound each summand [ . . . ]  on 
the right-hand side of  (14) by 

(16) c~(1 + c6)" max{(1 +cl j t ) - " ' ,  la, j(x)l}. 

Case (i). v < 6 < �88 u < ~: Using the inequality 

IP -~q  -< (1 + c~lql)-',  q ~ Z \ 0 ,  IPl < ~--e,  (17) 

we obtain the estimate 

I[. �9 .]1 -< c(1 + clkl)-..+a.(1 + clel)-.~+a2(1 +clk+el)-.~+a~, 
with c involving terms such as ]u + kl -~,+e~, k 4: 0, which are bounded�9 Since at 
most one of  the components of  n is less than n ' ,  this implies (8). 

Case (ii). v < 6 < �88 u > ~-: We consider several subcases. 
(a) ( k , e ) r  1,1)}:  W e  have  

(18) 1[- .]1 c(1 + c  e -,,2+a2 u ", u +  v !"~. 
�9 - ) lu+k[ lu+v+k+e 

This can be estimated as before unless k = - 1  or k + e  = - 1 .  I f  k = - 1  and 
g :~ 0,1, we can write the right side of  (18) as 
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U U + I ) ~  I "3 c(l + clel)-'"+~21a"'(-"~ + v - - l  + e " 

The last factor  is less than ( l + c l g l ) - ' ~  and, since for 27r(u,v)~fl . ,  
l a.,(_ L0)(u,v) I < 1, (8) follows. If (k,e) = ( -  1,0) it is easily seen that the left-hand 
side of (1 8) can be bounded by c la., (_ ~,0)(u,v) t . The cases k + e = - 1 ,  k :~ 0 , -  1 
are treated similarly. 

(b) (k,e) = ( 0 , - 1 ) :  Set nt~ := (n~, n2-/32, n3). By Proposition 2, there exists 
no = no(O~,6) such that the boundaries of fl. and fl., are within 6 of the boundary of 

I t the limit set flu for n' _> no and all f12 satisfying (15). Moreover, ~-n _< n~ _< 2n ' ,  
n~ :> /'/0. 

For u + v <_ �89 (and n' _ no) we obtain, using also Proposition 1, 

I [ ' . - ]1  -< cla, , . (o.-du,v)l  

_< c[1 + c dist(2rx, r.~,~o_~) f) ft.)]-"~ 

_< e(1 + c6)"[1 + c dist(27rx, F.,(o,-i) 91 f l . ) ] - " .  

For the last inequality we have used the fact that 

dist(F.,,<o_l) 91 fl.,, l"ln,(0,_l) ('~ fin) ~-~ (~" 

F o r � 8 9  < u + v _ < ~ - + b w e h a v e  

V .2-t~2 U + /3 in3 
I[...]1 _< ] - u - v  I 

< c ~ r a i n  - - -  - , 
- - 1 u -  

w h e r e  we have used the fact that a,.(_l.o)(U,V) < 1. By our assumptions on u and v, 
the minimum can be estimated by (1 + c6) ' .  Therefore, if n2 >- cn', inequality (8) 
follows. If lim,~N n2/n' = 0, the curve I',.(0._~) 91 fl, converges to the segment 
{27r(u,v): u + v = -~, (u,v) > (0,0)}. Therefore, we may assume that 

dist(27rx, F.,<0_~) 91 f~.) -< c6 

for n' -> no, and (8) follows. 

(c) (k,r = ( - 1 , 1 ) :  We have 

C U n~ U n2-~2 I [ . . . ] l -  

< c(1 + c)"2-~2[1 + c(~- - u)] -"~. 

Since F,,<_ 1,1) does not intersect the square [0,rr] x [ - l r ,O] ,  this implies (8). 
Case (iii). b _ v, u < - ~ -  tS: Since v < u, we have 

u I"1 v 1"21 u + v  
[ [ . . .11  <_ c ~ - - ~  ~ u + v + - k + e  < c~[a'j(x)[" 

Case (iv). 6 _ v, u >_ �89 We have 
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I[ . . .11  s c~lao.j(x)l u+U+V§ ~~ 

l u + ~  I s~ <- c61a,j(x) l l - u - v 

Assume, for example, that n~ = min(nl,n2). Since 2rxefln, 

(u w u,o)  < 1 .  lan.c-l.0)(x)l - i-Zu-u/ \ l - u - v  

From this and the fact that u _ ~ -  8, /~6 ~ - - -  n3, we have 

l : u Z  < < (1 + c6)". 

Combining the above estimates yields 

15 �9 31 -< c~la, j(x)l(1 +c5) ~'. 
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