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1. Introduction and Statement of Main Results

Let E ′(IRs) be the space of all s-dimensional complex valued distributions of compact support. For each

φ ∈ E ′(IRs) we denote

Kφ = {q : ZZs → C
∣∣ ∑

α∈ZZs

q(α)Eαφ ≡ 0} , (1.1)

where Eα is the shift in the α direction, namely

Eαφ = φ(· − α) . (1.2)

The condition Kφ = 0 is usually referred to as “global linear independence of the integer translates of φ”

and is known to be a substantial condition when approximating a function by the linear span of {Eαφ}α∈ZZs .

The main aim of this note is to establish a necessary and sufficient condition for the global linear inde-

pendence of the integer translates of a φ ∈ E ′(IRs). The methods here make an essential use of distribution

theory. For background material we refer to [T], which is also the source for some of the notations. The

utility of this necessary and sufficient condition is demonstrated by several examples and applications.

Given φ ∈ E ′(IRs), it is well known that the Fourier transform of φ is extendible to an entire function

on Cs, which is denoted here by φ̂. Define

N(φ) = {θ ∈ Cs
∣∣φ̂(θ + 2πα) = 0 ∀α ∈ ZZs} . (1.3)

We claim

Theorem 1.1. Let φ ∈ E ′(IRs) then

(a) {eiθ·α}α∈ZZs ∈ Kφ if and only if θ ∈ N(φ).

(b) Kφ = 0 if and only if N(φ) = ∅.

The approach taken here towards the proof of Theorem 1.1 yields some additional results which seem to

be of independent interest. To present this approach denote by Q the Fréchet space of all sequences defined

on ZZs, equipped with the topology of pointwise convergence (i.e., uniform convergence on compact sets). A

subspace Q ⊂ Q is termed shift-invariant if it is invariant under each Eα, α ∈ ZZs. Obviously, every space of

the type Kφ, φ ∈ E ′(IRs) is a closed shift invariant subspace of Q. The result we need about shift invariant

subspaces of Q is recorded in the following theorem which is due to Lefranc.

Theorem 1.2. (Lefranc, [Le]). Every non-trivial closed shift invariant subspace of Q contains an exponential

q(α) = zα.

Here we used the standard notation zα =
∏s

j=1 z
αj

j .
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Given a closed shift invariant subspace Q of Q it is natural to ask whether there always exists φ ∈ E ′(IRs)

such that Kφ = Q. The next theorem, while providing an affirmative answer to this question, shows that

such φ can be chosen as a linear combination of the Dirac distribution and its translates (see [T: Chap.

22,24]):

Theorem 1.3. Let Q be a subspace of Q. Then Q is closed and shift invariant if and only if there exists

φ ∈ E ′(IRs) of order zero and with finite support such that Q = Kφ.

As an illustration to the usefulness of Theorem 1.1 to the problem of the linear independence of the

translates of a compactly supported distribution, we present here two of its applications.

Corollary 1.1. Let φ1, . . . , φn ∈ E ′(IRs), k1, . . . , kn ∈ IN. Define φ, ψ ∈ E ′(IRs) by their Fourier transform

as follows:
φ̂ = φ̂k1

1 · · · φ̂kn
n

ψ̂ = φ̂1 · · · φ̂n .

Then Kφ = 0 if and only if Kψ = 0.

Corollary 1.1 is an immediate consequence of Theorem 1.1. (Indeed, we see that for x ∈ Cs, φ̂(x) = 0

if and only if ψ̂(x) = 0, thus N(φ) = N(ψ).) In addition Theorem 1.1 shows that the set of exponentials in

Kφ is identical to that of Kψ.

The second example generalizes the known results about the global linear independence of the translates

of a polynomial box spline , [J], and a real exponential box spline [R], [DM3].

Theorem 1.4. Let X = {x1, . . . , xn} be a collection of non-trivial vectors in ZZs, which span IRs. For

every J = {i1, . . . , is} ⊂ {1, . . . , n} denote by XJ the matrix with columns xi1 , . . . , xis . Assume that X is

unimodular, i.e., for every J as above

detXJ ∈ {1, 0,−1} .

Let φ1, . . . , φn be univariate compactly supported distributions which satisfy

φ̂j(t) = 0 only if t ∈ 2πZZ\0 , (1.4)

and define φ ∈ E ′(IRs) via its Fourier transform by

φ̂(x) =

n∏

j=1

φ̂j(iλj + xj · x) ,

where λ1, . . . , λn are arbitrary real numbers. Then Kφ = 0.

2. Shift Invariant Subspaces of Q.
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Here we prove Theorems 1.1-1.3 and derive additional characterizations of the closed shift invariant

subspaces of Q.

Let P be the vector space consisting of all sequences in Q with finite support. Let π be the subspace

of P consisting of those sequences with support contained in ZZs+ := {α ∈ ZZs
∣∣α1, . . . , αs ≥ 0}. Every p ∈ P

induces a linear functional on Q defined by

p · q =
∑

α∈ZZs

p(α)q(α) . (2.1)

The same definition shows that every q ∈ Q can be viewed as a linear functional defined on P . It is well

known, (see e.g., [T;Th.22.1]), that P forms the topological dual of Q while Q forms the dual of P . In case

p · q = 0 we write p ⊥ q. For subsets Q ⊂ Q and P ⊂ P we use the usual orthogonality symbol

P ⊥ Q ⇔ {p ⊥ q
∣∣ ∀p ∈ P , q ∈ Q} . (2.2)

Given Q ⊂ Q its orthogonal Q⊥ in P is defined by

Q⊥ = {p ∈ P
∣∣p ⊥ q ∀q ∈ Q} , (2.3)

and a similar definition holds for the orthogonal P⊥ in Q of a subset P of P . Since Q, as a Fréchet space,

is locally convex we can appeal to the Hahn-Banach theorem to deduce:

Proposition 2.1. Every closed subspace Q of Q satisfies

(Q⊥)⊥ = Q .

A subspace of π is termed shift-invariant if it is invariant under every Eα, α ∈ ZZs+. Note that π is

isomorphic (as a vector space) to the space π(X) of all polynomials in s variables. This isomorphism I is

defined by

π 3 p
I

−→
∑

α∈ZZs
+

p(α)xα .

Since Eα is transformed by I to multiplication by xα, we conclude that a subspace F is a shift invariant

subspace of π if and only if its image F(X) by I is an ideal of π(X).

Proof of Theorem 1.2. Since Q is a non-trivial shift invariant subspace of Q, then Q⊥ is a proper shift

invariant subspace of P ; therefore Q⊥ contains no element with a one-point support. (Indeed, if p ∈ Q⊥ and

its support consists of a single point then, since {Eαp}α∈ZZs span P , we would get Q⊥ = P). This implies

that (π ∩Q⊥)(X) is an ideal of π(X) which contains no monomials.

Let Z denote the set of all common zeros of the polynomials in (π∩Q⊥)(X). Let H = ∪sj=1{z ∈ Cs
∣∣zj =

0}. We contend that Z 6⊂ H. Indeed, if Z ⊂ H, then Hilbert’s Nullstellensatz (see e.g., [La;p.256]) would

imply that a power of the monomial x1x2 . . . xs lies in (Q⊥ ∩ π)(X).
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Let z ∈ Z\H. Then p(z) = 0 for every p(x) ∈ (Q⊥ ∩ π)(X), which is equivalent to the sequence zα

being orthogonal to Q⊥ ∩ π. Let p ∈ Q⊥ and choose β ∈ ZZs such that Eβp ∈ Q⊥ ∩ π, then

p · zα = Eβ(p) · Eβ(zα) = z−β(Eβ(p) · zα) = 0 .

Therefore, by Proposition 2.1, zα ∈ (Q⊥)⊥ = Q.

Since for every φ ∈ E ′(IRs) Kφ is a closed shift invariant subspace of Q, Theorem 1.2 implies the

following result of Dahmen and Micchelli (see [DM1; Theorem 4.1]).

Corollary 2.1. (Dahmen and Micchelli). Let φ be a compactly supported continuous function. If Kφ is

not trivial then it contains an exponential.

We now turn to the proof of Theorem 1.1. This proof utilizes the following lemma:

Lemma 2.1. Let φ ∈ E ′(IRs) and θ ∈ Cs. Denote

φθ :=
∑

α∈ZZs

eiθ·αEαφ . (2.4)

Let f ∈ D(IRs):= the space of all compactly supported infinitely differentiable functions. Then

φθ(f) =
∑

α∈ZZs

φ̂(θ − 2πα)f̂(−θ + 2πα) .

Proof. By Poisson’s summation formula (see e.g., [Y;p.149])

∑

α∈ZZs

g(α) =
∑

α∈ZZs

ĝ(2πα) , ∀g ∈ D(IRs) . (2.5)

Since φ is of compact support, it is continuous on C∞(IRs) (see [T; pp.255-257]), hence the definition of φθ

shows that

φθ(f) = φ(
∑

α∈ZZs

eiθ·αf(· + α)) . (2.6)

Fix x ∈ IRs and let g(y) = eiθ·yf(x + y). Thus g ∈ D(IRs) and the series
∑

α∈ZZs

eix·(2πα−θ)f̂(2πα − θ) is

convergent in the C∞(IRs) topology. Therefore (2.5) can be combined with (2.6) to yield

φθ(f) = φ(
∑

α∈ZZs

eix·(2πα−θ)f̂(2πα− θ))

=
∑

α∈ZZs

f̂(2πα− θ)φ(eix·(2πα−θ))

=
∑

α∈ZZs

f̂(2πα− θ)φ̂(θ − 2πα) .
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Proof of Theorem 1.1. Let θ ∈ Cs and define φθ as in Lemma 2.1. By definition eiθ·α ∈ Kφ if and only

if φθ ≡ 0. But by Lemma 2.1 φθ ≡ 0 if and only if φ̂(θ + 2πα) = 0 for all α ∈ ZZs, which is to say θ ∈ N(φ).

This proves (a), while (b) follows from (a) and Theorem 1.2.

Next, we are interested in the characterization of the tempered sequences in Kφ. Recall that a sequence

q ∈ Q is termed “tempered” if there exists a polynomial p(x) such that

∣∣q(α)
∣∣ ≤

∣∣p(α)
∣∣ ∀α ∈ ZZs . (2.7)

Given a tempered q ∈ Q, we define q̂(x) =
∑
α∈ZZs q(α)e−iα·x. This sum is always convergent (in the

distributional sense) to a tempered distribution which is periodic with respect to 2πZZs.

Theorem 2.1. Let φ ∈ E ′(IRs) and denote NIR(φ) = N(φ) ∩ IRs. Then

(a) If q ∈ Kφ is tempered then supp q̂ ⊂ NIR(φ).

(b) NIR(φ) = ∅ if and only if Kφ contains no tempered sequence other than zero.

(c) If Kφ 6= Q then Kφ ∩ `p = 0 for 1 ≤ p ≤ 2.

Proof. Assume that q ∈ Kφ is tempered. Application of Fourier transform to both sides of the equation
∑

α∈ZZs

q(α)Eαφ ≡ 0 yields

φ̂(x)q̂(x) =
∑

α∈ZZs

q(α)e−iα·xφ̂(x) ≡ 0 . (2.8)

To advance our proof we need

Lemma 2.2. Let f ∈ C∞(IRs), and let g be in D′(IRs) (= the space of all complex valued s-dimensional

distributions). If fg ≡ 0 then x ∈ supp g only if f(x) = 0.

Proof of Lemma 2.2. Since f ∈ C∞(IRs), it is a multiplier in D′(IRs) (see [T; p.250]), and hence fg is

well defined. Assume x◦ ∈ IRs and f(x◦) 6= 0. Since f is continuous, there exists a neighbourhood Ω of x◦

such that f(x) vanishes nowhere in the closure of Ω. Let ϕ(x) be a test function in D(IRs) with support

contained in Ω. Let ψ(x) be a test function such that ψ(x) = 1
f(x) in Ω. Then

g(ϕ) = g(fψϕ) = (fg)(ψϕ) = 0 .

Hence x0 /∈ supp g.

To prove part (a) of Theorem 2.1 assume that θ ∈ supp q̂. Since q̂ is periodic it follows that θ + 2πα ∈

supp q̂, α ∈ ZZs. Thus, application of Lemma 2.2 (with f = φ̂, g = q̂) shows, in view of (2.8), that

φ̂(θ + 2πα) = 0 for every α ∈ ZZs, hence θ ∈ N(φ).
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For (b) assume first that NIR(φ) 6= ∅ and let θ ∈ NIR(φ). Then by Theorem 1.1(a), Kφ contains the

exponential eiθ·α which is bounded, and hence tempered, on ZZs. Conversely, if Kφ contains a non-trivial

tempered sequence q ∈ Q, then by part(a) of the theorem supp q̂ ⊂ NIR(φ). Since supp q̂ is not empty

neither is NIR(φ).

Finally to see that (c) is valid, note that if q ∈ `p, 1 ≤ p ≤ 2 then by part (a) above q̂ is a measurable

function whose support lies in the set of all zeros of the entire function φ̂. Since Kφ 6= Q then φ 6≡ 0, hence

φ̂ 6≡ 0, and therefore φ̂, as a real analytic function, cannot vanish identically on any subset of IRs of positive

measure. We conclude that q̂ = 0 a.e. (IRs) and consequently q ≡ 0.

We now prove Theorem 1.3. Note that this theorem allows to transfer the results of Theorem 2.1 to the

shift invariant subspaces of Q.

Proof of Theorem 1.3. Only the “only if” implication needs verification. Assume therefore that Q is a

closed shift invariant subspace of Q. Since π(X) is Noetherian, the ideal (Q⊥ ∩ π)(X) is finitely generated,

say by {pj}
n
j=1. This means that the subspace Q⊥ ∩ π of π is spanned by {Eαpj

∣∣α ∈ ZZs+, 1 ≤ j ≤ n}. But

for every p ∈ Q⊥ there exists β ∈ ZZs such that Eβp ∈ π ∩ Q⊥, thus we conclude that Q⊥ is spanned by

{Eαpj
∣∣α ∈ ZZs, 1 ≤ j ≤ n}. For every 1 ≤ j ≤ n denote

φj =
∑

α∈ZZs

pj(α)E−αδ

where δ is the Dirac distribution. Choose {αj}nj=1 ⊂ IRs such that {Eα
j

(ZZs)}nj=1 are pairwise disjoint sets

and define

φ =

n∑

j=1

Eα
j

φj .

Obviously φ is of order zero and of finite support. We contend that Kφ = Q. Indeed, since the supports of

Eα
j

φj j = 1, . . . , n are pairwise disjoint it follows that Kφ = ∩nj=1Kφj
. Moreover, it is easy to see that

q ∈ Kφj
⇔ q ⊥ Eαpj , ∀α ∈ ZZs ,

thus

q ∈ Kφ ⇔ q ⊥ Eαpj , α ∈ ZZs , 1 ≤ j ≤ n .

But {Eαpj
∣∣α ∈ ZZs , 1 ≤ j ≤ n} span Q⊥ and therefore Proposition 2.1 implies

q ∈ Kφ ⇔ q ∈ (Q⊥)⊥ = Q .

Corollary 2.2. Let {φt}t∈T ⊂ E ′(IRs). Then there exists φ ∈ E ′(IRs) of finite support and order zero such

that
⋂

t∈T

Kφt
= Kφ .
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Proof. Since every intersection of closed shift invariant subspaces of Q is again a closed shift invariant

subspace of Q, the claim follows directly from Theorem 1.3.

Corollary 2.3. Let q ∈ `p\0, 1 ≤ p ≤ 2. Let u ∈ Q be arbitrary. Then, for every ε > 0 and a compact

M ⊂ ZZs, there exist {cj}
n
j=1 ⊂ C and {αj}nj=1 ⊂ ZZs such that

∣∣u(α) −
n∑

j=1

cjq(α
j + α)

∣∣ < ε ∀α ∈M .

Proof. Let Q be the closure in Q of the linear span of {Eαq}α∈ZZs . Since Q is a closed shift invariant

subspace of Q and q ∈ Q ∩ `p we can combine Theorem 2.1(c) together with Theorem 1.3 to conclude that

Q = Q, and our claim thus follows from the nature of the topology of Q.

In case s = 1 the closed shift invariant subspaces of Q have a very explicit and simple structure:

Corollary 2.4. Let s = 1 and let Q be a closed shift invariant subspace of Q then

(a) Q is of finite dimension.

(b) Q constitutes the kernel of some difference operator with constant coefficients.

Proof. Since the ring of all univariate polynomials is principal we can follow the proof of Theorem 1.3

to conclude that there exists p ∈ P such that Q = Kφ, where φ =
∑
α∈ZZ p(α)E−αδ. Assume supp

φ ⊂ {−n,−n+ 1, . . . , n} and let {qj}
n
j=−n be arbitrary complex numbers that satisfy

n∑
j=−n

qjp(j) = 0. It is

easy to verify that {qj}
n
j=−n has at most one extension to an element q ∈ Kφ hence dimQ = dimKφ ≤ 2n.

To prove (b) let E be the shift operator defined by Eφ(·) = φ(· − 1). By (a), E is a linear operator that

maps the finite dimensional space Q into itself. Let E|Q be the restriction of E to Q. Let λ1, . . . , λn be the

spectrum of E|Q counting multiplicities. By the Cayley-Hamilton theorem L :=
∏n

j=1(E|Q − λj) annihilates

Q. Since dimQ = dim kerL = n we conclude Q = kerL.

Remark 2.1. The above corollary shows that for univariate φ, Kφ∩`p = 0 for 1 ≤ p <∞, thus contradicting

Proposition 4.10.2 of [DM2].

Corollary 2.5. Assume s = 1, q ∈ Q and q is not an exponential polynomial (i.e., a linear combination of

products of exponentials by polynomials). Then the linear span of {Eαq}α∈ZZ is dense in Q.

Proof. By the assumption on q, it does not lie in any kernel of a difference operator with constant coefficients,

therefore Corollary 2.4 shows that q does not lie in any proper closed shift invariant subspace of Q.

Finally, we mention that Lefranc also proved in [Le] that every closed shift invariant subspace Q ⊂ Q

contains a dense subset spanned by exponential polynomials. Some of the results here could be alternatively

obtained with the aid of this stronger claim.
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3. Examples and Applications.

Here we give several examples in which Theorem 1.1 is applied to solve the question of the linear

independence of the translates of a φ ∈ E ′(IRs).

Corollary 3.1. Let φ, ψ ∈ E ′(IRs) and assume that

φ̂(x) = 0, x ∈ Cs ⇒ ψ̂(x) = 0 . (3.1)

Then

Kφ 6= 0 ⇒ Kψ 6= 0 ,

or equivalently

Kψ = 0 ⇒ Kφ = 0

Proof. By (3.1) N(φ) ⊂ N(ψ), hence the corollary follows directly from Theorem 1.1(b).

Example 3.1. Let φ be a bivariate continuous function whose support is contained in the hexagon drawn

below

Fig. 3.1

Assume that φ(0, 0) 6= 0 and denote

ψ =

k times︷ ︸︸ ︷
φ ∗ φ ∗ · · ·φ .

Then Kψ = 0.

To prove this statement we first see that the assumptions on φ imply that
∑

α∈ZZs

q(α)Eαφ(β) = 0 for

some β ∈ ZZs, only if q(β) = 0, and hence Kφ = 0. The general case now follows from Corollary 3.1 since

for x ∈ Cs

φ̂(x) = 0 ⇔ ψ̂(x) = 0 .

Our next example is closely related to the previous one:
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Example 3.2. Let ρ1, ρ2, ρ3 be univariate compactly supported distributions which satisfy for j = 1, 2, 3

ρ̂j(t) = 0 only if t ∈ 2πZZ\0 . (3.2)

Let k1, k2, k3 be positive integers. Define φ ∈ E ′(IR2) via its Fourier transform as follows

φ̂(x1, x2) = ρ̂1(x1)
k1 ρ̂2(x2)

k2 ρ̂3(x1 + x2)
k3 .

To analyze Kφ let

ρ(t) =

{
1 0 ≤ t ≤ 1,

0 otherwise .

Then ρ̂(t) =
1∫
0

e−itxdx and so ρ̂(t) = 0 if and only if t ∈ 2πZZ\0. Define

ψ(x1, x2) = ρ(x1) ∗ ρ(x2) ∗ ρ(x1 + x2) .

It is well known (see [BH1]) that ψ(x1, x2) is the hat function (with support similar to that drawn in Fig.

3.1) and therefore Kψ = 0. But since ψ̂(x) = ρ̂(x1)ρ̂(x2)ρ̂(x1 + x2) we see from (3.2) that

φ̂(x) = 0 ⇒ ψ̂(x) = 0 ,

and consequently we can appeal to Corollary 3.1 to conclude Kφ = 0.

We now prove Theorem 1.4. It should be mentioned that Example 3.2 is a special case of this theorem,

yet the proof of the general case employs more delicate arguments than those needed for the simple example

above.

Proof of Theorem 1.4. By Theorem 1.1 it is sufficient to show N(φ) = ∅. Let θ ∈ Cs. To prove that

θ /∈ N(φ) one needs to find α ∈ ZZs such that φ̂(θ + 2πα) 6= 0, which is equivalent to

φ̂j(iλj + (θ + 2πα) · xj) 6= 0 j = 1, . . . , n . (3.3)

Denoting

νj =
iλj + θ · xj

2π
j = 1, . . . , n ,

we see in view of (1.4), that (3.3) is valid if

νj + α · xj /∈ ZZ\0 j = 1, . . . , n . (3.4)

Without loss of generality we can assume that {x1, . . . , xn} are ordered such that for some 0 ≤ ` ≤ s ≤ m ≤ n

(a) νj ∈ ZZ j = 1, . . . , ` ,

(b) νj /∈ ZZ j = `+ 1, . . . ,m ,

(c) xj ∈ span {x1, . . . , x`} j = m+ 1, . . . , n ,

(d) {x1, . . . , xs} forms a basis to IRs .
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Denote by α the unique solution of

νj + α · xj = 0 j = 1, . . . , ` , (3.5)

α · xj = 0 j = `+ 1, . . . , s . (3.6)

Since {νj}
`
j=1 are integers and | detXJ0

| = 1 for J0 = {1, . . . , s} we conclude α ∈ ZZs. This α clearly satisfies

(3.4) for j = 1, . . . , `. Let ` < j ≤ m, then νj /∈ ZZ, while α · xj ∈ ZZ, hence νj + α · xj /∈ ZZ

Finally, let m < j ≤ n. Since xj ∈ span {x1, . . . , x`}, there exist β1, . . . , β` ∈ IR such that xj =
∑̀
k=1

βkx
k,

hence by (3.5)

νj + α · xj = νj +
∑̀

k=1

βk(α · xk) = νj −
∑̀

k=1

βkνk =
i(λj −

∑`

k=1 βkλk)

2π
.

Since λ1, . . . , λn, β1, . . . , β` are real, it follows that νj + α · xj /∈ ZZ\0. Consequently, α satisfies (3.4) and

hence (3.3). We conclude that N(φ) = ∅ and application of Theorem 1.1(b) completes the proof.

In our last example we prove the global linear independence of the integer translates of a bivariate

function φ which was examined in [BH2].

Example 3.3. Let τ be the characteristic function of the triangle with vertices (0, 0), (1, 0), (1, 1). Let ψ be

a three directional polynomial box spline, namely

ψ̂(x) = (

∫ 1

0

e−ix1tdt)k1(

∫ 1

0

e−ix2t)k2(

∫ 1

0

e−i(x1+x2)tdt)k3 = : φ̂k1

1 φ̂
k2

2 φ̂
k3

3

where k1, k2, k3 are nonnegative integers (see [BH1,2] for a discussion of polynomial box splines). Define

φ = ψ ∗ τ .

We claim that Kφ = 0. For this purpose first note that

φ̂(0) = τ̂(0) =
1

2
6= 0 . (3.7)

Note also that

Kτ∗φ1
= Kτ∗φ2

= Kτ∗φ3
= 0 . (3.8)

This can be easily seen when examining the supports of τ ∗ φj , j = 1, 2, 3 which are drawn in Fig. 3.2

Supp τ ∗ φ1 Supp τ ∗ φ2 Supp τ ∗ φ3
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Fig. 3.2

We see that for 1 ≤ j ≤ 3, every integer translate of τ ∗ φj contains a triangle which is not covered by the

other translates of τ ∗ φj . This verifies (3.8).

Now assume that θ ∈ N(φ), i.e., φ̂(θ + 2πα) = 0 for all α ∈ ZZ2. From (3.8) and Theorem 1.1(b) we

know that N(τ ∗ φj) = ∅, j = 1, 2, 3 and therefore

θ /∈ N(τ ∗ φj) j = 1, 2, 3 . (3.9)

Since φ̂ = τ̂ φ̂k1

1 φ̂
k2

2 φ̂
k3

3 , we conclude that there exist distinct α1, α2 ∈ ZZ2 and distinct j, k ∈ {1, 2, 3} such

that

φ̂j(θ + 2πα1) = φ̂k(θ + 2πα2) = 0 . (3.10)

But
φ̂1(x) = 0 ⇔ x1 ∈ 2πZZ\0 ,

φ̂2(x) = 0 ⇔ x2 ∈ 2πZZ\0 ,

φ̂3(x) = 0 ⇔ x1 + x2 ∈ 2πZZ\0 ,

and hence (3.10) implies that θ ∈ 2πZZ2. Denoting β = (2π)−1θ ∈ ZZ2 it follows from (3.7) that

φ̂(θ − 2πβ) = φ̂(0) =
1

2
6= 0 ,

contradicting the assumption θ ∈ N(φ). Consequently N(φ) = ∅ and application of Theorem 1.1(b) yields

Kφ = 0 as claimed.
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