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1. Introduction.

This paper is primarily concerned with local approximation to smooth complex valued functions by
finite dimensional spaces H, spanned by certain multivariate exponential-polynomials (i.e., products of ex-
ponentials by polynomials). Our interest in this subject was stimulated by the introduction of exponential
box (EB)-splines, [R1], and the question of their approximation order. Yet, we found that the investigation
of these spaces of exponential-polynomials of special structure leads to the understanding of other related
topics. In particular, the study of the dual space of H allows us to solve a class of multivariate polynomial
interpolation problems.

A typical H considered here is defined as the intersection of the null spaces of a certain family of
hyperbolic differential operators with constant coefficients. To introduce H and its defining operators let Γ
be a finite multiset consisting of pairs of the form

γ = (xγ , λγ) xγ ∈ IRs\0, λγ ∈ C. (1.1)

Hereafter we always assume that X := XΓ := {xγ}γ∈Γ spans IRs. The collection of all subsets of Γ is
decomposed into the following two disjoint sets

K(Γ) = {K ⊂ Γ | span{xγ}γ∈Γ\K 6= IRs}, (1.2)

L(Γ) = {K ⊂ Γ | span{xγ}γ∈Γ\K = IRs}. (1.3)

Now, the space H(Γ) is defined as follows

H(Γ) = {f ∈ D′(IRs)| pK(D)f = 0, ∀K ∈ K(Γ)}, (1.4)

where D′(IRs) is the space of all s-dimensional complex-valued distributions, and pK(D) is the differential
operator induced by the polynomial

pK(x) :=
∏
γ∈K

(x · xγ − λγ). (1.5)

It is known, [DM2],[BR], that H(Γ) is of finite dimension and spanned by exponential-polynomials.
First, we present the local approximation property of the spaces of type H(Γ). For this purpose let

d(X) = min{|K| ∣∣K ∈ K(Γ)} − 1, (1.6)

where as usual | · | denote the cardinality of a set. Note that d(X) is a nonnegative integer, which is indeed
determined by the set X.

Theorem 1.1. Let Ω be a convex open subset of IRs and let Γ be a set as in (1.1). Then for every α ∈ Ω
and f ∈ C |Γ|−s+1(Ω) there exists g ∈ H(Γ) such that

|(f − g)(x)| ≤ c ‖f‖|Γ|−s+1,∞,Ω‖x− α‖d(X)+1
∞ , all x ∈ Ω, (1.7)

where c is a constant depending on Γ and Ω and

‖f‖k,∞,Ω =
∑

0≤|ν|≤k

sup
x∈Ω

∣∣∣ (Dνf) (x)
∣∣∣. (1.8)
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To prove Theorem 1.1 we identify a polynomial space P(X) that the set of linear functionals

µp : f −→ [p(D)f ](0), p ∈ P(X), (1.9)

represents the dual of H(Γ). Denoting by P⊥(X) ⊂ C∞(IRs) the kernel of P(X) in the sense of (1.9), leads
to the direct sum decomposition

C∞(IRs) = H(Γ) ⊕ P⊥(X). (1.10)

Given f ∈ C∞(IRs), we choose the function g for the case α = 0 in Theorem 1.1, to be the projection of f
on H(Γ) with respect to (1.10). The desired approximation rate follows from the fact that P(X) contains
all polynomials of total degree ≤ d(X).

Once Theorem 1.1 is established it is used in the derivation of the degree of approximation by the linear
span of translates of an EB-spline. The h-scaled EB-spline based on a defining set Γ, Bh(Γ|x), is defined by
the equation ∫

IRs

Bh(Γ|x)φ(x)dx = hs−|Γ|
∫

[0,h]Γ

∏
γ∈Γ

eλγtγ

φ

∑
γ∈Γ

tγxγ

 dt, (1.11)

where φ is taken from a suitable space of test functions. The alternative definition in terms of the Fourier
transform is

B̂h(Γ|x) = hs−|Γ| ∏
γ∈Γ

∫ h

0

e(λγ−ix
γ
·x)tdt. (1.12)

It is known that Bh(Γ|x) is a compactly supported piecewise H(Γ)-function, [R1].

We are interested in H(Γ) because of the fact that for small enough h, [R2]:

H(Γ) ⊂ Bh(Γ) := span{Bh(Γ| · −hα)
∣∣ α ∈ ZZs}. (1.13)

A suitable quasi-interpolation scheme, together with the local approximation result of Theorem 1.1 yields

Theorem 1.2. Let Ω ⊂ IRs be open and convex and assume f ∈ C |Γ|−s+1(Ω). Then for every compact
A ⊂ Ω

distA(f,Bh(Γ)) := inf
g∈Bh(Γ)

‖f − g‖∞,A = O(hd(X)+1). (1.14)

It seems important to view the results of Theorem 1.2 in light of the so-called “Strang-Fix Conditions”
[SF]. For a given compactly supported function φ, the authors in [SF] examined the degree of approximation
attained by span{φh(· − hα)| α ∈ ZZs} with the scaled version φh(·) = φ(·/h). They proved that this degree
of approximation is completely determined by the maximal d that satisfies πd ⊂ span{φ(·−α)}α∈ZZs . In view
of this result Strang and Fix pointed out that a piecewise-polynomial φ should be an advantageous choice.

We emphasize that the Strang-Fix Conditions are not applicable to the scaled exponential box spline of
(1.11). In the non-polynomial situation the “correct” choice of the scaled function φh should be that which
preserves the local structure of φ, e.g., by taking {φh}h>0 to be piecewise H-functions for a certain fixed
space H with a “good” local approximation property (as in the case of the univariate L-splines see e.g., [S;
Ch. 10]). Thus from this point of view the Strang-Fix Conditions indicate that the scaling φh(·) = φ(·/h) is
appropriate only for special classes of piecewise-polynomial functions φ.

We illustrate the above by a simple example.
Example 1.1. Let

φh(x) =
{
x+ 1 0 ≤ x < h,
0 otherwise.

(1.15)
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Given a function f(x) bounded and uniformly continuous on IR, define

(Qhf)(x) =
∑

β∈hZZ

f(β)φh(x− β).

For a fixed x, choose α ∈ hZZ so that x ∈ [α, α+ h). Then

|f(x) − (Qhf)(x)| = |f(x) − f(α)(x− α+ 1)| ≤ |f(x) − f(α)| + |f(α)| |x− α| ≤ ωh(f) +Mh.

Thus, the scaled version (1.15) of φ1(x) yields approximation order o(1). On the other hand it is clear that
such a result fails to hold for the scaling

φ1(h−1x) =
{
h−1x+ 1 0 ≤ x < h,
0 otherwise,

as is guaranteed by the Strang-Fix Conditions.

The third part of the paper is concerned with a class of interpolation problems from the polynomial
space P(X), defined with respect to a set of directions X as “dual” to all spaces H(Γ), XΓ = X, in the sense
of (1.9). We identify various sets of linear functionals minimally total over P(X). Each such a set consists
of the linear functionals of the form

{` : f 7→ [q(D)f ](θ)
∣∣ q(x)eθ·x ∈ H(Γ)}.

These interpolation schemes are intimately related to the schemes considered in [GM]. The above point of
view enable us to give an unified analysis of the interpolation problems, and also to construct bases for P(X)
induced by such problems.

Throughout this paper, the cardinality of a set is denoted by | · |, while 〈·〉 stands for the (real) linear
span of a vector set. Given K ⊂ Γ (where Γ is as in (1.1)) we also use

〈K〉 := span{xγ}γ∈K .

Finally, all polynomial spaces considered herein are with complex coefficients, and hence linear span of
polynomials is always regarded here with respect to complex scalars.

2. Some Preliminaries on H(Γ).

We briefly review here some of the results from [BR] on H(Γ) (see also [DM2]). For this purpose we
first define the set of all “bases” in Γ :

J(Γ) = {J ⊂ Γ
∣∣ |J | = s, 〈J〉 = IRs}. (2.1)

Theorem 2.1. H(Γ) is a finite dimensional space spanned by exponential-polynomials. Its dimension equals
|J(Γ)|.

To describe the structure of H(Γ) denote for θ ∈ Cs

Γθ = {γ ∈ Γ
∣∣ pγ(θ) := xγ · θ − λγ = 0}, (2.2)

3



and define
Θ(Γ) = {θ ∈ Cs

∣∣ 〈Γθ〉 = IRs}. (2.3)

We have
Theorem 2.2. H(Γ) admits the following direct sum decomposition:

H(Γ) = ⊕θ∈Θ(Γ)H(Γθ). (2.4)

Furthermore, each function in H(Γθ) has the form

eθ·xp(x) , p ∈ H(Xθ), (2.5)

where H(Xθ) is the space of polynomials corresponding to Γ = (Xθ, 0), Xθ := XΓθ
.

A particularily simple structure for H(Γ) is obtained when Γ is a “simple” defining set, [R1], i.e, when
for each θ ∈ Θ(Γ) the set Γθ consists of exactly s elements (and hence is an element of J(Γ)). In this case
H(Γ) is spanned by pure exponentials, namely

H(Γ) = span{eθ·x∣∣ θ ∈ Θ(Γ)}. (2.6)

Simple defining sets and their corresponding simple exponential box splines were intensively investigated
in [R1]. Note that in view of (2.6) the result of Theorem 2.1 is rather trivial for the simple case. This
observation, together with a suitable limit process, was used in [BR] for the derivation of Theorem 2.1. The
“simple” notion plays an important role in this paper as well: we use it to construct a basis for H(Γ) and
its dual for general Γ, and hence to compute the dimension of this dual. Also, the interpolation problems
discussed in section 7 are in the simple case of a Lagrange type.

Finally, we note that, for a given defining set, one can always find a simple defining set Γ1 such that
XΓ = XΓ1 . (For a more precise statement see [R1].)
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3. Λ-Approximation.

We collect here some basic algebraic facts about duality in the finite dimensional case, and describe in
a general algebraic setting the approach taken here towards the proof of Theorem 1.1.

Let F be a vector space over C. Let Λ be an n-dimensional space of complex linear functionals defined
on F. Denote by Λ⊥ the kernel of Λ in F, that is

Λ⊥ = {f ∈ F | µ(f) = 0, ∀µ ∈ Λ}. (3.1)

Suppose that Λ is the dual space for some H ⊂ F .
Proposition 3.1. Let F,Λ,Λ⊥, H be as above. Then

F = H ⊕ Λ⊥. (3.2)

Assume now that H admits a direct sum decomposition

H = ⊕m
j=1Hj . (3.3)

Definition 3.1. A decomposition
Λ = ⊕m

j=1Λj (3.4)

is said to be dual to (3.3) if
(a) Λj is dual to Hj for j = 1, ...,m.
(b) µj(fk) = 0 whenever µj ∈ Λj , fk ∈ Hk, j 6= k.

We have

Proposition 3.2. Suppose that Λ is dual to H = ⊕m
j=1Hj . Let {Λj}m

j=1 be a set of m subspaces of Λ. If
(a) dim Λj ≥ dim Hj , j = 1, ...,m,
(b) µj(fk) = 0 whenever µj ∈ Λj , fk ∈ Hk, j 6= k,

then ⊕m
j=1Λj is a decomposition of Λ which is dual to ⊕m

j=1Hj .

Proof. Fix 1 ≤ k ≤ m and denote
∼
Hk = ⊕m

j=1
j 6=k

Hj . Since by (b)
∼
Hk is orthogonal to Λk, then

dimΛk ≤ dimH − dim
∼
Hk = dimHk,

hence by (a), dimΛk = dimHk and
∼
Hk is the kernel of Λk in H. Since Hk ∩

∼
Hk = 0 it follows that Hk is dual

to Λk. To verify that ⊕m
j=1Λj is direct, note that every element in 〈∪m

j=1
j 6=k

Λj〉 is orthogonal to Hk while Λk is

dual to Hk hence Λk ∩ 〈∪m
j=1
j 6=k

Λj〉 = 0.

Closely related to dual decompositions are dual bases: given a basis {µj}n
j=1 to Λ its dual basis {fj}n

j=1

in H is the unique basis in H which satisfies

µj(fk) = δj,k 1 ≤ j, k ≤ n. (3.5)

Denote by ψH the projection of F on H with respect to (3.2) (i.e., with kernel Λ⊥).

5



Proposition 3.3. Let {µj}n
j=1, {fj}n

j=1 be dual bases of Λ and H respectively. Then

ψH =
n∑

j=1

fjµj . (3.6)

Let us now consider a family {Hi}i∈I of subspaces of F, each of which has Λ as its dual. For i, j ∈ I

denote by ψi
j the restriction of ψHj

to Hi. Since ker ψi
j = Hi ∩ ker ψHj

= Hi ∩ Λ⊥ = 0, we see that
ψi

j is injective. But dimHi = dimHj = dimΛ = n and therefore we conclude that ψi
j induces isomorphism

between Hi and Hj which is termed herein “the canonical Λ-isomorphism”. Some properties of the canonical
Λ-isomorphism are recorded below.

Proposition 3.4. For i, j, k ∈ I

(a) ψj
kψ

i
j = ψi

k,

(b) (ψi
j)

−1 = ψj
i .

Proof. Let f ∈ F, then ψHj
f − f ∈ Λ⊥ and therefore ψHk

(ψHj
f − f) = 0. Hence

ψHk
ψHj

= ψHk
, (3.7)

and (a) follows. Since ψHi
is a projector to Hi then ψi

i is the identity mapping and thus the choice i = k in
(a) gives (b).

The next result deals with local approximation to smooth functions induced by projectors of the type
ψH . Let F = C∞(IRs) and let

Λ = {µp

∣∣ p ∈ P}, (3.8)

where P is a finite dimensional polynomial space satisfying

πd ⊂ P ⊂ πd, (3.9)

and µp retains its meaning as in (1.9).
Let Λ⊥ and H be as before and assume that H is translation invariant, namely

f ∈ H ⇒ f(· − α) ∈ H , ∀α ∈ IRs. (3.10)

(Actually by the above assumption H is necessarily spanned by exponential-polynomials, see [BR; Th. 1.3]).

Theorem 3.1. Let Ω be a convex set in IRs. Let f ∈ C∞(IRs) and α ∈ Ω. Then there exists g ∈ H,

dependent on f and α, such that for every x ∈ Ω

|(f − g)(x)| ≤ cΩ ‖f‖max{d,d+1},∞,Ω‖x− α‖d+1
∞ , (3.11)

where cΩ depends only on Λ, H and Ω (but not on α and f), and ‖f‖k,∞,Ω is as in (1.8).

Proof. Let {fj}n
j=1, {µpj

}n
j=1 be (arbitrary) dual bases of H and Λ respectively. Define

g(x) =
n∑

j=1

[pj(D)f ](α)fj(x− α). (3.12)
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Since H is translation-invariant, g ∈ H, and it is easy to verify that

p(D)(f − g)(α) = 0, ∀p ∈ P. (3.13)

Since πd ⊂ P it follows that all the Taylor coefficients up to order d in the expansion of f − g at α must
vanish. This shows that

(f − g)(x) = O(‖x− α‖d+1
∞ ).

To see that (3.11) is valid, we make use of (3.12). First note that

[pj(D)f ](α) ≤ cj‖f‖d,∞,Ω,

where cj is dependent only on pj . Therefore if |ν| = d+ 1 then

|Dνg(x)| ≤ ‖f‖d,∞,Ω

n∑
j=1

|cj | ‖fj‖d+1,∞,Ω =: c0‖f‖d,∞,Ω ,

and our claim follows from the usual remainder expression in Taylor formula.

In order to guarantee that cΩ and ‖f‖max{d,d+1},∞,Ω would be finite, one may require Ω to be relatively
compact. Note that the choice of the norm in Theorem 3.1 was quite arbitrary: clearly the same results hold
for every Lp-norm.

Finally, we note that the results and the proofs here remain unchanged when replacing C∞(IRs) by
Cm(IRs) with m ≥ max{d, d+ 1}.

4. The Duality between H(Γ) and P(X) and Local Approximation by H(Γ).

Let X be a fixed finite set of non-trivial vectors which spans IRs. Every defining set Γ (see (1.1)) for
which XΓ = X is termed here “an X-defining set”. X itself is also treated as the defining set composed of
(X, 0). Thus the sets K(X),L(X) retain their meaning as in (1.2), (1.3).

In this section we consider the space

P(X) := span{pY (x) =
∏
y∈Y

(y · x)∣∣ Y ∈ L(X)}. (4.1)

First, we compute its dimension, construct bases to this space and determine exactly the maximal d that
satisfies πd ⊂ P(X). Then, we prove that P(X) forms the dual of H(Γ) (in the sense of (3.8)), and thus
Theorem 3.1, when applied to the present specific situation, allows us to establish the order of the local
approximation by H(Γ) to smooth functions.

Clearly P(X) is a space of polynomials of degree not exceeding |X| − s. Our first aim is to describe a
basis for P(X).

Theorem 4.1. Assume Γ is an X-defining set which is simple. Then the polynomials

{pΓ\J(x) =
∏

γ∈Γ\J

(x · xγ − λγ)| J ∈ J(Γ)} (4.2)
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form a basis for P(X).

Proof. Denote temporarily by
∼
P(X) the linear span of the polynomials in (4.2). First, note that for each

L ∈ L(Γ) the polynomial pL(x) belongs to P(X): For L ∈ L(Γ) we have XL ∈ L(X); thus, given an arbitrary
subset Y of XL it follows that Y ∈ L(X) and hence pY ∈ P(X). Since pL is a linear combination of such
pY ’s we see that indeed pL ∈ P(X). Now, for each J ∈ J(Γ) , Γ\J ∈ L(Γ) therefore each of the polynomials

in (4.2) lies in P(X) and hence
∼
P(X) ⊂ P(X). To establish the inverse inclusion we need the following two

lemmas

Lemma 4.1. For every L ∈ L(Γ)

pL(x) ∈
∼
P(X)

Lemma 4.2. Let Γ1 be an X-defining set (not necessarily simple). Then, the polynomials {pL(x)| L ∈
L(Γ1)} span P(X).

The proof of Lemma 4.1 proceeds by induction on |Γ\L|. Since we assume L ∈ L(Γ), then we always have
|Γ\L| ≥ s. If |Γ\L| = s, then Γ\L is a basis J in J(Γ) and therefore pL(x) is one of the polynomials in (4.2).
Assume |Γ\L| > s. Since Γ is simple so is Γ\L, and hence Proposition 4.1 in [R1] ensures the existence of
{cγ}γ∈Γ\L such that

(i)
∑

γ∈Γ\L cγpγ(x) = 1, (4.3)
(ii) 〈Γ\(L ∪ γ)〉 6= IRs only if cγ = 0. (4.4)

Thus
pL(x) = pL(x)

∑
γ∈Γ\L

cγpγ(x) =
∑

γ∈Γ\L

cγpL∪γ(x), (4.5)

where, if L ∪ γ ∈ L(Γ) then the induction hypothesis implies pL∪γ(x) ∈
∼
P(X) and otherwise (4.4) implies

cγ = 0. Consequently (4.5) shows that pL(x) ∈
∼
P (X) and therby establishes Lemma 4.1.

To prove Lemma 4.2, it is enough to show that for every Y ∈ L(X), the polynomial pY (x) is in the
span of {pL(x)| L ∈ L(Γ1)}. We prove it by induction on |Y | ≥ 0. For Y = ∅ the claim is obvious. Assume
|Y | > 0, Y ∈ L(X). Let L ∈ L(Γ1) be the corresponding set (i.e., with XL = Y ). Then

pL(x) − pY (x) ∈ span{pV (x)| V ⊂ Y, V 6= Y }. (4.6)

Since Y ∈ L(X) then V ∈ L(X) for every V ⊂ Y, so by the induction hypothesis the right hand side of (4.6)
is spanned by {pL(x)| L ∈ L(Γ1)}. Consequently the same is true for pY (x), and the claim of Lemma 4.2 is
established.

To prove Theorem 4.1, note first that Lemma 4.1 together with Lemma 4.2 shows that
∼
P (X) = P (X). It remains to show that the polynomials in (4.2) are linearly independent: fix J0 ∈ J(Γ)
and let θ ∈ Θ(Γ) be the unique solution of the equations

pγ(θ) = 0, ∀γ ∈ J0.

Since Γ is simple, pγ(θ) = 0 if and only if γ ∈ J0. So, for J ∈ J(Γ)

pΓ\J(θ) 6= 0 ⇔ (Γ\J) ∩ J0 = ∅ ⇔ J = J0.
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We conclude that the polynomials of (4.2) are linearly independent, and therefore form a basis for P(X) as
claimed.

Since we can always assign to a given X a simple X-defining set Γ, Theorem 4.1 leads to:

Corollary 4.1.*
dimP(X) = |J(X)|.

Our next result characterizes the maximal d that satisfies πd ⊂ P(X) :

Theorem 4.2. Let d(X) be as in (1.6). Then
(a) πd(X) ⊂ P(X).
(b) πd(X)+1 6⊂ P(X).

Proof. We prove (a) by induction on d in the claim:
Let d be a nonnegative integer and let X ⊂ IRs be a set of nontrivial vectors satisfying 〈X〉 = IRs. If
d(X) ≥ d, one has πd ⊂ P(X).
Choosing Y = ∅ in (4.1) we see that P(X) always contains the constants hence the case d = 0 of the claim
is trivial. Let 0 < d ≤ d(X), and assume by induction that

πd−1 ⊂ P(Y ), for all Y with d(Y ) ≥ d− 1. (4.7)

We need to show πd ⊂ P(X). Substituting X = Y in (4.7) gives πd−1 ⊂ P(X). So it remains to show that
for every ν ∈ ZZs

+ with |ν| = d, the monomial xν belongs to P(X). Fix such ν. Since d > 0 there exists
1 ≤ j ≤ s such that νj > 0. Denote η = (ν1, ..., νj−1, νj − 1, νj+1, ..., νs). Since d(X) ≥ d > 0 then by (1.6)
〈X\y〉 = IRs for all y ∈ X. Furthermore, it is clear that d(X\y) ≥ d(X) − 1, and |η| = d− 1 ≤ d(X) − 1, so
we can use the induction hypothesis to conclude

xη ∈ P(X\y) , ∀y ∈ X.

Moreover, it is easy to see that

p(x) ∈ P(X\y) ⇒ (y · x)p(x) ∈ P(X), (4.8)

so substituting p(x) = xη in (4.8) we obtain

xη(y · x) ∈ P(X) , ∀y ∈ X. (4.9)

Finally, the fact that 〈X〉 = IRs implies the existence of {cy}y∈X such that xj =
Σy∈Xcy(y · x), hence (4.9) readily implies that xν = xη · xj ∈ P(X). This ends the proof of part (a) of
Theorem 4.2.

To prove part (b), note that by the definition of d(X) there exists X0 ⊂ X such that |X0| = d(X) + 1
and 〈X\X0〉 6= IRs. Let ξ ∈ IRs be orthogonal to 〈X\X0〉. Define q(x) = (ξ ·x)d(X)+1 ∈ πd(X)+1. We contend
that q(x) /∈ P(X).
To see this let Y ∈ L(X) and denote

Y1 = Y ∩ 〈X\X0〉, Y2 = Y \Y1.

* Recently we have learned from [DM2] that the space P(X) has already been investigated by H. Hakopian,
who has proved Corollary 4.1 as well.
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It follows that Y2 is a proper subset of X0 and therefore |Y2| ≤ d(X). Furthermore, ξ · y = 0 for every y ∈ Y1

and consequently we must have q(D)pY ≡ 0. Since this holds for every Y ∈ L(X) we conclude that q(D)
annihilates P(X). But q(D) does not annihilate q(x), whence q(x) /∈ P(X).

Now, let P⊥(X) be the kernel of P(X) i.e.,

P⊥(X) = {f ∈ C∞(IRs)
∣∣ µp(f) = 0, ∀p ∈ P(X)}. (4.10)

To establish the duality between H(Γ) and P(X) we first need
Theorem 4.3. For every X-defining set Γ

P⊥(X) ∩H(Γ) = 0 . (4.11)

Proof. Let f ∈ P⊥(X) ∩H(Γ). We claim that

pL(D)f ≡ 0 , ∀L ⊂ Γ. (4.12)

Assume for contradiction that (4.12) is not valid and let L ⊂ Γ be a maximal subset that does not satisfy
(4.12). Since f ∈ H(Γ) then by definition pK(D)f = 0 for every K ∈ K(Γ), hence L ∈ L(Γ), which
means that Γ\L contains some basis J ∈ J(Γ). Set g = pL(D)f. Since L is maximal we know that for each
γ ∈ J, pγ(D)g = pL∪γ(D)f ≡ 0, thus

g ∈ ∩γ∈Jker pγ(D).

Let θ be the unique element of Θ(J), then (with pxγ
(x) = xγ · x)

pxγ
(D)

(
e−θ·xg(x)

)
= e−θ·x(pγ(D)g(x)) = 0, ∀γ ∈ J,

and since 〈{xγ}γ∈J 〉 = IRs, it follows that g(x) = ceθ·x.
Finally, the assumption L ∈ L(Γ) implies pL(x) ∈ P(X), which together with f ∈ P⊥(X) yields

c = g(0) = [pL(D)f ](0) = 0.

Thus g ≡ 0, in contradiction to the choice of L. We conclude that (4.12) is valid and substitution of L = ∅
in (4.12) completes the proof of (4.11).

For the discrete analog of Theorem 4.3 see [BR; Th. 4.1], [DM2; Th. 6.1.III].

Now, Theorem 2.1 together with Corollary 4.1 leads to

dimH(Γ) = dimP(X),

and this last result can be combined with Theorem 4.3 to yield

Corollary 4.2. Let Γ be an X-defining set. Then P(X) forms a dual for H(Γ).

By Theorem 4.2 we know that πd(X) ⊂ P(X), hence Theorem 1.1 follows now by an application of
Theorem 3.1 to the present situation.

We proceed now to another application of the duality between H(Γ) and P(X):

Corollary 4.3. H(X) consists of polynomials of degree ≤ |X| − s.
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Proof. The fact that H(X) consists of polynomials is well known (see [BH]). Given p ∈ P(X),
q ∈ H(X) we note that

p(D)q(0) = q(D)p(0),

and therefore , by Corollary 4.2, H(X) can be regarded as the dual of P(X). Furthermore, since H(X) is
scale-invariant it stratifies (i.e., it is graded by its homogeneous components). Now P(X) ⊂ π|X|−s, and so
every differential operator, induced by a homogeneous polynomial of degree > |X| − s, annihilates P(X),
hence its corresponding polynomial does not belong to H(X).

We mention that under the assumption X ⊂ ZZs the above corollary has already been proved in [BH].

Finally, note that Theorem 1.1 gives only a lower bound for the local approximation order by H(Γ).
This bound is shown below to be the exact approximation order.

Theorem 4.4. Let Γ be an X-defining set. Then the local approximation order by H(Γ) to smooth functions
is d(X) + 1.
Proof. In view of Theorem 1.1, it suffices to show that there exists a smooth function q which fails to be
approximated to the order d(X) + 2. Let q be the homogeneous polynomial of degree d(X) + 1 constructed
in the proof of Theorem 4.2(b); by that proof we know that the differential operator q(D) annihilates P(X).
Let f be the best local approximation (at 0) for q from H(Γ) and let g be the Taylor expansion of f up to
degree d(X) + 1. Once we show that q 6= g, it will follow that f approximates q to an order≤ d(X) + 1.

To prove that indeed q 6= g, we assume for contradiction that q = g and pick K ∈ IK(Γ). Now,
the homogeneous component of highest degree of the polynomial pK is pXK

, while the first non-trivial
homogeneous component in the Taylor expansion of f is g = q. Thus, since we have pK(D)f = 0 it follows
that pXK

(D)q = 0. Since the above K ∈ IK(Γ) was arbitrary, we conclude that

pY (D)q = 0, all Y ∈ IK(X),

i.e., q ∈ H(X). Yet, this last cosequence, together with the fact that q(D) annihilates P(X) contradicts the
duality between H(X) and P(X).

5. Approximation Order for Exponential Box Splines.

Here we use Theorem 1.1 and a modified version of the quasi-interpolation scheme of [CD] to establish
the approximation order for exponential box splines, i.e., to prove Theorem 1.2. Throughout this section we
assume that Γ is a fixed X-defining set and X ⊂ ZZs. Let

Bh(Γ) = span{Bh(Γ| · −α)| α ∈ hZZs}, (5.1)

and define the map SΓ
h : C(IRs) −→ Bh(Γ) by

SΓ
h (f) =

∑
α∈hZZs

f(α)Bh(Γ| · −α). (5.2)

For the proof of Theorem 1.2 given here , we need to know that

H(Γ) ⊂ Bh(Γ). (5.3)

A sufficient condition for (5.3) was derived in [BR] (see also [R2; Th. 4.1], [DM2; Pr. 4.2]).
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Theorem 5.1. [BR; Th. 6.2].
For θ ∈ Θ(Γ), the following conditions are equivalent

(a) SΓ
h induces an automorphism on H(Γθ)

(b) B̂h(Γ| − iθ) 6= 0.

Thus, in order to guarantee (5.3) it is sufficient to demand

B̂h(Γ| − iθ) 6= 0 , ∀θ ∈ Θ(Γ). (5.4)

But for a fixed x ∈ Cs

h−sB̂h(Γ|x) = h−|Γ| ∏
γ∈Γ

(∫ h

0

e(λγ−ix·xγ)tdt

)
−→

h→0
1, (5.5)

and we deduce from Theorem 5.1 the following

Corollary 5.1. For every defining set Γ, there exists hΓ > 0 such that for every h < hΓ

(a) B̂h(Γ| − iθ) 6= 0, ∀θ ∈ Θ(Γ), (5.6)
(b) H(Γ) ⊂ Bh(Γ). (5.7)

Given f ∈ H(Γθ), we also need the following information on SΓ
hf :

Theorem 5.2. [R2; Cor. 5.1]
Let f(x) = eθ·xp(x) ∈ H(Γθ). Assume B̂h(Γ| − iθ) 6= 0 then

SΓ
h (f) = eθ·xq(x)

where
deg(p(x) − hsB̂h(Γ| − iθ)−1q(x)) < deg p(x).

To introduce the quasi-interpolant QΓ
h denote first

rθ = |Γθ| − s+ 1,

ρθ,h = hsB̂−1
h (Γ| − iθ),

and define
QΓ

h = I −
∏

θ∈Θ(Γ)

(I − ρθ,hS
Γ
h )rθ , (5.8)

where I is the identity mapping.

The basic properties of QΓ
h are recorded in the next two propositions.

Proposition 5.1. Assume that (5.6) holds. Then

QΓ
h(f) = f , ∀f ∈ H(Γ). (5.9)

Proof. To prove (5.9) we need to show that
∏

θ∈Θ(Γ)(I − ρθ,hS
Γ
h )rθ annihilates H(Γ). In view of Theorem

2.2 this will follow as soon as we know that

(I − ρθ,hS
Γ
h )rθ

∣∣
H(Γθ)

≡ 0 , ∀θ ∈ Θ(Γ). (5.10)

To verify (5.10), note that by Theorem 5.2 I − ρθ,hS
Γ
h is degree reducing on the polynomial part of every

eθ·xp(x) ∈ H(Γθ). But by Corollary 4.3 and the fact that H(Γθ) = eθ·xH(Xθ), we have deg p(x) ≤ |Γθ|− s =
rθ − 1, thus (5.10) is verified and (5.9) follows.
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Proposition 5.2. QΓ
h is bounded and local. More precisely, there exist k, δ > 0 dependent only on Γ, such

that for every f ∈ C(IRs), x ∈ IRs and 0 < h < 1

|(QΓ
hf)(x)| ≤ k‖f‖∞,ball(x;δh),

where ball(x; δh) is the open ball centered at x with radius δh.

The proof of Proposition 5.2 is based on
Lemma 5.1. For every defining set Γ and 0 < h < 1

‖Bh(Γ)‖∞ ≤
∏
γ∈Γ

e|λγ | . (5.11)

Proof of Lemma 5.1. Let ϕ be a positive compactly supported C∞ function for which
∫
IRs ϕ(x)dx = 1.

By (1.11) ∣∣ ∫
IRs

Bh(Γ|x)ϕ(x)dx
∣∣ =∣∣hs−|Γ|

∫
[0,h]|Γ|

∏
γ∈Γ

eλγtγ

ϕ

∑
γ∈Γ

xγtγ

 dt
∣∣

≤ hs−|Γ| ∏
γ∈Γ

e|λγ |
∫

[0,h]|Γ|
ϕ

∑
γ∈Γ

xγtγ

 dt

=
∏
γ∈Γ

e|λγ |
∫

IRs

Bh(X|x)ϕ(x)dx,

where Bh(X|x) is the box spline based on the defining set composed of (XΓ, 0). Clearly Bh(X|·) is nonneg-
ative. Also we know from [BH] that ∑

α∈hZZs

Bh(X| · −α) ≡ 1,

and hence ‖Bh(X)‖∞ ≤ 1. Consequently we conclude

∣∣ ∫
IRs

Bh(Γ|x)ϕ(x)dx| ≤
∏
γ∈Γ

e|λγ |
∫

IRs

ϕ(x)dx =
∏
γ∈Γ

e|λγ |.

It follows therefore that |Bh(Γ|x)| ≤ ∏
γ∈Γ e

|λγ | at all points of continuity of Bh(Γ|·); since Bh(Γ|·) in
continuous a.e. (IRs) (see [BH], [R1]) we obtained (5.11).

Proof of Proposition 5.2. First we expand the right hand side of (5.8) to obtain

QΓ
h = −

∑
0<ν≤r

(
r

ν

) ∏
θ∈Θ(Γ)

ρ
νθ

θ,h

(−SΓ
h

)|ν|
, (5.12)

with r = {rθ}θ∈Θ(Γ), ν = {νθ}θ∈Θ(Γ).

By (1.11) suppBh(Γ) ⊂
{∑

γ∈Γ tγxγ | 0 ≤ tγ ≤ h
}
, so there exists an integer k1 such that for every h > 0

and x ∈ IRs

|{α ∈ hZZs
∣∣Bh(Γ|x− α) 6= 0}| ≤ k1. (5.13)

(Actually the right hand of (5.13) is essentially independent of h and x, see [DM1; Th. 3.1].)
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Applying Lemma 5.1 we obtain

|(SΓ
hf)(x)| =

∣∣∣∣ ∑
α∈ZZs

h

f(α)Bh(Γ|x− α)
∣∣∣∣ ≤ ∏

γ∈Γ

e|λγ |k1‖f‖∞,ball(x,δ1h),

where δ1 is the diameter of suppB1(Γ). Repeated use of this result leads to

|[(SΓ
h )jf ](x)| ≤

∏
γ∈Γ

ej|λγ |kj
1‖f‖∞,ball(x,jδ1h). (5.14)

Substituting (5.14) into (5.12) and taking into account the uniform boundness of
{ρθ,h}θ∈Θ(Γ),0<h<1 give the desired result with δ = |r|δ1.

Proof of Theorem 1.2. Assume h is small enough for (5.6) to hold. Fix x ∈ A. Then for every g ∈ H(Γ)
we get from Propositions 5.1, 5.2

|f(x) − (QΓ
hf)(x)| ≤ |(f − g)(x)| + |QΓ

h(f − g)(x)|
≤ c1‖f − g‖∞,ball(x,δh)

Thus, Theorem 1.1 implies

|f(x) − (QΓ
hf)(x)| ≤ c2h

d(X)+1‖f‖|Γ|−s,∞,Ah
,

where Ah = ∪x∈Aball(x, δh). The compactness of A implies that Ah ⊂ Ω for sufficiently small h, thereby
ensures (1.14).
Note that, as is seen by the proof above, Theorem 1.2 is valid for every set A satisfying Ah ⊂ Ω for some h.

6. More on the Duality between H(Γ) and P(X).

Denote by ψΓ the projector of C∞(IRs) on H(Γ) with kernel P⊥(X).Given twoX-defining sets Γ1,Γ2, the
canonical P-isomorphism obtained when restricting ψΓ2 to H(Γ1) is denoted by ψΓ1

Γ2
. Some of the properties

of the maps ψΓ, ψ
Γ1
Γ2

were discussed in the general framework of section 3. Here we derive several additional
properties which are specific to the present situation.

Proposition 6.1. For every γ ∈ Γ
pγ(D)ψΓ = ψΓ\γpγ(D).

Proof. Let f ∈ C∞(IRs). Since pγ(D) maps H(Γ) into H(Γ\γ) then pγ(D)ψΓf ∈ H(Γ\γ). Given L ∈ L(Γ\γ)
it is clear that L ∪ γ ∈ L(Γ), therefore

pL(D)[pγ(D)ψΓf ](0) = pL∪γ(D)ψΓf(0) = pL∪γ(D)f(0) =

pL(D)pγ(D)f(0) = [pL(D)ψΓ\γpγ(D)f ](0).

From Lemma 4.2 we know that {pL(x)}L∈L(Γ\γ) span P(X\xγ) thus Theorem 4.3 implies that

pγ(D)ψΓf − ψΓ\γpγ(D)f ∈ H(Γ\γ) ∩ P⊥(X\xγ) = 0.

The usefulness of Proposition 6.1 is already illustrated in the following

14



Corollary 6.1. For every K ⊂ Γ, the operator pK(D) maps H(Γ) onto H(Γ\K).

Proof. It is enough to prove the claim for K = {γ}. Fix f ∈ H(Γ\γ) and choose g1 ∈ C∞(IRs) such that
pγ(D)g1 = f. Define g = ψΓg1. Then by Proposition 6.1

pγ(D)g = pγ(D)ψΓg1 = ψΓ\γ(pγ(D)g1) = ψΓ\γf = f.

Our next aim is to construct a basis of H(Γ). In case Γ is simple, a natural basis for H(Γ), in view of
(2.6), is EΓ := {eθ·x}θ∈Θ(Γ). For this case it is easy to verify that the dual basis of P(X) is given by

pθ(x) := [pΓ\Γθ
(θ)]−1pΓ\Γθ

(x), θ ∈ Θ(Γ). (6.1)

In case Γ is not simple, we may choose a simple X-defining set Γ1, and define the “Γ1-basis of H(Γ)” as
the image of EΓ1 under the canonical P-isomorphism ψΓ1

Γ . Denoting this basis by {fθ(x)}θ∈Θ(Γ1), we can
combine (3.6) together with Proposition 3.3 to conclude

Corollary 6.2. Assume Γ,Γ1 are X-defining sets, Γ1 is simple. For θ ∈ Θ(Γ1) define fθ(x) = ψΓ1
Γ (eθ·x).

Let {pθ(x)}θ∈Θ(Γ) be as in (6.1). Then

ψΓf =
∑

θ∈Θ(Γ1)

µpθ
(f)fθ , f ∈ C∞(IRs). (6.2)

In order to compute {fθ(x)}θ∈Θ(Γ1), one may use the fact that for a fixed θ0 ∈ Θ(Γ1) the conditions

[pθ(D)fθ0 ](0) = δθ,θ0 , (6.3)

pK(D)fθ0 ≡ 0 , ∀K ∈ K(Γ), (6.4)

determine fθ0 uniquely.
A special important case occurs when Γ = X (namely Γ = (X, 0)). In this case Corollary 4.3 guarantees that

H(X) ⊂ π|X|−s

and hence (6.3), (6.4) are reduced to a system of linear equations in the unknowns

{Dνfθ(0)}0≤ν≤|X|−s.

Although in general a basis of H(Γ) is not easily constructed, the explicit direct sum decomposition of
Theorem 2.2 is always valid. Thus, we are interested in characterizing its dual decomposition in P(X).

Theorem 6.1. Let Γ be an X-defining set. For θ ∈ Θ(Γ) define

Pθ = {p ∈ P(X)| pΓ\Γθ
(x) divides p(x)}. (6.5)

Then
P(X) = ⊕θ∈Θ(Γ)Pθ,

and this decomposition is dual to that of Theorem 2.2.

Proof. Denote
Xθ = XΓθ

. (6.6)
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Fix θ0 ∈ Θ(Γ) and let Y = {xγ | γ ∈ Γ\Γθ0}. Then

pΓ\Γθ0 (x) ∈ span{pV (x)| V ⊂ Y } , (6.7)

where, as before, pV (x) = Πy∈V (y · x).
Let q(x) ∈ P(X\Y ) = P(Xθ0). Using (6.7) it is easily seen that p(x) := pΓ\Γθ

(x)q(x)
∈ P(X). Combining this observation together with Theorem 2.2 and Corollary 4.1 (when applied to Γθ0

and Xθ0 respectively) we obtain

dimPθ0 ≥ dimP(Xθ0) = dimH(Γθ0).

On the other hand we know that pΓ\Γθ0 (D) maps H(Γ) to H(Γ\(Γ\Γθ0)) = H(Γθ0), so pΓ\Γθ0 (D) annihilates
⊕ θ∈Θ(Γ)

θ 6=θ0
H(Γθ). It follows therefore that for p ∈ Pθ0 , p(D) annihilates ⊕ θ∈Θ(Γ)

θ 6=θ0
H(Γθ) and in particular Pθ0 is

orthogonal to that space. Application of Proposition 3.2 completes the proof.

Corollary 6.3. Let Γ be an X-defining set, θ ∈ Θ(Γ), then

Pθ =
{
pΓ\Γθ

(x)q(x)| q(x) ∈ P (Xθ

)}
.

7. Related Interpolation Problems.

Given the polynomial space P(X) defined by the directions X in IRs, we describe here a class of
interpolation problems induced by all the X-defining sets Γ, and apply the duality between H(Γ) and P(X)
to show the solvability of these problems. The method of analysis provides an unified theory for a large class
of the interpolation problems considered in [GM].

Let {fj(x)}|J(X)|
j=1 be any basis of H(Γ). Let {βj}|J(X)|

j=1 ⊂ C be arbitrary numbers. From the duality
between P(X) and H(Γ) we know that there exists a unique p(x) ∈ P(X) such that

µp(fj) := [p(D)fj ](0) = βj , j = 1, ..., |J(X)|. (7.1)

To reveal the dual meaning of (7.1), assume that fj ∈ H(Γθ) for some θ ∈ Θ(Γ). Then fj(x) = eθ·xq(x), q ∈ π,

and since

Dα
[
eθ·xxβ

] ∣∣∣∣
x=0

=

{
θα−β α!

(α−β)! , β ≤ α,

0, otherwise,

one obtains
µp(fj) = p(D)[eθ·xq(x)]

∣∣
x=0

= [q(D)p](θ). (7.2)

In particular, if fj(x) = eθ·xxα, α ∈ ZZs, then

µp(fj) = (Dαp)(θ). (7.3)

We therefore obtain

Theorem 7.1. Let f : Cs → C be a smooth function and let Γ be an X-defining set. Then there exists a
unique pf (x) ∈ P(X) such that for every θ ∈ Θ(Γ) and q ∈ H(Xθ)

[q(D)pf ](θ) = [q(D)f ](θ), (7.4)
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where, as before, Xθ = XΓθ
.

Note that in (7.4) any interpolation point θ ∈ Θ(Γ) ⊂ Cs is the intersection of the hyperplanes

xγ · x− λγ = 0 , γ ∈ Γ(θ). (7.5)

Corollary 7.1. Let f : Cs → C and let Γ be an X-defining set which is simple. Then there exists a unique
pf (x) ∈ P(X) solving the Lagrange interpolation problem

pf (θ) = f(θ), θ ∈ Θ(Γ). (7.6)

The special case of the above problem, when X is a general position (i.e., any s elements of X form a
basis for IRs) and Γ is simple has been studied in [CY].

The structure of the X-defining sets which induce solvable Hermite interpolation problems on P(X) is
“locally in general position”, which means that for each θ ∈ Θ(Γ) the set Xθ is in general position. (Of
course, all simple defining sets are locally in general position. Also, if X is in general position then Γ is
locally in general position regardless of the choices of λ.) In this case H(Γ) admits a very simple structure.
In fact (as can be easily deduced from Theorems 2.1, 2.2 and Corollary 4.3) a basis of H(Γ) is

{
eθ·xxν | θ ∈ Θ(Γ), |ν| ≤ |Γθ| − s

}
. (7.7)

Thus Theorem 7.1 implies

Corollary 7.2. Let f : Cs → C be a smooth function and let Γ be an X-defining set locally in general
position. Then there exists a unique pf (x) ∈ P(X) solving the Hermite interpolation problem

[Dνpf ](θ) = [Dνf ](θ), θ ∈ Θ(Γ), |ν| ≤ |Γθ| − s. (7.8)

Remark 7.1. It should be emphasized that the interpolation problem induced by a set Γ locally in general
position is significantly simpler than those induced by general sets Γ. This is so since the solution of the
interpolation problem is crucially based on the dimension result of Theorem 2.1, which is rather trivial in
the case of defining sets locally in general position.

More information on the interpolant p(x) ∈ P(X) can be deduced from the dual decompositions H(Γ) =
⊕θ∈Θ(Γ)H(Γθ), P(X) = ⊕θ∈Θ(Γ)Pθ (see Theorems 2.2. and 6.1). In fact we have
Lemma 7.1. Let θo ∈ Θ(Γ), let f : Cs → C be a smooth function and let pf be the interpolant from P(X)
to f induced by Γ. Then the following conditions are equivalent:

(a) [q(D)f ](θ) = 0 , ∀θ ∈ Θ(Γ)\{θo}, q ∈ H(Xθ).
(b) pf (x) = pΓ\Γθo (x)q(x) , q(x) ∈ P(Xθ) .

Proof. Assume that (a) holds. In this case, since pf interpolates f , we have

[q(D)pf ](θ) = 0 q ∈ H(Xθ), ∀θ ∈ Θ(Γ)\{θo},

which, in view of (7.2), shows that pf is orthogonal to ⊕θ∈Θ(Γ)\θoH(Γθ). Thus (b) is established by an
application of Theorem 6.1 and Corollary 6.3. Conversely, assume (b). Then, as in the proof of Theorem
6.1, pf (D) annihilates each H(Γθ), θ 6= θo, and again (7.2) implies the validity of (a).
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Corollary 7.3. Let f : Cs → C be a smooth function, and let pf ∈ P(X) be its interpolant obeying the
conditions induced by an X-defining set Γ. Then

pf (x) =
∑

θ∈Θ(Γ)

pΓ\Γθ
(x)pθ(x) , (7.9)

where pθ(x) ∈ P(Xθ) is determined by Γ and the values

[q(D)f ](θ) , q ∈ H(Xθ).

The representation (7.9) is of “Lagrange type”. For simple Γ it becomes

pf (x) =
∑

θ∈Θ(Γ)

p−1
Γ\Γθ

(θ)pΓ\Γθ
(x)f(θ) , (7.10)

since |Γθ| = s and H(Γθ) = {eθ·x}.

The polynomials in the sum (7.10) constitute the basis of P(X) introduced in (6.1) (see also Theorem
4.1). This basis depends on the values of the λ’s in Γ.

Using Newton type interpolation formulae, as in [GM], for simple defining set Γ = (X,λ), and taking
λ→ 0, we are able to construct a basis of P(X) independent of the values λ. (This basis corresponds to the
interpolation problem induced by Γ = (X, 0).) Introducing such basis for each P(Xθ) in Corollary 6.3 and
Theorem 6.1, we obtain a natural basis for P(X) corresponding to a given Γ.

The construction of this basis is by recursion on s. First we treat the case s = 2.

Let {x1, ..., xn} ⊂ IR2 be a set of nontrivial vectors satisfying 〈x1, x2〉 = IR2. Denote Xk = {x1, . . . , xk}. For
the trivial cases k = 1, 2, we choose our basis for P(Xk) to be ∅, {1} respectively.

Theorem 7.2. For k = 2, .., n define

Zk = {z ∈ IR2
∣∣ ‖z‖ = 1, 〈z, xk〉 = IR2, ∃xi, 1 ≤ i ≤ k − 1,3 〈xi〉 = 〈z〉}, (7.11)

and denote for z ∈ Zk

`z = |〈z〉 ∩Xk−1| .

Then, for k = 2, ..., n, the polynomials

(z · x)ν
∏

xi /∈〈z〉
1≤i≤j−1

(xi · x) j = 2, ..., k, z ∈ Zj , ν = 0, ..., `z − 1, (7.12)

form a basis for P(Xk).

Proof. Denote the set of all polynomials in (7.12) by Vk. It is easy to see that
Vk ⊂ P(Xk), k = 2, ..., n. Moreover, for a fixed j the number of polynomials in (7.12) equals the num-
ber of bases in Xj that contain xj , hence

|Vk| =
∣∣ ∪k

j=2 Vj\Vj−1

∣∣ = ∣∣ ∪k
j=2 J(Xj)\J(Xj−1)

∣∣ = |J(Xk)|.
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Thus, in view of Corollary 4.1, our claim will follow as soon as we show that the polynomials of Vk are
linearly independent. We prove this by induction on k ≥ 2. For k = 2 the linear independence is trivial.
Assume k > 2 and fix z ∈ Zk. Choose η ∈ IR2 such that z · η = 0 and let q(x) = (η · x)k−`z−1. It is clear
that q(D) annihilates P(Xk−1) and in particular all the polynomials in Vk−1. Furthermore, q(D) annihilates
each polynomial in (7.12) corresponding to j = k and z̃ 6= z, since such a polynomial contains no more than
k − `z − 2 a factor xi · x with xi /∈ 〈z〉. Finally

q(D)

(z · x)ν
∏

xi∈〈z〉
1≤i≤k−1

(xi · x)

 = c(z · x)ν , ν ≥ 0

with c 6= 0, and since (z ·x)ν , ν = 0, ..., `z−1 are linearly independent, one concludes that all the polynomials
in Vk are linearly independent too. This completes the proof of the inductive step and therby the proof of
Theorem 7.2.

We now discuss the extension of the construction of Theorem 7.2 to IRs, s > 2.
Let {x1, ..., xn} ⊂ IRs be a set of non-trivial vectors, 〈x1, ..., xs〉 = IRs. As before we choose Vs = {1},

where Vj is the basis for P(Xj) := P({x1, ..., xj}). To construct the basis Vk to P(Xk), k > s, we first
introduce the following set of hyperplanes in IRs :

Zk = {H ⊂ IRs
∣∣ dimH = s− 1, xk /∈ H, 〈H ∩Xk〉 = H}. (7.13)

Each H ∈ Zk can be identified with IRs−1, and hence we assume the existence of a basis Vk,H to P(Xk ∩H),
constructed in the previous step.
Theorem 7.3. The polynomials ∏

xi /∈H

1≤i≤j−1

(xi · x)

 q(x), j = 2, .., k, H ∈ Zj , q ∈ Vj,H , (7.14)

form a basis for P(Xk).

The proof of Theorem 7.3 is obtained by a straightforward modification of the arguments used in the proof
of Theorem 7.2. Indeed, it is easy to see that, denoting the set of polynomials in (7.14) by Vk, we have
Vk ⊂ P(Xk) and since |Vj,H | = |J(H ∩ Xk)| (s ≤ j ≤ k,H ∈ Zj) we conclude |Vk| = |J(Xk)|. Thus, as
before, the proof is reduced to proving the linear independence of the elements of (7.14). This is established
by induction on k, where now, for H ∈ Zk, the differential operator q(D) corresponds to the polynomial
q(x) = (η · x)k−`H−1, where η ∈ H⊥ and `H = |H ∩Xk|.

The recursion in the construction of the basis for P(X) was mainly for the clarity of the presentation.
This basis can be described explicitly as follows: Let J = {xj1 , ..., xjs} be an element of J(X), where
j1 < j2 < ... < js. With this J we associate a subset YJ of X defined as

YJ := {xj ∈ X| xj 6∈ 〈XJ ∩Xj−1〉}; (7.15)

and finally we set
qJ (x) :=

∏
y∈YJ

(y · x). (7.16)
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The set {qJ}J∈J(X) is identical with the basis introduced in (7.14).

The basis for P(X) described above may sometimes be valuable for the understanding of the structure
of H(X). This point of view is illustrated in the following example:
Example 7.1. LetX consists of the three bivariate vectors {(1, 0), (1, 1), (0, 1)} with respective multiplicities
k1, k2, k3. ¿From Corollary 4.3 we know that H(X) ⊂ π|X|−2. We wish to find the dimension of the subspace
of H(X) consists of homogeneous polynomials of degree |X| − 2.
Now, the fact that both P(X) and H(X) are scale-invariant together with the duality between these two
spaces, ensures us that we can compute this number from the corresponding subspace of P(X). Since the
basis elements described in (7.16) (or (7.12)) are homogeneous we only need to count those of the appropriate
degree. Suppose that the order induced on the set X puts first all the (1, 0)’s, then the (1, 1)’s and then the
rest. To obtain a set YJ in (7.15) of maximal cardinality, one must choose the last element of X for the basis,
together with either the last (1,0) vector or the last (1,1) vector. This shows that the desired dimension is
always 2, regardless of the multiplicities of the three vectors.

The same argument shows that if X ⊂ IR2 consists of k different vectors with arbitrary multiplicities,
the dimension of the largest homogeneous component of H(X) would be k − 1.
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