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Abstract:

The B-spline representation for divided di�erences is used, for the �rst time, to provide
Lp-bounds for the error in Hermite interpolation, and its derivatives, thereby simplifying
and improving the results to be found in the extensive literature on the problem. These
bounds are equivalent to certain Wirtinger inequalities (cf. [FMP91:p66]).

The major result is the inequality

jf(x) �H�f(x)j � n1=q

n!

j!�(x)j
(diamfx;�g)1=q kD

nfkq ;

where H�f is the Hermite interpolant to f at the multiset of n points �,

!�(x) :=
Y
�2�

(x � �);

and diamfx;�g is the diameter of fx;�g. This inequality signi�cantly improves upon
`Beesack's inequality' (cf. [Be62]), on which almost all the bounds given over the last 30
years have been based.
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Lp-error bounds for Hermite interpolation
and the associated Wirtinger inequalities

Shayne Waldron (waldron@math.wisc.edu)

1. Introduction

While working on the error in multivariate polynomial interpolation, I became aware
of the suprisingly extensive literature on the error in Hermite interpolation by univariate

polynomials. Two problems seem to have been the particular focus of these many papers.
One is the bounding of the Lp-norm of the error in terms of the Lq-norm of the appropriate
derivative. The other is the obviously related so-called `Wirtinger problem' of bounding
the Lp-norm of a function known to vanish to given orders at certain points in a given
interval.

In hindsight, the existence of these many papers may have come about because the
various workers in this area failed to combine the following well-known facts.
(i) The error formula for Hermite interpolation in terms of a divided di�erence which

vanishes on the interpolating polynomial space.
(ii) The representation of a divided di�erence of order n as integration of the n-th deriva-

tive against an appropriate B-spline.
(iii) The Lp-bounds for B-splines.
(iv) Rolle's theorem, with multiplicities.

Apparently, see, e.g., the recent monograph of Agarwal and Wong [AW93], B-splines
are not known to the many authors in this area.

Thus, it is the purpose of this paper to show how, in proper combination, these well-
known facts imply error bounds for Hermite interpolation which, except for one or two
very speci�c cases, imply the many di�erent error bounds now in the literature.

In Section 2, we establish notation, state the problems of interest, and discuss some
properties of the constants which we are interested in estimating.

In Section 3, we establish the main result, that:

(1:1) jf(x) �H�f(x)j � n1=q

n!

j!�(x)j
diamfx;�g1=q kD

nfkLq (convfx;�g);

where H�f is the Hermite interpolant to f at the multiset � of n points, !�(x) :=Q
�2�(x� �), and diam (resp. conv) is the diameter (resp. convex hull) of a (multi)set of

points. This is seen to be the appropriate replacement for an inequality, due to Beesack
[Be62], that has been used extensively over the last 30 years.

In Section 4, we use the inequality (1.1) to obtain Lp-error bounds for Hermite inter-
polation. There is a discussion of the relevant literature, including `Wirtinger inequalities'.

In Section 5, Rolle's theorem (with multiplicities) is used to obtain bounds for the
derivatives of the error.

In Section 6, we indicate how to compute G�, the Green's function which occurs in
the integral error formula for Hermite interrpolation, using MATLABTM. There is a short
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discussion of extensions of the results of this paper to Birkho� interpolation. We end with
a simple all-purpose estimate for the error in Hermite interpolation.

2. Statement of the problem

To simplify the presentation of our results, we �nd it convenient to use a certain
amount of default notation. We reserve n for a positive integer, and 1 � p; q � 1. Our
functions will be de�ned on the closed interval [a; b], b > a. Thus k � kp := k � kLp[a;b], and
W

(n)
p := W

(n)
p [a; b], the Sobolev space of functions f with Dn�1f absolutely continuous

on [a; b] and Dnf 2 Lp := Lp[a; b]. We use � for a �nite multiset of points in [a; b] with
cardinality #� = n, and !� :=

Q
�2�(� � �).

The Hermite interpolant to f 2 W
(n)
1 at the multiset � is the unique polynomial

H�f 2 �<n, of degree < n, which satis�es

DjH�f(�) = Djf(�); 8 � 2 �; j = 0; : : : ;#� � 1;

where #� is the multiplicity of � in �. Important special cases are Lagrange interpola-
tion (where the points in � are distinct), and Taylor interpolation (where the points
in � all coincide).

Recall the following fact, see, e.g., [AW93:p74,(2.3.9)]. There exists a piecewise poly-
nomial function G� : IR2 ! IR such that

f(x) �H�f(x) =

Z
G�(x; �)Dnf; 8x 2 IR; 8 f 2 W

(n)
1 (convfx;�g):

More precisely, if m is the number of distinct points in �, then G�, restricted to each of
the 2(m+ 1) components of the partition of IR2 obtained by removing the m lines IR��
and the diagonal IR(1; 1), is a polynomial of degree 2n� 2.

By applying 1�H� to both sides of the Taylor identity

f =
X
j<n

Djf(a)

j!
(� � a)j +

Z b

a

Dnf(t)

(n � 1)!
(� � t)n�1+ dt

we obtain

G�(�; t) = (1 �H�)
(� � t)n�1+

(n� 1)!

on [a; b], where (�)n�1+ is the truncated power function. In particular G�(�; t) is C(n�1) on

[a; b] except at t where D(n�1;0)G�(�; t) jumps by 1. Thus, for 0 � j � n� 1, there exists
a smallest constant C such that

(2:1) kDj(f �H�f)kp � C(b� a)n�j+
1
p
� 1

q kDnfkq; 8f 2W (n)
q ;
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with the determination of C being equivalent to �nding the norm of the compact linear
map A : Lq ! Lp, given by

(2:2) Af(x) :=

Z b

a

D(j;0)G�(x; �)f:

The exponent of (b � a) in (2.1) is chosen so that C depends only on n; p; q; j, and
something I choose to call the position of � in [a; b], for short,

pos� := pos(�; [a; b]):

This is by de�nition, the collection of all pairs (�0; [a0; b0]) for which there exists an invert-
ible map A, with A� = �0 and A[a; b] = [a0; b0]. At the risk of having excessive notation,

we prefer to show all dependencies, and write C = C
(j)
n;p;q(pos�), with the j omitted if it

is 0.
In many cases, we will allow pos� to be described, e.g.,

equally spaced := pos(f0; 1; : : : ; n� 1g; [0; n� 1]);

all at one endpoint := pos(f0; : : : ; 0g; [0; 1]);
Chebyshev := pos(zeros of the Chebyshev polynomial Tn; [�1; 1]):

The computation of kAk can be recast into many equivalent forms. In Th. 10.1 of
[Br72], for some cases where � consists solely of endpoints, it is shown to be equivalent to
�nding the largest eigenvalue of a related di�erential system. For more examples, including
the norm of maps related to the adjoint of A, see Waldron [Wa941].

In some very special cases, where � lies in fa; bg, and p; q = 1, C
(j)
n;p;q(pos�) has

been determined by computing kAk (which is taken on for a constant function). Results
along these lines can be found in Tumara [Tu41], Birkho� and Priver [BP67], and [AW93].
There is strong circumstantial evidence that each of these is a special case of the following.

(2.3) Conjecture. Let �� consist of one endpoint m times and the other n �m times,
where 2m � n. If � contains each of the endpoints at least m times, then

C(j)
n;1;1(pos�) � C(j)

n;1;1(pos��); 0 � j � n� 1;

with equality i� � consists of one endpoint m times and the other n�m times.

There has been no attempt here to prove (or disprove) this conjecture. A major step
towards this would be a close examination of the proof of Tumara's often quoted result of
[Tu41], of which the author has yet to procure a copy.

For q 6= 1, or j > 0, the computation of kAk (and hence the determination of

C
(j)
n;p;q(pos�)) is in general very di�cult. Some aspects of this di�culty are discussed in

[BP67]. To get a feel for what is involved, consider the simplest case, namely of inter-
polation at one point. Suppose b � a = 1, and � = f�g. Then C1;p;q(pos�) = kAk,
where

A : Lq ! Lp; Af(x) :=

Z x

�

f:
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In this case the author is unable to compute kAk when q 6=1. The reader is urged to try
this computation before seeking other exact values of Cn;p;q(pos�), q 6=1.

On a more positive note, if one is prepared to give a little on the exact determination
of Cn;p;q(pos�), then reasonable estimates for it are possible, as we will see in Section 3.

We end this section with some useful properties of the constants C
(j)
n;p;q(pos�).

(2.4) Properties. Let 0 � j � n� 1.

(a) The function p 7! C
(j)
n;p;q(pos�) is continuous and strictly increasing.

(b) The function q 7! C
(j)
n;p;q(pos�) is continuous and strictly decreasing.

(c) The map [a; b]n ! IR given by � = (�1; : : : ; �n) 7! C
(j)
n;p;q(pos�) is continuous.

Additional statements about the (continuous) dependence of G� on its various pa-
rameters can be found in Gustafson [Gu76].

Since [a; b]n ! IR : � 7! Cn;p;q(pos�) is a continuous map on a compact set, it
attains its in�mum and supremum. The corresponding set of positions will be denoted by
best and worst respectively. We conjecture that there is a unique best position, and that
the corresponding � consists of distinct points inside (a; b), and that the worst positions
correspond to Taylor interpolation at an endpoint. These conjectures are supported by
some special cases investigated by the author in [Wa942].

3. The main result

In this section we use the B-spline theory to prove

(3:1) jf(x) �H�f(x)j � n1=q

n!

j!�(x)j
(diamfx;�g)1=q kD

nfkLq(convfx;�g);

which we refer to as the basic estimate. The function x 7! diamfx;�g is nonnegative,
continuous, and piecewise linear with break points at the endpoints of the interval conv�.
It is zero only if convfx;�g = fxg, in which case !�(x) = 0, and the quotient (3.1) is
understood to be 0.

B-splines

For � with #� = k + 1, diam� > 0, the B-spline with knots � is the function

(3:2) M(�j�) : IR! IR : t 7!M(tj�) := k[�](� � t)k�1+ ;

where [�] is the divided di�erence at �. It su�ces, for our purposes, to let M(�j�) := 0
when diam� = 0.

Recall the following, see, e.g., [DL93:p137].
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(3.3) B-spline properties. If #� = k + 1, and diam� > 0, then

(a) M(�j�) > 0 on the interior of its support, suppM(�j�) = conv�.

(b) 0 �M(�j�) � k=diam�.

(c)
R
M(�j�) = 1.

(d) The B-spline represents the divided di�erence of f at �, i.e.

[�]f =
1

k!

Z
DkfM(�j�); 8f 2W

(k)
1 (conv�):

Property (d) allows the error formula for Hermite interpolation,

f(x) �H�f(x) = !�(x)[x;�]f;

to be written in terms of B-splines.

(3.4) B-spline form of the error.

f(x) �H�f(x) =
w�(x)

n!

Z
M(�jx;�)Dnf; 8f 2W

(n)
1 (convfx;�g):

When it is not necessary to know the exact form of the kernel in this formula. we
follow the standard practice and denote it by

(3:5) G�(x; t) :=
!�(x)

n!
M(tjx;�):

The choice of the letter G here is apt since G� is the Green's function of the boundary
value problem Dnf = g, with Hermite multipoint conditions given by H�f = 0; i.e., the
solution of this problem can be written

f(x) =

Z
G�(x; �) g:

Here are the graphs of G�, D(1;0)G�, D(2;0)G� over [�1; 1]2 for � = f�1=p2; 0; 1=p2g
the roots of the cubic Chebyshev polynomial.
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D(2;0)G�

Fig 3.1 Graphs of G�, D
(1;0)G�, D

(2;0)G� over [�1; 1]2 for � = f�1=p2; 0; 1=p2g
the roots of the cubic Chebyshev polynomial

A less well-known property of B-splines, which follows from (a), (b), and (c) of (3.3),
is the following.

(3.6) B-spline Lp-estimate ([B73]). If diam� > 0, then

kM(�j�)kLp(IR) �
�
#�� 1

diam�

�1�1=p

;

with equality i� p = 1 or #� = 2.

This completes the list of B-spline properties needed to prove (3.1).

The proof of the basic estimate

(3.7) Basic estimate. We have the pointwise estimate

jf(x) �H�f(x)j � n1=q

n!

j!�(x)j
(diamfx;�g)1=q kD

nfkLq (convfx;�g); 8f 2Wn
q (convfx;�g):

Proof. By applying H�older's inequality to the B-spline form (3.4) of the error,
then using the B-spline Lp-estimate (3.6), we get

jf(x) �H�f(x)j � j!�(x)j
n!

kM(�jx;�)kLq� (convfx;�g)kDnfkLq (convfx;�g)

� j!�(x)j
n!

�
n

diamfx;�g
�1=q

kDnfkLq (convfx;�g):
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We observe that equality in (3.7) for Dnf 6= 0 can occur only if q =1, or n = 1, in
which case it does so for polynomials of (exact) degree n.

For applications not directly related to Hermite interpolation, such as the analysis of
boundary value problems (with Hermite multipoint conditions), the reader might prefer:

(3.8) Basic estimate in terms of G�.

kG�(x; �)kLq� (IR) =
1

n!
j!�(x)jkM(�jx;�)kLq� (IR) �

n1=q

n!

j!�(x)j
(diamfx;�g)1=q ;

with equality i� q =1 or #� = 1.

Some history

An exhaustive search of the literature shows that (3.5) is not known to those work-
ing on error estimates for Hermite interpolation. For example, see the recent, elaborate,
representation for G� given in [AW92].

Instead, the main tool used in the literature has been the following.

(3.9) Beesack's inequality ([Be62]). If a; b 2 �, then

jG�(x; t)j � 1

(n� 1)!

1

b� a
j!�(x)j; 8 a � x; t � b:

Beesack's inequality is considered di�cult to prove, with alternative `simpler' proofs
given by Nehari [Ne64], and Gustafson [Gu76], amongst others. With the bene�t of (3.5),
and the B-spline L1-estimate, we can immediately o�er the strengthening

(3:10) jG�(x; t)j � 1

(n � 1)!

1

diamfx;�g j!�(x)j �
1

(n� 1)!
j!�(x)j1� 1

n ; 8x; t 2 IR:

This strengthening (3.10) is a very special case of the basic estimate (3.7) (equivalently
(3.8)). Thus, the basic estimate (3.7) should be considered the natural replacement for
Beesack's inequality.

One major advantage of the basic estimate (3.7) over Beesack's inequality is that it
allows the points in � to coalesce; a fact which we exploit, in Section 5, to derive bounds
for the derivative of the error in Hermite interpolation.

In additional support of the rightful place of B-splines in Hermite error estimation,
we mention some other properties of G� which their use makes transparent.

With conv� =: [a; b], by property (3.3) (a),

G�(x; t)=!�(x) =M(xjt;�)=n! > 0; 8x 2 [a; b] n�; 8 a � t � b;

see Levin [Le63], Pokornyi [Po68], Coppel [Co71:p108], and Das and Vatsala [DV73].

9



By property (3.3) (c),

kG�(x; �)k1 = j!�(x)j
n!

kM(�jx;�)k1 = j!�(x)j
n!

;

see [DV73], [Gu76], and most likely earlier in the Russian literature.

4. Lp-error bounds and the corresponding inequalities of Wirtinger type

In this Section, the basic estimate (3.7) is used to provide bounds for Cn;p;q(pos�) in
terms of k!�kp. These bounds are exact for q =1, and o� by a factor of at most n1=q if
a; b 2 �.

Given the appropriate knowledge of k!�kp, the bounds of this section give a uni�ed
description of all the estimates for Cn;p;q(pos�) in the literature. Some of these estimates
are given in terms of inequalities of the so called `Wirtinger type', which we discuss.

To facilitate the reader's own computations, we choose not to normalise b � a = 1.

(4.1) Theorem.

k!�kp
n!

(b � a)�(n+
1
p
) � Cn;p;q(pos�) � n

1
q

n!
k !�

(diamf�;�g) 1q
kp(b � a)�(n+

1
p
� 1

q
):

Note that k!�=(diamf�;�g)
1
q kp � k!1�

1
nq

� kp; and that

Cn;p;q(pos�) � n
1
q

n!
:

The following special cases are of particular interest.
(a) If q =1, then

Cn;p;1(pos�) =
k!�kp
n!

(b� a)�(n+
1
p
):

(b) If a; b 2 �, then

Cn;p;q(pos�) 2 k!�kp
n!

(b� a)�(n+
1
p
)
�
1; n

1
q

�
:

Proof. Taking k � kp of the basic estimate (3.7) shows

Cn;p;q(pos�) � n
1
q

n!
k !�

(diamf�;�g) 1q
kp(b � a)�(n+

1
p
� 1

q
) � n

1
q

n!
:

If f = !�, then H�f = 0, and Dnf = n!, therefore

Cn;p;q(pos�) � kf �H�fkp
kDnfkq (b � a)�(n+

1
p
� 1

q
) =

k!�kp
n!

(b � a)�(n+
1
p
):

Finally, for each � 2 �, jx � �j � diamfx;�g, hence j!�(x)j 1n � diamfx;�g, giving

k!�=(diamf�;�g) 1q kp � k!1�
1
nq

� kp:

In addition to the special case p; q = 1, which is well known, only the following
instance of Theorem (4.1) is known.

10



(4.2) Result ([Ag911]). If a; b 2 �, then

Cn;p;q(pos�) � n
1
q
k!�kp
n!

(b � a)�(n+
1
p
):

This is proved there using Beesack's inequality.

Wirtinger type inequalities

In Fink, Mitrinovi�c, and P�ecari�c [FMP91:p66] an inequality of the form

(4:3) kfkp � C(b� a)n+
1
p
� 1

q kDnfkq ;

for all f in some set F � W
(n)
q n �<n is said to be of Wirtinger type. The origin

of this name is the following result of Wirtinger �rst appearing in [Bl16:p105], see also
[HLP52:p184].

(4.4) Wirtinger's inequality ([Bl16:p105]). For all 2�-periodic f with
R 2�
0

f = 0

kfkL2[0;2�] � kDfkL2 [0;2�];

with equality i� f 2 spanfcos; sing.
If F of (4.3) is taken to be the set of those f 2 W

(n)
q with n zeros at � (i.e., with

H�f = 0), then we get the Wirtinger inequality

(4:5) kfkp = kf �H�fkp � C(b� a)n+
1
p
� 1

q kDnfkq; 8f 2 kerH� \W (n)
q ;

where the smallest possible C is precisely Cn;p;q(pos�).
Another related class of Wirtinger inequalities was studied by Brink in [Br72]. Its

description makes use of the following de�nition.

(4.6) De�nition. Let An(i1; i2) be the set of those � containing one endpoint at least
i1 times and the other at least i2 times, where i1 + i2 � n.

Notice that An(i1; i2) is symmetric in i1; i2, and that An(0; 0) consists of all �. In
terms of this notation, Brink considered Wirtinger type inequalities where F consists of
all f with n zeros at some � 2 An(i1; i2). For this choice of F , the best constant in (4.3)
is

(4:7) C(n; p; q; i1; i2) = max
�2An(i1;i2)

Cn;p;q(pos�):

In view of Theorem (4.1), good estimates for this constant require knowledge of the size
of k!�kp. This question is considered in [Wa942].

The minimiser of � 7! k!�kp has close connections with best polynomial approxima-
tion, and Gauss quadrature.

We require the following result concerning the maximiser of � 7! k!�kp.
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(4.8) Result ([Wa942]). Let m := minfi1; i2g, and 00 := 1. Then

max
�2An(i1;i2)

k!�kp = (b� a)n+
1
p

�
B(pm+ 1; p(n �m) + 1)

1
p ; 1 � p <1

mm(n�m)n�m=nn; p =1,

with the maximum achieved i� � 2 An(m;n �m).

Here B is the beta function

B(x; y) :=

Z 1

0

tx�1(1� t)y�1 dt =
�(x)�(y)

�(x + y)
; 8x; y > 0:

Note that B satis�es 0 < B(x; y) � minf1; 1=maxfx; ygg; 8x; y > 0:

This result allows the following estimate.

(4.9) Corollary. Let � 2 An(i1; i2), m := minfi1; i2g, and 00 := 1. Then:
(a) If m = 0, then

Cn;p;q(pos�) � n
1
q

n!

�
1=(pn� p=q + 1)

1
p ; 1 � p <1

1; p =1

with equality when q =1 and � 2 An(0; n).
(b) If m > 0, or q =1, then

Cn;p;q(pos�) � n
1
q

n!

�
B(pm + 1; p(n �m) + 1)

1
p ; 1 � p <1

mm(n�m)n�m=nn; p =1

with equality when q =1 and � 2 An(m;n�m).

Proof. Without loss of generality, we may assume that b � a = 1. For (a), by
Theorem (4.1),

Cn;p;q(pos�) � n
1
q

n
k!�kp � n

1
q

n!
k!1�

1
nq

� kp = n
1
q

n!

�
k!�kp(1� 1

nq
)

�1� 1
nq

;

to which we apply Result (4.8). Similarly, for (b)

Cn;p;q(pos�) � n
1
q

n!
k!�kp;

which is estimated by Result (4.8).

For m = 0, only the result with p; q =1 is known, see, e.g., [AW93:p105,Th.2.4.3].

For m > 0, the best known result is:
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(4.10) Result ([Ag911]). Let � 2 An(i1; i2), with m := minfi1; i2g > 0. Then

Cn;p;q(pos�) � n
1
q

n!

�
(2B1=2(pm+ 1; p(n �m) + 1))

1
p ; 1 � p <1

mm(n�m)n�m=nn; p =1:

Here B1=2 is the incomplete beta function

B1=2(x; y) :=

Z 1=2

0

tx�1(1 � t)y�1 dt; 8x; y > 0;

which satis�es B(x; y) � 2B1=2(x; y), 8 1 � x � y, with strict inequality unless x = y.
Thus, Corollary (4.9) gives better bounds than Result (4.10) if 1 � p <1,m 6= n�m,

and the same bounds otherwise.
In view of (4.7), Corollary (4.9) provides an estimate of Brink's constants (4.7).

(4.11) Estimate for Brink's constants. Let m := minfi1; i2g, where i1 + i2 � n.
(a) If m = 0, then

C(n; p; q; i1; i2) � n
1
q

n!

�
1=(pn � p=q + 1)

1
p ; 1 � p <1

1; p =1,

with equality if q =1.
(b) If m > 0, then

C(n; p; q; i1; i2) � n
1
q

n!

�
B(pm+ 1; p(n�m) + 1)

1
p ; 1 � p <1

(mm(n �m)n�m=nn); p =1,

which is within a factor of n1=q of being sharp.

This estimate reproduces the results of Brink [Br72], which are for the case when
p; q =1, and, otherwise, provides bounds where none were previously known.

5. Lp-bounds for the derivative of the error in Hermite interpolation

With the exception of [Tu41], [BP67], and [AW93:Th.2.4.13], all existing estimates for

C
(j)
n;p;q(pos�), j > 0 are obtained, not by attacking D(j;0)G� directly, but by using bounds

for Cn;p;q(pos�) together with Rolle's Theorem. Due to the erratic behaviour of the known
bounds for Cn;p;q(pos�) as a function of � (especially as the points in � coalesce), this
argument was limited to cases when p; q = 1 and � contained the endpoints fa; bg with
high multiplicities.

In contrast, the bounds for Cn;p;q(pos�) given in Theorem (4.1) depend continuously
on �. This allows us, in this section, to perform the `Rolle's Theorem argument' for any
p; q, and �.

Let �(j) be the multiset obtained from � by reducing the multiplicity of each point
by j; e.g., f0; 0; 0; 1g(2) = f0g.
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(5.1) Rolle's Theorem (with multiplicities). Let 0 � j � n� 1. If f 2W
(n)
q has (at

least) n zeros �, then Djf has (at least) n� j zeros, which include �(j). In addition Djf
has (at least) n� j �#�(j) zeros in (conv�) n�.

Proof. The proof is by induction on n. The inductive step follows from the facts:
that if � is a zero of f with multiplicity m, then � is a zero of Df with multiplicity m� 1;
and the special case � = fa; bg which is the classical Rolle's Theorem.

Next the `Rolle's Theorem argument'.

(5.2) Theorem. If 0 � j � n� 1, then

kDj!�kp
n!

(b � a)�(n�j+
1
p
) � C(j)

n;p;q(pos�) � max
#�0=n�j

�(j)��0

Cn�j;p;q(pos�
0);

with equality in both bounds for q =1 and � 2 An(0; n).

Proof. Let f 2 W
(n)
q . By Rolle's Theorem (5.1), Dj (f � H�f) 2 W

(n�j)
q has

n� j zeros �0 � �(j). Therefore, by the Wirtinger inequality (4.5),

kDj (f �H�f)kp � Cn�j;p;q(pos�
0)(b � a)n�j+

1
p
� 1

q kDn�jDj(f �H�f)kq :

Since DnH�f = 0, kDn(f �H�f)kq = kDnfkq , and we conclude

C(j)
n;p;q(pos�) � max

#�0=n�j

�(j)��0

Cn�j;p;q(pos�
0):

The lower bound follows as in Theorem (4.1).

In the exceptional cases [Tu41], [BP67], and [AW93:Th.2.4.13], there is equality in
the lower bound of Theorem (5.2). This phenomenon is equivalent to there being equality
in

kDj (f �H�f)kp � C(j)
n;p;q(pos�) (b � a)n�j+

1
p
� 1

q kDnfkq
for all f 2 �n. Further aspects of this phenomenon, which is deserving of closer scrutiny,
can be found in [Wa941].

Here is a typical example of Theorem (5.2). If � 2 A2m(m;m), and 0 � j � m, then

C
(j)
2m;1;1(pos�) � mm(m� j)m�j

(2m� j)!(2m� j)2m�j
:

This estimate improves upon the earlier result of Ciarlet, Schultz, and Varga [CSV67],
and is proved in [Ag912:p774]. The following Corollary encompasses this, and many other
variations on the `Rolle's theorem argument' found in the literature.
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(5.3) Corollary. Let � 2 An(i1; i2), with m := minfi1; i2g.
(a) If 0 � j � m� 1, then

C(j)
n;p;q(pos�) �

(n� j)
1
q

(n� j)!

�
B(p(m � j) + 1; p(n �m) + 1)

1
p ; 1 � p <1

(m� j)m�j(n �m)n�m=(n� j)n�j ; p =1:

(b) If m � j � n� 1, then

C(j)
n;p;q(pos�) �

(n � j)
1
q

(n � j)!

�
1=(p(n � j)� p=q + 1)

1
p ; 1 � p <1

1; p =1
with equality when q =1 and � 2 An(0; n).

Proof. Apply the bounds of Corollary (4.9) to Theorem (5.2).

Though sharp for the extreme case q = 1, � 2 An(0; n), the exceptional cases
previously discussed indicate that, in the general case, these bounds can be signi�cantly
improved.

6. Final remarks

Computing D(j;0)G�

To obtain the �gures of Section 2, D(j;0)G� was computed by using the SPLINE
TOOLBOX for use with MATLABTM ([B90]), then plotted using mesh.

The SPLINE TOOLBOX uses the `partion of unity' normalisation, i.e.

B(�j�) := diam�

#�� 1
M(�j�):

Thus, for example, with n := n, x := x, t := t, gTh := � (a 1�n matrix), d := diamfx;�g,
and G := G�(x; t) we have the MATLAB instructions

d=max([x gTh])-min([x gTh])

G=prod(x*ones(size(gTh))-gTh)/gamma(n)*fnval(spmak(sort([x,gTh]),1),t)/d

To compute D(j;0)G�, for 0 � j � n�1, we observe, by the formula for di�erentiating
a B-spline with respect to one of its knots (see [B77:Ex.4]), that

D(j;0)G�(x; t) =

jX
i=0

(�1)ij!
(n+ i)!(j � i)!

Dj�i!�(x)D
iM(tj x; : : : ; x| {z }

i+1 times

;�)

=
1

diamfx;�g
jX

i=0

(�1)ij!
(n+ i� 1)!(j � i)!

Dj�i!�(x)D
iB(tj x; : : : ; x| {z }

i+1 times

;�):
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With i := i, we then have the MATLAB instruction

DiB(tj x; : : : ; x| {z }
i+1 times

;�) = fnval(fnder(spmak(sort([x*ones(1,i+1),gTh]),1),i),t)

For complete details see the technical report [Wa941].
Here are the mesh plots obtained for � = f0; 0; 1; 1g.
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D(3;0)G�

Fig 6.1 Graphs of G�, D(1;0)G�, D(2;0)G�, D(3;0)G� over [0; 1]2 for � = f0; 0; 1; 1g

Note the jump discontinuity of 1 in D(3;0)G� along the line x = t.

Extensions

We indicate how the results of this paper can be extended to Birkho� interpolation.
See, e.g., Lorentz, Jetter, and Riemenschneider [LJR83].

17



Let E be a regular m � n interpolation matrix, X = fx1; � � � ; xmg a set of m points
which satis�es x1 < x2 < : : : < xm, and denote the corresponding Birkho� interpolant to
f at (E;X) by Hf := HE;Xf 2 �<n.

If x 62 X, then let (E�; fx;Xg) denote the Birkho� interpolation scheme obtained by
adding to (E;X) the extra interpolation condition that f(x) be matched. Let �x(f) be
the coe�cient of (�)n in the interpolant (from �n) to f at (E�; fx;Xg). In this notation

f(x) �Hf(x) =
�
(�)n �H(�)n��x(f):

The monic polynomial (�)n �H(�)n 2 �n plays the role of !� in the Hermite interpo-
lation case, and �x(f) the role of [x;�]f . By Peano's theorem

�x(f) =
1

n!

Z
ME;x;X Dnf;

where ME;x;X is, in this case, a nonnegative, piecewise polynomial function supported
on convfx;Xg. Many of the properties of ME;x;X (which plays the role of M(�jx;�))
can be found in Bojanov, Hakopian, and Sahakian [BHS93], where it is denoted by
B((E�; fx;Xg); �) and called a `B-spline of degree n � 1 with knots at (E�; fx;Xg)', see
also Uluchev [Ul89].

The only di�culty encountered with B((E�; fx;Xg); �) is �nding the appropriate ana-
log of the B-spline Lp-estimate (3.6), which is beyond the scope of this paper. Once this is
done, it should be possible to give a uni�ed treatment of the many error bounds for special
cases of Birkho� interpolation, most notably, Lidstone interpolation (see [AW93:Ch.1]),
Abel-Gontscharo� (see [AW93:Ch.3]), and the `miscellaneous interpolations' of Chapter 4
of [AW93].

For some simple examples of L1-estimates for Birkho� interpolation see [Ho93].

Tumura's result?

Of the `exceptional results' mentioned in Section 5, by far the most outstanding is
Tumura's.

(6.1) Tumara's Result ([Tu41]). Assume n � 2. If � 2 An(1; 1), then for 1 � j � n�1

Cj
n;1;1(pos�) � j

n(n � j)!
;

with equality i� � 2 An(1; n � 1). For the case of equality Cj
n;1;1(pos�) is equal to the

lower bound in Theorem (5.2).

This result, which is often quoted and used (cf. [Ag83]), was apparently mentioned
in Hukuhara [Hu63]. The author has been entirely unsuccessful in locating [Tu41]. It is
curious, given its signi�cance, that none of those quoting [Tu41] whom the author was
able to contact had ever seen a proof of Tumura's result.

Thus, the �rst step in dealing systematically with the few exceptional results men-
tioned in Section 5 (all of which are cases of Conjecture (2.3)) must be to locate a proof of
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Tumura's result, if indeed one does exist. The author would be most grateful to anybody
able to supply one.

A simple estimate

Finally, for those not worried about best constants, here is an all-purpose estimate.

(6.2) Proposition. For all p; q;�, if j = 0; : : : ; n� 1, then

kDj (f �H�f)kp � 1

(n� j � 1)!
(b � a)n�j+

1
p
� 1

q kDnfkq ; 8f 2W (n)
q :
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