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Abstract

Zonotopal algebra interweaves algebraic, geometric and combinatorial properties of a given
linear map X. Of basic significance in this theory is the fact that the algebraic structures are
derived from the geometry (via a non-linear procedure known as “the least map”), and that
the statistics of the algebraic structures (e.g., the Hilbert series of various polynomial ideals)
are combinatorial, i.e., computable using a simple discrete algorithm known as “the valuation
function”. On the other hand, the theory is somewhat rigid since it deals, for the given X, with
exactly two pairs each of which is made of a nested sequence of three ideals: an external ideal
(the smallest), a central ideal (the middle), and an internal ideal (the largest).

In this paper we show that the fundamental principles of zonotopal algebra as described in
the previous paragraph extend far beyond the setup of external, central and internal ideals by
building a whole hierarchy of new combinatorially defined zonotopal spaces.
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1 Introduction

1.1 Motivation

We are interested in this article in the study of algebraic structures, most notably in terms of
homogeneous zero-dimensional polynomial ideals, over hyperplane arrangements, and, by duality,
over zonotopes. We start by describing the pertinent setup.

Let X be a n × N matrix, which can be also viewed as a multiset of its columns: the theory,
indeed, is invariant of the order of the columns (some of the algorithms will require us to order the
columns, but will produce output that is independent of the order). The zonotope Z(X) associated
with X is the polytope

Z(X) := {
∑

x∈X

txx : t ∈ [0, 1]N}.
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In other words, the zonotope Z(X) is the image of the unit cube [0, 1]N under X viewed as a linear
map from RN to Rn or, equivalently, Z(X) is a Minkowski sum of segments [0, x] over all column
vectors x ∈ X .

The theory of Zonotopal Algebra (see [11]) is built around three pairs of zero-dimensional
homogeneous polynomial ideals that are associated with X : an external pair (I+(X), J+(X)), a
central pair (I(X),J (X)), and an internal pair (I−(X),J−(X)). These polynomial ideals play
a role in several different areas of mathematics. In Approximation Theory, these ideals provide
important information about multivariate splines on regular grids (box splines, see [4]). In Algebra,
these ideals appear, for example, in the context of group representations and also in the context of
particular types of orthogonal polynomials. In Combinatorics, these ideals are pertinent to algebraic
graph theory, and are intimately connected with the Tutte polynomial. The list goes on, with the
most direct connection being particular topics within convex geometry such as zonotopes, zonotope
tilings, lattice points in zonotopes, and various aspects of hyperplane arrangements. For additional
connections, see [2, 12, 14].

A centerpiece in the theory of Zonotopal Algebra are formulæ that capture the codimensions of
the above-mentioned ideals, and more generally, their Hilbert series in terms of the basic statistics of
an associated matroid. The other pillar of the theory is the connection between the aforementioned
ideals and the geometric structures, viz., the zonotope Z(X), and the hyperplane arrangement
H(X, λ).

We pause in order to illustrate some of these aspects. First, we let

Π := C[t1, . . . , tn]

be the space of polynomials in n variables, and let

Π0
k

be the subspace of Π that contains all homogeneous polynomials of exact degree k. Also, for any
homogeneous ideal I ⊂ Π, we denote

ker I := {p ∈ Π : q(D)p = 0 for all q ∈ I}.

Here, q(D) is the counterpart of q ∈ Π in the ring C[∂/∂t1, . . . , ∂/∂tn]. Given a zero-dimensional
polynomial ideal I ⊂ Π, we denote by

codim I

the dimension of the quotient space
Π/I,

which (is always finite and) is equal to dimker I.
We next associate the matrix X with a suitable hyperplane arrangement H: we consider

each column x ∈ X as a linear functional px in (Rn)∗ (using the standard inner product in Rn), and
denote by Hx,λx

the zero set of the affine polynomial

Rn ∋ t 7→ px(t) − λx,

with λx ∈ R (arbitrary, but fixed). The hyperplane arrangement H(X, λ) is the union of the
hyperplanes Hx,λx

, x ∈ X . We assume that H(X, λ) is generic which means that every subcollection
of n + 1 hyperplanes has an empty intersection. Note that for any given X , the set of all λ ∈ RX

for which H(X, λ) is generic form an open dense subset of RX , [13].
Next, we describe the three I ideals. To this end, we consider submatrices Y ⊂ X (that are

obtained from X by removing some of its columns) that are of rank n− 1. The column span of such
a submatrix is a facet hyperplane of X , and we denote by

F(X)
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the set of all facet hyperplanes of X . The normal (in any direction) to a facet hyperplane F is
denoted by

ηF ,

and the multiplicity (in X) of a facet hyperplane F ∈ F(X) is the cardinality

m(F ) := mX(F ) := #{x ∈ X : x 6∈ F}.

The three I ideals are generated, each, by suitable powers of the normal polynomials:

{pm(F )+ǫ
ηF

: F ∈ F(X)}.

The internal ideal I−(X) corresponds to the choice ǫ = −1, the central ideal I(X) corresponds to
the choice ǫ = 0, while the external ideal I+(X) corresponds to the choice ǫ = +1. We now state
a result that connects these three ideals to the hyperplane arrangement H(X, λ). In the sequel,
we will also show the connection of these three ideals to the zonotope Z(X), and to several other
constructs.

Theorem 1.1

1. codimI(X) equals the number of vertices in the generic arrangement H(X, λ).

2. codimI+(X) equals the number of connected components in Rn\H(X, λ).

3. codimI−(X) equals the number of bounded connected components in Rn\H(X, λ).

An important highlight of the I-ideals is that their associated kernels can be described cleanly
and explicitly in terms of the columns of X . Here, we discuss this point in the context of the central
zonotopal space. Given Y ⊂ X ,1 we say that Y is short if rank(X\Y ) = n. A short polynomial
is a product

pY :=
∏

y∈Y

py, (1)

over a short subset Y . We let

P(X) := span {pY : rank(X\Y ) = n},

be the span of the short polynomials. A subset Y ⊂ X that is not short is called long. Let J (X)
denote the ideal generated by the long polynomials:

J (X) := Ideal{pY : Y ⊂ X, rank(X\Y ) < n},

and set
D(X) := kerJ (X).

Below we collect some of main results of [1, 5, 7, 8, 9, 10]; see also [11, Theorem 3.8], where this
summary appears in its present form. We use the notation

B(X) := {B ⊂ X : B is a basis for Rn},

as well as the pairing

Π → Π′ : p 7→ 〈p, ·〉, 〈p, q〉 := (p(D)q)(0) = (q(D)p)(0).

The space Π(V ) that appears in Theorem 1.2 is defined in Section 1.2.

1Recall that we refer to X as the multiset of its columns, hence Y is obtained by removing some columns of X.
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Theorem 1.2

1. dimP(X) = dimD(X) = #B(X).

2. The map p 7→ 〈p, ·〉 is a bijection between P(X) and D(X)′.

3. D(X) = Π(V ), with V the vertex set of the hyperplane arrangement H(X, λ).

4. P(X) = kerI(X).

5. P(X)
⊕

J (X) = Π.

1.2 The least map V 7→ Π(V )

Definition 1.3 Let V be a finite pointset in Rn. Given v ∈ Rn, let

ev : t 7→ ev·t

be the exponential with frequency v, and define

Exp(V ) := span {ev : v ∈ V }.

Given f ∈ Exp(V ), let

f =

∞∑

j=jf

fj , jf ≥ 0,

be its homogeneous power expansion, i.e., fj ∈ Π0
j , for all j, and fjf

6= 0. Define

f↓ := fjf
, Π(V ) := span {f↓ : f ∈ Exp(V )\0}.

Our interest in this paper is focused on point sets V that are either subsets of the set of inte-
ger points in the zonotope Z(X), or subsets of the vertex set V (X, λ) of the hyperplane arrange-
ment H(X, λ). Note that in the latter case, since we assume H(X, λ) to be generic, we have that
#V (X, λ) = #B(X), and there is a set bijection

V ∋ v 7→ Bv ∈ B(X),

that sends each vertex v to the set of columns of X whose hyperplanes contain v. Thus, genericity
means in this context that the latter set is always a basis, and never larger than that. Now, given
V ′ ⊂ V (X, λ), let B′ := B′(X) := {Bv : v ∈ V ′}, and define the ideal

JB′(X) := Ideal{pY : Y ⊂ X, Y ∩ B 6= ∅, for all B ∈ B′}.

Theorem 1.4 ([6, 7])

1. For every finite V ⊂ Rn, the restriction map

Π(V ) ∋ f 7→ f|V

is a bijection between Π(V ) and CV . In particular, dimΠ(V ) = #V .

2. With V ′, B′ and JB′(X) as above, we have that Π(V ′) ⊂ kerJB′(X). In particular,

codimJB′(X) ≥ dimΠ(V ′) = #V ′ = #B′.
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Note that the choice V ′ := V (X, λ) leads to B′ = B(X), and to JB′(X) = J (X). Hence the
above result shows that Π(V (X, λ)) ⊂ kerJ (X). Theorem 1.2 asserts that for this particular choice
of V ′ equality holds: Π(V (X, λ)) = kerJ (X). For general B′, though, the inclusion is proper.

The least map, thus, connects between the vertices of H(X, λ) and the J -ideals. It also connects
the integers points in the zonotope Z(X) to the I-ideal. To this end, recall that X is unimodular
if X ⊂ Zn and | detB| = 1, for every B ∈ B(X). Furthermore, let I(X) be the collection of (linearly)
independent subsets of X :

I(X) := {I ⊂ X : I is independent in Rn}.

Theorem 1.5 ([11])

1. kerI+(X) = P+(X) := span {pY : Y ⊂ X}.

2. dimP+(X) = #I(X).

3. Assume X is unimodular. Then P+(X) = Π(Z(X) ∩ Zn).

1.3 Hilbert series

The Hilbert series of the three I-ideals are closely associated with the external activity of the Tutte
polynomial of the given multiset X . Let ≺ be any order on X . Given a set Y ⊂ X , we define the
valuation of Y (per the given order) by

val (Y ) := #X(Y ), X(Y ) := {x ∈ X\Y : x 6∈ span {y ∈ Y : y ≺ x}}.

This valuation function determines the Hilbert series of the I-ideals as follows.

Theorem 1.6 ([10, 11])

1. The polynomials
QB := pX(B), B ∈ B(X)

form a basis for P(X). In particular, for every positive integer j,

dim(P(X) ∩ Π0
j) = #{B ∈ B(X) : val (B) = j}.

2. The polynomials
QI := pX(I), I ∈ I(X)

form a basis for P+(X). In particular, for every positive integer j,

dim(P+(X) ∩ Π0
j ) = #{I ∈ I(X) : val (I) = j}.

1.4 Intermediate setups

Zonotopal algebra interweaves, thus, algebraic, geometric and combinatorial properties of the linear
map X . Of basic significance of this theory is the fact that the algebraic structures are derived from
the geometry (via the least map), and that the statistics of the algebraic structures (i.e., the various
Hilbert series) are combinatorial, i.e., computable using the valuation function. On the other hand,
the theory is somewhat rigid since it deals with exactly three sets of ideals for each given X , their
three Hilbert series and so on.

In this paper we show that the fundamental principles of zonotopal algebra as described in the
previous paragraph extend far beyond the rigid setup of external, central and internal ideals. For
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example, let I′ ⊂ I(X), and let us define Y ⊂ X to be I′-short if X\Y contains an element of I′.
Define

P+(X, I′)

to be the span of all I′-short polynomials. The central case P(X) corresponds to the choice I′ = B(X),
and the external case P+(X) corresponds to the choice I′ = I(X). In either of these extreme cases,
the dimension of the polynomial space P+(X, I′) coincides with the cardinality of I′.

The following questions now arise naturally:

• Do we have dimP+(X, I′) = #I′?

• Is the ideal I+(X, I′) of all differential operators that annihilate P+(X, I′) still generated by
powers of the normals pηF

to the facets?

• Do the polynomials QI , I ∈ I′ form a basis for P+(X, I′) or, at least, does the valuation of the
set X(I), I ∈ I′ determine the Hilbert series of P+(X, I′)?

• Do we have a dual setup in terms of an ideal J+(X, I′) that is generated by a suitable notion of
long polynomials, so that its kernel is connected to a suitable set of vertices of some hyperplane
arrangement?

It is somewhat surprising (at least to us) that the questions above can all be answered in the
affirmative for a large class of sets I′. We deal in this paper with two different setups.

In the first one, which we refer to as semi-external, we select an arbitrary subset I′ of I(X) and
impose only one condition on it, viz., that I′ should be closed under (subspace) inclusion in the
sense that if span I ⊂ span I ′, for I ∈ I′ and I ′ ∈ I(X) then I ′ ∈ I′. We introduce then a suitable
J -ideal, J+(X, I′), and a suitable I-ideal I+(X, I′), provide an explicit description and bases for
kerI+(X, I′), develop an algorithm for computing the Hilbert series of these ideals (both share the
same Hilbert series) in terms of the aforementioned valuation, and describe a suitable geometric
derivation of kerJ+(X, I′) (by acting on vertices of hyperplane arrangements). The ideal I+(X, I′)
is not generated, however, by powers of the normal polynomials pηF

, F ∈ F(X). That said, by
assuming slightly more on I′, that property can be guaranteed as well.

In the second setup, which we refer to as semi-internal, we select and fix an I ∈ I(X), and develop
a theory where the focus is on the space

P−(X, I) := ∩b∈IP(X\b).

When I is a basis, the above space coincides with the kernel of I−(X). Once again, this case gives
rise to a theory that parallels in its ingredients the one outlined for the semi-external case. In
particular, we prove that the corresponding I-ideal is generated by powers of the normals, and we
further identify a subset B−(X, I) ⊂ B(X) whose valuation determines the Hilbert series of P−(X, I).

2 Semi-external zonotopal spaces

2.1 A review of external zonotopal spaces

Recall that we consider our n × N matrix X of full rank n as a finite multiset X ⊂ Rn\{0} of size
N = #X . Also recall from Section 1.1 that B(X) denotes the multiset of all (linear) bases of X ,
and I(X) denotes the multiset of all (linearly) independent subsets of X .

The definition of the external ideal J+(X) requires to choose an additional basis B0 for Rn, and
to order its elements. There is no restriction on the choice of B0 or on the chosen order ≺, but the
definition of the ideal J+(X) depends on the choice of B0 and the choice of the order. We augment
X by B0 and define X ′ := X ⊔ B0, where ⊔ denote the union of two multisets, i.e., a collection
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obtained by listing all vectors in X and all vectors in B0. We extend the order ≺ to a full order on
X ′, with the only requirement on this extension that x ≺ b, for every x ∈ X and b ∈ B0. We use
B0 to extend each independent subset I ∈ I(X) to a basis ex(I) ∈ B(X ′) by a greedy completion,
i.e., b ∈ ex(I) if and only if b ∈ I or else b ∈ B0 and

b /∈ span {I ∪ {b′ ∈ B0 : b′ ≺ b}}.

For each I ∈ I(X), we define

X(I) := {x ∈ X\I : x /∈ span {b ∈ I : b ≺ x}}.

We associate each independent subset I with the polynomial

QI := pX(I).

Before proceeding with introduction and analysis of the semi-external zonotopal spaces, we pause
momentarily in order to discuss the (full) external case, whose theory was developed in [11]. To this
end, we recall the definition of the ideal I+(X) and the space P+(X) from the introduction, and
add the following definitions:

Definition 2.1

J+(X) := Ideal{pY : Y ⊂ X ′, Y ∩ ex(I) 6= ∅, for all I ∈ I(X)},

D+(X) := kerJ+(X).

Let H(X ′, λ) be a generic hyperplane arrangement associated with the extended set X ′. Let
V ′ := V (X ′) be the vertex set of this arrangement. Since H(X ′, λ) is assumed to be generic, there
is a bijection

V : B(X ′) → V ′

in which each basis B is mapped to the intersection of the hyperplanes {Hb,λb
: b ∈ B}. We denote

V+ := {V(ex(I)) : I ∈ I(X)}.

Note that V+ depends on B0, on the order ≺ imposed on B0, and the parameter vector λ. (It does
not depend however on the way ≺ is extended to X .)

Before describing the main result from [11] regarding the full external case, we recall the pairing
from Section 1.1 that plays an important role in the underlying duality between the spaces P+(X)
and D+(X): Given two polynomials p and q, the pairing 〈p, q〉 is defined by

〈p, q〉 := (p(D)q)(0).

We now describe the pertinent result from [11]:

Theorem 2.2 ([11, Theorem 4.10])

1. dimP+(X) = dimD+(X) = #I(X).

2. D+(X) = Π(V+), with V+ as above.

3. J+(X) ⊕ P+(X) = Π.

4. P+(X) = kerI+(X).

5. The pairing 〈·, ·〉 defines a bijection between P+(X) and the dual D+(X)′ of D+(X).

7



6. The polynomials {QI : I ∈ I(X)} (that depend on the order ≺) form a basis for P+(X)
(whose definition is independent of that order). In particular, the Hilbert series of P+(X) is
determined by

h+(j) := h+,X(j) := #{I ∈ I(X) : val (I) = j}.

Under an additional assumption that X is unimodular, the results in [11] also draw a connection
between the integer points Z(X) in the closed zonotope Z(X), and the external zonotopal spaces,
viz.

P+(X) = Π(Z(X)).

2.2 Introduction and analysis of semi-external zonotopal spaces

The central zonotopal spaces are defined with respect to the set of all bases B(X). The external ones
are defined with respect to the independent sets I(X). The semi-external spaces we now introduce
are defined by selecting a set I′ in between:

B(X) ⊂ I′ ⊂ I(X).

Definition 2.3 Let I′ ⊂ I(X). We say that I′ is semi-external if the following holds:

If I ∈ I′, I ′ ∈ I(X) and span I ⊂ span I ′, then I ′ ∈ I′.

Note that a (non-empty) semi-external set I′ must contain B(X).
Our goal is to define and analyse the zonotopal ideals and the zonotopal spaces that are associated

with a semi-external collection I′. To this end, we denote

S(X, I′) := {span I : I ∈ I(X)\I′},

and define

Definition 2.4

I+(X, I′) := I+(X) + Ideal{Π0
#(X\S)(S⊥) : S ∈ S(X, I′)},

J+(X, I′) := Ideal{pY : Y ⊂ X ′, Y ∩ ex(I) 6= ∅, ∀I ∈ I′},

P+(X, I′) := span {pY : Y ⊂ X, Y ∩ I = ∅ for some I ∈ I′},

D+(X, I′) := kerJ+(X, I′).

To be sure, the polynomial space Π0
j (S⊥) consists of homogeneous polynomials of degree j on the

orthogonal complement of S in Rn. Equivalently, Π(S⊥) := {p ∈ Π : Dηp = 0 for all η ∈ S}.

We note that the semi-external spaces capture the external ones and the central ones as special
cases. In the case I′ = I(X), the I′-ideals (I+(X, I′),J+(X, I′)) coincide with the external ideals. In
the case I′ = B(X), they coincide with the central ideals.

Here is a simple example showing how the space P+(X, I′) and the ideal I+(X, I′) change de-
pending on the choice of our special collection I′ of independent subsets.

Example 2.5

X =




1 0 0 1
0 1 0 1
0 0 1 1



 =: [x1, x2, x3, x4]

If
I′ = {[x1, x2], [x1, x3], [x1, x4]} ∪ B(X),
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then

P+(X, I′) = span {1, px1
, px2

, px3
, px2

px3
, px3

px4
, px2

px4
},

I+(X, I′) = Ideal{p3
x3

, p3
x2

, p3
x2−x3

, p2
x1

, p2
x1−x3

, p2
x1−x2

, p2
x3

px2
}.

If
I′ = {[x1], [x1, x2], [x1, x3], [x1, x4]} ∪ B(X),

then

P+(X, I′) = span {1, px1
, px2

, px3
, px2

px3
, px3

px4
, px2

px4
, px2

px3
px4

},

I+(X, I′) = Ideal{p3
x3

, p3
x2

, p3
x2−x3

, p2
x1

, p2
x1−x3

, p2
x1−x2

}.

Theorem 2.6

1. The polynomials (QI)I∈I′ form a basis for P+(X, I′). In particular, dimP+(X, I′) = #I′. The
Hilbert series of P+(X, I′) is determined by these polynomials:

h+,I′(j) := dim(P+(X, I′) ∩ Π0
j ) = #{I ∈ I′ : val (I) = j}.

2. Let V (I′) be the vertices in the arrangement H(X ′, λ) that correspond to ex(I′). Then D+(X, I′) =
Π(V (I′)). In particular, dimD+(X, I′) = #I′.

3. J+(X, I′) ⊕ P+(X, I′) = Π.

4. P+(X, I′) = kerI+(X, I′).

5. The map p 7→ 〈p, ·〉 is a bijection between P+(X, I′) and D+(X, I′)′.

Proof. 1. We first prove that {QI : I ∈ I′} is a basis for P+(X, I′).
The fact that QI ∈ P+(X, I′) for every I ∈ I′ is trivial since QI = pX(I), with X(I)∩I = ∅. Now,

we choose I ′ ∈ I′, and Y ⊂ X\I ′. According to the definition of I′, since span I ′ ⊂ S := span (X\Y ),
any basis I ⊂ X\Y for S must lie in I′. We set X̃ := X ∩ S. Now, with {Q̃B := pX̃(B) : B ∈ B(X̃)}

the homogeneous basis for P(X̃) (per the fixed order we chose for X) [10], we have

pY ∈ pX\S · P(X̃) = pX\S · span {Q̃B : B ∈ B(X̃)}

= span {QI : I ∈ B(X̃)} ⊂ span {QI : I ∈ I′},

with the last inclusion following from the fact that every basis for S from X must lie in I′, since I′

is semi-external. Thus,
P+(X, I′) ⊂ span {QI : I ∈ I′}.

We conclude that the two spaces coincide and

dimP+(X, I′) = #I′.

2. and 3. : Note that {ex(I) : I ∈ I′} ⊂ B(X ′). We first apply Theorem 1.4 to this case (i.e., with
X there replaced by X ′ and B′ being our {ex(I) : I ∈ I′}). The theorem thus tells us that

Π(V(ex(I′))) ⊂ D+(X, I′),

and that dimD+(X, I′) ≥ #I′.
We next claim that P+(X, I′) + J+(X, I′) = Π. Once we prove this claim, we will have that

dimD+(X, I′) = codimJ+(X, I′) ≤ dimP+(X, I′) = #I′. This will yield that dimD+(X, I′) = #I′,
hence that D+(X, I′) = Π(V (I′)). The same will also yield that codimJ+(X, I′) = #I′, hence that
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the sum P+(X, I′) +J+(X, I′) is direct (since dimP+(X, I′) = #I′, too). In summary, the proofs of
(2) and (3) will be completed once we show that P+(X, I′) + J+(X, I′) = Π, as we do now.

Since we know that P(X)⊕J (X) = Π (see [11]; the result was first proved in [1, 10]), we conclude
from the fact that P(X) ⊂ P+(X, I′), that P+(X, I′) + J (X) = Π. We prove now that

J (X) ⊂ P+(X, I′) + J+(X, I′).

A polynomial in J (X) is a linear combination of polynomials of the form pY f , where f ∈ Π, Y ⊂ X
and rank(X\Y ) < n. Let I ⊂ X\Y be a basis for spanX\Y . If I 6∈ I′, then, since I′ is semi-
external, X\Y contains no element in I′, hence pY ∈ J+(X, I′), a fortiori pY f ∈ J+(X, I′), and we
are done. Otherwise, I ∈ I′. We prove this case by induction on #(X\Y ). Thus, we assume that
pY ′f ∈ P+(X, I′)+J+(X, I′) whenever #(X\Y ′) = k ≥ −1 and consider pY f where #(X\Y ) = k+1
(the initial case X = Y corresponds to the choice k = −1).

The proof goes as follows: we denote B := ex(I), and, using the fact that

Π = Π0
0 + Ideal{pb : b ∈ B},

write
f = c +

∑

b∈B

cbpbfb,

with c and (cb)b∈B some scalars, and (fb)b∈B some polynomials. Then

pY f = cpY +
∑

b∈B

cbpY ⊔bfb.

We show that each of the terms on the right-hand-side lies in P+(X, I′) + J+(X, I′).
Starting with pY , we note that Y ∩ I = ∅ and that I ∈ I′, hence that pY ∈ P+(X, I′). We

then consider the term pY ⊔bfb under the assumption that b ∈ I. In this case, Y ′ := Y ⊔ b ⊂ X
and #(X\Y ′) = k, and hence the induction hypothesis applies to yield that pY ⊔bfb ∈ P+(X, I′) +
J+(X, I′).

Finally, we treat the summand pY ⊔bfb under the assumption that b ∈ B0. Let I ′ ∈ I(X), and
assume that Y ∩ I ′ = ∅. Then I ′ ⊂ X\Y , hence span I ′ ⊂ span I, and therefore ex(I) ∩ B0 ⊂
ex(I ′) ∩ B0. Consequently, b ∈ ex(I ′). In summary, the set Y ⊔ b intersects every extended basis
ex(I ′), I ′ ∈ I′, and this means that pY ⊔bfb lies in the ideal J+(X, I′).

4. We now prove that P+(X, I′) = kerI+(X, I′). We first show that P+(X, I′) ⊂ kerI+(X, I′). To
this end, choose Y ⊂ X such that X\Y contains a set I ∈ I′. We need to show that pY is annihilated
by each of the generators of the ideal I+(X, I′). The fact that pY is annihilated by I+(X) follows
from the fact that kerI+(X) = P+(X) ⊃ P+(X, I′) by Theorem 2.2.

We now deal with a differential operator q(D), q ∈ Π0
#(X\S)(S⊥), S ∈ S(X, I′). Note that

q(D)pY = pY ∩S q(D)pY \S .

Now, #(X\S) = deg q, and Y \S ⊂ X\S. Therefore, we just need to rule out the possibility
that Y \S = X\S. Indeed, if Y \S = X\S then X\Y ⊂ S, and hence I ⊂ S. Since I ∈ I′

and I′ is semi-external, this implies that every basis for S from X is in I′, contradicting thereby
the assumption that S ∈ S(X, I′). Hence #(Y \S) < deg q, and we obtain that q(D)pY = 0.
Consequently, P+(X, I′) ⊂ kerI+(X, I′).

Proving the converse inclusion is somewhat harder. First, since I+(X) ⊂ I+(X, I′) directly from
the definition of I+(X, I′), we have that kerI+(X, I′) ⊂ kerI+(X) = P+(X) (cf. Theorem 2.2). In
addition, since (QI)I∈I′ is a basis for P+(X, I′), while (QI)I∈I(X) is a basis for P+(X), we have that

P+(X, I′) ⊂ kerI+(X, I′) ⊂ kerI+(X) = P+(X) = P+(X, I′) + QI′,
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with
QI′ := span {QI : I ∈ I(X)\I′}.

We show now that QI′ ∩ kerI+(X, I′) = 0, and this will complete the proof.
To this end, let

f :=
∑

I∈I(X)\I′

c(I)QI ∈ kerI+(X, I′).

We will show that c(I) = 0 for all I ∈ I(X)\I′. Assume, to the contrary, that c(I ′) 6= 0 for some
I ′ ∈ I(X)\I′, and assume, without loss of generality, that c(I) = 0 for every I ∈ I(X)\I′ of smaller
cardinality. I ′ cannot be a basis in B(X), since it is not in I′. We therefore extend I ′ to a basis
B′ ∈ B(X) using the vectors (b1, . . . , bk) ⊂ X , k ≥ 1, and denote

S0 := span I ′, Si := span (I ′ ∪ {b1, . . . , bi}) , i = 1, . . . , k.

For each 1 ≤ i ≤ k, we choose vector 0 6= ηi ∈ Si, such that ηi ⊥ Si−1 ⊃ S0. Setting mi :=
#((X ∩ Si)\Si−1), i = 1, . . . , k, we define

q :=

k∏

i=1

pmi
ηi

.

Since ηi ⊥ S0 for every i, and since
∑k

i=1 mi = #(X\S0), we conclude that q ∈ Π0
#(X\S0)

(S0⊥),

which implies that q ∈ I+(X, I′) and that q(D)f = 0.
Now, for Y ⊂ X ,

q(D)pY = pm1

η1
(D)p(Y ∩S1)\S0

pm2

η2
(D)p(Y ∩S2)\S1

. . . pmk−1

ηk−1
(D)p(Y ∩Sk−1)\Sk−2

pmk
ηk

(D)pY \Sk−1
.

Since #(X ∩ Sj)\Sj−1 = mj , 1 ≤ j ≤ k, we have q(D)QI 6= 0 only if X\S0 = X(I)\S0, which is
possible only if I ⊂ S0 (since I ∩ X(I) = ∅), in which case

q(D)QI = apX(I)∩S0
,

for some a 6= 0. Thus, with
Sub(S0) := {I ∈ I(X)\I′ : I ⊂ S0},

we have
0 = q(D)f = a

∑

I∈Sub(S0)

c(I)pX(I)∩S0
.

Per our assumption on the minimal cardinality of I ′, we have that c(I) = 0 whenever I ∈ Sub(S0)
and #I < #I ′. However, the polynomial set {pX(I)∩S0

: I ∈ I(X), span I = S0} is a basis for the
central space P(X ∩ S0), hence we conclude that c(I) = 0, for every I ∈ Sub(S0). In particular,
c(I ′) = 0.

5. Pick q ∈ D+(X, I′)\{0}. Since J+(X, I′) ⊕ P+(X, I′) = Π, q can be written in the form of
q = f + p where f ∈ J+(X, I′) and p ∈ P+(X, I′). D+(X, I′) = kerJ+(X, I′) implies that 〈q, f〉 = 0.
We conclude that 〈q, p〉 = 〈q, q〉 6= 0, since q 6= 0. This means that there exists no q ∈ D+(X, I′)\{0}
that satisfies

〈q, p〉 = 0, ∀p ∈ P+(X, I′).

The result follows from the fact that dimP+(X, I′) = dimD+(X, I′). 2

One observes that the definition of the ideal I+(X, I′) involves more than the powers of the
normals to the facet hyperplanes. We now investigate a special situation where the set I′ satisfies
an additional condition, and show that I+(X, I′) is generated then by powers of the normals to the
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hyperplanes and by nothing else. Precisely, we will assume that an independent subset I0 necessarily
lies in I′ whenever all its extensions to a set of rank n− 1 lie in I′. We will use, for I ∈ I(X)\B(X),
the notation

M(I) := {I ′ ∈ I(X) : I ⊂ span (I ′) ∈ F(X)}.

Also,
Iε(X, I′) := Ideal{pm(F )+ε(F )

ηF
: F ∈ F(X)},

where ε(F ) := 1 if F = span (I) for some I ∈ I′, or else ε(F ) := 0.
For the proof of our Theorem 2.8 below, we will need the following proposition:

Proposition 2.7 ([11, Proposition 4.8]) Let I be a polynomial ideal and let V be a subspace of
Rn of dimension d ≥ 2. Let V1, . . . , Vk be distinct subspaces of V , each of dimension d− 1. Suppose
that, for n1, . . . , nk ∈ N, the ideal I contains all homogeneous polynomials defined on Vi of degree
ni:

Π0
ni

(Vi) ⊂ I.

Then

Π0
N (V ) ⊂ I whenever (N + 1)(k − 1) ≥

k∑

i=1

ni.

Theorem 2.8 Suppose that the semi-external set I′ satisfies the following additional condition:

for any I ∈ I(X)\B(X), M(I) ⊂ I′ implies I ∈ I′.

Then

(1) I+(X, I′) = Iε(X, I′).

(2) P+(X, I′) =
∑

Iis minimal in I′

(⋂
Z∈CompI(X) P(X ⊔ Z)

)
. Here, I is minimal in I′ provided

I ∈ I′ and (I′∩2I)\I = ∅, and CompI(X) denotes all completions of I to a basis: CompI(X) :=
{Z ⊂ X : I ∪ Z ∈ B(X)}.

Proof. (1) Every generator of Iε(X, I′) is in I+(X, I′) directly from the definition of these
ideals, hence

Iε(X, I′) ⊂ I+(X, I′).

Therefore, we only need to prove that

Π0
#(X\S)(S⊥) ⊂ Iε(X, I′), for all S ∈ S(X, I′).

We run the proof by induction on n − dim S. When n − dimS = 1, i.e., S ∈ F(X), we have

Π0
#(X\S)(S⊥) ⊂ Iε(X, I′), S ∈ S(X, I′), (2)

Π0
#(X\S)+1(S⊥) ⊂ Iε(X, I′), S ∈ {span (I) : I ∈ I′}. (3)

We will extend now (2) and (3) to sets S of lower dimension. For the inductive step, we suppose
that (2) and (3) hold when n−dimS = d > 0. We now consider the case where S = span I for some
independent I ∈ I(X), and n − dimS = d + 1. Consider all possible linear spaces obtained as the
span

span {S ∪ x}, x ∈ X\S.

Assume that j of them are distinct and label them S1 through Sj (note that j > 1 since d + 1 > 1).
By our induction hypothesis, Π0

mi
(Si⊥) ⊂ Iε(X, I′) for each i = 1, . . . , j, where mi := #(X\Si) + εi

and εi := 1 if Si ∈ I′ and εi := 0 otherwise, i.e., if Si /∈ I′. By Proposition 2.7, we conclude that

Π0
N (S⊥) ⊂ Iε(X)
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whenever (N + 1)(j − 1) is at least

j∑

i=1

(#(X\Si) + εi) = j#(X\S)− #(X\S) +

j∑

i=1

εi ≤ (j − 1)#(X\S) + j.

If S is spanned by a set that is in I′, then we can take N to be #(X\S) + 1 since N so chosen
satisfies

N ≥ #(X\S) +
1

j − 1
.

If S ∈ S(X, I′), then at least one of the extensions Si is not in I′ (otherwise, it will be easy to see

that we violate the extra condition that is now assumed on I′), and therefore
∑j

i=1 εi ≤ j − 1, hence
the value N = #(X\S) is already large enough for our purposes. This completes the inductive step,
hence completes the proof of this part.

(2) We first prove that

P+(X, I′) ⊂
∑

I is minimal in I′




⋂

Z∈CompI(X)

P(X ⊔ Z)


 .

Pick I ′ ∈ I′. There exists a minimal set I from I′ such that I ⊂ I ′. The definition of pX(I′) shows
that pX(I′) ∈ P(X ⊔ Z) for all Z ∈ CompI(X). We conclude that

pX(I′) ∈
⋂

Z∈CompI(X)

P(X ⊔ Z),

which implies that

P+(X, I′) ⊂
∑

I is minimal in I′




⋂

Z∈CompI(X)

P(X ⊔ Z)


 .

We complete the proof by showing that every polynomial p in
⋂

Z∈CompI (X) P(X ⊔ Z) lies in

kerIε(X, I′). Let p be such a polynomial, and let F ∈ S(X, I′) ∩ F(X) (we need to check only

this case since the other case, F /∈ S(X, I′), is straightforward). We need to show that D
m(F )
ηF p = 0,

where ηF⊥F and m(F ) := #(X\F ). Incidentally, note that I = ∅ is possible only if I′ = I(X),
i.e., when P+(X, I′) = P+(X), the case when all multiplicities are increased by 1, which causes no
problem. Thus, I contains at least one element whenever at least one “problematic” multiplicity
exists. We now select Z ⊂ F ∩ X so that Z ∈ CompI(X) (such a Z exists, since span I 6⊂ F and

codimF = 1). Then, p ∈ P(X ⊔Z), hence p is annihilated by D
#(X⊔Z)\F
ηF . Since all vectors of Z lie

inside F , we conclude that #(X ⊔ Z)\F = m(F ) and the result follows. 2

3 Semi-internal zonotopal spaces

3.1 A review of internal zonotopal spaces

In this section we recall pertinent results from [11] concerning the (full) internal zonotopal spaces
and their associated ideals. We impose an (arbitrary but fixed) ordering ≺ on X . Let B ∈ B(X),
and b ∈ B. We say that b is internally active in B, if

b = max{X\F}, F := span {B\b} ∈ F(X).

A basis b that contains no internally active vectors is called an internal basis. We denote the set of
all internal bases by B−(X). We now recall the definition of the ideal I−(X) from the introduction,
and add the following definitions:
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Definition 3.1

J−(X) := Ideal{pY : Y ⊂ X, Y ∩ B 6= ∅, ∀B ∈ B−(X)},

P−(X) := ∩x∈XP(X\x),

D−(X) := kerJ−(X).

We denote
V− := {V(B) : B ∈ B−(X)}.

The following theorem is taken from [11]:

Theorem 3.2

1. dimP−(X) = dimD−(X) = #B−(X).

2. The map p 7→ 〈p, ·〉 is a bijection between P(X) and D(X)′.

3. D−(X) = Π(V−).

4. P−(X) = kerI−(X).

5. P−(X)
⊕

J−(X) = Π.

In contrast with the external and semi-external cases, the polynomials {QB : B ∈ B−(X)} do not
in general form a basis for P−(X) [11]. However, the Hilbert series of P−(X) can be still determined
in the usual way using the valuation function for internal bases, namely, via the sequence (see [11])

h−(j) := h−,X(j) := dim(P−(X) ∩ Π0
j) = #{B ∈ B−(X) : val (B) = j}.

3.2 Introduction and analysis of semi-internal zonotopal spaces

Given the set X , the internal space P−(X) can be also defined as follows [11]:

P−(X) := ∩b∈BP(X\b),

where B ∈ B(X) is arbitrary. In particular, this implies that the dimension of the above intersection
is still expressed in terms of the matroidal statistics of X , i.e., the number of internally inactive
bases of X . Suppose, instead, that we choose I ∈ I(X) and define, similarly

P−(X, I) := ∩b∈IP(X\b).

Then, a few questions arise naturally:

• Does the space P−(X, I) depend only on span I and not on I itself?

• Is there a simple formula that expresses dimP−(X, I) in terms of the cardinality of a suitable
subset of B(X)?

• Is the ideal I−(X, I) of differential operators that annihilate P−(X, I) generated by powers of
the normals to the facets of X?

• Is there a dual construction (on the hyperplane arrangement) of an ideal of the J -class?

The answer to all the questions above turns out to be affirmative. In order to present our results
for the above setup, we select a full order ≺ on X , and put the vectors in I to be the last ones in
this order, i.e.,

x ≺ y for all y ∈ I, x ∈ X\I.

Further, we select the following subset of I-facets:

F(X, I) := {F ∈ F(X) : I 6⊂ F}.

We then single out the following subset of B(X) of I-internal bases:
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Definition 3.3 Let B ∈ B(X). We say that b ∈ B is I-internally active (in B) if b = max{X\span (B\b))
and b ∈ I. We say that B is I-internal if no vector b in B is I-internally active in B. We denote
the set of all I-internal bases by

B−(X, I).

Note that if I ∈ B(X) then B−(X, I) = B−(X), while if I = ∅ then B−(X, I) = B(X). Further,
note that, while P−(X, I) does not depend on the order ≺, the set of I-internal bases does depend
on that order. Note also that every internal basis is I-internal:

B−(X) ⊂ B−(X, I).

In addition to the I-internal bases, we need the following ideal:

I−(X, I) := Ideal{I(X) ∪ {η
m(F )−1
F : F ∈ F(X, I), 0 6= ηF ⊥ F}}.

Theorem 3.4

1. dimP−(X, I) = #B−(X, I).

2. P−(X, I) = kerI−(X, I).

The result P−(X, I) = kerI−(X, I) implies that P−(X, I) depends only on span I and not on I
itself. We prove this theorem in the sequel. Let us next introduce the dual setup, that goes as
follows: first, we say that Y ⊂ X is I-long if Y ∩ B 6= ∅ for each B ∈ B−(X, I). Set

J−(X, I) := Ideal{pY : Y ⊂ X is I-long}.

Note that the ideal J−(X, I) depends on the order we choose, since the set B−(X, I) depends on
that order.

Let now H(X, λ) be a generic hyperplane arrangement as in Section 1.1. Then there is a natural
bijection B 7→ vB from B(X) onto the vertex set V (X, λ) of the hyperplane arrangement. Denote

V−(X, λ, I) := {vB : B ∈ B−(X, I)}, D−(X, I) := kerJ−(X, I).

Theorem 3.5

1. D−(X, I) = Π(V−(X, λ, I)), in particular

dimD−(X, I) = #B−(X, I).

2. J−(X, I) ⊕ P−(X, I) = Π.

3. The map p 7→ 〈p, ·〉 is a bijection from P−(X, I) onto D−(X, I)′.

Proof. (Theorems 3.4 and 3.5). The last assertion in Theorem 3.5 is a direct consequence
of the second assertion in that theorem and the fact that D−(X, I) = kerJ−(X, I): the argument is
identical to the one used to prove 5. of Theorem 2.6. We divide the rest of the proof into six parts
as follows.

Part I: P−(X, I) = kerI−(X, I).
Since, for every x ∈ X , P(X\x) = kerI(X\x), we may prove the stated result by showing that (i)
I(X\x) ⊂ I−(X, I) for every x ∈ I, and (ii) I−(X, I) ⊂ Ideal{∪x∈II(X\x)}.

For the proof of (i), fix x ∈ I, and denote X ′ := X\x. A generator Q in the ideal I(X ′) is of

the form Q := p
mX′ (F )
ηF , with F ∈ F(X ′). Then F is also a facet hyperplane of X . Now, if I ⊂ F ,

then x ∈ F . Therefore mX′(F ) = mX(F ) and Q above lies in I(X) hence also in I−(X, I). If, on

15



the other hand, I 6⊂ F , then the polynomial p
mX (F )−1
ηF lies in I−(X, I). This implies that Q lies in

that ideal, too, since mX′(F )) ≥ mX(F ) − 1.
For (ii), we first note that I(X) lies in each ideal of the form I(X\x). Thus, we may simply

show that every generator of I−(X, I) of the form Q = p
m(F )−1
ηF lies in one of the ideals I(X\x),

x ∈ I. Here, F is a facet hyperplane of X , and I 6⊂ F . Let x ∈ I\F . Denote X ′ := X\x. Since
x /∈ F , it is clear that F ∈ F(X ′), and then mX′(F ) = mX(F ) − 1. Thus the polynomial Q lies in
I(X ′), and (ii) follows.

Part II: Π(V−(X, λ, I)) ⊂ D−(X, I), dimD−(X, I) ≥ #B−(X, I). Both claims are obtained by
a standard argument; see Theorem 1.4.

Part III: dimD−(X, I) = #B−(X, I). In view of Part II, we only need to prove the ≤ inequality.
To this end, we note that J (X) + P(X) = Π by Theorem 1.2 and since J (X) ⊂ J−(X, I), we

have that J−(X, I) + P(X) = Π. Now, let (QB)B∈B(X) be the homogeneous basis for P(X) (per
our chosen order for X ; see Theorem 1.6). Set

Pex := span {QB : B ∈ B(X)\B−(X, I)}.

We show that Pex ⊂ J−(X, I). This will imply that

Π = J−(X, I) + Pin, Pin := span {QB : B ∈ B−(X, I)},

hence that
dimD−(X, I) = dimΠ/J−(X, I) ≤ dimPin = #B−(X, I),

which is the desired result.
So, we need to show that each QB, B ∈ B(X)\B−(X, I) lies in J−(X, I). Now, QB = pY , with

Y := {x ∈ X\B : x 6∈ span {b ∈ B : b ≺ x}}.

Since B 6∈ B−(X, I), there exists b ∈ B ∩ I such that, with F := span (B\b), b = max{X\F}. This
shows that

X\Y ⊂ F ⊔ {b}.

However, every basis B ⊂ F ⊔ {b} is a basis for F augmented by b, hence is not I-internal. Conse-
quently, Y is I-long hence lies in J−(X, I).

Part IV: D−(X, I) = Π(V−(X, λ, I)). This follows directly from Parts II and III, since
dimΠ(V−(X, λ, I)) = #B−(X, I).

Part V: dimP−(X, I) ≤ #B−(X, I). The proof of this assertion follows from the fact that

P−(X, I) ∩ Pex = {0}. (4)

Indeed, once (4) is proved, we conclude that, since P−(X, I),Pex ⊂ P(X),

dimP−(X, I) ≤ dimP(X) − dimPex = dimPin = #B−(X, I).

The actual proof of (4) follows almost verbatim the proof of the special case I ∈ B(X) from [11,
Theorem 5.8]. We briefly outline the proof there, and add an additional argument that is required
in our more general setup.

We start by writing down an arbitrary element in Pex\0:

∑

B∈B(X)\B−(X,I)

a(B)QB .

We then select a summand a(B′)QB′ in the above sum such that a(B′) 6= 0, and such that B′ is
minimal (among all summands with non-zero coefficients) with respect to the valuation

α(B) := #M(B), M(B) := {b ∈ B ∩ I : b = max(X\span (B\b))}.
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By the definition of Pex, α(B′) > 1. Let b′ ∈ M(B′), and set F ′ := span (B′\b′). The argument
in [11, Theorem 5.8] then reduces the proof of the fact that a(B′) = 0 to showing that, if B ∈
B(X)\B−(X, I), if B ∩ F ′ = B′ ∩ F ′, and if B 6= B′, then α(B) < α(B′). So, we pick now such
B, and prove that M(B) ⊂ M(B′). This proves that α(B) < α(B′), since b′ ∈ M(B′)\M(B) (if
b′ ∈ M(B) it follows that B = B′).

Thus, we pick x ∈ M(B) and prove that it lies in M(B′), too. To this end, we denote A := B′\b′.
Then A is a basis for F ′, and B = A ⊔ b, for some b ∈ X . Necessarily, x ∈ A. Set S := A\x. Note
that rankS = n− 2. Assume that x 6∈ M(B′). Since x ∈ I ∩B′, we conclude that there exists y ≻ x
such that y 6∈ span {S ∪ b′}. Assume y to be maximal element outside span {S ∪ b′}. We get the
contradiction to the existence of such y by showing that it is impossible to have y ≻ b′, and it is
also impossible to have y ≺ b′. Note that y ∈ I, since x ∈ I.

If y ≻ b′, then, since b′ is maximal outside span {B\b′} = spanA = span {S ∪ x}, we have that
y ∈ span {S ∪ x}. Also, since y ≻ x, and x is maximal outside span {B\x} = span {S ∪ b}, we have
y ∈ span {S ∪ b}. But S ∪ b ∪ x = B, and B is independent, hence y ∈ spanS, which is impossible
since we assume y to be outside span {S ∪ b′}.

Otherwise, y ≺ b′. The maximality of y then implies that x ≺ y ≺ b′. The maximality of x outside
span {S∪b} implies that b′ ∈ span {S∪b}. Since b′ 6∈ S, we obtain that span {S∪b} = span {S∪b′},
which is impossible since y lies in exactly one of these two spaces.

Part VI: dimP−(X, I) = #B−(X, I), and J−(X, I) ⊕ P−(X, I) = Π. We prove in Lemma 3.6
below that

J−(X, I) + P−(X, I) = Π.

This implies that
dimP−(X, I) ≥ dimkerJ−(X, I) = #B−(X, I),

with the equality by Part III. This, together with Part V shows that dimP−(X, I) = #B−(X, I).
Thus, dimP−(X, I) = dimΠ/J−(X, I), hence the sum P−(X, I) +J−(X, I) = Π must be direct. 2

Lemma 3.6
J−(X, I) + P−(X, I) = Π.

Proof. The special case of this result for the choice I ∈ B(X) was proved in [11, Theorem
5.7]. While most of the proof here parallels the one in [11], there is a significant difference in one of
the details which requires us to provide here a complete self-contained proof.

The proof of the previous theorem reduces the proof here to showing that, for each QB, B ∈
B−(X, I), QB ∈ J−(X, I)+P−(X, I). Fixing B ∈ B−(X, I), we know that QB = pX(B), for suitable
X(B) ⊂ X . We decompose X(B) in a certain way X(B) = Z ⊔ W . Thus

QB = pZpW .

We then replace each w ∈ W by a vector w′ (not necessarily from X), to obtain a new polynomial

Q̃B:=pZpW ′ ,

and prove that (i) Q̃B ∈ P−(X, I), and (ii) QB − Q̃B ∈ J−(X, I).
So, let QB = pX(B) be given. If QB ∈ kerI−(X, I) = P−(X, I), there is nothing to prove.

Otherwise, let F ⊂ F(X) be the collection of all facet hyperplanes F for which D
m(F )−1
ηF QB 6= 0,

and max(X\F ) ∈ I. The set F is not empty, since otherwise QB ∈ kerI−(X, I). Given F ∈ F, we
conclude that #(X(B)\F ) ≥ m(F )− 1, hence that, with Y :=X\X(B), #(Y \F ) ≤ 1. Since B ⊂ Y ,
the set Y \F must be a singleton xF ∈ B. We denote

XF:={xF : F ∈ F}.
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Define
W :={max{X\F} : F ∈ F}.

Then W ⊂ I, by the definition of F. We index the vectors in W according to their order in X :
W = {w1 ≺ w2 ≺ . . . ≺ wk}. For each 1 ≤ i ≤ k, we define

Xi:={xF : F ∈ F, max{X\F} = wi}, Fi:={F ∈ F : xF ∈ Xi}.

Thus, XF =
⋃k

i=1 Xi.
Setting all these notations, we first observe that W ∩XF = ∅, i.e., wi does not lie in Xi. Indeed,

the set XF is a subset of every B′ ∈ B(Y ), with span (B′\xF ) = F for each xF ∈ XF. If some xF

is max{X\F}, it will be I-internally active in every B′ ∈ B(Y ), which would imply that B(Y ) does
not contain I-internal bases, which is impossible since B ∈ B(Y ). Thus, W ⊂ X(B), and we define
Z:=X(B)\W , to obtain

QB = pZpW .

Define further:
Si:= ∩ {F : F ∈ ∪i

j=1Fj}, S0:=Rn.

Then, for i = 1, . . . , k, Si−1 = Si ⊕ span Xi, and wi ∈ Si−1\Si. Thus, for i = 1, . . . k, the vector wi

admits a unique representation of the form

wi = w′
i +

∑

x∈Xi

axx, w′
i ∈ Si, ax ∈ R\{0}. (5)

Define
W ′ = {w′

1, . . . , w
′
k}, and Q̃B:=pZpW ′ .

We prove first that
Q̃B − QB = pZ(pW ′ − pW )

lies in J−(X, I). To this end, we multiply out the product

pW ′ =

k∏

i=1

pw′

i
=

k∏

i=1

(pwi
−

∑

x∈Xi

axpx). (6)

Every summand in the above expansion is of the form pΞ, with Ξ a suitable mix of W -vectors and
XF-vectors. The summand pW in the above expansion in canceled when we subtract QB. Any other
Ξ is obtained from W by replacing at least once a wi vector by some vector in Xi, which we denote by
xi. Let wi1 ≺ wi2 ≺ . . . ≺ wij

be all the w-vectors in W\Ξ, and let F1 be the facet hyperplane that
corresponds to xi1 (F1:=span (B\xi1).) Then, we have that wi1 ∈ X\(Z ⊔ Ξ) =: Y ′, and we claim
that Y ′\wi1 ⊂ F1. To this end, we write Y ′\F1 = ((Y ′ ∩ Y )\F1) ⊔ (Y ′\Y )\F1. Now, Y \F1 = xi1 ,
and since xi1 6∈ Y ′ (as it was replaced by wi1 ), the term (Y ′ ∩ Y )\F1 is empty. The second term
consists of (wim

)j
m=1\F1. However, wim

∈ Sim−1 ⊂ Si1 ⊂ F1, for every m ≥ 2. Thus, wi1 is the only
vector in Y ′\F1. Being also the last vector in X\F1, we conclude that wi1 is I-internally active in

every B ∈ B(Y ′), hence that pZ⊔Ξ ∈ J−(X, I). This being true for every summand in Q̃B −QB, we
conclude that this latter polynomial lies in J−(X, I).

We now prove that Q̃B = pZ⊔W ′ ∈ kerI−(X, I). To this end, we need to show that, for every
F ∈ F(X), #((Z ⊔ W ′)\F ) < m(F ) − ǫ(F ), with ǫ(F ) = 1 if I 6⊂ F , and ǫ(F ) = 0 otherwise. We
divide the discussion here to three cases. As before, Y :=X\X(B).

Assume first that F ∈ Fi for some 1 ≤ i ≤ k. In this case, ǫ(F ) = 1. Now, for X(B) = Z ⊔ W
we had that #((Z ⊔ W )\F ) = m(F ) − 1. Also, xF is the only vector in Y \F , and xF ∈ Xi. Thus,
the subset Xj ⊂ Y , must lie in F for every j 6= i, which means that we conclude that, wj ∈ F iff
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w′
j ∈ F (since wj − w′

j ∈ spanXj ⊂ F ). Finally, while wi 6∈ F , w′
i ∈ Si ⊂ F , hence, altogether,

#(W ′\F ) < #(W\F ), and we reach the final conclusion that

#((Z ⊔ W ′)\F ) < #((Z ⊔ W )\F ) = m(F ) − 1.

Secondly, we assume F ∈ F(X)\F, but still that Sk ⊂ F . Let j ≥ 1 be the minimal index i for
which Si ⊂ F . Define:

m1:=#{w ∈ W\wj : w ∈ F and w′ 6∈ F}, and m2:=#(⊔i6=j(Xi\F )).

Note that (since w′
j ∈ F ) #((Z ⊔W ′)\F ) ≤ m(F ) + m1 −m2 −#((Xj ⊔wj)\F ). Note further that

for i 6= j, if w′
i 6∈ F , while wi ∈ F , then, since wi −w′

i ∈ span Xi, we have that #(Xi\F ) > 0. Thus,
m1 ≤ m2. In addition, for i = j,

wj − w′
j ∈ span Xj.

We know a priori that Sj ⊕ spanXj = Sj−1. Since Sj ⊂ F , while Sj−1 6⊂ F , we must have that
Xj\F 6= ∅. But, w′

j ∈ F , hence #((Xj ⊔ wj)\F ) ≥ 2. Thus,

#((Z ⊔ W ′)\F ) ≤ m(F ) + m1 − m2 − #((Xj ⊔ wj)\F ) < m(F ) − 1.

Lastly, assume that S′:=Sk ∩ F 6= Sk. We define now, similarly,

m1:=#{w ∈ W : w ∈ F ∧ w′ 6∈ F}, and m2:=#(⊔k
i=1(Xi\F )).

Then, as before, m1 ≤ m2. Hence, #((Z ⊔W ′)\F ) ≤ m(F )−#U , with U :=(Y ∩Sk)\S′. Note that
all the vectors of Y \U lie in the rank deficient set (Y ∩ S′) ⊔ (Y \Sk)), hence U is not empty. If
#U ≥ 2, or if m1 < m2, we are done since it follows that #((Z⊔W ′)\F ) ≤ m(F )−2. However, if U
is a singleton and m1 = m2, our analysis only shows that #((Z ⊔W ′)\F ) ≤ m(F )− 1. That means
that, for this case, we either need to furnish a finer estimate, or show that I ⊂ F . We prove the
latter. The argument below uses the following approach: after realizing that the singleton U lies in
the basis B, we define F ′ := span (B\U), and conclude that F ′ must contain I. We then invoke the
condition m1 = m2 in order to obtain a spanning set for F by removing from F ′ ∩ Y all the vectors
in F ′ ∩ XF and adding instead vectors from W ⊂ I. In this way, we guarantee that I ⊂ F , too.

Here are the details. Let F ′ be the hyperplane spanned by X\(X(B) ⊔ U). This hyperplane is
spanned by elements of B. Moreover, (X\X(B))\F ′ = U , and U is a singleton. At the same time,
F ′ is not listed in F (since U ∈ Sk and Sk is disjoint of XF). Then, necessarily, I ⊂ F ′, hence also
W ⊂ F ′.

Next, let J ⊂ {1, . . . , k} be defined by

j ∈ J ⇐⇒ (wj ∈ F and w′
j 6∈ F ).

The equality m1 = m2 implies that Xj\F is a singleton xj for j ∈ J and is empty otherwise. Now,
we know that Y ′ := Y \U spans F ′. Y ′′ := Y ′\{xj : j ∈ J} is a subset of F ∩F ′ of rank n−#J −1.
Since W ⊂ F , we have that Y ′′′ := Y ′′ ⊔ {wj : j ∈ J} ⊂ F . Since each wj , j ∈ J , is independent of
(Y \xj)⊔ {wi : i > j}, we conclude that rankY ′ = rankY ′′′, hence2 I ⊂ span Y ′′′. Thus, I ⊂ F , and
our proof is complete. 2

We now consider the Hilbert series of P−(X, I), i.e.,

h−,I(j) := dim(P−(X, I) ∩ Π0
j).

In general, it is not true that the polynomials QB := pX(B), B ∈ B−(X, I), form a basis for P−(X, I).
However, they can be used for computing h−,I(j). In fact, we have

h−,I(j) = #{B ∈ B−(X, I) : val (B) = deg QB = j}.

2If a set A in a vector space V contains a subspace V ′ in its span, and if A′ = v′ ⊔ (A\a) for some a ∈ A and
v′ ∈ V ′, then either V ′ ⊂ span A, or else rank A′ < rank A.
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We observe this fact from the proof of Lemma 3.6: Every QB there was proved to be writable as

QB = Q̃B + fB

with Q̃B ∈ P−(X, I) and fB ∈ J−(X, I). The fact Q̃B, B ∈ B−(X, I), are independent follows
directly from the independence of QB, B ∈ B−(X, I), and the fact that the sum J−(X, I) +
span {QB : B ∈ B−(X, I)} is direct (from Part III of the proof of Theorems 3.4 and 3.5, and
the fact dimkerJ−(X, I) = #B−(X, I)), which implies that {Q̃B : B ∈ B−(X, I)} is a basis for
P−(X, I). Note that each Q̃B is obtained by replacing some of the factors pω, ω ∈ X of QB, by
polynomials pω′ , ω′ ∈ Rn\0. Thus, deg Q̃B = deg QB = val (B), hence we may indeed compute
h−,I(j) via the polynomials QB, B ∈ B−(X, I).

Remark 3.7 We note that, if #I ≤ 2, then

P−(X, I) = P−(X) + span {QB : B ∈ B−(X, I)\B−(X)}. (7)

In general, however, (7) is not valid for #I ≥ 3.
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