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Amos Ron, Shengnan (Sarah) Wang

ABSTRACT

Cone polynomials in n > 1 variables, also known as volume polynomials and/or spline
polynomials, are the polynomials that appear in the local structure of the truncated pow-
ers, hence in the local structure of any derived construction such as box splines, simplex
splines, partition functions, character formulas and moment maps. The underlying geom-
etry is determined by a real linear matroid, i.e., a real matrix X n x N of rank n. The
polynomial space itself is defined as the kernel D(X) of an ideal J (X)) of differential oper-
ators, whose generators, each, are products of linear forms. While important statistics on
D(X) (e.g., its Hilbert series) are classically known, its algebraic structure is considered to
be hopelessly involved. In particular, as of today, and save a handful of truly rudimentary
cases, basis constructions for D(X) are scarce, and provide, perhaps, neither an insight
into the polynomials that make D(X), nor an aid in pertinent applications.

We study the above setup when X is the incidence matrix of a graph G, and focus
only on the socle soc(D(X)) of D(X), which is comprised of the top-degree homogeneous
polynomials in D(X): the polynomial pieces that make the truncated powers span that
socle only. We first resolve the ideal J(X) by representing it as the intersection of larger
ideals, each of which a much simpler one: a complete intersection (CI) ideal. Each CI ideal
Jg, is induced by an acyclic directed version G, of the graph G. Kernels of CI ideals have
1-dimensional socles, and the final outcome is a resolution of soc(D(X)) into a direct sum
of these 1-dimensional socles:

(0.1) soc(D(X)) = ®gsoc(Tg L).

This decomposition can be thought of as an algebraic realization of a known combinatorial
graph identity, i.e., that the number of spanning trees of the graph with 0 external activity
(which is known to be equal of dimsoc(D(X))) is the same as the number of acyclic
orientations of GG with one fixed source.

We then provide an explicit combinatorial algorithm for the construction of the 1-
dimensional socles of Jg L. This explicit construction leads to the following core, sur-
prising, observation: when writing each polynomial in the basis provided in (0.1) as a
combination of monomials, the monomial coefficients are determined by a discrete trun-
cated power (i.e., a partition function) in dimension n — 1. That means that not only
truncated powers in n dimensions are piecewise in the polynomial space soc(D(X)), but
also, in a suitable sense, this latter polynomial space is canonically isomorphic to a suitable
discrete truncated power space of a lower dimension. In short, cone polynomials underlie
the structure of truncated powers, while truncated powers underlie the structure of cone
polynomials!



1. Introduction

1.1. Outline of main results

We are interested in classes of multivariate polynomials that underlie mainstream
spline approximation, most notably box spline approximation. Such splines, together with
their pertinent polynomials, appear, either explicitly or implicitly, in a host of other math-
ematical areas: wavelet representations and CAGD are typical areas in analysis. Repre-
sentation theory and symplectic geometry are typical examples in algebra and geometry.

The fundamental notion we tackle, indirectly, is known as truncated power function in
analysis and as partition function outside analysis: these are (essentially) synonyms. These
functions are piecewise-analytic (piecewise-polynomial in this article) in n (real) variables
t=(t(1),...,t(n)), and are defined with the aid of a finite multiset X C IR™\0: each such
multiset defines a finite collection TP(X) of truncated powers that are intimately related
one to the other. Of interest to us is the interplay between these truncated powers on the
one hand, and associated classes of “volume polynomials” on the other hand.

The interplay between polynomials and truncated powers I: One aspect of
this interplay is the underlying polynomial structure of truncated powers. The local pieces
of any fixed truncated power function in TP(X') span, in the piecewise-polynomial case, the
socle of a polynomial space that is denoted herein by D(X ), and which depends only on X
(hence independent of the choice of the particular member in TP(X)). The polynomials
in D(X) are sometimes referred to as “volume polynomials”, sometimes as “box spline
polynomials” and sometimes as “cone polynomials”. The space D(X) is referred to a “box
spline space” as well as a “central Zonotopal Algebra space”. Let us describe this space in
the case when X is the incidence matrix of a connected (undirected) graph G with vertex

set [0:n]. In what follows,
IT

stands for the polynomial ring IR[¢(1),...,t(n)], and

(ei)izs

is the standard basis for R", ey := 0 € IR". An edge (i,j) in a graph with vertex set
[0:n] is commonly identified with one of the two vectors x = +(e; — e;). Whenever the
graph is directed, the edge direction ¢ — j corresponds to the choice x = e; — ;. The
matrix X := X (G) whose columns are in bijection with the edges of a given graph is the
incidence matrix of it.> In what follows, we identify the graph G with its edge set X (G);
thus the statement x € G (or z € X(G)) means that x is an edge of G (a column of X (G),
respectively).

One starts by defining the following polynomial ideal J(X) C II. Anedge z = ej—e; €
G induces the linear polynomial p,(t) := t(j) — ¢(i) (¢£(0) := 0), and a (multi)subset of
edges Y C X gives rise to

by ‘= H Pz-

zeY

L If G is undirected, the orientation of each edge x € X may be chosen arbitrarily.
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The ideal
J(G):=TJ(X)

is then generated by (all) the cut polynomials py of G. A single cut Y C X is created
by a non-trivial partitioning of [0:n] into disjoint Vg, Vy, with the edges in the cut Y are
those that connect between V; and V;j. Alternatively, a cut is a minimal (multi)subset
of edges Y C X whose removal from G makes it disconnected. The polynomial space
D(G) :=D(X) is then defined as the kernel of J(G):

Here, and hereafter, given any ideal J C II, its kernel J 1 is defined as
JL:={qell:p(D)g=0, Vpc J}.

It is well-known that degq < #X — n, for ¢ € D(G), with #X — n being sharp here.
Actually, we are interested here only in the homogeneous polynomials of degree #X — n
in D(G): whether graphical or not, D(X) is the translation-invariant closure of its top
degree polynomials. Thus, in algebraic jargon, these polynomials form its socle, with the
remainder of D(X) recovered via the differentiation of the socle polynomials. Altogether,
we have just identified the socle

soc(D(X))

of D(X) as the homogeneous polynomials in that space of the degree # X —n. Importantly,
the truncated power is piecewise in the socle only.

Going back to the ideal J(G) and its kernel D(G), a simple count tells us that there
are nearly 2" cuts in the graph, and each edge appears in half of the cuts. So, J(G)
is generated by about 2" polynomials, with the sum of their degrees being at the order
of #X x 2771, There are syzygies galore in part since different cuts may surely have
large intersection; so it may seem at first glance that this ideal, let alone its kernel, are
brutally involved. Unfortunately, this is indeed the case: with the exception of a few special
cases, the polynomial space D(X) is considered, more than 30 years after its introduction,
hopelessly complicated. We review some pertinent literature later.

Since our object of interest is the collection of truncated powers TP(X) (to be defined
later), and since each member in TP(X) is piecewise in soc(D(X)), we study in what
follows that latter space.

Our analysis of the space soc(D(X)) for an incidence matrix X of a graph G, is
underlined by the collection

(1.1) 0(G) = {G}

of the acyclic orientations of G. Actually, this set is usually too large for our purposes,
and we mostly work instead with the following smaller set:
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«assump Definition 1.2. Assume that the graph G satisfies
(1) I C X, ie., the (undirected) edges +(e;)I, appear, each, in X(G) with positive
multiplicity (i.e., the vertex 0 is directly connected to all other vertices).
We define then the subset
0(G)

as the collection of directed versions G, of G that satisfy:
(2) G, € O(G): it should not contain a directed cycle (i.e., edges cannot sum up to 0).
(3) The edge —e;, i € [1:n] (i.e., an edge directed into 0) is not allowed in G,. O

Next, it is known, [24], [3], that?
“dimsoe (1.3) dim(soc(D(Q))) = #0(G).
We will then associate each G, € O(G) with an ideal
Jg C 11,
for which J(G) C Jg,. Therefore,
Ja Ll CD(G), VG € O(Q).

While J(G) has an involved structure, the ideal J¢g is a simple one: it is both complete
intersection and zonotopal: the former is a standard notion in ideal theory, see, e.g.,
§2.3 in [13], and the latter is defined in the sequel. Importantly, being a (locally) complete
intersection implies that Jg has a single polynomial (up to normalization) in its socle (i.e.,
there is a single (in our case: homogeneous) polynomial in the kernel whose derivatives
comprise the entire kernel). We will find explicitly that polynomial. It will be shown to
be of degree #X — n; thus:

“socsoe (1.4). soc(Jg L) C soc(D(G)), VG, € O(G).

We will verify that the socle polynomials from different orientations G, are linearly inde-
pendent. In this way, we will establish the complete intersection decomposition (CID):

(1.5) J@&)= (1 Ja

“complete GIGO(G)

and will obtain a direct sum decomposition of soc(D(G)) into 1-dimensional summands:

(1.6) soc(D(G)) = @ soc(Jg L).

“dirsumsoc GLEO(G)

2 Neither reference states (1.3) explicitly. However, the first reference shows that the
left hand side coincides with the number of bases in X with 0 external activity, and the
other reference proves the same on the right hand side.

)



The fact that the ideals Jg are complete intersection (and not merely Gorenstein) is
important, and surely means that our basis is special.® Intuitively, it means that the
kernels of the different ideals are “as separated from one another as possible”. Examples
show that the basis polynomials we obtain in this way have small monomial support, and
maximal separation (one from the other) in that support. The linear algebra analog is
“finding an eigenbasis which is as close to orthonormal as possible”.

A short disclaimer before we continue. We highlighted above that the ideals Jg are
complete intersection. We have done so merely for the benefit of our readers who are
familiar with such ideals and their simplicity. However, nowhere in this paper we define
this notion, and nowhere in this paper we use in our proofs any known property of such
ideals. We take a different route when analysing the ideals of type Jg , and use the (less
common) property of zonotopality. To take this discussion to an extreme: a reader who
is merely interested in our algorithm for constructing a basis for soc(D(X)), may shortcut
the ideal construction part altogether. Our algorithm provides, for a given G, € O(G), a
homogeneous polynomial Mg of degree #X — n which is proved to be annihilated by the
differential operator py (D) whenever Y is a cut of GG. Ideal theory, from that perspective,
provides a convenient framework for understanding and describing the results, but plays
no simplifying role in the derivation of them.

Going back to our main discussion, here are some details on (1.6): given G, € O(G),
we define a partition (Y;)I; := (Y; ¢ ); of the edge set X (G,) in the following way

r=e —e;, i €[ln], je0n] = zeV,.
Note that the assignment x — Y; is determined by the orientation of x € G,. Then:
Jq, = Ideal(py, : i € [1:n]).

We show that the acyclicity of G, guarantees that each cut of GG contains one of the above
Y; sets, hence that J(G) C Jg -

Next, it can be verified (again by invoking the acyclicity) that each Jg in (1.5) has
the smallest possible kernel:

dim Jg, L = [ [(#Y5),
i=1
and that Jg L has a socle of (linear) dimension 1, with that single polynomial being of
degree #X —n.

In order to make use of the decomposition (1.6), it will be valuable to find the poly-
nomial Mg that spans soc(Jg L). We solve this latter problem by associating each G,
with (i) a parking function, which, for the discussion here, is nothing more than a special
vector

s(G,) € 7.

3 If one chooses a random non-zero polynomial in soc(D(G)), and defines an ideal I to
be the annihilator of this polynomial, then I in general will be neither complete intersection
nor zonotopal.



The vector essentially records the cardinality of the generators (Y;); of Jg ,[3]:
“defpark (17) S(GL) : Z — #)/; - 1, 7/ E [177,]

We then induce: (ii) a ‘flow scheme’ over the directed graph G,. Once the parking s(G,)
flows according to the scheme, it generates a multiset

Flow(G,,s(G,)) C 77 .
Each g € Flow(G,,s(G,)) appears there with multiplicity that is denoted as

“defmultitp (18) tp(ﬁ) = thL,S(GL)(/B)

The parking function itself is in the flow: s(G,) € Flow(G,,s(G,)), and is simple there:
tp(s(G,)) = 1. Then, with
mg(t) =7 /B,

the normalized monomial, the socle polynomial of J¢ L is proved to be

(1.9) MGL = Z mgeg.

“defmog ﬁeFlOW(GL,S(GL))

In particular, it follows that the polynomials M¢ are, each, combinations of (normalized)
monomials with integer, positive coefficients.

The interplay between polynomials and truncated powers II: The other aspect
of this interplay is the underlying truncated power structure of the socle polynomials of
D(G). It is fundamental in Approximation Theory that two related spline systems may
be connected by discrete splines: box splines of large support are expressed by box splines
of small support with the aid of discrete boz splines, [8]. Truncated powers are expressed
by box splines (of any support) with the aid of discrete truncated powers, [22]. Our case,
however, is different: we express polynomials by monomials with the aid of discrete splines.
To the best of our knowledge, this is the first time, within the spline theory literature, that
such linkage is discovered.

The definition of the space D(G) does not require us to orient the graph G and is
independent of any chosen orientation. The orientation set O(G) is a tool, a “mere” tool
that allows us to resolve the structure of D(G). In contrast, truncated powers cannot be
defined without an orientation of G: there is a bijection

B7 : O(G) — TP(G) := TP(X(G))

between the acyclic orientations of G and the truncated powers associated with X (G). We
denote those truncated powers as TP¢q, G, € O(G); i.e., TPg := BI(G,). As said, the
various truncated powers, TPg, , G, € O(G), are piecewise in the same polynomial space,
viz. soc(D(G)).



“interest

So, any acyclic G, € O(G) leads to a truncated power TP ; if, further, the acyclic G,
lies in O(G), it also induces a flow polynomial M, . Then, what is the connection, if any,
between the socle polynomial Mg, , and the truncated power TP¢g ?

There are two answers to the above, of different nature: one interesting and the other
fundamental. The former is that

(1.10) TPg,

R =Mg, G €0(G).

So each truncated power registers its “own” socle polynomial in its positive octant. The
positive octant receives this “recognition” since we have chosen it as the “stabilizer” of the
set O(G) (via the fixed orientation condition on (e;);).

The latter connection is more fundamental. Let us define a reduction rd* on the graph
G (hence on its edge set X (G)): in this reduction, we remove from G the vertex 0 and all
the edges connected to it, reenumerate the remaining vertices (7 : [1:n] — [0:n—1] is the
enumeration function), and obtain a graph

rd(G),
with vertex set [0:n—1]. The reduction map induces naturally a map
rd : O(G) — O(rd(Q)).

It is easy to see that this new map is a (sgﬁ) bijection. The map thus induces a bijection
between the flow polynomials (Mg ) and O(rd(G)):

MGL — I‘d(MGL) = I‘d(GL).

Our claim is that this association is not just a formality: the graph rd(G,) records the
information needed for the complete recovery of the polynomial Mg . Let us explain.

An acyclic graph (rd(G,) here) is associated not only with a truncated power, but also
with a discrete truncated power (= a partition function): a cone function tp,q(¢ ) defined

on the Z" '-lattice. The cone structure (i.e., the cones of polynomiality) of TP.q(c) and
tD,a(c) 18 the same, and, in the graph case like here, tPra(q) 18 also piecewise-polynomial
and also in the same D(rd(G)) space.

We claim that the coefficients tp in the formula (1.8) are the values of a suitable
discrete truncated power (and that is the reason we denoted them in this way). Moreover,
the truncated power tp inherits the orientation of G,!°

4 The reduction map is merely a technical step. We could have avoided it by defining
volume polynomials and truncated powers on linear manifolds. This is equivalent to em-
bedding the edge set X of a graph G with vertex set [0:n] in IR" ™, rather than in IR™. We
have avoided this choice in the definition of X (G) since we need, in any event, to select a
special vertex 0 in Definition 1.2. Therefore, for consistency, we describe the current part
in a similar setup. For some applications, when the initial G satisfies various symmetry
relations, the avoidance of the reduction map allows one to preserve better the symmetry
relationships.

® For simplicity, we assume in the theorem that the enumeration «y of the vertices [1:n]
isy(i) =14,1 € [lin—1], y(n) = 0.



“corintro Theorem 1.11. Let G be a (connected) graph with edge set X . Set:
Ag :={acZ! : |a] = #X —n}.
Let G, € O(G), with parking function s. Then

Mg (t) = Y thra(q,) (rd(a —s)) [t°].

acEAG

In particular, the monomial coefficients of Mg, coincide with the values of tp,4(¢,) on the
set rd(Ag — s), and the multiplicity function tpg, ¢ (that appears in (1.8)) coincides, on
AG, Wlth tprd(GL)(rd< — S)) O

Note that the last theorem does more than capturing the multiplicities of the flow
vectors: it determined also the vectors that are not the flow. These are the vectors o € Ag
on which tp, (¢ (rd(e — s)) vanishes.

1.2. Two examples

We provide here the concrete details of two examples. The first deals with the case
known as two-dimensional three-directional splines. This is the most commonly used setup
in bivariate spline approximations (on regular grids). Then we consider the case of complete
graphs (with n arbitrary). This latter setup is pertinent to the structure of the character of
the irreducible representations of Lie algebras with root system A,,, as well as to suitable
generalizations in the context of Jack polynomials.

1.2.1 Bivariate 3-directional spaces

Let G be a graph supported on [0:2] with the edges (0, 1), (0,2), (1,2) appearing with
positive multiplicities k + 1,1 + 1, m respectively. The underlying D(G) is known as a “3-
directional box spline space”, or “3-directional central zonotopal space of type D”. Recall
that we deal here with polynomials in two variables. It is essentially well-known that

dim(soc(D(G))) = 2,

regardless of the values of k, [, m.
We begin the presentation of this case by noting that the three polynomials that are
pertinent here are

pi(t) =t()" pa(t) = t(2), ps(t) = (#(1) — (2))™.

The ideal J(G) is generated by the three cut polynomials which are

pip2, Pip3, P2pP3-

In order to compute the decomposition (1.5), we need to find the acyclic orientations
of G. The orientations of the edges e, e5 are fixed. As for the m edges e; — ey, we must
use the same orientation for all to avoid a cycle. So, we have two acyclic orientations,
capturing the fact that the socle is of dimension 2. We compute the polynomial Mg
corresponding to the orientation ey — eq, ie., 1 — 2.

9



This orientation partitions the edge set X into the following two subsets: Y7 consists
of the k+ 1 copies of e;, and Y5 is the complement. Thus, the ideal Jg , for this particular
orientation, is generated by the two polynomials pi,paops. Trivially, this ideal contains
J(G). Note that the other orientation, e; — ey, leads to an ideal that is generated by
p1ps, p2. It is not hard to argue then that the two new ideals are complete intersection, or
to compute their Hilbert series, for example. It is further not too hard to argue directly
that their intersection is J(G).

Now, we want to compute the polynomial Mg that spans the socle of Jg L, for the
first G,. For this, we associate G, with a valuation on [1:2] that is commonly known as a
parking function:

s:=58(G,) :=s¢(G) 1i— #Y; — 1.

In words, s(G,) + 1 counts the number of edges in G, that are directed into each vertex
i > 0. In our case, the valuation is s(1) = k, s(2) = [+m. The valuation defines the initial
monomial

[t5] == 155,

(The symbol [-] is used to denote the fact that ¢° is normalized). Additional monomials
are obtained by flowing over G,, i.e., given any normalized monomial [¢*] that is already in
the flow and an edge = # e;, the normalized monomial [t***] is also in the flow, provided
that a + 2 € Zi.

In our particular case, the value k at vertex 1 can flow from that vertex to vertex 2
over the edge e —e;. Let 1 < s < k. If we want to flow s times from 1 to 2 over the m
channels (=edges) between 1 and 2, we have tp(s) := ("27") different ways to execute
such flow: All resulting in the flow vector (k — s, +m + s), hence in the monomial

[t(k—s,l—km—i-s)]‘

So, the flow polynomial, in total, is

k
(1.12) Mq, (1) = Z (m +s— 1) [(k=slbmts)]

« ir S
socthreedir s=0

The other polynomial, from the other orientation G,’, is then

(113) MGL’(t> = Z (m s 1> [t(k-f-m—i-s,l—s)].

. S
«
socthreedira s=0

Note that these two polynomials are linearly independent; actually, their monomial sup-
ports are disjoint. So, we just found a basis for soc(D(G)).

Now, suppose that we are interested in finding lower degree polynomials in D(G).
One option is to differentiate the above socle polynomials. The other option is to compute
flows over reduced graphs. l.e., if we remove the edge = from G, and compute the new
flow, we are computing D, Mg . So for example, for z = ey — ey,

k

r m+s—r—1 —s,l+m—r+s

D;Mg, =) ( ) )[t(k m=rts))
s=0

10



we have just replaced m by m —r, which is all we need to account for the removal of r < m
copies of x. If r = m, then the edge = disappears and we obtain the monomial [t(k”l)].

Having completed the computation of the socle polynomials, we turn our attention
to their coefficients. We claimed before that those are obtained by evaluating suitably a
lower-dimensional discrete truncated power. Continuing with the first G,, we remove from
X(G,) all edges connected to 0. We are left with m copies of e5 — €. We remove thus the
first row, and obtain the matroid

X/ == [17 ey ].]1><m.
The discrete truncated power tpy. is the following:

mfl(

i+s)

q(s) == =gy, s> —m,
tpy(s) := (m=1)
0, s < 0.
Note that we have not erred above: the two definitions of tpy, agree at —1,...,1 —m:

this is the “smoothness” of the discrete spline tpy,, known in other fields as “reciprocity
relations”. Now, tpy/ is (discrete) piecewise-polynomial of degree m—1. It is a fundamental
solution of the difference operator R, with

Ryf:=f—-f(-1),

and that implies the formal power series identity

Z th/ (S) eXp(tS) = (m . 1)

sE

where exp : t — €.
Now, the socle polynomial is homogeneous of degree k + [+ m, so it can be written as

k

Mg, ()= ) cls)ltt>mHr],

s=—m—1
for some coefficients (¢(s))s. Theorem 1.11 asserts that
e(5) =t (rd((k — 5,m + 1+ 5) — 9)),
with s the parking function, i.e., s = (k,l +m). Since
rd((k —s,l+m+s)— (k,l+m)) =1d((—s,s)) = s,

the claim is actually that c(s) = tpy/(s), for s € [-l—m:k], which is evidently the case.
Note that the range of summation s € [0:k] in (1.12) is determined by the identity itself:
whenever s ¢ [0:k], either tpy.(s) = 0 (hence creating a term that can be dismissed) or
the exponent (k — s,1+ m + s) has a negative entry (hence creating a term which is not
an acceptable monomial).

11
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“parkcomp

Finally, one may note that the truncated power tpy, depends only on m, while the
homogeneous degree k + [ +m of the socle polynomials surely depends on k, [, too. This is
not a contradiction: in order to find the flow polynomial via its discrete truncated power
representation, we need not only to know what discrete truncated power to construct, but
also where to evaluate it. This latter evaluation interval, [—] —m, k], depends, as expected,
on all the three parameters. In summary, (here, as well as in the general case) the discrete
truncated power tp,q(¢) that appears in Theorem 1.11 is independent of the multiplicities
of the edges (e;);; those multiplicities, however, determine where to evaluate tDra(a) for
the sake of recovering the flow polynomial Mg, .

1.2.2 Complete graphs and the symmetric group

We assume in this example that every edge (i, j) appears in G with fixed (but arbi-
trary) multiplicity k& > 0. It follows from Cayley’s formula that dim D(G) = k"™ (n+1)"~1L.
On the other hand, the socle size is independent of k:

dim(soc(D(G))) = nl.

In fact, this latter dimension is true even when the (positive) multiplicities of the edges
are chosen in complete arbitrariness. The polynomials that make up the socle are (homo-
geneous) of degree (”;rl) k —n. We analyse the acyclic orientation G, obtained by orienting
each edge forward:

r=¢—¢ej, 0<jg<i<n:

it corresponds to the order [0:n] of the vertices. The other acyclic orientations in O(G) are
obtained by permuting the order of the vertices [1:n].

For the acyclic orientation that we have just chosen, the set Y; := Y; ¢ contains k
copies of each edge e; — e;, j < i, hence deg py, = ki. The parking valuation is thus

(1.14) s(i) :=sp k(i) =ki—1, i€e[l:n],
and the initial monomial of the flow is then

n i ki—1
(1.15) mg(t) == [t°] = [ | (t];)_l)‘

i=1
The socle polynomial M := M,, ;, :== Mg, is obtained by flowing the parking function over

G,, which means that the weights only move forward.

Examples. For n = 2, the discussion in §1.2.1 provides complete details for the more
general case of non-equal multiplicities. If we choose here k +1 = [+ 1 = m there, we
obtain that

M- S ("2 ueemameny

S

For n =3, k=1 results in

M3 1(t> = [t(07172)] + [t(O’O’S)L

)

12



whilen =3, k=2, is
3 4

(116) M3’2(t) = Z(S + 1)[t(1,3—s,5+s)] ) 2(28 + 1)[t(0,4—s,5+s)]'

«
completem s=0 s=0

Finally, forn =4 and k =1,

M, 1(t) _ [t(071’2’3)] + [t(0’1’1’4)] + [t(O,l,O,S)] + [t(0,0,3,3)]_|_

(1.17) 9 ([t(0’0’2’4)] 4 [H00.15)] 4 [t(0’0’0’6)]> .

“completema

Let us examine (1.16). Let X342 be the incidence matrix of this (n, k) = (3,2) case.
Removing all the e;-columns and the first row, we obtain the 2 x 6 matrix

!
X = [61,61,62,62,62 —€1,€2 — 61]-

This is the incidence matrix of the case (n,k) = (2,2) (which is always the case, i.e., the
reduction of general (n, k) is to the setup corresponding to (n—1,k)). The results of §1.2.1
imply that the basis for the socle polynomials of D(X") is

Qi(7) = [t 4+ 2[r O] Qa(r) = Q1(7(2),7(1)).

The pieces of the truncated power TP x/ are ()1 and
Q3(7) := Q1(7) — Q2(7) = Q1(—=7(1), 7(1) + 7(2)).
As to the discrete case, denoting, for a, k, j € 72,

() +k(0)—1 .
o 13[ z:j(@ (a(f) +1)
it K (0)! ’

(=1

we define

1,3 0,4 3,1 4,0 1,3 0,4
a(r) =105+ @) =142t w(n) = g —e(n) = -+,

with 7 := (7(1),7(1) + 7(2)). The polynomial pieces that make tpy, are now ¢; and gs.
One can now check that tpy, provides the correct coefficients: with

Asg:={a € Zi :lellr = 9},
we have that
M o( Z tpx/(a(2) = 3,a(3) = 5)) [t°].

aEAs 9
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While #.A39 = 55, the restriction of tpy., (rd(-) — (3,5)) to Az g is non-zero at only 9
locations, as explicitly shown in (1.16).

Figure 1: The six truncated powers that appear in the case (n, k) = (3,2).

Figure 1 provides an illustration. There are six polynomials in the basis for the
socle, all homogeneous of degree 9. The grid points in the big triangle 7" with vertices
(0,0),(0,9),(9,0) comprise the range of the reduction of Azg: rd(As9) = {8 € Z3 :
B(1)+p(2) < 9}. The six parking functions are obtained by permuting the vector (1, 3,5),
and their reduced vectors are labeled in the figure. There are six truncated powers in
TP(rd(G)), each shifted (per Theorem 1.11) to the locations of the parking functions. The
three rays emanating from the parking function form two cones of polynomiality for each
truncated power: the truncated power vanishes outside those cones. The area shaded green
shows the support of tpy. (- — (3,5)) within 7 there are nine points, marked ‘red’ and
‘pink’ (with the four pink points are in the support of two different truncated powers).
There are, thus, nine different monomials in the flow, and the coefficients are determined
by tpy/: the coefficients are enclosed in (). The truncated power vanishes at all other
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“thman

points of T', hence provides the correct coefficients of the flow polynomial at all the points
of Az g (hence for all the monomials).

Now, there are a total of 42 monomials that are ‘active’, i.e., appear in the monomial
support of some polynomial in soc(D(G)). The six polynomials in our basis are the only
polynomials in soc(D(G)) with minimal monomial support. n

Let us continue the discussion of the general complete graph case. With S, the
symmetric group (acting on [1 : n|, or on [t(1),...,t(n)], per the context), we conclude
that

o*M,, i € soc(D(G)), Vo€ S,.

One then verifies that for ¢ # 1, the initial monomial [t°(®)] does not appear in the
monomial support of M, ., which implies that

O'*Mmk, (RS Sn,

are linearly independent, hence form the requisite basis for soc(D(G)).

We have thus recovered the fact (well-known, at least for £ = 1) that the entire
socle here is isomorphic to the group algebra, i.e., to the vector space V(S,,), whose basis
elements are the members of the group S,,: for fixed n and k, the socle of the corresponding
D(G) is isomorphic to V(.S,,), with the bijection being

V(Sn) 2 v v*M,, 1 € soc(D(G)).

In that bijection, the basis S, for V(S,) is mapped to the basis we constructed for
soc(D(GQ)).

Note that the above applies, for example, to the Weyl’s character of A,, root system
(the case k = 1 here): the polynomials in the various chambers of the partition function
are in the same socle space, hence are determined, via the above bijection, by a suitable
choice of a transformation in V'(.S,,). That said, one will need to modify a bit the socle:
the truncated power in Weyl’s character formula is discrete, and we need to switch from
differential operators to difference ones. The overall changes are minor, primarily since the
incidence matrices are unimodular.

Finally, let us state, without proof, the following theorem which follows directly from
the above discussion when combined with Zonotopal Algebra basics.

Theorem 1.18. Let M, , be the flow polynomial associated with the complete graph G
with n+1 vertices, and multiplicity k on the edges, let T' be the path tree) — 1 — ... — n,
and let X be the edge set of G. Given f € soc(D(G)), we have, with s :=s,, j, as in (1.14),

[ = Z (px\o(m) (D)) "M, . = Z (Da(s)f> oM, k-

UESn Uesn
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A reader who is familiar with this subject may notice how divergent the above repre-
sentation is from previous efforts. Past efforts usually invoke the external activity count
by Tutte: this will require an order of the edges of X (G), and then the identification of the
spanning trees of 0 external activity (those will strongly depend on the order). These latter
trees will appear in an analog of the above theorem, with the (implicit, i.e., defined only
by duality) basis for soc(D(G)) that appears there being skewed by the order we impose
on X(G). In our case, the spanning trees that are used in the representation are all the
path trees (with 0 the initial vertex of the path), a collection that obviously has nothing
to do with an ordering of the edges.

1.3. Literature

Special types of multivariate splines appear in mathematics at least as early as 1925,
[31], long before Schoenberg coined the term in 1946, [30]. Multivariate splines made their
official debut in Approximation Theory in 1976, [5], where de Boor proposed to define
multivariate splines as inverse volumes. Micchelli, [27], and Dahmen, [14], each, provided
mechanisms for computing such inverse volumes. Of particular relevance is Dahmen’s
approach, since he introduced and utilized to this end multivariate truncated powers.

It would take a few more years for the space D(X) to appear, concurrently with the
introduction of Box Splines. The special bivariate 3-direction (see $1.2.1 above) appears
first in the work of de Boor and DeVore in 1983, [6], with the general D(X) showing first
in the seminal de Boor-Héllig, 1983, [7]. The local approximation properties of D(X) were
translated by the authors there to general results on the approximation powers of box
spline spaces.

The combinatorial and algebraic treatment of D(X ) was mainly the subsequent joint
work of Dahmen and Micchelli, [16],[17],[18],[20]. Of particular notice was their formula,
[17], for dimD(X) (the dimension is the number of bases in the matroid), which, back
in 1985, was an exceptionally deep result. Also of important notice is their treatment of
discrete setups, discrete truncated powers in particular, [18],[20],[19]. Twenty years later,
when De Concini and Procesi rediscovered box spline theory, they were impressed by these
contributions to the degree of naming D(X) “Dahmen-Micchelli’s space”, cf. [21] as well
as [22].

The dual space P(X) was introduced by Dyn et al. in [24] (where a homogeneous basis
for it was constructed, revealing thereby the Hilbert function of D(X)), and independently
by H. Hakopian. De-homogenization techniques (i.e., capturing 7 (X ) as the homogeniza-
tion of a radical ideal) started in [29] and by Ben-Artzi et al. in [2], and culminated by
de Boor et al. in [9]. Subsequent work focused on zonotopality of generalizations of D(X),
[10],[11],[15].

The introduction of ‘Zonotopal Algebra’ as an umbrella for all the efforts in the area,
together with the addition of “internal” and “external” versions appear in Holtz et al.,
[25]. For a review of more recent work, mostly on algebraic and geometric aspects of the
theory, one may consult [26],[1],[23],[28] and the references within.

Nowadays, some statistics of D(X) spaces are well understood. For example, the
Hilbert series of D(X) was established, [24], via the same algorithm that computes the
external activity in the Tutte polynomial, [4]. In turn this means that we have a tight
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“defpairing

hold on the dimension (linear dimension as a vector space) of soc(D(X)). However, with
the exception of very special cases, the structure of neither D(X) nor its socle have been
accessible to any degree.

One notable exception to the above is the use of de-homogenization to this end.
Within Approximation Theory, this is related to exponential box splines (introduced in
[29]) and some follow-up efforts that were already noted above. Another relevant effort
within Approximation Theory, directly related to truncated powers, is [32]. In Algebra, the
technical term is “the parametric case”, [22]. The treatise of Brion-Vergne, [12], fits this
paradigm: they used the explicit geometry of exponential truncated powers to compute
the limit polynomial case. While the results of the present paper can also be connected
to the ‘de homogenization approach’®, we forwent that discussion since that approach is
essentially tangential to the principles established in the current work.

2. Main results

G is a connected undirected graph with vertex set [0:n] and incidence matrix X :=
X(G). X is considered also as the multiset of its columns (viz. the edges of G). A cut L
of GG is a minimal set of edges whose removal renders the graph disconnected; equivalently,
these are the minimal sets in

L(G):={L C X :rank(X\L) < n}.
We assume that
(€i>’?:1 C X

The cut polynomials py, L € L(G), generate a polynomial ideal in IT which is denoted
J(G). Tts kernel is denoted D(G). The subspace of D(G) of homogeneous polynomials of
degree # X —n is isomorphic here to the socle of II/J(G), i.e., to the minimal submodules
of the latter, when considered over the ring II. With that in mind, this top homogeneous
degree subspace is denoted

soc(G) :=soc(D(G)).

Define further
S(G) :={S C X :rank(X\S) =n}:

these are the edge sets who removal from G still leaves it connected. The space D(G) is
complemented with the space

P(G) :=span{ps : S € S(G)}.
It is known, [24], that D(G) and P(G) are dual to each other via the pairing

(2.1) (p,q) := p(D)q(0).

6 For example, we could describe explicitly the radical ideal that corresponds to each
Jg ; the union of the varieties of the different radical ideals of the various G, is the variety
of the ideal that appears in the context of exponential box splines.
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In particular,

I =P(G) ® J(G).

This decomposition is particularly elegant since each py, Y C X, appears in one of the
two summands. The decomposition stars implicitly or explicitly in several domains: for
example, the Brion-Vergne interpretation of the Jeffrey-Kirwan residue theory, [12], is
based on a geometric version of the above decomposition, with P(G) corresponding to the
“free part” and J(G) to the “torsion part”.

“degadmiss Definition 2.2. Let G, be a directed version of G. We say that G, is admissible if the
following hold:
(1) The orientation of the edges x = (0,7) is x = ¢; (i.e., 0 — ).
(2) G, is acyclic: no edges of it sum up to zero.
The collection of all admissible orientations of G is denoted by O(G).

Given G, € O(G), we associate it with an ideal Jg as follows: we partition first the
edge set X into n subsets (Y; :=Y; ¢ ); as follows:

rT=e —e =T €Y.

Thus, the edge x = e; is always in Y;, and an edge = = %(e; — €;) lies in either Y; or Y},
depending on its orientation. Then

“defjog (2.3) Jq = Ideal(py, : i € [1:n]).

“joglarge Proposition 2.4. J(G) C Jg, for every G, € O(G). Therefore,

J(G) CNgeowJa, and D(G)D Y Jgl.
G e0(G)

Proof: Let L be a cut of G. If there exists ¢ such that Y; C L, then py, € Jg .
Otherwise, let Vj, V1 be the partition of G induced by the cut, with 0 € V. Let i; € V.
Since, by assumption, Y;, ¢ L, there exists i3 € V; such that z = e;, —e;, € G,. Continuing
in this fashion we obtain an infinite sequence (4;); C Vi such that e;, —e;,, € G,. Since V;
is finite, some index appears twice, creating an oriented cycle in G,, which is impossible,
since G is acyclic.

Thus, every generator py, of J(G) is divisible by a generator py of Jg, and the claim
follows. O

Now, the ideal Jg is zonotopal in the following sense: Let
B(G)

be the collection (i.e., multiset) of all spanning trees of G. Note that L € L(G) iff LNT # 0,
for all ' € IB(G). Let B be a subset of IB(G), and define

L(G,B):={LCcX:LNT#0, VT € B}.
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This gives rise to
J(G,B) :=1deal(pr, : L € L(G,B)), D(G,B):=J(G,B)L.
It follows from general arguments, [9], that
dim(D(G, B)) > #B.
One calls the setup (i.e., B, J(G, B), D(G, B)) zonotopal if
dim(D(G, B)) = #B.

In general, if one is only given an ideal J, then (by definition) for J to be zonotopal, one
needs to come up with a graph G (or more generally a linear matroid X), and a subset
B C IB(G) such that the resulting setup is zonotopal.

“emson Lemma 2.5. Let G be a connected graph with vertex set [0:n] and edge multiset X. Let
(Y;)™_, be a partition of X, and assume B C IB(G), with

B=Y1 xYyx...xY,.

(With ‘<’ being cartesian product). Then:
(1) The ideal J (G, B) is zonotopal, and hence

dimD(G, B) = [ [ #V:.
=1

(2) Up to normalization, D(G, B) contains a unique homogeneous polynomial of maximal
degree #X — n.

We will prove the lemma shortly. We note that a similar result with an identical proof
applies to a general linear matroid X, i.e., the result is valid beyond the graph case. Let’s
see first how the result applies in our case.

“propcomint PI‘OpOSitiOH 2.6.
(1) The ideal J¢, is zonotopal, and hence

n
dim Jg, L = [ [ #V5.
i=1
(2) Up to normalization, Jg L contains a unique homogeneous polynomial of maximal
degree #X — n.

Proof: Let (Y;); be the partition of X(G) induced by G,, and define
B:=Y1 xYyx...xY,.

It is then easy to see that J; = J(G,B). So, the stated result here will follow from
Lemma 2.5, once we show that B C IB(G).

To this end, let T := (y;)_, € B. Starting with some iy € [1:n], define a sequence
ig,?1,... by the condition e;_ , = e;; — ;. The sequence stops iff i; = 0 (since then
there is no vector y;, ), and it must stop, since G,, hence T, do not have an oriented cycle.
Therefore, there is a path in 7' from 0 to every i € [1:n], hence T is connected, and since
#1T = n, it is a spanning tree.

So we verified that B C IB(G), and the result follows. O
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“deflabel

Proof of Lemma 2.5. The proof is based on the notion of “placibility” from [10].
Given any B C IB(G), let x € X, and define

B = {TEBZI‘%T}, By = B\Bl

Assume that B;, i = 1,2 are both zonotopal. Then [10] defines the operator M to be
the restriction of p, (D) to D(G, B), and assumes that x is placible in B in the sense that
“for every T' € B, there exists y € T such that {x U (T'\y)} € B”. It then proves that
ker M = D(G, B2) while ran M = D(G, By).

With this result in hand, we prove the claims in the lemma by induction on #X. If
#X = n, then B is a singleton, and the result is nearly trivial. Assume #X > n, hence,
without loss, that #Y; > 1. It is quite obvious to check that every x € X is placible in
the present B, so let © € Y7 be arbitrary. Then we have

By = (Yi\z) x Yo x ... x Yy,
and
By ={x} x Yo x...xY,.

Since both B; have the structure assumed in the lemma, the induction hypothesis applies
to both (both use fewer than #X edges, since Y; is not a singleton). So, we first obtain
that the two reduced setups are zonotopal, and then that ran M = D(G, B;) and ker M =
D(G, Bs). By induction, D(G, Bs) has no polynomials of degree #X — n, while D(G, By)
has a 1-dimensional socle at degree #X — n — 1. This implies the statement in (2), while
the statement in (1) follows from the fact that dim D(G, B) = dim ker M +dimran M when
coupled with the induction hypotheses. O

Next, we will find an explicit expression for the socle polynomial soc( 7 L). Let us start
with the definition of parking function:

Definition 2.7. Let G be an undirected graph as in Definition 1.2(1), and let O(G) be
the set of all admissible orientations of G. Define

sq: O(G) = Z
by
sq(G,) = (degg (i) — 1:4 € [1in]),

with deg (i) the in-degree of i in G, i.e., the number of edges directed into i. The range
ran(sq) is called the set of the (maximal) parking functions of G.

Note that sg(G,) tracks the cardinality of the generators (Y;) of Jg . The map sq is
injective, [3]. We actually need more than the injectivity of this map, and articulate and
prove that stronger result later.

Definition 2.8. Let G, € O(G), and let « € ZZ". An assignment
0 X(G) — Z+

is called an a-labeling of G, if:
(1) £(e;) =0,i € [1:n].
(2) a+ ) cq llx)r € . O
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We denote by
Flow(G,, @)

the multiset
{a+ Z {(z)z : £ is an a-label}.

zeG,
We stress that the flow is a multiset, i.e., Flow(G,, «) is in bijection with the a-labels.

<detilowpol Definition 2.9. Let G, and « be as before. The sum

Mg, o (t) := Z [tﬁ]

BeFlow(G,, o)
is called the flow polynomial of o over G,. If o := s¢(G,), we may abbreviate
MGL = MGL,SG(GL)‘

The main results of this section are collected in the following theorem.

«ehmiiow Theorem 2.10. Let G and O(G) be as in Definition 1.2.
(1) The socle of Jg L, G, € O(G), is the span of the flow polynomial

M, .

L

(2) The flow polynomials
Mg, G €0O(G),

L

form a basis for soc(D(Q)).
(3) The ideal J(G) admits a complete intersection decomposition (CID):

J@ = Ja
)

G.e0(a
(4) The (unnormalized) maximal ‘parking monomials’
mg, () (1) =594, G, € 0(@),

form a monomial set which is biorthogonal to the socle basis in (2) above, via the
pairing (2.1).
We will prove the theorem in a few steps. In the first step we prove (1), and then (4).

(2) will be an immediate consequence of the duality of (4), while (3) is surely implied by
(2) when combined with the observations so far.”

7 A zonotopal ideal J (G, B) is complete intersection iff B C IB(G) is the cartesian
product of subsets of X (G), which is the case here.
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“cutthefiow Lemma 2.11. Let M := Mg , be a flow polynomial, with G, € O(G) and o € 7Z".
Let i € [l:n], and py, the corresponding generator of Jg . If a(i) < sg(G,)(i) then
py,(D)M = 0.

Note that the statement of the lemma is local: the only property of G, which we use
(other than the membership G, € O(G)) is that all its edges that flow into i are a subset
of Y;. The only needed condition on « is also merely on «(i).

Proof: Let y € Y;, y # e;. We partition the a-labels of G, into equivalence classes
as follows:

61 ~y 62 <~ 61 = 62 on X(G)\y

Fix an equivalence class < £ >, and let £y be its minimal member, i.e., the member with
minimal £(y). Assume y = e; —e;, j € [1:n] and that m is the monomial generated by the
label /:

m(t) = 10 Daex 07 _ 48,

Then the contribution of the equivalence class < ¢ > to the flow polynomial M := Mg ,
is

B(4) t(z) . B(4)
q(t) = Z[m(t)(@) =) my(h).
m=0 m=0

Now we apply the operator p,(D) = D., — D.;, =: D; — D; to q. We observe that, for
m=0,...,8(j) -1, Dimy, 1 — Djm,, = 0. Also, Djmg;) = 0, too. Therefore,

py(D)g = Di[m].

This last identity is surely valid if y = e;: in that case, each equivalence class is a singleton
m, hence ¢ = [m], and therefore, trivially, p,(D)q = D;[m].

Now, assume that ¢yo(y) > 0. Define ¢; by ¢1 = fo on X\y, while ¢1(y) = lo(y) —
1. Since ¢y is minimal, ¢; is not an a-label, which means that §(i) = 0 (the label ¢,
corresponds to the flow vector 8 — y. If /1 is not a label, the vector  — y must contain a
negative entry; since 8 does not have such entry, it must be that 5(i) = 0). Thus, in this
case D;m] = 0, which means that p, (D) annihilates the entire class: p,(D)q = 0.

Otherwise, ¢y(y) = 0, which means that the edge y is not used in the labeling by ¢,
and we readily conclude (by applying the above to all equivalence classes) that

py(D)MGua = MGL\y7a_ei'

Now, let Y’ C Y; with cardinality k := #Y; — 1 > «(i). Repeating the above k times
we obtain
py (D)Mg o = Mg \v’,a—ke; -

With v := a — ke;, we have that (i) < 0. Let y now be the remaining vector in Y;. Then
the previous argument implies that p,(D)Mg¢\y- , = 0, since, now, the minimal monomial
m in the above argument is always missing the ith variable (since the only edge directed
into 7 is y, and the initial value ~y(7) is non-positive). O
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“parklemma Lemma 2-12- Let GL7 GL/ 6 O(G) be dlﬁ@rent Then
sq(G,) € Flow(G,,sq(G,)).

Note that the flow of different parking functions over their corresponding oriented
graphs can have some overlaps: such overlaps is the rule (though there are interesting
exceptions). The claim above only asserts that the parking function itself cannot be
captured in the flow of another G,!

Proof: By induction on n, with the case n = 1 being trial.

The acyclic direction on G,” induces a partial ordering on the vertices: i < j if there
exists a (forward) path from i to j in G,. Let i € [1:n] be maximal in that order, and let
Y C X be the edges connected to ¢ in G. Then, with k := #Y — 1, we have that

sq(G)(i) =k,
and that for every a = s¢(G,') + X/ € Flow(G,',s¢(G.")),
a(i) >k,

with equality iff the label ¢ vanishes on Y. Now, necessarily, s¢(G,)(i) < k. So, if, with «
as above, & = sg(G,), then sg(G,)(i) = k, and ¢ vanishes on Y. The former means that ¥
is oriented in G, the same way it is oriented in G,’, i.e., each y € Y is directed in G, into i.

So, we remove from G the vertex ¢ and the edge set Y, and obtain a reduced graph
rd(G), and similarly reduced rd(G,) and rd(G,"). The parking functions remain the same,
save the fact that the ith entry disappears. So, with ¢’ the restriction of £ to X\Y", we still
have rd(«) = s,q(q)(rd(G)) + (X\Y)¢, and that

rd(a) = s.q(q) (rd(G,)).

Here, rd(«) is obtained from « by removing the ith entry. By induction, this implies that
rd(G,) = rd(G,"), hence that G, and G," are oriented the same on X\Y, too. O

Proof of Theorem 2.10. By Lemma 2.11, all the generators py, of Jg annihilate
the flow polynomial Mg o provided that a(i) < #Y;, Vi € [Llin]. a = sq(G,) satisfies
this condition, hence Mg, s.(a) € Jg, L, and is clearly of degree #X — n. Combining the
above with (2) of Proposition 2.6, we obtain (1) of Theorem 2.10.

Having verified (1), we combine it with Proposition 2.4, to conclude that the poly-
nomials M¢ s, (c), Gi € O(G), are all in soc(D(G)). Lemma 2.12 then applies to show
that these polynomials are linearly independent. In view of (1.3), we obtain assertion (2),
which directly implies assertion (3).

Lemma 2.12 also implies that
D¢ Mg sy =0, GG €0(G), G #£G,/ .

Furthermore, it is easy to conclude the initial value « in the Flow(G,, ) appears only once
(i,e., with label ¢ = 0), hence

D3¢ %IMg sy =1, G €0(G),
and (4) thus follows. O
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3. Flow polynomials and truncated powers

We asserted in the Introduction (§1) two results that connect flow polynomials to
truncated powers. We prove those results in this section: (1.10) is proved as Theorem 3.3
in the first subsection below, while Theorem 1.11 is proved in the second subsection.

3.1. Continuous truncated powers

Let X be an n x N real matrix of full rank n, considered as defined only on ]Rf, and
satisfying the acyclicity condition

“acye (3.1) z C pos(X) := X(IRY) contains no non-zero subspaces of IR".
The truncated power TPx : IR™ — IR is defined by
TPx(t) := vol(X '), t € R".

Note that, by definition, only vectors with non-negative entries are included in the pre-
image X ~'t. Also, “vol” is taken with respect to the Lebesgue measure in IR ~". Since
the pre-image X ~!t only lies on a linear manifold of dimension N — n (rather than in
RY ™), the above definition is “up to a multiplicative constant”. One can normalize TP x
by requiring it to be a fundamental solution of px (D). This is related to the following
properties of the truncated power:

«rrres Result 3.2. The truncated power satisfies the following:
(1) There exists an open dense subset O C IR" such that p,(D)TPx =0 on O for every
L € L(X).
(2) ps(D)TPx = TPx\g for every S € S(X).
(3) supp TPx = pos(X).
(4) If X = X(G) for some graph G, then TP x|gry is a polynomial.

Given X as above, the family TP(X) of truncated powers is comprised of truncated
powers TPz, with = obtained from X by changing the signs of a subset of the columns of
X, while preserving the condition (3.1) (with X there replaced by E).

In the rest of this section, we assume that X = X(G) is the incidence matrix of a
graph G, and, given G, € O(G), we denote

TPq :=TPx(q)-

The acyclicity assumption on G, € O(G) is equivalent to the acyclicity assumption (3.1),
provided that X = X(G,) there. Therefore, for the case here,

TP(G) := TP(X(G)) = {TPq, : G, € O(G)}.

The fact that TP is piecewise in D(G) follows from (1) above and the definition of D(G).
As said before, more is true: TP¢ is piecewise in soc(D(G)). (4) in Result 3.2 merely

asserts that in the graph case the positive octant is a domain of polynomiality for TPg ,
i.e., R} C O, with O as in (1) of Result 3.2.
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«wpiiow Theorem 3.3. Let G, € O(G). Then

TP¢

Ri = MGL-
Proof: Set f:=TPg |rr, and X := X(G,). Let (Y;); be as in (2.3). Note that
t € pos(X\Y;) = (i) <0,

since Y; is comprised of all y € X with y(i) > 0. Thus, pos(X\Y;) N1IRY is a null set.

Now, assume Y; € S(X). Then, by Result 3.2, py,(D)TPx = TPx\y,. At the same
time, supp(TP x\y;) = pos(X\Y;). Thus, supp(py,(D)TPx) is essentially disjoint of IR},
and therefore py,(D)f = 0 on IR’,. Since f is a polynomial (Result 3.2(4)), we obtain
py; (D) f = 0 everywhere.

If, on the other hand, Y; € L(X), then, by (1)&(4) of Result 3.2, py, (D)TP x vanishes
on IR, and, again, we conclude that py,(D)f = 0.

Varying i over [1:n] we obtain that f € Jg L. Now, since f is homogeneous of degree
#X — n (being in the socle of D(G)), and since the only homogeneous polynomial of
that degree in Jg L is (up to normalization) Mg ((1) of Theorem 2.10), it follows that
f =cMg, . Since TP is defined only up to normalization, our proof is complete. O

3.2. Discrete truncated powers

Let X be an n x N integer matrix, satisfying the acyclicity condition (3.1). The
discrete truncated power tpy is then defined as

tpy : Z" =y, tpx(t):=#{X N7z}
If X is a singleton x (i.e., N = 1), then clearly

. ]_, t e $Z+,
P, (t) = {O, otherwise.
The general tpy is the convolution of product of tp,, x € X. If X is the incidence matrix
of a graph G, then tpy is piecewise in D(G): furthermore, it is piecewise in a suitable
discrete analog of soc(D(G)).

The fact that the flow polynomial is determined by a discrete truncated power (Theo-
rem 1.11) follows from Theorem 2.10 almost directly: it is essentially a matter of comparing
definitions, as we now explain.

Recall the definition of the index set A from Theorem 1.11. Let G, € O(G). Since
the flow polynomial Mg is homogeneous of degree #X — n, then it can be written as

Mg, ()= ) eB)It’],

BEAG
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for some suitable coefficients (¢(5)). According to (1.8), the multiplicity (tp(f), same as
¢(5) here, only that we now consider also terms with 0 coefficients) of 8 € Flow(G,, «) is
defined as

#{¢ € ZZ : ¢ is an a-label and 3 — a = X (}.

Now, let X’ be obtained from X by removing the e;-edges, and let ¢/ be the restriction of
¢ to X’. Then, X/ = X'V', and the condition ‘/ is an a-label and 8 — a = X/, is stated
equivalently on ¢’ as ‘' € 7ZZ% , and 8 — a = X'¢'. Consequently,

c(B) = #{¢ € Z : £ is an a-label and B — a = X(}

=#{l € Z‘f B—a=X"l'} =tpx (8- a),

with the first equality by the definition of the flow polynomial Mg ., the last equality by
the definition of tpy,, and the middle one argued above.

This is essentially the claim made in Theorem 1.11, only that there we reduced the
matrix X’ to the matrix rd(X) by removing one the rows of X’ (and removing then the
corresponding entry from [ — «, to obtain rd(5 — «).) This is possible, and sometimes
desired, to do since rank(X’) < n. But, as we noted before, we could have stated the
theorem in terms of X’ here rather than rd(X) there.

The use of the parking function s(G,) as the initial vector in Theorem 1.11 is surely
important there, since one needs to shift tpy, correctly in order to align its values with
the monomial coefficients of M. But, as the argument above shows, all flows over G,
result in multiplicities of the flow vectors that are determined by tpy,, with the initial
seed impacting only the requisite alignment. Indeed, as we noted before too, X’, hence
tpx/, are independent of the multiplicities of the edges e; in G. In contrast, the graph G,
the flow polynomial Mg, the index set Ag, and the associated parking function s(G,),
depend, all, on those multiplicities. So, the values of tpy, determine the coefficients of
flow polynomials of multiple (closely related) setups.
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