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ABSTRACT
Cone polynomials, also known as volume polynomials and/or spline polynomials, are

the polynomials that appear in the local structure of the truncated powers, hence in the
local structure of any derived construction such as box splines, simplex splines, character
formulæ and moment maps.

We provide a fresh look at bivariate cone polynomials. Two main principles underlie
our approach here. The first is that understanding the truncated powers does not nec-
essarily require us to analyse as a whole the ideal of differential operators that defines
the cone polynomials. Instead, we create a host of much simpler ideals, and analyse each
of them separately, with each of them making a contribution of a single cone polyno-
mial. This concept is formalized under the notion of Complete Intersection Decomposition
(CID) of ideals. The second observation is that the coefficients of the cone polynomial in
a suitable monomial representation are piecewise-analytic. In a sense, one can say that
not only cone polynomials underlie the structure of truncated powers, but truncated pow-
ers underlie the structure of cone polynomials, too. This surprising cycle must go beyond
piecewise-polynomials: the coefficients of cone polynomials are rarely piecewise-polynomial:
in general they are only piecewise-exponential.
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1. Introduction

Truncated powers, also known as partition functions, are piecewise-analytic “cone
functions”. They provide the core building block for a variety of constructions in analysis,
algebra and geometry. Simplex splines and box splines are the main such constructs in
approximation theory. Schur functions and their various generalizations are good examples
in algebra. Moment maps are a typical example in geometry. One of the objectives of this
article is to recast truncated powers in a language that is coherent for these seemingly
incompatible application domains. We review some of the efforts in this area later on in
this introduction.

In our attempt to achieve such coherence, we noticed that we are, quite accidentally,
realizing another important goal: to explore the duality between geometry and algebra in
spline approximation. We will explain this point later, but let us list it right now as a
second objective.

It is an ambitious program, and it will be based on the introduction of a few new
techniques and methodologies that are off the beaten road of analysis, and may not be a
common theme in algebra, either. We begin in this paper with a rather modest objective:
understanding bivariate truncated powers. It will enable us to introduce some of the general
concepts in a rather friendly environment, where the geometry is simple to understand and
easy to explore. With the exception of the notion of “flow” that may be bypassed in 2D,
the concepts we introduce and analyse cover the core aspects of the novel approach, and
we do it at a level that is beyond our present reach in higher dimensions.

Details aside, two main principles underlie our approach here. The first is that under-
standing truncated powers does not necessarily require us to analyse the complicated ideal
of differential operators that define the “cone polynomials”. We may, instead, create a host
of much simpler ideals, and analyse each of them separately, with each of them making
a contribution of a single cone polynomial. This concept is formalized under the notion
of Complete Intersection Decomposition (CID) of ideals. The second major observation
is that the coefficients of the cone polynomial in a suitable monomial representation are
piecewise-analytic. In a slightly oversimplified language, one can say that cone polynomials
underlie the structure of truncated powers, while truncated powers underlie the structure
of cone polynomials. An important reservation, however, is that this cycle must go beyond
piecewise-polynomials: the coefficients of cone polynomials are rarely piecewise-polynomial:
in general they are piecewise-exponential.

1.1. Review of main results

The geometry of truncated powers in 2D is of a hyperplane arrangement H of k + 1
lines in IR2 that go through the origin. Let x0, . . . , xk be the directions of these lines,
indexed consecutively, say counter-clockwise. Each line xj appears with some positive
multiplicity µ(j). We record the above arrangement in a matrix

X,
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where each column xj , j ∈ [0 : k], appears µ(j) times. The matrix is thus of order 2×N ,

with N :=
∑k

j=0 µ(j). Now, let us consider x0, . . . , xk as rays only (each generating the
ray xjIR+), and add their opposite rays separately: xk+j+1 := −xj , j ∈ [0 : k]. Choose
then any consecutive k + 1 rays (xj, . . . , xj+k) from (x0, . . . , x2k+1). Every such selection
defines a 2×N matrix

Xj

where each xi ∈ [j : j + k] appears µ(i) times, a cone

Cj := pos(Xj) := Xj(IR
N
+ ),

and a piecewise-polynomial function, TPj , known as truncated power or partition function,
supported on Cj , and coinciding on each basic cone ci := pos(xi, xi+1), i ∈ [j : j + k − 1],
with some polynomial Qj,i, homogeneous of degree N − 2. These k “cone polynomials”
form a basis for a k-dimensional polynomial subspace

soc(D(X)) := span{Qj,i : i ∈ [j : j + k − 1]}

of the (N−1)-dimensional space
Π0

N−2,

of bivariate homogeneous polynomials of degree N −2. The cone polynomial Qj,i depends
on the choice of both j and i. However, the space soc(D(X)) depends only on X : the span
of (Qj,i : i ∈ [j : j + k − 1]) is independent of j.

The goal is to understand the nature of these cone polynomials and their inter-
relationships. A prevailing approach, that works well in 2D, is to focus on the cross-a-line
cone polynomials

Qj,i −Qj,i−1, Qj,j−1 := Qj,j+k := 0, i ∈ [j : j + k] :

They capture the increment as we cross the line xi, and sum up to zero. Up to normaliza-
tion, they are independent of j. We denote

Qi := Qi,i,

and refer to it the the xi-cone polynomial.
In our approach, we encode the geometry of H in the algebraic structure of a space

S(F (X), γ) of discrete univariate splines with a single knot, and provide a solution to the
problem in terms of those splines. The approach is also connected to decompositions of
polynomial ideals in terms of complete intersection ideals, but we skip this part for the
time being.

Clearly, polynomials in the space Π0
N−2, the ambient space of soc(D(X)), should be

indexed linearly. With1

[t̃α] := t̃α/α! :=
t̃(1)α(1) t̃(2)α(2)

α(1)!α(2)!
,

1 We reserve the notation t = (t(1), t(2)) for the standard polynomial variables in IR2,
i.e., those that are bi-orthogonal to the standard basis of IR2. Since we work with a different
basis for IR2, our variables t̃ = (t̃(1), t̃(2)) are bi-orthogonal to our chosen basis.
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the normalized monomial, and Π0
m any homogeneous polynomial space (of degree m in

2D), we order the monomials in Π0
m by α(1), and then index them by any set I ⊂ ZZ of

m+ 1 consecutive integers:

I ∋ i ↔ [t̃(αI(i),m−αI(i))], αI(i) := i−min(I).

Given thus any f , defined at least on I, we obtain in this way a homogeneous polynomial
of degree m := #I − 1:

ιI(f) :=
∑

i∈I

f(i)[t̃(αI(i),m−αI(i))].

In particular, ιI induces a linear bijection ιI : IRI → Π0
m: In this language, our goal is to

understand the space
S(X) := SI(X) := ι−1

I

(
soc(D(X))

)

as a subspace of IRI , with I any set of consecutive N − 1 integers.
Skipping a few additional technical details, our assertion is that S(X) is a space of

discrete splines with one knot. More specifically, we start by partitioning the domain I
into three intervals

I = [I− : γ : I+] : max(I−) = min(γ)− 1 and max(γ) + 1 = min(I+).

Then we introduce a finite dimensional F (X) ⊂ IRZZ with the following properties:
(1) dimF (X) = k − 1, and (fi)

k−1
i=1 is some specific basis for it.

(2) The sum f0 :=
∑k−1

i=1 fi vanishes on γ, but vanishes identically on neither of I±.

Definition 1.1. With the details of F (X) as above, we define the spline space S(F (X), γ)“defsgam

as the collection of functions in f ∈ IRZZ that satisfy the two properties:
(1) f|[min(γ):∞) ∈ F (X).
(2) f|(−∞:max(γ)] ∈ F (X).

So, S(F (X), γ) is piecewise in F (X) with a single knot γ: the two pieces are glued at
γ. We denote the splines in S(F (X), γ) by (f, g)γ, i.e.,

(f, g)γ :=

{
g, on [min(γ) : ∞),
f, on (−∞ : max(γ)].

We will see later that dim(S(F (X), γ)) = k. A basis for S(F (X), γ) can be obtained by
appending to (f1, . . . , fk−1) the spline (0, f0)γ , or any other function in S(F (X), γ)\F (X).

Now, we have omitted (for the time being) the requisite details on: (1) How the
partitioning of I into the triple interval set I−, γ, I+ is done, (2) What space F (X) is
selected, and (3) What is the basis for F (X), (fi)i, that is selected here. As one should
expect, these details depend on the directions of the lines in H and their multiplicities: in
fact, for i ∈ [1 : k − 1], the function fi corresponds to the line xi in H:

ιI(fi) = Qi, i ∈ [1 : k − 1].

The remaining two lines are used as our basis for IR2. However, while the details of
S(F (X), γ) are tied to H, the truncated power function is universal in terms of the spline
space components:
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Theorem 1.2. With ι := ιI considered as a map“mainthm

ι : IRZZ → Π0
N−2[t̃],

and with

fj,i :=

i∑

m=j

fm, j ≤ i,

we have:
(1) The cone polynomials (Qj,i : j ∈ [1 : k]) are the following:

Qj,i =





ι(fj,i), j ≤ i < k,
ι(−fi−k,j−1), k < i < j + k,
ι((fj,k−1 − f0, fj,k−1)γ), i = k.

(2) The cone polynomials (Q0,i)i are the following:

Q0,i =

{
ι((f1,i, f1,i − f0)γ), 0 < i < k,
ι((0,−f0)γ), i = 0.

The rule of the theorem is very simple: whatever truncated power we access, crossing
the line xi, 0 < i < k, while moving clockwise means that we subtract fi from the previous
cone function:

Qj,i −Qj,i−1 = ι(fi).

The only exception is when i = 0, k: when we cross x0 clockwise we add (0, f0)γ :

Qj,1 −Qj,0 = −ι((0, f0)γ).

When we cross xk clockwise we add (f0, 0)γ:

Qj,k −Qj,k−1 = −ι((f0, 0)γ).

So, the above identifies the xi-cone polynomials in terms of their representation in the
spline space, and shows that their definition is independent of the choice of the ambient
cone Cj . The spline space clearly records the normalizations correctly since

k−1∑

i=1

fi − (f0, 0)γ − (0, f0)γ = f0 − f0 = 0.

Figure 1 provides an illustration when k = 4. As said, these rules are universal, and
are independent of the geometry: the latter is encoded in the details of S(F (X), γ) but
not in the conversion of the discrete splines to the cone polynomials.
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Figure 1: The four truncated powers that contain the ray x3 in their support.
The different cone functions are represented by the corresponding spline sequence.

1.2. The spline space S(F (X), γ)

Let us now describe how the spline space S(F (X), γ) is constructed. As our reader
may have observed, we select first two rays as our basis, or stabilizer, B. We selected in
the above

B := (x0, xk).

We then define, for i ∈ [1 : k − 1],

λi := −(B−1xi)(2)/(B
−1xi)(1),

and consider the univariate sequence space

Fi := {〈λi〉 f}, f ∈ π<µ(i),

with π<n the univariate polynomials of degree < n, and with 〈λ〉 the exponential sequence

〈λ〉 : s 7→ λs.
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Now, with

N ′ :=
k−1∑

i=1

µ(i),

and with γ any set of N ′−1 consecutive integers, there is a unique sequence (up to nor-
malization)

f0 =

k−1∑

i=1

fi, fi ∈ Fi,

that vanishes on γ. We define then

F (X) := span{fi : i ∈ [1 : k − 1]}.

Next, we denote by
I− (resp., I+)

the immediate µ(0) (resp., µ(k)) integers to the left (resp., right) of γ, and define I as the
concatenation of I−, γ, I+. Then

#I =

k∑

i=0

µ(i)− 1 = N − 1 = dim(Π0
N−2).

The polynomial variables t̃(1), t̃(2) in the monomial basis for

Π := IR[t̃(1), t̃(2)]

are the rows of B−1. The only real computation to be done, thus, is to compute the spectral
functions (fi)i above, which is the classical problem of finding the fundamental solution of
a difference operator with constant coefficients (the difference operator annihilates

∑
i Fi,

and the function (0, f0)γ is a fundamental solution of it; we have avoided the ‘bias’ between
using forward differencing vs. the backward one by not specifying ‘where γ is’).

One may notice that S(F (X), γ) is independent of the multiplicities µ(0) and µ(k):
only when the interval I is constructed, these multiplicities play a role. So, for example,
the sequence f1 is independent of µ(0), µ(k), and hence “ι(f1) is an element of soc(D(X)),
whatever µ(0), µ(k) are.” However, without knowing I, we do not know what values of f1
to collect, and what is the degree of the homogeneous polynomials that we represent. Here
is a more detailed discussion.

Discussion. How to determine the cone polynomial ι(fi) for different multiplicities of
µ(0), µ(k)? The following recursion is easy to perform. Suppose that for some multiplicities
µ(0), µ(k) we already calculated that

ι(f1) =

s1∑

s=s0

f1(s)[t̃
(s−s0,s1−s)],
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with s0, s1 some integers. Now,
(1) If we increase µ(0) by 1, the modified cone polynomial is

ι(f1) =

s1∑

s=s0−1

f1(s)[t̃
(s+1−s0,s1−s)].

(2) If we increase µ(k) by 1, the modified cone polynomial is

ι(f1) =

s1+1∑

s=s0

f1(s)[t̃
(s−s0,s1+1−s)].

So, we just take the previous coefficients, sample f1 at one additional neighboring point,
and align the new coefficients against the extended set of monomials.

Discussion: geometry translated to algebra. The process we described above
can be fairly understood as “affinization”: homogeneous polynomials in 2D are “just a finite
interval of integer points in IR2”, so there should be some univariate theory that captures
them, right? But such theory must encode not only the homogeneous polynomials, but
also the geometric environment. So, the easy part is to replace Π0

N−2 by IRI . The more

challenging part was to embed the geometry of the hyperplane arrangement H into IRI :
this is the spline space S(F (X), γ). The exponent λi records the direction of xi (viz., the
polynomial ι(〈λi〉) vanishes to the maximal N − 2 degree on xi) while the degree of the
polynomials in Fi (hence in fi) records the multiplicity µ(i) (viz., the polynomial ι(〈λi〉f)
vanishes on xi only to order N − 2− deg f , while no polynomial in soc(D(X)) can vanish
on xi to an order larger than N − 1− µ(i)).

1.3. Example: four-direction mesh

We illustrate the general discussion with a detailed analysis of the four-direction mesh.
We first treat the case (2, 2, 2, 2) by choosing some basis. We then show how the choice of
a better basis can simplify the computations, and treat the case (m, l,m, l′).

1.3.1 The case (2, 2, 2, 2)

Four-direction mesh means that we have four lines, i.e., k = 3. It means more,
since there is a standard choice of these lines, viz., x1 = (1,−1), x2 = (1, 0), x3 = (1, 1),
and x4 = (0, 1). We assume in this example that µ(i) = 2, ∀i. Thus, the cone polynomials
are of degree 6:

soc(D(X)) ⊂ Π0
6, dim soc(D(X)) = 3.

Our basis is

B =

(
1 0
1 1

)
,

hence

B−1 =

(
1 0
−1 1

)
,
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which means that our variables are (t̃(1), t̃(2)) = (t(1), t(2) − t(1)). Also, λ1 = 2 and
λ2 = 1. γ ⊂ ZZ is any set of three consecutive integers. Choosing γ := [−1 : 1], we have
I− = [−3,−2], I+ = [2, 3], hence I = [−3 : 3]. One then computes that

f1 : s 7→ (s− 3)2s,

while
f2 : s 7→ s+ 3.

(In order to verify that the above f1, f2 are correct, one only needs to observe that, for
i = 1, 2, fi = 〈λi〉pi, with pi a linear polynomial, and to check that f0 := f1 + f2 vanishes
on γ.) A basis for S(F (X), γ) is given by the splines

(0, f0)γ, (−f0, 0)γ, (−f1, f2)γ ,

which are three fundamental solutions of the underlying 4th-order difference operator, and,
more importantly, are mapped by ιI to the three cone polynomials in c3. The spline (0, f0)γ
is supported on I+ and assumes the values (1, 6) there. It generates the cone polynomial

[t̃(5,1)] + 6[t̃(6,0)] =
t(1)5(t(2)− t(1))

5!
+ 6

t(1)6

6!
= [t(5,1)].

One computes that ι(f2) = [t(1,5)]. The spline (−f0, 0)γ is supported on I− and assumes
the values (3/4, 1/4) there. It corresponds to the cone polynomial

1

4
(3[t̃(0,6)]+[t̃(1,5)]) =

1

4

(
3
(t(2)− t(1))6

6!
+
t(1)(t(2)− t(1))5

5!

)
=

1

8
(t(1)+t(2))

(t(2)− t(1))5

5!
.

Finally, ι(f1) = ι(f0 − f2) = ι((0, f0)γ) + ι((f0, 0)γ)− ι(f2):

ι(f1) =
1

8
((t(1)− t(2))

(t(2) + t(1))5

5!
.

1.3.2 The case (m+ 1, l, m+ 1, l′)

We now choose the standard basis, B = (x2, x4), as our basis, hence our variables are
the standard t = (t(1), t(2)). Here, λ1 = 1, while λ3 = −1. We will use thus the notation
f3 instead of f2. Assuming that µ(1) = µ(3) = m + 1 > 0, we select γ := [−m : m], and
define a polynomial f ∈ πm by

f(s) :=

m∏

i=1

(s+m+ 1− 2i).

Then
f1 = f, f3 = (−1)m+1〈−1〉f, f0 = f1 + f3.
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Since obviously fi ∈ Fi, i = 1, 3, one only needs to check that f0 vanishes on γ, for
verification.

Now, denote µ(4) =: l′. Then ιI((0, f0)γ) (which is Q4, corresponding to crossing
x4 = e2) is obtained by evaluating f0 at [m+1 : m+ l′], and aligning those values against
the last l′ monomials of Π0

N−2. Note that f0 vanishes on m+ 2ZZ, while on m+ 1+ 2ZZ it
assumes the values 2f . In conclusion, the formal series

∞∑

i=0

2f(m+ 1 + 2i)[tα+(2i,−2i)]

captures all the possible ‘crossing-e2’ polynomials that exist for the case µ(1) = µ(3) =
m+1. One needs to know what the initial α is, and then to truncate the series once negative
powers of t(2) appear. One calculates that α(1) = 2m + l + 1. Since f(m + 1 + 2i) =
2mm!

(
m+i
i

)
, we conclude that the series is

2m+1m!

∞∑

i=0

(
m+ i

i

)
[t(2(m+i)+l+1,l′−1−2i)].

If l′ = 1 or l′ = 2, there is only one summand:

ιI((0, f0)γ) = 2m+1m![t(2m+l+1,l′−1)].

Thus, ignoring (the important) normalization, the crossing function of e2 for l′ = 2 is then
the product of
(1) The linear polynomial the vanishes on e2 (viz., t(1)) to the power N − 3.
(2) The linear polynomial in the direction of e2, (viz., t(2)).
The conclusion required two conditions: µ(1) = µ(3), and l′ = 2. By symmetry, we can
extend it to the case µ(2) = µ(4), and µ(1) = 2. In that case, with B = (x1, x3),

(1.3) t̃(1) = (t(1)− t(2))/2, t̃(2) = (t(1) + t(2))/2.“deftilt

Proposition 1.4.“propfourdir

(1) Assume that the 4-dir multiplicities are (m+1, l, m+1, 2). Then the cone polynomial
associated with crossing x4 = e2 is

2m+1m![t(2m+l+1,1)].

(2) Assume that the 4-dir multiplicities are (l,m+1, 2, m+1). Then the cone polynomial
associated with crossing x3 = e1 + e3 is

2m+1m![t̃(2m+l+1,1)],

with t̃ as in (1.3).

Comments. The observation clearly does not extend to l > 2: only in the cases
l = 1, 2 the spline (0, f0)γ has a 1-point support! Also, we allowed f in the proposition to
be normalized arbitrarily. However, the normalization of f determines the correct normal-
ization of the functions f1, f2 ∈ S(F (X), γ), hence determines the correct normalization
of all the other “cross-a-line” cone functions.
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1.4. Literature

Truncated powers as a theme in univariate approximation theory has a rich history;
cf. [1] and its references for details. Multivariate truncated powers underlie Weyl’s charac-
ter formulæ, [28], hence are almost one century old. These character formulæ involve the
discrete version, and only special configurations (root systems). In approximation theory,
multivariate truncated powers appear, perhaps, for the first time in [12], in the effort to
provide a computational framework for simplex splines, [19]. The books [5],[20] contain,
each, substantial expositions on splines, with the latter having detailed analysis of trun-
cated powers. The connection between truncated powers and certain problems in algebra
and combinatorics is studied in [30].

We forgo general review of multivariate truncated powers, since this article deals with
the bivariate case only. We also forgo the extensive literature on piecewise-polynomials
on arbitrary meshes, whose focus is elsewhere. Bivariate truncated powers are relevant to
the study of bivariate splines on regular meshes; cf. [2],[4],[9],[10],[15],[22],[24],[25]. The
complete structure of discrete bivariate truncated powers appears in [29], albeit only for
simple multiplicities. The paper [26] contains explicit formulaæ for the same case studied
here, but uses a different approach, resulting in a very different representation.

2. Bivariate truncated powers

2.1. Cone polynomials

Let
{x0, . . . , x2k+1} ⊂ IR2\0

be a set of vectors that satisfy xi+k+1 = −xi, i ∈ [0 : k]. Each vector xi is associated with
positive multiplicity µ(i), where µ(i) = µ(i+ k + 1), i ∈ [0 : k]. Let

Xj , j ∈ [0 : k],

be a matrix whose columns are comprised of the vectors (xj, . . . , xj+k), each appearing

according to its multiplicity. The matrix is thus 2 × N , with N :=
∑k

i=0 µ(i). In this
subsection we assume that the vectors are ordered consecutively counter-clockwise. It
then follows that each Xj satisfies the acyclicity assumption

Xj(IR
N
+ ) =: Cj 6= IR2.

Definition 2.1. The truncated power TPj is defined by“truncatedpower

TPj(t) := TPXj
(t) := vol(IRN

+ ∩X−1
j t), t ∈ IR2,

with the volume ‘vol’ being with respect to the Lebesgue measure in IRN−2. The exact
way such measure is normalized on kerXj is not important to us, so TPj is defined here
up to normalization by a non-zero constant.

Now, each TPj is a homogeneous piecewise-polynomial of degree N − 2, with support

suppTPj = Cj .
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The cones ci := pos(xi, xi+1), i = j, . . . , j + k − 1, are the cones of polynomiality of TPj .
There are k such cones, thus, for each TPj .

In the discussion below, we let

X := X0.

It is easily observed, however, that the definitions and the results do not depend on the
choice of Xj. For x ∈ IR2\0, let

px : t 7→ x · t.

Set

Pi := pµ(i)xi
,

and

P := PX :=
k∏

i=0

Pi.

Each TPj is a fundamental solution (up to normalization) of the Nth-order differential
operator

PX(D).

It is easily observed that, with

D(X) := {q ∈ Π : (P/Pi)(D)q = 0, i ∈ [0 : k]},

each TPj is piecewise in D(X). We define

soc(D(X)) := D(X) ∩ Π0
N−2,

and refer to this space as the socle of D(X). Thus, each TPj is actually piecewise in
soc(D(X)). It is classically known that the different polynomials from the different cones
of any fixed Xj form a basis for soc(D(X)), [20]. In particular,

dim(soc(D(X))) = k.

Our primary goal is to a build a basis for the above socle space. While D(X)-spaces
in higher dimension are very involved and building a useful basis for their socle is highly
non-trivial, it is not hard to build in 2D some basis for soc(D(X)) (cf. [26], for example).
So, it is really the nature of the construction and the details of the basis that matter here.
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2.2. Complete intersection ideals

In the discussion of this subsection, we do not assume any more that the lines
(x0, . . . , xk) are ordered in any way. They are any (pairwise different) lines with the
positive multiplicities (µ(i))i.

The polynomials P/Pi, i ∈ [0 : k], generate a polynomial ideal that is denoted by

J (X).

Thus, D(X) can be equivalently defined as the kernel of the ideal J (X):

D(X) = J (X)⊥ := {q ∈ Π : p(D)q = 0, p ∈ J (X)}.

The hope is then that some structural properties of the ideal J (X) will shed some light
on the nature of the polynomials in D(X). In this article we realize this goal via a decom-
position of J (X) with the aid of a very special type, and much simpler, ideal: complete
intersection.

A complete intersection ideal in 2D is an ideal that has only two generators ρ1, ρ2
with only trivial relations, i.e., if pρ1 + qρ2 = 0, for some p, q ∈ Π, then ρ2|p and ρ1|q. If
ρ1 and ρ2 are products of homogeneous linear forms, it is equivalent to requiring that no
linear form divides both ρ1 and ρ2. Thus, once we require that 0 is the only common zero
of ρ1, ρ2, and require further that each generator ρi, i = 1, 2, is a product of linear forms,
the ideal

J := Ideal(ρ1, ρ2)

is complete intersection. In such a case, there is (up to normalization) a unique homoge-
neous polynomial qJ ∈ J⊥ of maximal degree

deg(ρ1) + deg(ρ2)− 2.

For completeness, we provide a proof of this assertion in §4, using the “zonotopality” of
ideals of this type.

We deduce thus the following:

Proposition 2.2. Let (K,K ′) be a non-trivial partition of [0 : k]. Define“socleone

PK :=
∏

i∈K

Pi,

and
JK := Ideal(PK , PK′).

Then:
(1) J (X) ⊂ JK , hence JK⊥ ⊂ D(X).
(2) JK is complete intersection. The single (up to normalization) homogeneous polyno-

mial qK of top degree in JK⊥ is of degree N − 2, hence

qK ∈ soc(D(X)).

Proof: Given a generator PX/Pi of J (X), we assume without loss that i ∈ K ′.
Then PK divides PX/Pi, hence PX/Pi ∈ JK , and (1) follows, while (2) follows directly
from the discussion that precedes this proposition.
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Comments. The ideal J (X) has k + 1 generators, P/Pi, i ∈ [0 : k], each of degree
N − µ(i). So the sum of the degrees of all the generators is kN . JK has two generators,
with degree sum N . Nonetheless, the kernel of this much larger ideal is not “too small”: it
does make a contribution to soc(D(X)). Since we have about 2k polynomials of the form
qK , while dim soc(D(X)) = k, it comes at little surprise that the polynomials (qK)K span
soc(D(X)).

Of particular interest for us is the singleton selection K := {i}, i ∈ [0 : k]. We denote
then

(2.3) Ji := JK , qi := qK .“defqi

The requirement Pi(D)qi = 0, coupled with the fact that degPi = µ(i), while deg qi =
N − 2, entails that qi must vanish to degree N − µ(i) − 1 on the line xi. In fact, Ji⊥
contains all the polynomials in D(X) that vanish to that order on xi.

A Complete Intersection Decomposition (CID) of J (X) is defined in our context as
the writing

(2.4) J (X) = ∩K∈KJK ,“cid

with the intersection running over K ⊂ 2[0:k]. The CID identity (2.4) is equivalent to

(2.5) span{qK : K ∈ K} = soc(D(X)),“cidspan

so the minimal number of components in (2.4) is k, and in that case {qK : K ∈ K} is a
basis for soc(D(X)). For all practical purposes, establishing (2.4) is done by verifying (2.5)
and not the other way around.

2.3. The spline calculus

We choose now our variables t̃ = (t̃(1), t̃(2)) to be bi-orthogonal to x0, xk,
2 i.e.,

px0
(D)(t̃(1), t̃(2)) = (1, 0), and pxk

(D)(t̃(1), t̃(2)) = (0, 1). Our goal is to find explicitly
the coefficients of qK in the spline representation S(F (X), γ) of

Π0
N−2[t̃].

First, let’s recall our spline spaces. For each xi, i ∈ [1 : k−1], we write xi = a(i)x0−b(i)xk,
and define

λi := b(i)/a(i).

Recall from §1 the maps of the form ιI , with I ⊂ ZZ made of consecutive integers. Each
such map maps IRZZ onto Π0

#I−1. Recall also the notation

Fi ⊂ IRZZ

for the space of all sequences of the form 〈λi〉f , f ∈ π<µ(i).

2 Since the lines in H are not assumed to be ordered, x0 and xk are actually any two
lines in the arrangement.
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Lemma 2.6. Let I be any subset of ZZ of consecutive integers. Then:“lemtwo

(1) px0
(D)ιI = ιI′ , with I ′ = I\{min(I)}.

(2) pxk
(D)ιI = ιI′ , with I ′ = I\{max(I)}.

Proof: px0
(D) is partial differentiation with respect to t̃(1), hence annihilates the

first monomial in our ordering of the monomial basis for any Π0
m, m := #I − 1. Since the

monomials are normalized, px0
(D) maps the other monomials in the monomial basis for

Π0
m bijectively and in order-preserving onto the monomial basis of Π0

m−1. The first claim
then easily follows from these observations, while the second claim follows by a similar
argument, since pxk

(D) is partial differentiation with respect to t̃(2).

Lemma 2.7. Let i ∈ [1 : k − 1]. Let 〈λi〉f ∈ Fi. Let I be any subset of ZZ of consecutive“lemone

integers. Then Pi(D)ιI(〈λi〉f) = 0.

Proof: Up to normalization, pxi
(D)([t̃α]) = [t̃(α−e1)] − λi[t̃

(α−e2)], with obvious
modifications if α(1)α(2) = 0. Thus

pxi
(D)

m∑

j=0

c(j)[t̃(j,m−j)] =
m∑

j=1

(c(j)− λic(j − 1))[t̃(j−1,m−j)].

So, ι−1pxi
(D)ι is degree reducing on 〈λi〉f : by removing one of the endpoints of I, one

obtains a subset I ′ ⊂ I such that

pxi
(D)ιI(〈λi〉f) = ιI′(〈λi〉g),

with deg g < deg f . The claim now follows, since degPi = µ(i), while deg f < µ(i).

In what follows, we select γ ⊂ ZZ to be any sequence of N ′ − 1 consecutive integers,
with

N ′ :=

k−1∑

i=1

µ(i) =

k−1∑

i=1

dim(Fi).

Then there exists a non-zero f0 ∈ IRZZ of the form

(2.8) f0 =
k−1∑

i=1

fi, fi ∈ Fi,
“deffzero

that vanishes on γ.

Lemma 2.9. If f0 ∈
∑k−1

i=1 Fi, and f0 vanishes on a set of N ′ consecutive integers, then“lemthree

f0 = 0.

Proof: Assume that f0 =
∑k−1

i=1 fi, fi ∈ Fi, and f0 vanishes on [1 : N ′]. For each
i, we can find a difference operator ∇i of order N

′ − µ(i) that annihilates each Fj , j 6= i,
and is injective on Fi. Then ∇if0 = ∇ifi ∈ Fi is a sequence that vanishes at µ(i) points,
which implies ∇ifi = 0, hence that fi = 0.
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Corollary 2.10. With γ and f0 as in (2.8), f0 is unique up to normalization.“cortwo

Proof: If f0 and g0 vanish both on γ, and f0 6∈ span{g0}, then there exist h0 ∈
span{f0, g0}\0 which vanishes on a set of consecutive N ′ integers.

So, fixing γ as above, we obtain from the discussion a uniquely defined

F (X) := span{fi}
k−1
i=1 ,

and that completes the definition of our spline space

S(F (X), γ).

Moreover, let I+ be the first µ(k) integers to the right of γ and I− the first µ(0) integers
to the left of γ. We concatenate these three sets into

I := [I− : γ : I+].

Since #I = N ′ − 1 + µ(0) + µ(k) = N − 1, we can use I to represent Π0
N−2 via ιI .

Theorem 2.11. Let K,K ′ be a non-trivial partition of [0:k], 0 ∈ K ′. Let JK be the“theoremone

corresponding complete intersection ideal, and let qK ∈ Π0
N−2 ∩ JK⊥ be the unique socle

polynomial of JK . Then, with ι := ιI :
(1) If k ∈ K ′,

qK = ι(fK), fK :=
∑

i∈K

fi.

(2) If k ∈ K,

qK = ι((fK ,−fK′)γ), fK :=
∑

i∈K\k

fi, fK′ :=
∑

i∈K′\0

fi = f0 − fK .

Proof: (1) By Lemma 2.7, Pi(D)ιI(fi) = 0, hence PK(D)ιI(fK) = 0, too. Now,
by Lemma 2.6, P0(D)Pk(D)ιI(fK) = ιγ(fK). However, on γ, f0 = 0, hence, ιγ(fK) =
ιγ(fK − f0) = −ι(fK′), with fK′ :=

∑
i∈K′\{0,k} fi. Thus

PK′(D)ιI(fK) = −PK′\{0,k}(D)(ιγ(fK′)) = 0,

with the last equality following from another application of Lemma 2.7.
(2) By Lemma 2.6, Pk(D)ιI((fK ,−fK′)γ) = ιI\I+ ((fK ,−fK′)γ). However, on I\I+

the spline (fK ,−fK′)γ coincides with fK , hence

Pk(D)ιI((fK ,−fK′)γ) = ιI\I+(fK).

But then, by Lemma 2.7, (PK/Pk)(D)ιI′(fK) = 0, for any interval I ′. This proves that
ιI((fK ,−fK′)γ) is annihilated by PK(D), and an analogous argument shows that it is also
annihilated by PK′(D).
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In fact, the statement of the theorem above is simpler to write in term of the “cross-
a-line” polynomials qi = qKi

, i.e., those that correspond to Ki = {i}, i ∈ [0 : k].

Corollary 2.12.“simcor

(2.13) qK =
∑

i∈K

qi.
“useful

Proof: Theorem 2.11 provides explicit formulæ for each qK and in particular for
qi. One just verifies directly from these formulæ that (2.13) is valid.

Comment. The ideal JK is based on the partition K,K ′, hence, with K ′ the com-
plement [0 : k]\K, the two ideals JK and JK′ are the same, hence qK = qK′ , essentially
by definition. However, we claim that

qK =
∑

i∈K

qi, qK′ =
∑

i∈K′

qi.

There is no contradiction here, since
∑k

i=0 qi = 0, hence qK + qK′ = 0, and our definitions
of the polynomials qK are up to normalization.

Corollary 2.14. Fix i ∈ [0 : k].“uniquecross

(1) If q ∈ D(X) vanishes on xi to order N − µ(i), then q = 0.

(2) qi is, up to normalization, the only polynomial in D(X) ∩ Π0
N−2 that vanishes on xi

to order N − µ(i)− 1.

(3) Ji⊥ contains all the polynomials in D(X) that vanish to order N − µ(i) − 1 on xi.
Each such polynomial is of the form l(D)qi for some l.

Proof: For (3), assume r ∈ D(X). Then (PX/Pi)(D)r = 0. Also, deg r ≤ N − 2;
so, if, in addition, r vanishes on xi to degree N−µ(i)−1, then r = r1r2, with pxi

(D)r1 = 0,
and deg r2 < µ(i). Therefore, Pi(D)r = 0, too. Consequently, r ∈ Ji⊥.

The fact that qi has the right order of zero on xi can be verified directly from Theorem
2.11 (e.g., if i ∈ [1:k−1], from the fact that qi = ι(fi)); alternatively, the smoothness
properties of the truncated power TPi, [20], imply that there must be a polynomial in
soc(D(X)) with such vanishing, and due to (3), that polynomial must be in (Ji⊥) ∩
soc(D(X)) = span{qi}.

Finally, by (3), the polynomial q in (1) must be in Ji⊥, hence must be of the form
l(D)qi, for some l. So, unless l(D)qi = 0, it will not have on xi an order of zero larger than
that of qi.
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3. Main and other results

3.1. Complete intersection decompositions

Having found an explicit representation in the spline space S(F (X), γ) for the socle
polynomials qK of the ideals JK , it becomes straightforward to check whether and when
(qK : K ∈ K) span soc(D(X)); after all, the spline space has a reasonably transparent
structure. Writing

F (X) ∋ f = (f, f)γ,

we can write any (f, g)γ ∈ S(F (X), γ) as

f + (0, g − f)γ.

Then g − f vanishes on γ, hence, by Corollary 2.10,

(3.1) (f, g)γ = f + c (0, f0)γ .“relation

So, a basis for S(F (X), γ) is given by

(3.2) f1, . . . , fk−1, (0, f0)γ,“basisgam

and one can use Theorem 2.11 together with (3.1) to derive a host of bases of the form
(qK)K . Each such basis yields a CID of J (X). We list below two choices. In the first
choice, we use k (cross-a-line) xi-polynomials. In the second basis, we assume that our
basis B of IR2 is made of two rays (x0, x1) that are consecutive in IR2, and collect the cone
polynomials in the fixed cone c0 over all the truncated powers whose support include c0.

Corollary 3.3. Assume that the lines (xi)
k
i=0 are ordered counter-clockwise.“corcid

(1) Each of the following is a minimal CID:
(1a) J (X) = ∩i∈[0:k]\jJi, with j ∈ [0 : k] arbitrary.
(1b) J (X) = ∩K∈KJK , with

K := {[1 : j] : j ∈ [1 : k]}.

(2) Each of the following is a basis for soc(D(X)).
(2a) Any k of the following k + 1 polynomials

ι((0, f0)γ), ι((f0, 0)γ), ι(fi), i ∈ [1 : k − 1].

(2b)

ι((−
i−1∑

j=1

fj,

k−1∑

j=i

fj)γ), i ∈ [1 : k].

Proof: For each basis listed in (2), since it is written via the bijection ι between
S(F (X), γ) and soc(D(X)), we just need to check that the corresponding sequences in
S(F (X), γ) form a basis for that latter space. This is straightforward to check, in view of
the basis in (3.2). The statement in (1) is equivalent to the basis statement in (2).

The fact (stated before this corollary) that the second basis in (2) is made of cone
polynomials from a fixed cone will be established later.
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Having found bases for soc(D(X)), we would like to compute their dual P-polynomials.
Recall that, given any multiset X ⊂ IR2\0, and with

pY :=
∏

y∈Y

, Y ⊂ X,

one defines
P(X) := span{pY : Y ⊂ X, rank(X\Y ) = 2}.

It is known, [21],[20], that P(X) is isomorphic to D(X)′ via the pairing

(p, q) := p(D)q(0).

Thus, the top degree homogeneous grade soc(P(X)) is dual to soc(D(X)). Hence, every
basis for soc(D(X)) has a dual basis in soc(P(X)), which, in many cases, is quite explicit.

Note that soc(P(X)) is spanned by the polynomials

pX\B , B ∈ IB(X),

with IB(X) the bases of X , i.e., the multiset

IB(X) := {B ⊂ X : B = {xi, xj}, i 6= j}.

There are
(
k+1
2

)
polynomials of the form pX\B , while dim(soc(P(X)) = dim(soc(D(X)) =

k, so we are dealing with a highly redundant spanning set.

Proposition 3.4. The P-dual basis for the polynomials (q1, . . . , qk) (2(a) in Corollary“propdual

3.3) are, up to normalization, the polynomials

pX\Bj
, Bj := (x0, xj).

Proof: Fix j ∈ [1 : k], and let i ∈ [1 : k]\j. Since Pi divides pX\Bj
, it follows that

pX\Bj
∈ Ji, hence that

(pX\Bj
, qi) = 0.

It remains then to show that (pX\Bi
, qi) 6= 0. One may prove this part by factoring qi

as in the proof of (3) in Corollary 2.14. Another way to establish it is as follows. Given
B = (xi, xj) ∈ IB(X), we easily verify that

pX\B ∈ span{pX\Bi
, pX\Bj

}.

Therefore the k polynomials pX\Bi
, i ∈ [1 : k] span soc(P(X)) (hence for a basis for it).

Since soc(P(X)) is isomorphic to soc(D(X)), qi cannot vanish identically on soc(P(X)),
hence cannot vanish on pX\Bi

.

Other dual bases can be derived from the above. One just needs to identify the linear
transformation from the (qi)i above to the new basis, and to invert it on the dual basis.
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3.2. Cone polynomials

While the discussion so far unraveled successfully the structure of soc(D(X)), we are
yet to prove Theorem 1.2, i.e., to write down explicitly the cone polynomials Qj,i. Let us
assume now that the lines (x0, . . . , xk) are ordered, say, counter-clockwise.

Importantly, when accessing the cone ci ⊂ Cj , we do not study the cone geometrically
by crossing the lines xj , . . . , xi and trying to calculate the increment for each crossing.
Instead, we access the problem algebraically by selecting a complete intersection ideal JK

that fits the pair (Cj , ci) and proving that the cone polynomial Qj,i coincides with the socle
polynomial qK of JK . Once this is done, it only remains to find the correct normalization
for Qj,i, since qK is defined up to normalization.

Identifying the cone polynomials Qj,i, i.e., the restriction of TPj to ci, is strikingly
easy. We need to recall one property of truncated powers:

Result 3.5. Given a truncated power TPX and x ∈ X , we have that px(D)TPX = TPX\x.“resone

Then, given j and i, we partition the lines xj , . . . , xj+k ∈ Cj into two sets, K,K ′, as
follows. Let

B := (xi, xi+1).

Then
Kj,i := {m ∈ [j : j + k] : (B−1xm)(1) > 0}.

Thus, Kj,i records the indices of the rays that are found in clockwise direction from ci.
Since we assume here that the rays are ordered, then

Kj,i = [j : i].

Recall the socle polynomial qKj,i
, which, by Corollary 2.12, is qKj,i

=
∑i

m=j qm.

Theorem 3.6. The cone polynomial“thmcone

Qj,i = TPj|ci

is, up to normalization, the socle polynomial qKj,i
.

The theorem is illustrated in Figure 2.
Proof: We collect from the matrix Xj the lines xm, m ∈ Kj,i (each according to

its multiplicity) in a matrix Xj,i. With that, X ′
j,i := Xj\Xj,i. Note that the cone ci has

null intersection with either of

pos(Xj,i), pos(X ′
j,i),

as we selected Kj,i exactly in order to have this property. Now, by Result 3.5,

PKj,i
(D)TPj = TPX′

j,i
.

Since supp(TPX′

j,i
) = pos(X ′

j,i), we conclude that TPX′

j,i
vanishes a.e. on ci, hence that

PKj,i
(D)Qj,i = 0.
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An analogous argument shows that

PK′

j,i
(D)Qj,i = 0.

Thus, Qj,i ∈ JKj,i
⊥. Since Qj,i ∈ Π0

N−2, then, by Proposition 2.2,

Qj,i ∈ span{qKj,i
}.

Figure 2: The partition K,K ′ for the cone function Qj,i.

Proof of Theorem 1.2. The smoothness properties of the truncated power TPXj

entails that Qj,i−Qj,i−1 vanishes on xi to order N−µ(i)−1. It follows then from Corollary
2.14 that

(3.7) Qj,i −Qj,i−1 ∈ span{qi}.“temp

By Theorem 3.6, when combined with Corollary 2.12, for some a, b ∈ IR,

(3.8) Qj,i −Qj,i−1 = a

i∑

m=j

qm − b

i−1∑

m=j

qm = aqi + (a− b)

i−1∑

m=j

qm.
“tempa

Now, by Corollary 3.3, (qj , . . . , qi) are linearly independent (since i < j + k), thus (3.7)
and (3.8) combined entail that a− b = 0.
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We conclude thus that

Qj,i = a
i∑

m=j

qm,

with the constant a independent of i, hence dependent only on the truncated power TPXj
,

hence can be chosen as a = 1.
Now, the conclusion is identical to the claim of Theorem 1.2, only that there the Qj,i

polynomials are written via the spline representation.

4. More on JK

Let J be an ideal with two generators

(4.1) J := Ideal(ρ1, ρ2),“defJ

each of which a product of linear forms

(4.2) ρi =
∏

y∈Yi

py, i = 1, 2.
“defJa

Assume further that ρ1, ρ2 do not have a common linear divisor. Equivalently, it means
that every member of the multiset

BJ := Y1 × Y2

is a basis for IR2. Now, let X := Y1 ∪ Y2. Then, with

IB(X)

the collection of all bases from X (all 2× 2 matrices with columns from X), one defines

L(X) := {L ⊂ X : L ∩B 6= ∅, ∀B ∈ IB(X)}.

Then it clearly follows that

J (X) = Ideal(pL : L ∈ L(X)),

while it is well-known, [14],[5], that

dim(D(X)) = #IB(X).

Now, let
B ⊂ IB(X)
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be an arbitrary subset of IB(X); one then defines

L(X,B) := {L ⊂ X : L ∩B 6= ∅, ∀B ∈ B},

and

J (X,B) := Ideal(pL : L ∈ L(X,B)).

It follows from general arguments, [6], that, whatever the selected B is,

dim(J (X,B)⊥) ≥ #B.

The selection (X,B) is called zonotopal if we have the stronger result

dim(J (X,B)⊥) = #B.

This notion was studied extensively, [7],[13],[8]. Note that, whatever B we select, it is
always true that

J (X) ⊂ J (X,B),

hence that

J (X,B)⊥ ⊂ D(X).

Note also that J fits the above discussion, i.e.,

J = J (X,BJ ),

since Y1, Y2 are clearly the only two minimal sets in L(X,BJ ). We claim that J is then
zonotopal, but we claim actually more. To this end, we recall from [7] the notion of
“placibility”.

Definition 4.3. Let B be a subset of IB(X), with X a finite multiset in IR2\0 of rank 2.“placible

A vector y ∈ X is B-placible, if, for every B ∈ B, there exists y′ ∈ B such that (y, y′) ∈ B.

A placible vector induces a decomposition of B into

B = B\y ∪ B/y,

where

B\y := {B ∈ B : y 6∈ B}, B/y := {B ∈ B : y ∈ B}.

The placibility of y is non-trivial if both sets above are non-empty. We recall the following
result, [7]:
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Result 4.4. With X and B as above, assume that y ∈ X is non-trivially placible into B.“resbrs

Consider the map
M : J (X,B)⊥ → Π, f 7→ py(D)f.

Then:
kerM = J (X,B/y)⊥, ranM = J (X,B\y)⊥.

Proposition 4.5. Let J be the ideal in (4.1,4.2). Then:“socci

(1) J is zonotopal, and hence

dim(J⊥) = (#Y1)(#Y2).

(2) Up to normalization, there exists a unique homogeneous polynomial q ∈ J⊥ of max-
imal degree #X − 2.

Proof: We prove the two claims by induction on #X . At the outset, note that,
since J ⊃ J (X), there are no polynomials in J⊥ of degree > #X − 2.

Now, the two claims here are trivial if both Y1 and Y2 are singletons. Otherwise,
assume without loss that #Y1 > 1 and choose y ∈ Y1. Then y is non-trivially placible in
B := BJ . Now,

B\y = (Y1\y)× Y2,

and
B/y = (y)× Y2,

hence, with M as in Result 4.4, our induction assumption applies to yield that

dim(J (X,BJ )⊥) = dim(kerM) + dim(ranM) = #B/y +#B\y = #BJ .

This proves (1).
By induction, kerM has all its polynomials of degree ≤ 1 + #Y2 − 2 < #X − 2.

On the other hand, the induction tells us that ranM has a unique polynomial (up to
normalization) of highest degree #(Y1\y) + #Y2 − 2 = #X − 3. Combined, these two
observations imply (2).
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