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ABSTRACT
Let G be a complete graph with n+ 1 vertices. In a recent paper of the authors, it is

shown that the path trees of the graph play a special role in the structure of the truncated
powers and partition functions that are associated with the graph. Motivated by the
above, we take here a closer look at the geometry of the simplicial cones associated with
the graph, and the role played by those simplicial cones that are generated by path trees.
It is shown that the latter form a basis for the linear space spanned by the former, and
that the representation of a general simplicial cone by path tree cones can be deduced by
examining partial orders induced by rooted trees. While the problem itself is geometrical
and its solution is combinatorial, the proofs rest with multivariate spline theory.
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1. Introduction

It was recently shown in [8] that the path trees in an acyclic graph play a special role
in the decomposition of the associated truncated powers and partition functions into ‘cone
polynomials’, i.e., summands that are, each, a single polynomial supported on a single
cone. Motivated by this decomposition, we attempt in this paper to gain an insight into
the role played by path trees in the geometry of the simplicial cones associated with a
complete graph. We have chosen the complete graph setup since then the entire geometry
is captured by the path trees. Our setup consists of a space of piecewise-constants, defined
on the geometry of the above simplicial cones, and the goal is to get a complete grasp of the
structure of that space. It turns out that this structure hinges on intricate relationships
among the spanning trees of the graph, and that, indeed, the understanding of those
relationships is best achieved by utilizing the path trees of the graph.

A ‘take home’ summary of the results of this paper may go as follows. Relationships
among the simplicial cones associated with a graph hinge on the different partial orders on
the vertices that the spanning trees of the graph induce. The path trees are unique here,
since they are the only ones to induce full order.

Let G be an acyclic complete graph with vertex set [0:n]. With

(ei)
n
i=1

the standard basis for IRn, and with e0 := 0 ∈ IRn, we assume that the orientation is given
by

i → j ⇐⇒ i < j, i, j ∈ [0:n].

That means that the vector representation of every edge (i, j) ∈ G is

x = ej − ei, 0 ≤ i < j ≤ n.

We identify in what follows the edges with their vector representation, and the graph itself
with the set of vectors that represent the edges. Other orientations yield results that are
completely analogous to the ones below. Let

IB(G)

be the set of spanning trees of G, oriented as in G. Recall that

#IB(G) = (n+ 1)n−1.

Given T ∈ IB(G), the positive hull

pos(T ) ⊂ IRn

is a simplicial cone whose support function is denoted by

χT .
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Our interest is in the space

T (G) := span{χT : T ∈ IB(G)}.

It is a piecewise constant space that encodes the geometry of the underlying truncated
powers and partition functions: whatever multiplicity one assigns to the edges of the
complete graph, the domains of polynomiality of the truncated power coincide with the
domains of constant values of a generic function in T (G). Since the geometry (in contrast
with the algebra) as investigated here does not depend on the multiplicities of the edges,
we assume throughout this paper that each edge is simple, i.e., appears with multiplicity
1.

Our first result in this investigation is

Proposition 1.1.
dim(T (G)) = n!.

In addition to the cone pos(T ) that is defined with respect to the G-orientation of T ,
the spanning tree T also induces a partial ordering on [0:n] as follows. One first re-orients
T as a tree rooted at 0. We denote this orientation of T as

Ton

and refer to it as the natural orientation of T . The partial ordering ≺T is then induced by
Ton: i ≺T j iff i 6= j and the path in T from 0 to j contains i. A path tree T is a spanning
tree whose natural orientation is

0 → s(1) → . . . → s(n),

with s ∈ Sn, i.e., s is a permutation of the vertex set [1:n]. We write Ts for the above path
tree when oriented as in G, and Ts,on, thus, for the same tree oriented as above. We then
denote

χs := χTs
, s ∈ Sn.

We have:

Theorem 1.2. The path simplicial cone functions

{χs : s ∈ Sn}

form a basis for T (G).

Thus, every χT , T ∈ IB(G), can be written uniquely as

χT =
∑

s∈Sn

c(T, s)χs,

for some real coefficients c(T, s). We have

Proposition 1.3. For each T ∈ IB(G) and for each s ∈ Sn,

c(T, s) ∈ {0,±1}.
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Next, every s ∈ Sn induces a new orientation on G that we denote as Gs:

x = es(j) − es(i) ∈ Gs ⇐⇒ i < j.

Here, s(0) := 0, so 0 is always the source of Gs, i.e., it does not have inflow edges. Note that
every complete, acyclic, graph has exactly one source. The re-orientation of any Y ⊂ G

according to the orientation Gs is denoted by

Y s.

Thus, in this language, T s
s = Ts,on: the natural orientation of Ts is its orientation in Gs.

Given s ∈ Sn, and T ∈ IB(G), the distortion

d(T )

is the number of edges in T whose orientations in T and Ton differ. Finally, we say that two
trees, T, T ′ ∈ IB(G) are compatible if their partial orderings ≺T and ≺T ′ are compatible,
i.e., if there exists a full ordering of [0:n] that is compatible with both, and define

IB(G)× IB(G) ∋ (T, T ′) 7→ C(T, T ′) :=

{

1, T, T ′ are compatible,
0, otherwise.

Our final result in this paper determines the exact value of each c(T, s):

Theorem 1.4. Let T and s be as above. Then:

c(T, s) = (−)d(T )+d(Ts)C(T, Ts).

Note that, according to this theorem, the cones of two permutations s, s′ ∈ Sn of
different distortion parity are never summed up in the representation of any χT .

Example. Let T = (ei : i ∈ [1 : n]). Then T is compatible with any other spanning tree,
and d(T ) = 0, hence

χT =
∑

s∈Sn

(−)d(Ts)χs.

For any other tree T , the cone function (−)d(T )χT is obtained by dropping suitable terms
from the above sum.

Comment. While the distortion d(Ts) does not depend on the simplicial cone χT we
represent, it does depend on the orientation of G. Thus, for a fixed orientation of G, any
two path simplicial cones have always the same sign relationship in their representation
of the χT function. For example, two path cones with different parity of distortion will
always appear with opposite signs of the coefficients, provided that both coefficients are
not 0. However, if we change the orientation of G, the same path cones may now have the
same parity of distortion, hence their signs will now agree in each representation.
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2. Examples

We represent s ∈ Sn as a sequence of integers. For example, the sequence [4123],
corresponds to s(1) = 4, s(2) = 1, etc., hence to the path tree

Ts,on : 0 → 4 → 1 → 2 → 3.

To recall, we always extend s with s(0) = 0, hence [4123] and [04123] represent the same
s ∈ Sn, and the same path tree Ts.

2.1. T (G) for n = 2.

Figure 1 shows the geometry of this case. There are two path cones, marked green
and red. The remaining cone χ (blue) corresponds to T = {e1, e2}. Obviously,

χ = χ[12] − χ[21].

This is a special case of the example at the end of the previous section. Indeed, for the
orientation s = [12], we have that Ts = Ts,on, hence d(T[12]) = 0. As for the orientation
[21], the edge e2 − e1 is a mismatch when comparing Ts and Ts,on, hence d(T[21]) = 1.

Figure 1: The 2D case

2.2. T (G) for n = 3.

There are 42 = 16 members in IB(G), when n = 3. Let us first examine the partial
orders induce by those trees. We naturally skip the six path trees: they induce a full order,
which is compatible only with the full order of themselves. So, Theorem 1.4 states correctly
then the trivial assertion that the cone function χs, s ∈ Sn, is a linear combination of itself.

In the illustrations below, we show a cross-cut of the 3D pos(G), and use the six edges
to denote the intersection points of their rays with the planar cut.
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a b

Figure 2: Representations by two path cones

Of the ten non-path cones, three are of the form shown in Figure 2. The partial order
can then be completed to a full one in two different ways. For the specific tree T shown in
Figure 2(a), d(T ) = 0, and one needs just to know how to orient the edge e3 − e2 in order
to obtain a full order. For the order s = [0123], we have d(Ts) = 0, and for s′ = [0132], we
have d(Ts′) = 1. The induced decomposition is shown in Figure 2(a): the positive cone in
green, the negative in red, and the cone χT in blue.

Figure 3: A representation by three path cones

However, for the tree T shown in Figure 2(b), the relevant permutations are then
[0213] and [0231], both with negative distortion. So, χT is now the sum of the two path
cones, as shown in Figure 2(b).

Of the remaining seven trees, six are of the form shown in Figure 3. Now, there are
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three completions of ≺T to a full order. For example, for the tree T shown in Figure 3,
the three paths that are compatible with T correspond to s1 = [0123], s2 = [0132] and
s3 = [0312]. Again, d(T ) = 0, while d(Tsi) is 0, 1, 1, for i = 1, 2, 3, respectively. Figure 3
shows then the decomposition, with the original χT colored blue, the positive cone colored
green and the negative ones colored red.

Finally, the tree T = (ei : i ∈ [1:3]) shown in Figure 4 is compatible with all the
six path trees, and has d(T ) = 0. Its decomposition is shown in Figure 4, with green
representing the cones with positive coefficients and red those with negative coefficients.
The result itself, i.e., the positive octant, is shown in blue.

Figure 4: The representation of the positive octant

3. Proofs

We work with polynomials in the n variables

t = (t(1), . . . , t(n)).
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An edge x = ej − ei ∈ G is then associated with the linear homogeneous polynomial

px(t) = t(j)− t(i).

Thus, the differential operator
px(D)

is the directional derivative in the x direction. If Y ⊂ G, i.e., a subset of the edge set of
G, oriented as in G, we denote

pY :=
∏

x∈Y

px.

Thus, for every T ∈ IB(G), pG\T is a homogeneous polynomial of degree
(

n+1
2

)

− n =
(

n
2

)

.
Denote

soc(P(G)) := span{pG\T : T ∈ IB(G)}.

We have then

Result 3.1.
(1) dim soc(P(G)) = n!.
(2) For every path tree Ts, s ∈ Sn, there exists a polynomial Ms, homogeneous of degree

(

n
2

)

, such that:
(2a) If T ∈ IB(G), and Y := G\T , then pY s(D)Ms ∈ {0, 1}.
(2b) For any Y ⊂ G, pY (D)Ms = 0 if and only if the graph Gs\Y s has a source other
than 0.

Proof: (1) above is well known. It is obtained by combining Theorem 7.2 in [6]
with some basics of algebraic graph theory, [4]. See also [5], [3], [1] and [7].

(2) follows from the results of [7] which are reviewed in Appendix A.

Corollary 3.2. The polynomials

Ps := pGs\Ts,on
, s ∈ Sn,

form a basis for soc(P(G)). The polynomials (Ms : s ∈ Sn) are biorthogonal to that basis
via the pairing

Π ∋ (p, q) 7→ 〈p, q〉 := p(D)q(0).

Comment. The basis (Ps) is not new. It appears in [3], and is utilized in [2] and
[1]. However, we will need the special properties of the dual basis (Ms), hence provide a
complete proof, starting, indeed, with the dual basis.

Proof. Fix s, s′ ∈ Sn. Then, by (2b) of Result 3.1, Ps′(D)Ms = 0 iff T s
s′ has more than

one source. But, for any tree T , only the natural orientation Ton is void of a source i ∈ [1:n].
So, Ps′(D)Ms = 0, unless T s

s′ = Ts′,on. This is possible iff s = s′. So, Ps′(D)Ms = 0 iff
s 6= s′. In the complementary case, (2a) of Result 3.1 implies that Ps(D)Ms ∈ {0, 1}, and
since we argued already that it is not 0 then it is 1.

Thus the biorthogonality relation is proved, and it then implies that (Ps : s ∈ Sn) are
linearly independent. Since there are n! of them, we conclude from (1) of Result 3.1 that
they form a basis for soc(P(G)).
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In the theorem below, we denote, for any s ∈ Sn and for any Y ⊂ G, by

mm(Y, s),

the mismatch between Y and Y s, i.e., the number of edges whose orientations in these two
oriented sets differ.

Theorem 3.3. Let T ∈ IB(G). Then

pG\T =
∑

s∈Sn

(−)mm(G\T,s)C(T, Ts) Ps.

Proof: By Corollary 3.2,

pG\T =
∑

s∈Sn

〈pG\T ,Ms〉Ps.

Fixing s ∈ Sn, we want first to determine whether the coefficient of Ps is 0 or not. To this
end, denote Y := G\T , and apply (2b) of Result 3.1. Since Gs\Y s = T s, the condition
there is that T s does not have a source other than 0, which is equivalent to T s = Ton. So,
〈pG\T ,Ms〉 6= 0 iff T s = Ton, which is equivalent to the compatibility of T and Ts, i.e, to
the condition C(T, Ts) = 1.

Now assume that, indeed, C(T, Ts) = 1, hence that T s = Ton. We have just argued
that in that case pY s(D)Ms 6= 0, hence by (2a) of Result 3.1, pY s(D)Ms = 1. Since
we apply pY (D) instead of pY s(D), we need to flip the sign of the result, once for each
mismatch count in mm(Y, s). The result thus follows.

We now need to transport all the above results from the space soc(P(G)) to the
simplicial space T (G). To this end, we utilize the truncated power associated with G,
TPG, [5]. It is a piecewise-polynomial function supported in the cone pos(G). For our
purposes, the only property of TPG that we need is the following

Result 3.4. Let T ∈ IB(G), then

pG\T (D)TPG = χT .

So, the space T (G) is isomorphic to the space soc(P(G)) via the map

soc(P(G)) ∋ p 7→ p(D)TPG ∈ T (G).

Thus, Proposition 1.1 follows from (1) of Result 3.1, while Theorem 1.2 follows from
Corollary 3.2. Finally, Theorem 1.4 follows from Theorem 3.3 as we argue now:

Proof of Theorem 1.4.
Fix T ∈ IB(G). Then, by Result 3.4, when combined with Corollary 3.2,

χT = pG\T (D)TPG =
∑

s∈Sn

〈pG\T ,Ms〉 Ps(D)TPG.
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Now, Theorem 3.3 provides the coefficient exactly:

(3.5) 〈pG\T ,Ms〉 = (−)mm(G\T,s)C(T, Ts).

However, Result 3.4 asserts that χs = pG\Ts
(D)TPG, while Ps = pGs\T s

s
, so we need to

account for the sign change when passing from the latter operator to the former, i.e., we
need to account for the parity of the number

mm(G\Ts, s) = mm(G, s)−mm(Ts, s) = mm(G, s)− d(Ts).

The number we already have in (3.5) is

mm(G\T, s) = mm(G, s)−mm(T, s).

So, the parity of the set
d(Ts) + mm(T, s)

determines the sign of the coefficient, whenever such sign is required, i.e., whenever
C(T, Ts) = 1. But this latter condition is equivalent to T s = Ton, and in that case,
mm(T, s) = d(T ).

4. Appendix A: on the construction of the dual polynomials Ms

We outline the construction from [7], save the explicit algorithm for the construction
of these polynomials: for the sake of this paper, we need the existence of such polynomials,
with properties as in Result 3.1, and not their explicit form.

One starts with a graph G, this time undirected, and connected. The dual polynomials
are indexed then (in lieu the indexing by Sn) by the set

O(G)

of all the acyclic orientations of G with a single source 0. The polynomials

M := {MGι
: Gι ∈ O(G)},

are all homogeneous of degree #G − n, with G identified with its edge set. Fixing Gι ∈
O(G), one partitions the edge set G into n subsets XGι,i, i ∈ [1:n], as follows:

XGι,i := {x ∈ G : x is an inflow edge of i in Gι}.

So, if x = ei − ej ∈ Gι it goes to XG,i. [7] proves that, up to normalization, there exists a
unique polynomial of degree #G− n in the joint kernel of the differential operators

pXG,i
(D), i ∈ [1:n].
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Then MGι
is defined this way up to normalization, and we refer to [7] for the normalization

details.
Now, if x = ei− ej ∈ Gι and Gι

′ := Gι\x, then it follows easily that: (1) if XG,i = {x}
then px(D)MGι

= 0, and the graph Gι
′ has then i as an additional source. (2) Otherwise,

the graph Gι
′ has still only one source, 0, and the new differential operators

pXGι
′,i
(D), i ∈ [1:n],

annihilate, each, px(D)MGι
. Then, once one proves that px(D)MGι

6= 0, the uniqueness
assertion above implies that, up to normalization

MGι
′ = DxMGι

.

Property (2) in Result 3.1 follows then from a slightly more careful argument, when ap-
propriate normalizations in the definition of MGι

are applied.
Note that the definition given above for the dual polynomials easily implies that, once

G is itself a spanning tree T , O(G) = {Ton}, and MTon
= 1 (up to normalization).
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networks, Foundations of Computational Mathematics 4 (2004), no. 3, 277–314.

[2] Welleda Baldoni-Silva and Michele Vergne, Residues formulae for volumes and Ehrhart

polynomials of convex polytopes, arXiv preprint math/0103097 (2001).

[3] Brian Benson, Deeparnab Chakrabarty, and Prasad Tetali, G-parking functions, acyclic

orientations and spanning trees, Discrete Mathematics 310 (2010), no. 8, 1340–1353.

[4] Michel Brion and Michele Vergne, Arrangement of hyperplanes. I: Rational functions

and Jeffrey-Kirwan residue, Annales Scientifiques de l’École Normale Supérieure, vol. 32,
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