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Abstract

Under certain assumptions on the compactly supported function � 2 C(Rd), we propose
two methods of selecting a function s from the scaled principal shift-invariant space Sh(�)
such that s interpolates a given function f at a scattered set of data locations. For both
methods, the selection scheme amounts to solving a quadratic programming problem and
we are able to prove errror estimates similar to those obtained by Duchon for surface spline
interpolation.

1. Introduction

The scattered data interpolation problem in Rd is the following: Given a set of scattered
points � � Rd and a function f de�ned at least on �, one seeks a `nice' function s which
interpolates the data fj� ; that is, which satis�es s(�) = f(�) 8� 2 �. The reader is referred

to the surveys [3] and [5] for descriptions of a variety of interpolation methods. One such
method is that of surface spline interpolation (see [4]) which we now describe.

Let m 2 N := f1; 2; 3; : : : g be such that m > d=2, and let Hm denote the set of all
tempered distributions f for which D�f 2 L2 := L2(Rd) for all j�j = m. For measurable
A � Rd and f 2 Hm, we de�ne the seminorm

jjjf jjjHm(A) := (2�)d=2
s X

j�j=m

�� kD�fk2L2(A);

where the ��'s are the positive integers determined by the equation jxj2m =
P

j�j=m ��x
2�,

x 2 Rd. In case A = Rd, we write simply jjjf jjjHm. The surface spline interpolation method
dictates that s 2 Hm be chosen to minimize jjjsjjjHm subject to the interpolation conditions
sj� = fj� . If � is �nite and not contained in the zero-set of any nontrivial polynomial

in �m�1 := fpolynomials of degree � m � 1g, then the surface spline interpolant s can
be realized as the unique function which interpolates the data fj� and has the form s =

q +
P

�2� ���(� � �) , where q 2 �m�1, the ��'s satisfy
P

�2� ��r(�) = 0 8r 2 �m�1, and
� is the radially symmetric function

�(x) =

(
jxj2m�d if d is odd;

jxj2m�d log jxj if d is even;
x 2 Rd:

In order to discuss the error between f and s, let us assume that 
 is open, bounded,
and has the cone property, and assume also that � � 
 := closure(
). The `�ll distance'
from � to 
 is the quantity � := �(�;
) := supx2
 inf�2� jx � �j. Duchon [4] has shown
that if s is the surface spline interpolant to f at �, then

(1.1) kf � skLp(
) � const�m�d=2+d=pjjjf jjjHm 8f 2 Hm

for 2 � p �1 and � su�ciently small. What is interesting about the proof of (1.1) is that
it hinges not on the fact that s minimizes jjjsjjjHm, but rather on the fact that jjjsjjjHm
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is bounded by constjjjf jjjHm. The point being that the form of s is irrelevant. To obtain
(1.1), all that is needed is that s interpolate fj� while maintaining jjjsjjjHm � constjjjf jjjHm.

With this in mind we consider interpolation from principal shift-invariant spaces.
Let � : Rd! C be continuous and compactly supported. The semi-discrete convolution

� �0 c between � and a function c (de�ned at least on Zd) is de�ned by

� �0 c :=
X
j2Zd

c(j)�(� � j);

with convergence taken uniformly on compact sets. For A � Rd let
S(�;A) := f� �0 c : c(j) = 0 whenever supp�(� � j) \A = ;g:

The space S(�;Rd) is a shift-invariant space because s(� � j) 2 S(�;Rd) whenever s 2
S(�;Rd) and j 2 Zd. It is called a principal shift-invariant space because it is generated
by the single function �. The space S(�;A) is re�ned by dilation for which we employ the
dilation operator �h de�ned by

�hf := f(h�):
For h > 0 and A � Rd let

Sh(�;A) := f�1=hs : s 2 S(�; h�1A)g:

In other words, Sh(�;A) is the closure, in the topology of uniform convergence on compact
sets, of spanf�(�=h � j) : j 2 Zd; supp�(�=h � j) \ A 6= ;g. Let 
 � Rd be open and
bounded. The approximation order of the scale of spaces fSh(�;
)gh>0 can be character-
ized in terms of the Strang-Fix conditions:

De�nition 1.2. � is said to satisfy the Strang-Fix conditions of order m (m 2 N) ifb�(0) 6= 0 and D�b�(2�j) = 0 8j 2Zdn0; j�j < m.

Here b� denotes the Fourier transform of �. It is known (see [7]) that � satis�es the
Strang-Fix conditions of order m if and only if

inf
s2Sh(�;Rd )

kf � skLp = O(hm) as h! 0 8f 2Wm
p ; 1 � p � 1;

where Wm
p denotes the Sobolev space (see [1]) of all tempered distributions f for which

D�f 2 Lp := Lp(Rd) 8 j�j �m.
Assume that � satis�es the Strang-Fix conditions of order m for some m 2 N with

m > d=2. We show in Section 2 that if � is a �nite subset of 
, then Sh(�;
) contains
functions which interpolate fj� whenever h is su�ciently small; precisely, whenever 0 <

h � sep(�)="�, where "� is a positive constant depending only on � and where

sep(�) := inffj� � �0j : �; �0 2 �; � 6= �0g
denotes the separation distance in �. Of course, in this case, there are in�nitely many
functions in Sh(�;
) which interpolate fj� . In light of the discussion surrounding (1.1),
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a sensible way of selecting a particular interpolant s 2 Sh(�;
) is to choose one which
minimizes jjjsjjjHm(
). In Section 7, under the additional assumptions that � 2 Wm

2 and

that 
 is connected and has a Lipschitz boundary, we show that if s is chosen in this
manner then (1.1) holds whenever � is su�ciently small and 0 < h � sep(�)="�.

The additional assumption that � 2 Wm
2 is very strong, and a quick survey of `distin-

guished' box-splines (see [2]) or B-splines reveals numerous examples where � satis�es the
Strang-Fix conditions of orderm but � 62Wm

2 . For example, in the univariate case (d = 1),
the function � := (1�j�j)�

[�1;1]
satis�es the Strang-Fix conditions of order 2, but does not

belong to W 2
2 because �00 is not a function. A great share of the e�ort in the present work

is devoted to replacing this assumption with the weaker assumption that � 2 W �
2 where

� 2 N is such that d=2 < � � m. Note that this supports the abovementioned univariate
example � := (1� j�j)�

[�1;1]
if we take � = 1.

Unfortunately, the `cost' functional jjjsjjjHm(
) is no longer meaningful when � < m for

the simple reason that the functions in Sh(�;
) are not assumed to lie in Hm. This is very
similar to the situation encountered in [9]. There, the natural choice of the cost functional
was jjjsjjjH2m but the functions s under consideration were spanned by translates of the
function � (mentioned above) which does not locally belong to H2m. This di�culty was
overcome in [9] by using a cost functional of the form jjj��d�(�=�) � sjjjH2m where � is a well
chosen exponentially decaying function. We employ a similar cure. In Section 3 we show
that there exists a compactly supported distribution � such that b� � (1+ j�j2)(��m)=2. The
cost functional

(1.3) jjjh�d�(�=h) � sjjjHm

is now well de�ned because � �� 2Wm
2 (by Proposition 3.3). In order to obtain something

like (1.1) we have to slightly adjust our approach. We assume only that 
 is open, bounded
and has the cone property, and we let 
0 be any open, bounded set which contains 
. With
0 < h � sep(�)="�, we choose s 2 Sh(�;
0) to minimize (1.3) subject to the interpolation
conditions sj� = fj� . In Section 6 we show that if � is su�ciently small, then

kf � skLp(
) � const�m�d=2+d=p kfkWm
2

82 � p �1; f 2Wm
2 ;

where
kfkWm

2

:=



(1 + j�j2)m=2 bf




L2
:

An outline of the paper is as follows: In Section 2 we prove that interpolants from
Sh(�;A) exist whenever 0 < h � sep(A)="�, while in Section 3 we settle some technical
issues relating to the convolution � � f when f is a tempered distribution. We show in
Section 4 that the error is controlled by the cost functional (1.3). The operator norm of
the operator ��0 is analyzed in various settings in Section 5. Finally, in Section 6 and
Section 7, the two abovementioned interpolation schemes are described and analyzed.

Throughout this paper we use standard multi-index notation: D� := @�1

@x
�1
1

@�2

@x
�2
2

� � � @�d

@x
�d
d

.

For multi-indices �, we de�ne j�j := �1 + �2 + � � � + �d, while for x 2 Rd, we de�ne

jxj := p
x21 + x22 + � � �+ x2d. The Fourier transform of a function f is de�ned formally
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by bf (w) := R d
R
e�iw�xf(x) dx and plays an important role in the sequel. One related fact

which follows from the Plancherel Theorem is that jjjf jjjHm has the representation in the

Fourier domain as



j�jm bf




L2(Rd n0)
for all f 2 Hm. It follows form this that jjj�hf jjjHm =

hm�d=2jjjf jjjHm and jjjf jjjHm � kfkWm
2

. The space of compactly supported C1 functions

is denoted C1
c (Rd). The space Cc(A) is the set of all continuous functions having compact

support contained in A. If � is a distribution and g is a test function, then the application
of � to g is denoted hg; �i. We employ the notation const to denote a generic constant in the
range (0 : :1) whose value may change with each occurence. In the statement of results we
specify the dependencies of any const while in proofs we omit the dependencies for the sake
of brevity. Two oft employed subsets of Rd are the open unit ball B := fx 2 Rd : jxj < 1g
and the unit cube C := [1=2::1=2)d.

2. Existence of Interpolants from Sh(�;A)

The following lemma gives su�cient conditions for the existence of interpolants to f
from Sh(�;A).
Lemma 2.1. Let � 2 Cc(Rd) satisfy the Strang-Fix conditions of order m � 1. There
exists "� > 0 (depending only on �) such that if 0 < h � sep(A)="� and f 2 `2(A),
then there exists s 2 Sh(�;A), say s = �1=h(� �0 c), such that sjA = fjA and kck`2 �
const(�) kfk`2(A).
Proof. It su�ces to consider the case h = 1 since the general case can then be obtained

by scaling. It is known [8] that � �0 1 = b�(0). Put N := fj 2 Zd : supp�(� � j) \ C 6= ;g.
Let b : Zd ! C be given by b := �

N
=b�(0), and put  := � �0 b. Note that  = 1 on C.

Put r := maxfjxj : x 2 N [ supp g and "� := 2r+
p
d. Assume sep(A) � "�. For x 2 Rd,

let [x] 2 Zd be de�ned by x 2 [x] + C. Put ec :=
P

a2A f(a)b(� � [a]) and es := � �0 ec.
The choice of "� ensures that the supports of the sequences fb(� � [a])ga2A are pairwise

disjoint. Consequently, keck2`2 =
P

a2A jf(a)j2 kb(� � [a])k2`2 = kbk2`2 kfk
2
`2(A)

. The choice

of "� also ensures that the supports of the functions f (� � [a])ga2A are pairwise disjoint.
Hence, if a 2 A, then es(a) = P

a02A f(a
0) (a � [a0]) = f(a) (a � [a]) = f(a). It may be

the case that es 62 S(�;A), so de�ne c : Zd ! C by c(j) := ec(j), if supp�(� � j) \ A 6= ;,
and c(j) = 0 otherwise. Put s := � �0 c. Then s(a) = es(a) = f(a) for all a 2 A and
kck`2 � keck`2 = const kfk`2 . �

3. Convolution with the distribution �

In this section we settle some technical issues related to our cost funcitonal (1.3). We
begin by proving the existence of the compactly supported distribution � mentioned in the
introduction.
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Lemma 3.1. Let �;m 2 N be such that d=2 < � � m. There exists a compactly supported
distribution � such that

(3.2) const(m;d)(1 + jwj2)(��m)=2 � b�(w) � const(m;d)(1 + jwj2)(��m)=2 8w 2 Rd:

Proof. De�ne the tempered distribution �1 by b�1 := (1 + j�j2)(��m)=2 2 M, and let � 2
C1
c (Rd) be such that �(0) = 1 and b� � 0. Put � := �1�. Then � is compactly supported

and b� = (2�)�db� � b�1. Since b� decays rapidly and is non-negative (and not identically 0),
we obtain (3.2). �

With the existence of � settled, we turn now to the issue of de�ning the convolution
� � f assuming only that f is a tempered distribution. Our de�nition is valid not just for
�, but for any tempered distribution whose Fourier transform lies in the space M de�ned
below.

Let S denote the `rapidly decreasing functions' (the test functions associated with tem-
pered distributions) topologized (as usual) by the seminorms f�ngn2N , where

�n(g) := max
j�j�n

k(1 + j�j)nD�gkL1 :

Let M denote the set of all g 2 C1(Rd) which satisfy

8N 2 N 9n 2 N max
j�j�N



(1 + j�j)�nD�g



L1

<1:

For example, if u is a compactly supported distribution, then it follows from a theorem of
Paley-Wiener that bu 2 M. If g 2 M, then it is a consequence of Leibniz' formula that
g� 2 S 8� 2 S, and it is a consequence of the closed graph theorem that the mapping
� 7! g� is a continuous operator on S. Consequently, the mapping f 7! gf is a continuous
operator on S 0 (the space of tempered distributions) whenever g 2 M.

De�nition. Let u and v be tempered distributions with bu 2 M or bv 2 M. The con-
volution u � v is de�ned as the inverse Fourier transform of the tempered distributionbubv:

u � v := (bubv)_ :
If bu 2 M, then it follows that u� is a continuous operator on S 0. We collect in the

following proposition several properties of the convolution operator �� which will be used
in the sequel.

Proposition 3.3. Let �;m; � be as in Lemma 3.1, and let � 2W �
2 be compactly supported.

Put  := � ��. Then  2Wm
2 and supp � supp �+supp�. Let c :Zd! C have at most

polynomial growth and for n 2 N de�ne cn 2 `0 by cn(j) :=

�
c(j) if jjj � n;

0 else
: Then

(i) � �0 cn ! � �0 c in S 0 and

(ii) � � (� �0 c) =  �0 c:
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Proof. To see that  2Wm
2 note that by (3.2)

k kWm
2

=



(1 + j�j2)m=2b�b�




L2
� const




(1 + j�j2)�=2 b�



L2

= const k�kW�
2

<1:

That supp � supp � + supp� is proved in [6, Th. 4.9 and p. 87]. Let r be the smallest
positive real number for which supp� � rB. There exists a polynomial q, say of degree k,
such that jc(j)j � q(j) 8j 2Zd. If g 2 S, then

jhg; � �0 ci � hg; � �0 cnij = jhg; � �0 (c� cn)ij �
X
jjj>n

jc(j)j jhg; �(� � j)ij

�
X
jjj>n

q(j) k�kL1 kgkL1(j+rB) � const

0@X
jjj>n

q(j)(1 + jjj)�k�d�1
1A �k+d+1(g):

Since
P

jjj>n q(j)(1+jjj)�k�d�1 ! 0 as n!1, we obtain (i). Since  2Wm
2 has compact

support, we have by (i) that  �0 cn !  �0 c in S 0. Since �� is a continuous operator on S 0,
it follows from (i) that � � (� �0 cn)! � � (� �0 c) in S 0. Noting that � � (� �0 cn) =  �0 cn
8n 2 N, we obtain (ii). �

4. An Error Estimate

The following theorem contains our basic error estimate. In practice, the function g will
be the error f � s. Of course, if s interpolates f at �, then f � s will vanish on �.

Theorem 4.1. Let �;m; � be as in Lemma 3.1. Let 
 be an open, bounded subset of Rd

having the cone property and let � � 
. There exists �0 > 0 such that if � := �(�;
) � �0,
then for 2 � p �1
kgkLp(
) � const(�;m;
)�m�d=2+d=pjjj��d�(�=�) � gjjjHm 8g 2 Hm+H� satisfying gj� = 0:

We mention that in the case � =m, the above conclusion reduces to

kgkLp(
) � const(m;
)�m�d=2+d=pjjjgjjjHm 8g 2 Hm which vanish on �;

which is known [4]. Our proof of this theorem requires two supporting lemmas. The proof
of the �rst is essentially the same as the proof of [9, Prop. 3.1] if one replaces jjjf jjjHm

with jjjf jjjH�, jjjf jjjH2m with jjjf jjjHm, and jjjf jjj� with jjj� � f jjjHm.

Lemma 4.2. Let �;m; � be as in Lemma 3.1, and let r > 0. For each j 2 Zd, let Nj be
a �nite subset of j + rB. If fbj;�gj2Zd ;�2Nj

is such thatX
�2Nj

bj;�q(�) = 0 8q 2 �m�1; j 2Zd and

M := sup
j2Zd

X
�2Nj

jbj;� j <1;

then X
j2Zd

������
X
�2Nj

bj;�f(�)

������
2

� const(�;m; r)M2jjj� � f jjj2Hm 8f 2 Hm +H�:

The following lemma is taken from [9, Lemma 4.2].
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Lemma 4.3. Let n � 0. If 
 � R
d is bounded, open, and has the cone property, then

there exists �0; r0 2 (0 : :1) (depending only on n and 
) such that if � is a �nite subset of

 with � := �(�;
) � �0, then for all x 2 
=� there exists a �nite N � (�=�) \ (x+ r0B)
and fb�g�2N such that

q(x) +
X
�2N

b�q(�) = 0 8q 2 �n and

X
�2N

jb�j � const(n;
):

Proof of Theorem 4.1. Let �0; r0 be as in Lemma 4.3 with n = m � 1. Put A := fj 2
Zd : (j + C) \ (
=�) 6= ;g. For each j 2 A, let xj 2 (j + C) \ (
=�) be such that
k��gkL1((j+C)\(
=�)) � 2 jg(�xj )j. By Lemma 4.3, for each j 2 A, there exists Nj �
(�=�) \ (xj + r0B) and fbj;�g�2Nj

such that

q(xj ) +
X
�2Nj

bj;�q(�) = 0 8q 2 �m�1 and

X
�2Nj

jbj;�j � const(m;
):

Put r := r0 +
p
d=2 and note that fxjg [ Nj � j + rB for all j 2 A. Now,

(4.4)

kgkLp(
) = �d=p k��gkLp(
=�)
� �d=p




j 7! k��gkL1((j+C)\(
=�))





`p(A)

� 2�d=p kj 7! g(�xj)k`p(A) � 2�d=p kj 7! g(�xj )k`2(A) ; since 2 � p;

= 2�d=p
sX

j2A

jg(�xj)j2:

Since g(��) = 0 for all � 2 �=�, we have

jg(�xj )j =
������g(�xj) +

X
�2Nj

bj;�g(��)

������ ; 8j 2 A:

We thus obtain from (4.4) and Lemma 4.2 that

kgkLp(
) � const�d=pjjj� � (��g)jjjHm = const�m�d=2+d=pjjj��d�(�=�) � gjjjHm:

�
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5. An analysis of ��0

As mentioned just prior to the statement of Theorem 4.1, our error estimates will employ
Theorem 4.1 with g = f � s. Roughly speaking, the factor jjj��d�(�=�) � (f � s)jjjHm will

be estimated by jjj��d�(�=�) � f jjjHm + jjj��d�(�=�) � sjjjHm, where the �rst term will be
shown to be bounded by a constant times jjjf jjjHm. The second term is our cost functional
(1.3) with � in place of h. Although this second term involves the parameter �, its action
on any s 2 S�(�;Rd) exhibits a certain stationarity. Namely, if s = �1=�(� �0 c), then

(5.1) �m�d=2jjj��d�(�=�) � sjjjHm = jjj� � (� �0 c)jjjHm:

Thus, the right side of (5.1) is an important quantity. Two estimates of this quantity are
given in the following proposition.

Proposition 5.2. Let �;m; � be as in Lemma 3.1, and let � 2W �
2 be compactly supported.

Then

(5.2) jjj� � (� �0 f)jjjHm � const(�;m; �) kfk`2 8f 2 `2:

If, in addition, � satis�es the Strang-Fix conditions of order m, then

(5.3) jjj� � (� �0 f)jjjHm � const(�;m; �)jjjf jjjHm 8f 2 Hm:

Our proof of this proposition requires the following lemma which is a consequence of
[10, Th�eor�eme 1.6] and the Sobolev embedding theorem [1, p. 97].

Lemma 5.4. Let y 2 Rd, r > 0, and m 2 N with m > d=2. For all f 2 Hm there exists
q 2 �m�1 such that

kf � qkL1(y+rB) � const(d;m; r)jjjf jjjHm(y+rB):

Proof of Propositon 5.2. Put  := � � �. By Proposition 3.3,  2 Wm
2 is compactly

supported and

(5.5) � � (� �0 f) =  �0 f:

Put N := fj 2 Zd : supp (� � j) \ C 6= ;g, and note that #N <1. In consideration of
(5.2), assume f 2 `2. Then

jjj �0 f jjj2Hm =
X
`2Zd

jjj �0 f jjj2Hm(`+C) =
X
`2Zd

jjj
X
j2N

f(` + j) (� � j)jjj2

Hm(C)

� const
X
`2Zd

jjj jjj2Hm

X
j2N

jf(` + j)j2 � const kfk2`2

which, in view of (5.5), proves (5.2). In consideration of (5.3), assume � satis�es the

Strang-Fix conditions of order m, and let f 2 Hm. Since b = b�b�, it follows that  



MICHAEL JOHNSON 11

also satis�es the Strang-Fix conditions of order m. Consequently,  �0 q 2 �m�1 for all
q 2 �m�1 (see [8]). Let r be the least positive real number such that N � rB. By Lemma
5.4, for each ` 2Zd there exists q` 2 �m�1 such that

kf � q`kL1(`+rB) � constjjjf jjjHm(`+rB):

This yields the estimate

jjj �0 f jjjHm(`+C) = jjj �0 (f � q`)jjjHm(`+C) = jjj
X
j2N

(f(` + j)� q`(`+ j)) (� � j)jjj
Hm(`+C)

� #N kf � q`kL1(`+rB) jjj jjjHm � constjjjf jjjHm(`+rB):

Therefore,

jjj �0 f jjj2Hm =
X
`2Zd

jjj �0 f jjj2Hm(`+C) � const
X
`2Zd

jjjf jjj2Hm(`+rB) � constjjjf jjj2Hm

which, in view of (5.5), proves (5.3). �

Our proof of the following result uses the standard quasi-interpolation argument (see
[2, Ch. III]) which greatly simpli�es when m > d=2.

Proposition 5.6. Let  2 Cc(Rd) and m 2 N with m > d=2 be such that  �0 q = q
8q 2 �m�1. If sep(A) � const, then

kf �  �0 fk`2(A) � const(m; )jjjf jjjHm 8f 2 Hm:

Proof. Let N , r, and fq`g`2Zd be as de�ned in the proof of Proposition 5.2. Then for
` 2Zd

kf �  �0 fkL1(`+C) = kf � q` �  �0 (f � q`)kL1(`+C)

� kf � q`kL1(`+C) +








X
j2N

(f(` + j)� q`(`+ j)) (� � j)








L1(C)

� (1 + #N k kL1) kf � q`kL1(`+(r+1)B) � constjjjf jjjHm(`+(r+1)B):

Since sep(A) � const, we have

kf �  �0 fk2`2(A) � const
X
`2Zd

kf �  �0 fk2L1(`+C) � const
X
`2Zd

jjjf jjj2Hm(`+(r+1)B) � constjjjf jjj2Hm:

�
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6. An Interpolation Method for the Case � �m

In the following, the phrase nearly minimize means to bring to within a constant of its
minimal value.

Interpolation Method 6.1. Let �;m; � be as in Lemma 3.1. Let � 2 W �
2 be compactly

supported and satisfy the Strang-Fix conditions of order m, and let "� be as in Lemma 2.1.
Let 
 be an open, bounded subset of Rd having the cone property, and let 
0 be an open,
bounded set which contains 
. Let � be a �nite subset of 
 and let 0 < h � sep(�)="�.
Choose s 2 Sh(�;
0) to nearly minimize jjjh�d�(�=h) � sjjjHm subject to the interpolation
conditions sj� = fj� . There exists �1 > 0 such that if � := �(�;
) � �1, then for all

f 2Wm
2

(i) jjjh�d�(�=h) � sjjjHm � const(�;m;
;
0; �) kfkWm
2

and

(ii) kf � skLp(
) � const(�;m;
;
0; �)�
m�d=2+d=p kfkWm

2

82 � p � 1:

Remark 6.2. The interpolant s can be found by nearly solving a quadratic programming

problem. To see this, let s be written as s =
MX
j=1

cj�(�=h� kj); where fk1; k2; : : : ; kMg :=

fk 2 Zd : supp�(�=h � k) \ 
0 6= ;g, and put f�1; �2; : : : ; �Ng := �. The interpolation
conditions become Ac = F where A is the N �M matrix having (i; j)-entry �(�i=h� kj)
and F = [f(�i)]1�i�N . Put  := � � � and let G be the M �M matrix having (i; j)-
entry ( ; (�+ kj � ki))Hm , where ( ; )Hm denotes the semi-inner product associated with
jjj � jjjHm. The cost functional can then be written as

jjjh�d�(�=h) � sjjjHm = h�m+d=2
p
c�Gc;

where c� denotes the complex conjugate of the transpose of c. Thus c is any near solution
of the quadratic programming problem

minimize c�Gc

subject to Ac = F:

We mention that the matrices A and G are sparse in the sense that the number of nonzero
entries in each row or column is bounded independently of M and N .

Proof of 6.1. Let " > 0 be the largest positive real number for which 
 + "B � 
0, and
let � 2 C1

c (
 + ("=2)B) be such that � = 1 on 
. The assumptions on � ensure (see [8])
that there exists a �nitely supported sequence a : Zd ! C such that  := � �0 a satis�es
the Strang-Fix conditions of order m and the condition  �0 q = q for all q 2 �m�1. Let
�0 be as in Theorem 4.1, and let �1 2 (0; �0] be su�ciently small to ensure that

�(�;
) � �1, 0 < h � sep(�)="� and supp g � h�1(
 + ("=2)B))  �0 g 2 S(�; h�1
0):
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Let f 2 Wm
2 and put ef := �f . Then




 ef



Wm

2

� const kfkWm
2

. Assume � := �(�;
) � �1.

Put s1 := �1=h( �0 �h ef ) 2 Sh(�;
0). Since 0 < h � sep(�)="�, it follows by Lemma 2.1

that there exists s2 2 Sh(�;�), say s2 = �1=h(��0 c), such that kck`2 � const



 ef � s1





`2(�)

and s2(�) = ef (�) � s1(�) for all � 2 �. Put es := s1 + s2 2 Sh(�;
0), and note thates(�) = s1(�) + ef (�) � s1(�) = f(�) for all � 2 �. Consequently,

(6.2)
jjjh�d�(�=h) � sjjjHm � constjjjh�d�(�=h) � esjjjHm = consth�m+d=2jjj� � �hesjjjHm

� consth�m+d=2(jjj� � �hs1jjjHm + jjj� � �hs2jjjHm):

By Proposition 5.2, we have

jjj� � �hs1jjjHm = jjj� � ( �0 �h ef )jjjHm � constjjj�h ef jjjHm

and

jjj� � �hs2jjjHm = jjj� � (� �0 c)jjjHm � const kck`2
� const




 ef � s1





`2(�)

= const



�h ef �  �0 �h ef




`2(�=h)
� constjjj�h ef jjjHm

by Proposition 5.6. Therefore, by (6.2),

jjjh�d�(�=h) � sjjjHm � consth�m+d=2jjj�h ef jjjHm = constjjjefjjjHm

� const



 ef




Wm
2

� const kfkWm
2

which proves (i). Since h � const�, it follows that jjj��d�(�=�) � sjjjHm � constjjjh�d�(�=h) � sjjjHm.
Hence, by Theorem 4.1,

kf � skLp(
) � const�m�d=2+d=pjjj��d�(�=�) � (f � s)jjjHm

� const�m�d=2+d=p(jjj��d�(�=�) � f jjjHm + jjj��d�(�=�) � sjjjHm) � const�m�d=2+d=p kfkWm
2

which proves (ii). �

7. An Interpolation Method for the case when � 2Wm
2

The conclusion of the following result is an improvement over that of 6.1 as jjjf jjjHm(
)

has taken the place of kfkWm
2

in (i) and (ii). To obtain this improvement, we have assumed

further that � 2Wm
2 and that 
 is connected and has a Lipschitz boundary.
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Interpolation Method 7.1. Let m 2 N with d=2 < m, and let � 2 Wm
2 be compactly

supported. Let 
 be an open, bounded, connected subset of Rd having the cone property and
a Lipschitz boundary (in the sense of [10]), and let �0 and "� be as in Theorem 4.1 and

Lemma 2.1, respectively. Let � be a �nite subset of 
 and let 0 < h � sep(�)="�. Let 
h be
any measurable set which contains 
, and let s 2 Sh(�;
h) be chosen to nearly minimize
jjjsjjjHm(
h)

subject to the interpolation conditions sj� = fj� . If � := �(�;
) � �0, then

for all f 2 Hm

(i) jjjsjjjHm(
h)
� const(m;
; �)jjjf jjjHm(
) and

(ii) kf � skLp(
) � const(m;
; �)�m�d=2+d=pjjjf jjjHm(
) 82 � p �1:

Remark. The interpolant s can be found by nearly solving the same quadratic programming
problem described in Remark 6.2 excepting that fk1; k2; : : : ; kMg := fk 2Zd : supp�(�=h�
k) \ 
h 6= ;g and G(i; j) := (�; �(�+ kj � ki))Hm(h�1
h). If 
h is a complicated set, then
the computation of G will likely be di�cult. One way to ease this task is to choose 
h as


h := [`2Ahh(`+ C);

where Ah := f` 2 Zd : 
 \ h(` + C) 6= ;g. Using the auxillary function u : Zd �Zd ! C

given by u(k; `) := (�; �(� � k))Hm(`+C) (which has a �xed number of nonzero entries), we
can compute G(i; j) as

G(i; j) =
X
`2Ah

u(ki � kj ; `):

Our proof of 7.1 requires the following result which comes out of [4, p. 331].

Theorem 7.2. Let m 2 N with m > d=2. If 
 is an open, bounded, connected subset of
Rd having the cone property and a Lipschitz boundary (in the sense of [10]), then for all
f 2 Hm there exists f
 2 Hm such that

(i) f
 = f on 
 and

(ii) jjjf
jjjHm � const(m;
)jjjf jjjHm(
):

Proof of 7.1. Let a,  be as in the proof of 6.1. Let f 2 Hm and let f
 be as in Theorem
7.2. Put s1 := �1=h( �0 �hf
). By Proposition 5.2, s1 2 Hm and

(7.3) jjj�hs1jjjHm � constjjj�hf
jjjHm:

Since 0 < h � sep(�)="�, it follows by Lemma 2.1 that there exists s2 2 Sh(�;�), say
s2 = �1=h(� �0 c), such that kck`2 � const kf
 � s1k`2(�) and s2(�) = f
(�) � s1(�) for all

� 2 �. Put s3 := s1 + s2 2 Sh(�;Rd). Then s3j� = f
j� = fj� , and

jjjs3jjjHm � jjjs1jjjHm + jjjs2jjjHm = h�m+d=2 (jjj�hs1jjjHm + jjj�hs2jjjHm)

= h�m+d=2 (jjj �0 �hf
jjjHm + jjj� �0 cjjjHm) � consth�m+d=2
�jjj�hf
jjjHm + kck`2

�
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by Proposition 5.2. Since kck`2 � const kf
 � s1k`2(�) = const k�hf
 �  �0 �hf
k`2(�=h),
we have by Proposition 5.6, that kck`2 � constjjj�hf
jjjHm. Therefore,

(7.4) jjjs3jjjHm � consth�m+d=2jjj�hf
jjjHm = constjjjf
jjjHm � constjjjf jjjHm(
)

by Theorem 7.2. Let s4 2 Sh(�;
h) be such that s4 = s3 on 
h. Then s4j� = s3j� = fj� .
Hence,

jjjsjjjHm(
h)
� constjjjs4jjjHm(
h)

= constjjjs3jjjHm(
h)
� constjjjs3jjjHm � constjjjf jjjHm(
)

which proves (i). By Theorem 7.2, there exists s
 2 Hm such that s
 = s on 
 and
jjjs
jjjHm � constjjjsjjjHm(
). Hence, by Theorem 4.1,

kf � skLp(
) = kf
 � s
kLp(
) � const�m�d=2+d=pjjjf
 � s
jjjHm

� const�m�d=2+d=p (jjjf
jjjHm + jjjs
jjjHm) � const�m�d=2+d=pjjjf jjjHm(
)

which proves (ii). �
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