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1. Introduction

Let X be an arbitrary finite set. We start with a collection of bases and mean by that any
subset IB of 2% with the property that, for any A, B € IB, A C B implies A = B. We denote by
I = I(IB) the completion of IB under subset formation, calling its elements the independent sets.
We denote by § = S(IB) the completion of IB under superset formation, calling its elements the
spanning sets.

We also consider

R :=1R[X],

the ring of polynomials (with real coefficients) in the elements of X. In particular, we can identify
each subset A of X with the corresponding monomial er 4« (or else, more carefully, write my4
for it, as do [DDM)]).

Let S be a real linear space, let

0:X = L(S):z—{,
be some map into the space of linear maps on S, and assume that its images commute. Then, the
association
X e I 2@

reX

extends, by linearity, to a ring-homomorphism
R — L(S) : p— p(f).

Further, set
(1.1) A:=AB)={AcCcX:V{BeB} AnB #0}.
The joint kernel
(1.2) K(B):= () ker [ ¢

A€A €A
is of interest. The specific goal is the identification of conditions under which the inequality
(1.3) dim K(B) < ) dim K ({B})

BeB

holds, as well as conditions under which there is equality here.

These questions have been studied by several authors (cf. [DM1], [DM2], [S], [JRS], [RJS],
[DDM] and [BRS]) in the case that all elements of IB have the same cardinality. In this note, we
take up these questions without such assumption of equicardinality, as is also done in [DDM].

Specifically, we show (in Section 3) that the results of [BRS] concerning dim K (IB) and involv-
ing something called the IE-condition there are valid even if IB is not equicardinal. These results
rely on induction on #IB, relating the dimension of K(IB) to the dimension of K(IB|,) and of
K(IB\;). Here,

B, :={BcB:z¢c B}, B\, :={BecB:x¢ B}.

More generally, for any subsets Y and Z of X, we set
By :={BeB:Y C B}, B\, ={BeB:ZNB=0}={BecB:BC(X\Z)}.
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Note that these two operations, of restriction and deletion, commute.

In the process, we abandon the IE-condition of [BRS] in favor of something we call the tree-
condition which, in the equicardinal case, was shown in [BRS] to be equivalent to the IE-condition
but which we now find much handier to use, even in the equicardinal case. The necessary details
are developed in Section 2.

In Section 4, we compare the results of Section 3 with the related results in the final version
of [DDM]. In particular, we relate our tree-condition to a basic condition used (but not named) in
[DDM] which we dub here the shell-condition and which is shown in [DS] to be the most general
condition under which one can hope to prove (1.3) inductively.

The relevant argument in [DDM] starts with the observation that

K(B) = () kerp(f),

pel
with
(1.4) I:=I(IB) :=ideal(A)

the ideal generated by the A € A. This makes it possible to exploit the isomorphism between
K (IB) and the space hom(R/I,S) of R-homomorphisms. We recast our results into this language,
in order to facilitate the comparison of results.

2. Placeability and the tree-condition

The concepts of placeability, the IE set, the IE-condition, and the IE-tree were introduced, in
that order, in [BRS] under the assumption that all the elements of IB have the same cardinality.
However, an examination of the development in [BRS] and of the proofs of the major results shows
that the equicardinality of IB is not used.

Definition 2.1. We say that Y is placeable into B if Y UC € IB for some C C B. IfY is
placeable into every B € 1B, then we say that Y is placeable (in IB), or, B-placeable.

We note that, in contrast to [BRS], we do not assume in this definition that #Y = #(B\C).
E.g., with B = {{a}, {b,c}}, a is B-placeable.

Definition 2.2. A B-tree is any binary tree with the following properties:
(i) The nodes are of the form By z for certainY', Z C X with Y N Z = ().
(ii) Each node is either a leaf, in which case it contains fewer than 2 elements, or else, it is the
disjoint union of its two children, By y\z and IBjy\ zup (the latter may possibly be empty),
for some b € X\ (Y U Z).
(iii) 1B is the root of this tree.

The nonempty leaves of a IB-tree constitute the partition of IB into its elements.

Definition 2.3. A IB-tree is placeable if, for each of its nodes, the element used to split that
node is placeable in that node.
We say that 1B satisfies the tree-condition if there is a placeable 1B-tree.

Since the tree-condition involves placeability within each node, any branch of a placeable tree is
itself placeable. Hence, any node of a placeable IB-tree satisfies itself the tree-condition. Conversely,
if b is placeable, and both IBj;, and IBy; satisfy the tree-condition, then so does IB.

A placeable IB-tree is what is called an [E-tree in [BRS] except for the more general definition
2.1 of placeability used here, and for the fact that empty nodes are allowed here. The latter is a
convenience in certain proofs. However, we also have the following.
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Proposition 2.4. If B # () satisfies the tree-condition, then there is a placeable IB-tree without
any empty nodes.

Proof: Any IB-tree is necessarily finite since each node is associated with its distinct pair
(Y, Z) of disjoint subsets of X, and X is finite. Hence, it is sufficient to prove that the tree obtained
from a placeable IB-tree by removal of an empty node is again a placeable IB-tree. But this is
obvious since By z = Bjy\ 7z in case IBjy\ zup is empty. O

Proposition 2.5. If IB satisfies the tree-condition, then, for arbitrary x € X, so does IB\,.

Proof: It is sufficient to show that the tree, obtained from the placeable IB-tree by remov-
ing all B € IB|,, is a placeable IB\,-tree. For this, consider the effect of this action on the node
By z of our IB-tree.

There is no difficulty with nodes which are entirely outside IB|, as they will be unchanged.
There is also no difficulty with nodes which are reduced to fewer than 2 elements.

This leaves the nodes which will be reduced but still contain at least 2 elements. For this to
happen, our node cannot be a leaf, i.e., it is being split by some node-placeable b, and we must have
r € X\(YUZ). If 2 = b, then the node is simply replaced by its right child, IBjy\ zu, = (B\z)|v\z,
and there is no problem. In the contrary case, we note that b is still placeable in the reduced node
since there is, for every B in the reduced node (IB\;)|y\z, some B’ in the unreduced node of the
form B’ = YUb with Y C B and, since b # z, this B’ cannot contain x, hence is also in the reduced
node. O

We now relate the tree-condition to what was called the IE-condition in [BRS]. For this, we
single out the following subset of 2%.

Definition 2.6. Let IF = IF(IB) be the collection of all those C' C X satisfying the following two
conditions:

(a) C is B-placeable;

(b) B¢ satisfies the tree-condition.

Corollary 2.7. If C € IF(IB), then, for arbitrary x € X\C with B\, # 0, C € IF(IB\,).

Proof: Since C' is placeable, there exists, for arbitrary B € 1B, some B’ = CUY € IB with
Y C B. If now B € B\,, then ¢ Y, while z ¢ C' by assumption, hence x ¢ B’, i.e., B’ € IB\,.
Thus, C' is B\ ,-placeable. Further, B\, ¢ satisfies the tree-condition by Proposition 2.5 since B¢
satisfies the tree-condition. O

Now recall the following definition from [BRS] which is stated and used there only for equicar-
dinal IB but makes sense for more general IB since the cardinality of the elements of IB is not
referred to in the definition.

Definition 2.8. Let IE = IE(IB) be the collection of all C' € I which are either in IB or else there
is some b € X\C, called a B-extender for C, which satisfies the following two conditions:

(i) CUb € IE;

(i) if By, # 0, then C € TE(IBy;).

It can be shown that IF = IE. However, in the sequel, we only need the fact that the set IF has
all the properties of the set IE.

Theorem 2.9. Every C € IF(IB) is in I, and is either in IB, or else there exists some b € X\C
which satisfies the following two conditions:
(i) CUb e TF;



(ii) if By, # 0, then C € IF(IB\,).

Proof: Since any element in IF(IB) is IB-placeable, IF C 1.

For an arbitrary C' € IF(IB)\IB, let b be the IB|c-placeable element which splits the node IB|¢ in
the placeable IB|c-tree. Then, since C is IB-placeable and b is IB|c-placeable, C'Ub is IB-placeable.
Also, IBjcup, as a node in the placeable IB|c-tree, satisfies the tree-condition. This verifies that
CUb e TF, hence proves (i).

Assertion (ii) follows from Corollary 2.7. O

3. Dimension estimates

In this section, we point out that certain results in [BRS] concerning the dimension of the kernel
K (IB) defined in (1.2) are valid in the present more general context of a set of bases of arbitrary
cardinality. To avoid repetition, we merely state here the results in question and point out where,
if at all, in the proofs given in [BRS] the present more general setup requires modifications.

Here is the basic result.

Theorem 3.1 (see [BRS: Theorem 2.16]). Ify is B-placeable, then
(3.2) dim K(IB) < dim K (IB,) + dim K (IB,,),

with equality if and only if £, maps K(IB) onto K(IB\,).

Its proof requires no modification, except for the fact that it relies on the following Lemma
whose proof, however, requires no modification, either.

Lemma 3.3 (see [BRS: Lemma 2.15]). Let Y C X, and set Y := A({Y'}). Then, A(IB;y) 2
A(B)UY, with equality if and only if Y is IB-placeable. In the latter case,

K(By)=K(B)n (] kert,,.
yey

Equality in (3.2) is equivalent to the equation

0,7 = f

having solutions in K (IB) for any f € K(IB\,). For this reason, our /-conditions, i.e., the conditions
imposed on ¢ under which we can derive useful statements concerning dim K (IB), are connected to
the solvability of systems of the form

(3.4) (Cop): £ =¢., ceC,
with C C X and ¢ a map into S and defined (at least) on C. For their statement, we need the

following definition.

Definition ([BRS]). We call the system (C, ¢)

(i) special, or, more explicitly, B-special if ¢. € K(IB\.), all c € C;
(ii) compatible if {.p, = Ly, for all ¢,b € C;
(iii) independent, resp. basic, if C € I, resp. C' € IB.

Solvability condition 3.5 (see [BRS: 3.2]). Any special compatible basic system is solvable.

The main result, Theorem 3.7 below, relies on the following.
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Proposition 3.6 (see [BRS: Proposition 3.18]). If the solvability condition 3.5 holds, then,
any special compatible system (C,y) with C' € IF can be extended to a special compatible basic
system, hence has solutions in K (IB).

To be sure, [BRS: Proposition 3.18] refers to the set IE rather than the set IF. However, the
proof uses only those properties of IE which we showed in Theorem 2.9 to hold for IF, hence goes
through without explicit change in the present more general context.

Theorem 3.7 (see [BRS: Theorem 3.19]).
(a) Assume that the solvability condition 3.5 holds. Then, for any y € IF, ¢, maps K(IB) onto
K(]B\y), and

(3.8) dim K (IB) = dim K(IB|,) + dim K (IBy ).
(b) Assume that IB satisfies the tree-condition. Then

dim K (IB) < ) dim K({B}),
BeB

with equality in case the solvability condition 3.5 holds.

Proof: The proof for (a) in [BRS: Theorem 3.19] uses the Proposition 3.6, and, in that
connection, makes use of the fact that {y} € IF implies that {y} is placeable (which is part of the
definition of IF here), and then relies on Theorem 3.1.

The statement of (b) in [BRS: Theorem 3.19] assumes that IB satisfies a certain condition
(the IE-condition) and then relies on a certain proposition to deduce from this the existence of a
placeable element b for which both IBj, and IBy; also satisfy that IE-condition, thus making a proof
by induction on #IB possible. In the present context, the existence of a placeable b for which both
B, and IBy; satisfy again the tree-condition is an immediate consequence of the assumption that
IB satisfies the tree-condition. The only possible hitch in the remainder of the proof as given in
[BRS] is the fact that, in order to apply the induction hypothesis, we must be sure that both By,
and IB,; are strictly smaller than IB. While the tree-condition does not directly guarantee this,
Proposition 2.4 ensures that we may always assume that our placeable IB-tree has no empty nodes.
With these modifications, the proof for (b) in [BRS: Theorem 3.19] applies verbatim to the proof
of (b) here. O

4. Relation to [DDM]

[BRS] was written without knowledge of the final version of [DDM] which differed in significant
detail from the preliminary version available to the authors of [BRS]. In particular, in the present
context, the final version has the following general results.

Let
(4.1) I:=I(IB) :=ideal(A)
be the ideal in R = IR[X] generated by the A € A. Then

I(IB) = NpenPs,
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with Pp the prime ideal generated by (the elements of) B. Further,

K(B) = ﬂ kerp(f) =: ker I,
pel

hence K (IB) is isomorphic to the linear space hom(R/I,S) of R-homomorphisms between the R-
modules R/I and S, the latter an R-module via

RxS—S8:(ps)—p-s:=pl)s.

Indeed, take F' : hom(R/I,S) — kerI : f— 1;:= f(1+1I). f € hom(R/I,S) = f(p+1) =
f(p(1+1)) =p-f(1+I) =p-1f, hence f € hom(R/I,S) is entirely determined by 1¢; in particular,
f=gifand only if 1; = 1,. Conclusion: F is 1-1. Also, for allp € I, 0 =p- 1y, hence 1y € ker I,
i.e., F' maps hom(R/I,S) 1-1 into ker I. If s € ker I, then f; : (p+ I) — p- s is well defined since
p € I implies p- s = 0, hence fs € hom(R/I,S) and F(fs) = s; thus F is onto.

[DDM] make use of the fact that any exact sequence

a(4.2) 0N —-N-—=>N"—0
between R-modules induces a corresponding exact sequence

0 — hom(N",S) < hom(N, S) — hom(N’, S) —

4.20
(4.20) Ext'(N”,S) — Ext'(N,S) — Ext'(N',S) — ---

for the corresponding spaces of R-homomorphisms to some fixed R-module S and their Ext!-spaces.
In particular, for any particular » € R\I, we have the exact sequence

0— R/(I:r) > R/I <45 R/(I + Rr) — 0,
in which
Im:={pe R:rpel},
i:y+ (Lr) —yr+1, j:z+ I~ z+ (I+ Rr).

Hence, correspondingly,
(4.3) dimhom(R/I,S) < dimhom(R/(I:r),S) + dimhom(R/(I + Rr), S)

with equality if and only if Ext'(R/(I + Rr),S) = 0.
In order to relate this to the results in [BRS] and in Section 3, we introduce the following

Placeable-Split Condition 4.4. IB is the disjoint union of two nontrivial subsets, IB" and IB”,
and there is some L € A(IB") which meets none of the B € IB”, yet all its elements are placeable
into every B € IB”. We call IB’ the left part, and IB” the right part, of such a split.

If IB satisfies the tree-condition (see Definition 2.2), then the placeable-split-condition is satis-
fied with IB” = B\;, where b is the placeable element used to split the root node of the placeable
IB-tree. In this case, we can choose L = {b}.

The weakest condition imposed on IB in [DDM] is the following (see [DDM: (7.6)]):
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Shell-Condition. There is an ordering (Bi, Ba,...) of the elements of 1B so that, for all i < j,
there exists some b € B; and some i’ < j for which {b} = By \B;.

If IB satisfies the shell-condition, then the placeable-split condition is satisfied with IB” = { B}
and B the last term in the ordering which figures in the shell-condition. In this case, the set L

consists of all the elements of X\B which are placeable into B (of which, by assumption, each
B’ € B' = B\{B} contains at least one).

Lemma 4.5. IfIB satisfies the placeable-split condition, then, with IB’, IB”, L as in 4.4 andr := L,
IB)+rR=1I1(B"), Ir=I1B"),

hence
0— R/I(B") — R/I(B) — R/I(IB’) — 0.

Proof: We begin with the claim that

(4.6) L = N A.

AeA(IB")\A(IB)

Indeed, any A € A(IB")\A(IB) meets every B’ € B but fails to meet some B € IB”. On the other
hand, every b € L is placeable into this B, hence, there exists some B, € IB with B,\B = {b}.
Since L fails to meet any element of IB” yet contains b, it follows that B, € IB, hence By, is met by

A, yet no element of B, other than b can be in A (since A fails to meet B). Consequently, b € A,
and, as b € L was arbitrary here, we conclude that L C A for any A € A(IB")\A(IB), hence L
must lie in their intersection. On the other hand, since L itself is in A(IB’)\A(IB), the intersection
cannot be bigger than L.
It follows that
ideal(A(IB), L) D ideal(A(1B")),

while the converse inclusion is trivial (since A(IB) U{L} Cc A(IB) ).
This proves that I(IB') = I(IB) + 7R, with r = L.
On the other hand, with this choice for r,

Ir=I(B")= () Pz,
BG]B//
since r € Np/cp Ppr, while, for any B € IB”, LN B = (), hence rp € Pp if and only if p € Pg. O
In view of (4.3), the lemma implies the following.

Corollary 4.7. Under the placeable-split condition 4.4,
(4.8) dim K (IB) < dim K (B’) + dim K (B"),

with equality if and only if Ext'(R/I(IB'), S) = 0.

If the shell-condition holds, then IB” is a singleton, while IB’ satisfies the shell-condition, hence
the induction argument is obvious.

The induction argument is just as obvious when the tree-condition holds, since then both IB’
and IB” satisfy the tree-condition.



Under either condition, induction gives the basic inequality

(4.9) dim K(B) < ) dim K({B}).
BeB

The tree-condition is explicitly stated in terms of a particular IB-tree. Also the shell-condition
leads to a tree whose nodes consist of subsets of IB, with each nonterminal node the disjoint union
of its two children. However, the resulting tree is a very simple tree, since each nonterminal node
has at least one leaf among its two children.

Finally, at the root level, both the tree-condition and the shell-condition are special cases of
the placeable-split condition. This suggests the following more general tree-condition:

Split-Tree-Condition. There is a placeable-split tree, i.e., a binary tree with the following
properties:
(i) The nodes are subsets of IB.
(ii) Each node is either a leaf, in which case it contains exactly one element, or else its two children
provide a placeable split for it.
(iii) 1B is the root of the tree.

Proposition 4.10. If IB satisfies the split-tree condition, then (4.9) holds.

It is obvious that IB satisfies the split-tree-condition if and only if there is a placeable split for
it, with both parts satisfying the split-tree-condition.

Proposition 4.11. The split-tree-condition is equivalent to the shell-condition.

Proof: We already observed that the shell-condition implies the split-tree condition. For
the converse, let (Bj, Ba,...) be the ordering of the elements of IB as they appear, from left to
right, on a placeable-split tree. If i < j, let IB be the root of the smallest subtree containing both
leaves, B; and Bj. Then, necessarily, B; is in the left part and B; is in the right part of the split
of IB hence B; must contain some element, b say, not in any element of the right part, which is
B- placeable into B;. This implies that there exists B € IB with B\B; = {b} and, since b € B € B,
B must be in the left part. In particular, we must have B = B;s for some i’ < j. O

Proposition 4.12. The tree-condition is strictly stronger than the shell-condition.

Proof: We already observed that the tree-condition implies the split-tree condition. On
the other hand, the converse does not hold in general, since IB may satisfy the shell-condition even
though none of the elements of X is even placeable, as the following example illustrates. O

Example 4.13. Here is an example of a IB which is even equicardinal and which satisfies
the shell-condition (for the given ordering of its elements), but has no placeable element, hence, a
fortiori, does not satisfy the tree-condition. (The set obtained by leaving off the last element in
the given sequence does satisfy the tree-condition.)

In studying this example, it may be helpful to call b € X left-placeable into B € IB if, with
B = Bj, there exists k < j so that By\B = {b}. In these terms, the shell-condition says that, for
every i < j, B; contains some element left-placeable into B;.

The example uses X = 1234567 := {1,2,3,4,5,6,7}. Each item in the listing below is of the
form (B, L,U), with B the particular element of IB, L the set of elements left-placeable into B,
and U the set of elements that cannot be placed into B. If (B;, L;,U;) denotes the jth term, then
the shell-condition is equivalent to having

Biij7é@, Vi < 7,
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while the tree-condition would imply that
U;U; # X.

The U;’s given in the second row suffice to verify violation of this condition.
Here is the list:

(123,,7), (234,1,), (245,3,6), (135,2,), (145,23,6),

(236,14,57), (136,25,47), (457,12,36), (157,34,26), (247,35, 16).
O

As to the history of the shell-condition, it appears first (and unnamed) in [DDM: (7.6)]. We
gave it here this particular name since, as observed by R. Simon [Si], the condition is equivalent to
the shellability of the simplicial complex

Ap:={ACX:3{BeB} AnB = 0}.

Given that the split-tree-condition is equivalent to the shell-condition, it is natural to ask
why one would ever consider stronger conditions, such as the tree-condition. One reason is the
following. While every placeable-split tree for IB provides the basic inequality (4.9), a proof of
equality depends, offhand, on the particulars of the placeable-split tree used since there will be
equality in (4.9) if and only if there is equality at every nonterminal node IB of that tree. Equality
at the node IB is equivalent to having Ext!(R/I(IB'),S) = 0, and (sufficient) conditions for the
latter may well depend on the details of B.

To make this point, we now relate quickly the results from [DDM] concerning equality in (4.9)
and urge the reader to compare these with our results, especially Theorem 3.7.

[DDM] define an R-module M to be IB-pure if there exists a filtration, i.e., an increasing
sequence

O=MyC---CM;=M

of submodules, so that, for each i, M;/M;_; is isomorphic to R/Pp, for some B; € IB. Further, for
any B € IB, Pg is a prime ideal, hence the number

my = #{i: B; = B}
is independent of the particular filtration used. In particular, they remark that the R-module
M(B) := R/I(IB)
is §(IB)-pure, and that
(4.14) mi ™ =1, vBeB.

A submodule N of a IB-pure module M appears in such a filtration if and only if both, N
itself and the factor module M /N, are IB-pure. Any such submodule of a IB-pure module is called
a B-submodule. Finally, if, for every IB-submodule N of the IB-pure module M, the restriction-
homomorphism

hom(M, S) — hom(N, S)
is onto, then M is called (IB, S)-injective.



Lemma 4.15 (see [DDM: Lemma 7.2]). Assume that dimhom(//Pg,S) < oo for all B € IB.
Then, a BB-pure module M is (IB, S)-injective if and only if

(4.16) dimhom(M, S) = > my - dimhom(R/Pg, 5).
BeB

Proposition 4.17 ([DDM: Prop. 7.1]). If M is B-pure, then

dim hom(M, S) ZmB (dim hom(I/Pg, S) — [0, dim Ext'(M, Sg)]).
BelB

Moreover, if Ext'(R/Ppg, Sp) = 0 for every B € IB, then Ext!(M,S) = 0 for every B-pure module
M.

Here,

Spi={seS:HneN}V{peIB)} p"-s=0} = [j ﬂ ker A(0)"
n=1AcA

Also, note that, by (4.14), all the m¥ appearing here equal 1 in the only case of interest here,
namely when M = M(IB) = R/I(IB).

This leaves the question under what conditions a module is IB-pure. This question is taken
up in [DS] whose purpose it is to characterize a more general property introduced there called
cleanness. In the present context, the result of [DS] of immediate interest (see, also, [DDM: (7.6)])
is the following (note that the prime ideal in R generated by the elements of some A C X, denoted
in the present paper and in [DDM] by Py, is denoted in [DS] by Px\a)-

Proposition 4.18 ([DS]). The R-module M (IB) = R/I(IB) is IB-pure if and only if 1B satisfies
the shell-condition.

By Corollary 4.7, the condition Ext*(R/I(IB’),S) = 0 is equivalent to having equality in the

inequality

dim K (BB) < dim K (IB") + dim K (IB”)
obtainable for placeable splits IB = IB'UIB”. Any time we have a placeable-split tree with all leaves
singletons, we get (4.9). Consequently, if we actually get equality in (4.9), then there has to be
equality at all the nodes in any available placeable-split tree.

In particular, we know that the tree-condition gives such a placeable-split tree, and, if also the
solvability condition 3.5 holds, then Theorem 3.7 ensures equality in (4.9). It follows that, under
these assumptions, we must have Ext!(R/I ( "), S) = 0 for many B (namely for all the nodes B
involving some restriction). However, we will not get Ext!(R/I(IB), S) = 0 under the solvability
condition 3.5, as shown by the following example.

Example. Let X :={1,2}, B:= {X}, {; = {3 := ==, and the linear space S be the space II
of all univariate polynomials. Then, IB satisfies the tree—condltlon. Since K(IB\;) = K(IB\2) = {0},
also the solvability condition 3.5 holds. However, the system

0(H7=1
ly? =

has no solution in S, even though it is compatible. This implies, by [DDM: Remark 4.1], that
Ext'(R/I(IB),S) # 0.
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However, even under the split-tree-condition, the conclusion Ext!(R/I(IB), S) = 0 is immediate
if the following stronger solvability condition holds, which, by [DDM: Remark 4.1], is equivalent to
the assumption that Ext!'(R/I({B}),S) = 0 for all B € IB.

Solvability condition 4.19. Any compatible basic system is solvable (note that being ‘special’
is not part of the assumption).

For, in this case, we have Ext!(R/I(IB),S) = 0 for all leaves IB of the given placeable-split
tree. Hence, assuming by induction that, for a given node IB of the tree, we have

Ext'(R/I(IB"),S) = 0 = Ext' (R/I(IB"), S),
we conclude from (4.2b) (true since (4.2a) holds) that also
Ext'(R/I(IB), S) = 0,

which finishes the inductive proof of the following.

Proposition 4.20. If IB satisfies the split-tree-condition, and Ext!(R/I({B}),S) = 0 for all B €
B, then Ext!(R/I(IB),S) = 0 for any node IB in any split-placeable tree for IB.

5. An example: box splines

The topic discussed in the present article was motivated by studies in spline theory, particularly,
in box spline theory. In this section, we briefly describe the pertinent spline problem, and discuss
the relevance of the results of [BRS], [DDM] and the present article to that problem.

A box spline is a compactly supported piecewise-polynomial function in d > 1 variables. It
is defined with respect to a spanning multiset of directions

= c RN\0
as the function Mgz whose Fourier transform has the form
Mz(w) = H/ e MW dt,
cezv0

Our present interest is in the space
I

[11

of all polynomials that are writeable as a (necessarily, infinite) linear combination of the integer
translates of Mz. Specifically, we seek a formula for

that invokes directly the structure of the set = without requiring subtle information about the
underlying box spline Mz. We are guided by the following characterization of IIz from [RS]; in the

case when Z C 7%, this result is due to [BH].
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Result 5.1. With = and Il as above, let {¢, § € E, be the directional derivative in the direction
¢, and let

by = Hfﬁ, ACE.
€A

Then, p € llz if and only if
lap=0, all AcA(E) := {ACE: g4 ={0}}.

The characterization of Iz given in the above result may be useful only if one is able to decide
whether, for any X C Z, the equality IIx = {0} holds (or not). For that, the following (essentially
well-known) result is useful:

Result 5.2. Let X be a multiset of directions. Then Ilx = {0} if and only if there exists an
integer o € 7Z2\0 such that
E-agZ\0, all {€X.

In order to connect the present setting with the general development detailed in the previous
sections, we make the following suggestive definitions:

Definition 5.3. Let = be a direction set. We say that X C E spans if [Ix # {0}. A minimally
spanning set is a basis. The set of all bases in = is denoted by IB=.

In terms of this definition, we realize that

Iz = K (IBz).

(1]

The ultimate question we consider here is whether or not an equality of form

dim K (Bz) = ) dim K(B),
BeBz

whose validity is established (under various assumptions) in the previous sections, is valid in the
present setup as well.

The following remark is helpful in this regard: in case = C Z%, Result 5.2 easily shows that
X C = spans if and only if that set spans IR? in the standard linear algebra sense. Hence, in that
case only, a basis is a linear algebra basis. In the general case, a set B C Z is a basis only if its
rank is d, i.e., only if it contains a linear algebra basis. From that, one easily concludes that, for
every basis B € Bz, K(B) consists of the constants only and thus

dimK(B)=1, all Be€ Bz.
This means that the equality we seek is of the form
We pause momentarily for a quick review of the history of this problem. Equality in (5.4) was
proved in [DM1] for the case when = € Z%\0, and this result was the one that initiated the interest
in this entire subject. Next, [BR] proved the general inequality
(5.5) dim K (Bz) > #1BL,
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with IBZ the bases in Bz whose cardinality is exactly d. In fact, though bases of cardinality > d
exist (already for d = 2; cf. Example 3.12 of [RS]) such examples are the exception rather than the
rule, and the analysis of such cases seems extremely difficult; for example, in terms of the notions
of the present paper, the existence of such large bases makes the special solvability assumption
hard to deal with. For these reasons, we assume here and hereafter that all bases in 1Bz have a
cardinality d. (Alternatively, we exclude from Bz all bases with cardinality > d, and estimate the
dimension of the subspace K (IBz) of IIz). With this assumption in hand, we already have the
lower bound estimate (5.5), hence seek only a matching upper bound. We mention in passing that
the proof of (5.5) in [BR] is done with the aid of exponential box spline theory combined with some
ideal theory basics, and is entirely disjoint from the approaches described in [DDM], [BRS] or the
present paper. Indeed, in these latter approaches, the equality (5.4) is established by proving first
that dim K (Bz) < #IBt.

The required equality in (5.4) was already proved in section 4 of [BRS], under an assumption
on the structure of the set Bz that is stronger than the d-cardinality assumption we adopt here.
Though we do not spell out here the nature of this stronger assumption, we do remark that (a):
that assumption is equivalent to d-cardinality if d < 3; and (b): that assumption is shown in [BRS]
to imply the IE-condition, or, in the present terms, the tree-condition, hence (by (b) of Theorem
3.7)) the desired equality (5.4) holds for this case.

However, for d = 4, we present below an example that violates the structural assumption of
[BRS]. It is natural then to ask the following: assuming attention is restricted, as already mentioned,
only to bases with cardinality d, does the set IBz necessarily satisfy the tree-condition? We answer
below that question to the megative. A subsequent question is then whether Bz must satisfy the
shell condition. The answer, unfortunately, is still negative. In fact, in the counterexample we give
below, IIz = K(IBz) is the space of all linear polynomials in 4 variables, hence is of dimension 5.
On the other hand, IBz consists of two disjoint bases, each with exactly 4 elements. Thus, (5.4)
simply fails to hold here, and new ideas are needed for connecting dim Iz to =.

Example 5.6. Let

0O 0 3 0 0 2 3/2 3/2
o 0 0 3 1/2 1/3 1 1/2
0 2 3232 0 0 3 0
/2 1/3 1 12 0 0 0 3

[1]
|

= [1,2,3,4,5,6,7,8].

Note that the last four columns of = are obtained from the first two by interchanging the first two
with the last two rows. It is easy to see that By := {1,2,3,4} is a basis, i.e., that for any integer
o € ZZ*\0, there exists € € By such that -« € ZZ\0. By symmetry, By := {5,6,7,8} is also a basis.
Since these two bases are disjoint, every set in A € A(IBz) must contain at least two elements,
hence the corresponding differential operator £ 4 annihilates all linear polynomials. This shows that
IIz contains indeed all linears. We will show now that IB= consists only of the two bases B; and
Bs. This will prove that (5.4) fails to holds here, implying thereby that the shell condition fails to

hold here; a fortiori the tree-condition is not valid here.

Recall, from Result 5.2 and Definition 5.3, that X C Z spans if every a € Z*\0 is covered
by some ¢ € X in the sense that a - £ € ZZ\0. In order to prove that only B; and Bs are bases,
we prove that any subset X C = containing neither By nor By cannot be spanning. Since, for
any such subset X, there must be £ € B1\X and n € B\ X, it is sufficient to show that, for any
(€,m) € By X By, there exists o € 7ZZ*\0 which is only covered by ¢ and 7. This is evident from the
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following calculation:

-1 2 1 21 6 16 39 51 6 16 39 517
1 0 1 2 6 16 39 15 0 12 27 45
0 1 1 2 6 16 21 33 3 2 24 39
1 11 2 6 16 39 33 3 14 33 48
100 3| «= = 9 6 0 9 0 —-12 -9 45 /6
0 0 1 0 0 12 9 9 0 O 18 0
1 110 0 12 27 27 3 14 33 12
0 1 0 1 3 2 6 21 3 2 6 21
0 0 0 1 3 2 6 3 0 O 0 18
) B 3 14 33 30 3 14 33 30

which, for each pair (i,j) € By x Bs with i +4 < j, exhibits an integer vector « covered by no
column of = other than i and j.

All the other a’s needed are obtained by symmetry; for example, to find an « covered only

by 2 and 5, start with the vector (1,0, 1,2) which, by the above, is only covered by 6 and 1 and
interchange its first two with its last two entries.

[BH]
[BR]
[BRS]
[DDM]
[DM1]
[DM2]
[DS]
[JRS]

[RJS]

[RS]
[S]

[Si]
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