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Integral error formul� for a certain scale of mean value interpolations
which includes Kergin and Hakopian interpolation

Shayne (waldron@math.wisc.edu)

1. Introduction

In this paper we study the error in a certain scale of mean value interpolations which
includes Kergin and Hakopian interpolation. The literature divides into two di�erent
approaches to this problem.

The �rst is concerned with the convergence of the interpolants as the number of
interpolation points increases. Here only Kergin interpolation has been studied. Certain
conditions on the position of the interpolation points and the growth of the entire function
to be interpolated are given, which guarantee that the sequence of interpolants converges
uniformly on compact sets. See, e.g., Bloom [2].

We are interested in the second approach, which is to write the error in interpolation
as integration against derivatives of high order, much as is done for univariate Hermite
interpolation.

There have been several papers in this direction, including Lai and Wang [19] (Hakop-
ian interpolation), [20] (Kergin interpolation), and Gao [12] (mean value interpolation).
Each of these gives formul� for the error, complicated by the spurious use of the so-called
multivariate divided di�erences, involving derivatives of various orders. There seems to be
very little correspondence between the degree of the interpolating polynomial space and
the order of the derivatives involved. This order can be as low as 0, and as high as twice
the degree of the interpolating polynomial space.

In this paper we give an integral error formula for the scale of mean value interpola-
tions, that involves only derivatives of order one higher than the degree of the interpolating
polynomial space. From this we obtain sharp L1-estimates. These estimates imply that
a numerical scheme based on mean value interpolation has the highest order that its poly-
nomial reproduction allows.

The paper is set out in the following way. To describe the scale of mean value inter-
polations, we use a certain linear functional f 7!

R
�
f and the notion of `lifting' univariate

maps. These two notions are studied in the requisite detail in Sections 2 and 3 respectively.
In Section 4, we de�ne the scale of mean value interpolations and give its Newton form.
In Section 5, we give two di�erent integral error formul� for the scale. In Section 6, from
these formul�, we obtain L1-estimates.

Some notation

The space of n-variate polynomials of degree k will be denoted by �k(IR
n) and the

homogeneous polynomials of degree k by �0
k(IR

n). The di�erential operator induced by
g 2 �k(IR

n) will be written g(D).
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We �nd it convenient to make no distinction between the matrix [�1; : : : ; �k] and the
k-sequence �1; : : : ; �k of its columns. Since [�1; : : : ; �k]f is a standard notation for the
divided di�erence of f at � = [�1; : : : ; �k], we use for the latter the nonstandard notation

��f = �[�1;:::;�k]f:

Note the special case
�[x]f = f(x):

The notation ~� � � means that ~� is a subsequence of �, �n~� denotes the comple-
mentary subsequence. The partial derivative of f in the directions � is denoted

D�f := D�1 � � �D�kf:

The subsequence consisting of the �rst j terms of � is denoted �j . Thus, with � :=
[�1; : : : ; �7], we have, for example, that

D[x��n�5;x��3]f = Dx��6Dx��7Dx��3f:

The diameter and convex hull of a sequence � will be that of the corresponding set
and will be denoted by diam� and conv� respectively. Let k � k be the Euclidean norm.
To measure the size of the k-th derivative of f at x 2 IRn, we use the seminorm

jDkf j(x) := sup
u1;:::;uk2IR

n

kuik�1

jDu1 � � �Dukf(x)j:

Notice that
jDu1 � � �Dukf(x)j � jDkf j(x) ku1k � � � kukk: (1:1)

To measure the size of the k-th derivative of f over K � IRn, we use

f k;1;K := sup
x2K

jDkf j(x): (1:2)

Because of (1.1), the co-ordinate independent seminorm � k;1;K is more appropriate to
the analysis that follows than other equivalent seminorms, such as

f 7! max
j�j=k

kD�fkL1(K):

2. The linear functional f 7!
R
�
f

The construction of the maps of Kergin and Hakopian depends intimately on the
following linear functional introduced by Micchelli [23].
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De�nition 2.1. With � the sequence [�0; : : : ; �k] of k + 1 points in IRn,

f 7!

Z
�

f :=

Z 1

0

Z s1

0

:::

Z sk�1

0

f(�0 + s1(�1��0) + � � �+ sk(�k��k�1)) dsk � � � ds2 ds1;

with the convention that
R
[ ]
f := 0.

In this section we outline those properties of f 7!
R
�
f needed in the remaining

sections. Many of these properties are apparent from the following observation.

Observation 2.2. If S is any k-simplex in IRm and A : IRm ! IRn is any a�ne map
taking the k + 1 vertices of S onto the k + 1 points in �, then

Z
�

f =
1

k! volk(S)

Z
S

f �A;

with volk(S) the (k-dimensional) volume of S.

In De�nition 2.1

A : IRk ! IRn : (s1; : : : ; sk) 7! �0 + s1(�1��0) + : : :+ sk(�k��k�1);

S := f(s1; : : : ; sk) 2 IRk : 0 � sk � � � � � s2 � s1 � 1g:

In [23], Micchelli uses a di�erent choice of S and A, namely

A : IRk+1 ! IRn : (v0; : : : ; vk) 7! v0�0 + � � �+ vk�k;

S := f(v0; : : : ; vk) 2 IRk+1 : vj � 0;
kX

j=0

vj = 1g:

Properties 2.3.
(a) The value of

R
�
f does not depend on the ordering of the points in �.

(b) The distribution

M� : C1
0 (IRn)! IR : f 7! k!

Z
�

f

is the (normalised) simplex spline with knots �.
(c) If f 2 C(conv�), then

R
� f is de�ned and, for some � 2 conv�,

Z
�

f =
1

k!
f(�):

(d) If g : IRs ! IR, and B : IRn ! IRs is an a�ne map, then

Z
�

(g �B) =

Z
B�

g:
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(e) If f 2 C(IRn), then the map

� 7!

Z
�

f

is continuous.

Part of Micchelli's motivation for de�ning
R
�
f was theHermite-Genocchi formula,

namely

��f =

Z
�

Dkf; 8f 2 Ck(conv�);

where � is a (k + 1)-sequence in IR.

Some technical details

The simplex splineM� of Property 2.3 (b) has support conv�. It can be represented
by the nonnegative bounded function

conv�! IR : t 7!M(tj�) :=
volk�d(A

�1t \ S)

vold(conv�)
; d := dimconv�;

in the sense that

M�f =

Z
conv�

M(�j�)f:

Thus,
R
� f is de�ned i� M(�j�)f 2 L1(conv�).

For more details about M�, see, e.g., H�ollig [16].

3. Liftable maps

In this section, we discuss univariate maps which may be lifted to multivariate ones.
These `liftable' maps are crucial to both the construction and description of the error in
a family of linear projectors which includes the Kergin and Hakopian maps. The main
papers on `lifting' are [5], [6], [7] and [17].

We denote the linear functional on IRn, induced by scalar product with � 2 IRn, by

�� : IRn ! IR : x 7! ��x :=
nX
i=1

�(i)x(i):

A plane wave (or ridge function) is any map

g � �� : IRn ! IR;

where g : IR ! IR and � 2 IRn. If g 2 C1(IR), then we can di�erentiate g � ��, thereby
obtaining

(3:1) Dy(g � �
�) = (��y) (Dg) � ��:

This `lifts' di�erentiation to IRn.
In [5] only the lifting of polynomial-valued maps is discussed. To `lift' the error in

such maps, we need a more general de�nition. The only real di�culty involved in giving
such a de�nition is choosing the function spaces so that the fundamentality of the plane
waves implies the uniqueness of the `lift'. The following de�nition takes care of this.
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De�nition 3.2. Let L : � 7! L� associate with each k-sequence � in IR a continuous
linear map L� : Cs(IR) ! C(IR): We say that a continuous linear map L� : Cs(IRn) !
C(IRn) is the lift of L to � in IRn if it satis�es

L�(g � �
�) = (L���g) � �

�; 8� 2 IRn; 8g 2 Cs(IR): (3:3)

If there exists a lift L� of L to each k-sequence � in IRn, then we say that L is liftable
(to IRn), and call L : � 7! L� the lift of L (to IRn).

The use of the de�nite article in the above de�nition is justi�ed; since, by the density
of the polynomial plane waves in Cs(IRn), if L can be lifted to L�, then L� is uniquely
determined by (3.3). To avoid confusion, we will use calligraphic letters to denote the lift
of a univariate map and, from now on, reserve k for the number of points such a map is
based on.

The geometric intent of lifting is made a little clearer if (3.3) is written in the equivalent
form

L�(g � P ) = (LP� g) � P; 8P; 8g 2 Cs(IR);

where P is any orthogonal projection onto a line in IRn.
The basic tool for recognising liftable maps and presenting their lifts is to write them

as a sum of `elementary liftable maps', de�ned as follows.

De�nition 3.4. Let s;m � 0. Fix aj 2 IRk+1n0, j = 1; : : : ; s and B 2 IR(k+1)�(m+1). For
each k-sequence � in IR, let L� : Cs(IR)! C(IR) be the continuous linear map given by

L�f(x) :=

� sY
j=1

[x;�]aj

�Z
[x;�]B

Dsf =

Z
[x;�]B

� sY
j=1

D[x;�]aj

�
f: (3:5)

We call L : � 7! L� an elementary (k-point) liftable map (of order s).

Here and below, in line with our earlier identi�cation of vector sequences and matrices,
[x;�]B is the matrix whose j-th column is the vector

xB(1; j) + �1B(2; j) + � � �+ �kB(k + 1; j):

In other words, [x;�]B an (m + 1)-sequence.

The de�nition is taylormade to make it obvious that such a map is liftable, as we
prove next.

Theorem 3.6. Each elementary liftable map of order s, as in De�nition 3.4, is liftable to
IRn. Its lift L : � 7! L�, with L� : Cs(IRn)! C(IRn), is given by

L�f(x) :=

Z
[x;�]B

� sY
j=1

D[x;�]aj

�
f: (3:7)
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In the special case that B(1; �) = 0, the range of L� is contained in �s(IR
n).

Proof. The continuity of L� required in De�nition 3.4 and the continuity of L�

asserted in Theorem 3.6, follow from the inequality

kL�fkL1(K) �
1

m!

�
max
x2K

sY
j=1

k[x;�]ajk

�
f s;1;conv([x;�]B);

where K � IRn is compact. This is proved by applying, to (3.7), Property 2.3 (c) followed
by (1.1) and (1.2).

Given the continuity of the maps L� and L�, to show that L is the lift of L, it is
su�cient to prove that

L�(g � �
�) = (L��� g) � ��; 8� 2 IRn; 8g 2 Cs(IR); 8� 2 (IRn)k:

By applying (3.1) s times, it follows that

L�f(x) =

Z
[x;�]B

� sY
j=1

��[x;�]aj

�
(Dsg) � ��:

To the right-hand side of this, we apply Property 2.3 (d) (with �� the a�ne map) and the
identity ��[x;�] = [��x; ���] to obtain that

Z
[��x;���]B

� sY
j=1

[��x; ���]aj

�
(Dsg) = (L��� g)(��x):

Example 3.8. In [17] it is shown that (sadly) the divided di�erence cannot be lifted;
however we may lift the following divided di�erence identity

�[�;v;w]g =
�[�;v]g � �[�;w]g

v � w
; v 6= w: (3:9)

By the Hermite-Genocchi formula, (3.9) may be rewritten as

(v � w)

Z
[�;v;w]

Df =

Z
[�;v]

f �

Z
[�;w]

f;

where f := Dkg and k = #�. By Theorem 3.6, this lifts toZ
[�;v;w]

Dv�wf =

Z
[�;v]

f �

Z
[�;w]

f; (3:10)

for all su�ciently smooth f , where � is any �nite sequence in IRn and v;w 2 IRn.

An elementary liftable map depends continuously on �, in the following sense.
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Theorem 3.11. Let L be the lift to IRn of an elementary k-point liftable map of order s.
For all f 2 Cs(IRn), the map

(IRn)k ! C(IRn) : � 7! L�f

is continuous.

Proof. By Property 2.3 (e), the map

(x;�) 7! L�f(x)

is continuous.

The literature contains no discussion of the `continuous' dependence of L� on �. In
[5] it is shown that a complex regular Birkho� interpolation procedure is liftable by writing
it as a sum of elementary liftable maps. Thus, we have the following.

Corollary 3.12. Let B be the a complex regular Birkho� interpolation procedure and B
its lift to IRn. For each f 2 Cs(IRn), the map

� 7! B�f

is continuous.

In the case n = 1, i.e., when B� = B�, this continuity result was proved in [11] by
using `de-coalescence' of the interpolation matrix.

Another immediate consequence is the continuous dependence of the Hermite inter-
polant on its points of interpolation. However, that is a direct consequence of the well-
known continuity of � 7! ��f .

Some technical details

In [5], [17], there is a discussion about lifting the family of distributions

IRk+1 ! S : (x;�) 7! �[x]L�;

where S is some suitable space of distributions, e.g., C1
0 (IR), or, in our case, E

0s(IR) (the
space of compactly supported distributions of order s).

Lifting such a family is shown there to be equivalent to inverting its Radon transform.
Without going too far into details, we mention that, for an elementary liftable map of the
form 3.5, its Radon transform H is given by

H(f) :=

Z
B

� sY
j=1

Daj

�
f;

and so L� may be expressed as

L�f(x) = H(f � [x;�]):
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One useful consequence of the Radon transform theory is the following compatibil-
ity condition: if L is liftable, then (x;�) 7! L�((�)i) (x) is homogeneous of degree i.
Moreover, by Property 2.3 (d), if L is an elementary liftable map and f is a homogeneous
polynomial of degree i, then (x;�) 7! L�f(x) is homogeneous of degree i.

4. The scale of mean value interpolations

In this section we describe a family H(m), m < k, of liftable maps that were lifted
in [13] to obtain multivariate polynomial interpolation schemes. Special cases of these
multivariate schemes, referred to by [3:p203] as the scale of mean value interpolations, are
the well-known maps of Kergin and Hakopian.

We will need the following facts about linear interpolation.

Linear interpolation

Let F be a �nite-dimensional space and � a �nite-dimensional space of linear function-
als de�ned at least on F . We say that the corresponding linear interpolation problem,
LIP(F;�) for short, is correct if for every g upon which � is de�ned there is a unique
f 2 F which agrees with g on �, i.e.,

�(f) = �(g); 8� 2 �:

The linear map L : g 7! f is called the associated (linear) projector with interpolants
F and interpolation conditions �. Each linear projector with �nite-dimensional range
F is the solution of a LIP(F;�) for some unique choice of the interpolation conditions �.

Notice that the correctness of LIP(F;�) depends only on the action of � on F .

The map H(m)

Let D�mf be any function with Dm(D�mf) = f . If

P : Cs(IR)! �n(IR)

is any linear projector, then for m � n

f 7! DmP (D�mf);

is a linear projector into �n�m(IR) which is de�ned on Cs�m(IR).
We are interested in the case where P is H�, which is, by de�nition, the Hermite

interpolation operator at �, a k-sequence in IR.

De�nition 4.1. For 0 � m < k = #�, the generalised Hermite map

H(m) : � 7! H
(m)
�
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is given by the linear projectors

H
(m)
� : Ck�m�1(IR)! �k�m�1(IR) : f 7! Dm(H�D

�mf):

For convenience, H(k) := 0.

Observe that H
(0)
� = H�, which in part justi�es the term `generalised Hermite map'.

The generalised Hermite mapsH
(m)
� occurred in the approximation theory literature before

they were lifted by Goodman in [13]; see e.g., de Boor [1] where they were used to bound
spline interpolation.

The interpolants for H
(m)
� are �k�m�1(IR), and the interpolation conditions are

spanff 7!

Z
~�

D#~��m�1f : ~� � �; #~� � m+ 1g:

For � a �nite sequence in IR, let

!�(x) :=
Y
�2�

(x � �):

Note that if j � #�, then

Dj!� = j!
X
~���
#~�=j

!�n~�: (4:2)

If � = [�1; : : : ; �k], then we may write the `Newton form' of H
(m)
� as

H
(m)
� f(x) =

kX
j=m+1

��j
(D�mf)Dm!�j�1(x); m < k: (4:3)

The term `Newton form' used here is justi�ed not only by the fact that (4.3) is obtained
by di�erentiating the Newton form of H�(D�mf), but by the observation that

H
(m)
�k+1

f = H
(m)
�k

f + ��k+1
(D�mf)Dm!�k

; m < k + 1:

H(m) the lift of H(m)

We now show that H(m) is liftable to IRn. The lifts H(m), m < k, form what we call,
with [3], the scale of mean value interpolations.

By using (4.2) and the Hermite-Genocchi formula, the `Newton form' (4.3) may be
written as the following sum of elementary liftable maps:

H
(m)
� f(x) =m!

kX
j=m+1

X
~���j�1

#~�=m

� Y
�2�j�1n~�

(x � �)
� Z

�j

Dj�m�1f: (4:4)
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We refer to this as the Newton form of H
(m)
� .

Thus, by Theorem (3.6), the map H(m) can be lifted to H(m), where

H
(m)
� : Ck�m�1(IRn) ! �k�m�1(IR

n);

with its Newton form given by

H
(m)
� f(x) =m!

kX
j=m+1

X
~���j�1

#~�=m

Z
�j

Dx��j�1n~�
f: (4:5)

This formula (4.5) is due to Goodman [13]. He shows that each H
(m)
� is a linear

projector with range �k�m�1(IR
n) and (lifted) interpolation conditions

spanff 7!

Z
~�

g(D)f : ~� � �; #~� � m+ 1; g 2 �0
#~��m�1

(IRn)g: (4:6)

Special cases

The map H
(0)
� is the Kergin map, see [18] and [23]. The Newton form of Kergin's

map,

H
(0)
� f(x) = f(�1) +

Z
[�1;�2]

Dx��1f + � � � +

Z
[�1;:::;�k]

Dx��1 � � �Dx��k�1f;

is given in [23] and [22]. Notice that the interpolation conditions of this map include
evaluation at the points �. Thus Kergin's map is a multivariate generalisation of Lagrange
interpolation.

The map H
(1)
� was introduced in [6] where it was referred to as the area matching

map. Presumably the term `area matching' came from the fact that if the points in

� := [�1; : : : ; �k] in IR are distinct, then the interpolation conditions of H
(1)
� are

spanff 7!

Z �i+1

�i

f : i = 1; : : : ; k � 1g:

If the k � n points in � are in general position in IRn, then H
(n�1)
� is the Hakopian

map, see [14] and [15]. For this map, the interpolation conditions may be written as

spanff 7!

Z
~�

f : ~� � �; #~� = ng:

Thus, H
(n�1)
� has an extension (the map originally given by Hakopian) to C(IRn) and

interpolants �k�n(IR
n). The interpolation conditions for Hakopian's map include evalua-

tion at the points �. Thus it, like Kergin's map, provides a multivariate generalisation of
Lagrange interpolation.

10



For additional discussion on expressing the interpolation conditions for H
(m)
� in terms

of derivatives of lower orders than given in (4.6), see [8].

5. Integral error formul�

Observe that

f �H
(m)
� f = Dm

�
D�mf �H�(D

�mf)
�
: (5:1)

Thus, to obtain an error formula for H(m), one might hope to lift the error formula for
Hermite interpolation. In this section, this is done in two ways. The �rst and more
natural way introduces derivatives of higher order than one might like. In the second, this
de�ciency is remedied by taking advantage of a little-known formula for the derivative of
the error in Hermite interpolation.

The �rst error formula

Using the di�erentiation rule for divided di�erences

di

dxi
�[x;�]f = i! �[x;:::;x| {z }

i+1

;�]f; (5:2)

the Hermite error formula

D�mf(x) �H�(D
�mf) (x) = !�(x) �[x;�](D

�mf) (5:3)

can be di�erentiated (m times) to obtain, by (5.1), that

f(x) �H
(m)
� f(x) =

mX
j=0

�
m
j

�
Dj!�(x) (m � j)! �[x;:::;x| {z }

m�j+1

;�](D
�mf): (5:4)

Using (4.2) and the Hermite-Genocchi formula, we may write (5.4) as

f(x) �H
(m)
� f(x) = m!

mX
j=0

X
~���
#~�=j

!�n~�(x)

Z
[x;:::;x| {z }
m�j+1

;�]

(Dk�jf); 8f 2 Ck(IR): (5:5)

The formula (5.5) expresses the error, f 7! f � H
(m)
� f , as a sum of elementary liftable

maps of orders k �m; : : : ; k. Thus, using Theorem 3.6, this can be lifted, thereby giving
the following.
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First error formula. If m < k and f 2 Ck(IRn), then

f(x) �H
(m)
� f(x) =m!

mX
j=0

X
~���
#~�=j

Z
[x;:::;x| {z }
m�j+1

;�]

Dx��n~�f: (5:6)

For Kergin interpolation, i.e., when m = 0, this formula reduces to

f(x) �H
(0)
� =

Z
[x;�]

Dx��f; (5:7)

which was given in Micchelli [23].
The only other mention of this formula in the literature is for Hakopian interpolation,

i.e., when m = n � 1, and occurs in the book [3:p200]. There (5.6) is stated incorrectly,
and without proof, as

f(x) �H
(n�1)
� f(x) =

n�1X
j=0

X
~���
#~�=j

�
n� 1
j

�Z
[x;:::;x| {z }
m�j+1

;�]

Dx��n~�f:

The constant

�
n� 1
j

�
should be (n � 1)!.

The interpolants for H
(m)
� are �k�m�1(IR

n). The error formula (5.6) involves deriva-
tives of orders k � m; : : : ; k. For m > 0, it would be desirable to not have the higher
derivatives k �m+ 1; : : : ; k occurring. We now give such a formula.

The second error formula

The higher derivatives in (5.6) are introduced when (5.2) is used to di�erentiate
x 7! �[x;�](D

�mf) in (5.3). To avoid this problem, we use the following formula for
the derivative in Hermite interpolation. It was given independently by Dokken and Lyche
[9], [10] and by Wang [24], [25].

Theorem 5.8 ([9],[24]). If � = [�1; : : : ; �k], 0 � j < k and f 2 Ck(IR), then

Dj(f �H�f) (x) = j!
kX

i=k�j

(x � �i)

(j + i � k)!
Dj+i�k!�i�1(x) �[x;:::;x| {z }

k+1�i

;�i]f:

Applying, to (5.1), Theorem 5.8 followed by the Hermite-Genocchi formula, we obtain,
that, for f 2 Ck�m(IR),

f(x) �H
(m)
� f(x) = m!

kX
i=k�m

(x � �i)

(m+ i� k)!
Dm+i�k!�i�1(x)

Z
[x;:::;x| {z }
k+1�i

;�i]

Dk�mf: (5:9)

This formula (5.9) is a sum of elementary liftable maps, each of order k�m. Its lift, using

Theorem 3.6, gives the following error formula for H
(m)
� .
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Second error formula. If m < k and f 2 Ck�m(IRn), then

f(x) �H
(m)
� (x) = m!

kX
i=k�m

X
~���i�1

#~�=m+i�k

Z
[x;:::;x| {z }
k+1�i

;�i]

D[x��i�1n~�;x��i]
f: (5:10)

This formula involves only derivatives of f of order k �m.

Those worried that the formula (5.10) is not symmetric in the points of � could, if
desired, take the average over all possible orderings for � to obtain such a symmetric
formula. More to the point, it would be desirable to �nd the `simplest' symmetric form of
Theorem 5.8.

Derivatives of the error

The univariate identity

Dj(H
(m)
� f) = H

(m+j)
� (Djf)

can be `lifted' to the following; see, e.g., [3:p205].

Proposition 5.11. If m < k, j < k �m, g 2 �0
j (IR

n) and f 2 Ck�m�1(IRn), then

g(D)(H
(m)
� f) = H

(m+j)
� (g(D)f):

This allows us, in a very natural way, to use an error formula for H(m)
� to describe the

derivatives of the error in H
(m)
� . In particular, with the second error formula (5.10), we

obtain the following.

Theorem 5.12. If m < k, j < k �m, g 2 �0
j and f 2 Ck�m(IRn), then

g(D)
�
f �H(m)

� f
�
(x) = (m+ j)!

kX
i=k�m�j

X
~���i�1

#~�=m+j+i�k

Z
[x;:::;x| {z }
k+1�i

;�i]

D[x��i�1n~�;x��i]
g(D)f:

This formula involves only derivatives of f of order k �m.

Proof. By Proposition 5.11,

g(D)
�
f �H

(m)
� f

�
= (g(D)f) �H

(m+j)
� (g(D)f):

Since g(D)f 2 Ck�(m+j)(IRn), we may apply the second error formula (5.10) to the error

in H
(m+j)
� at g(D)f , thereby obtaining the given formula.

This theorem is the major result of this paper. Special cases of it include the second

error formula (5.10) and Theorem 5.8. It expresses the error in H
(m)
� f , and its derivatives,
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in terms of integration against the derivative of order one higher than the degree of the
interpolating polynomial space. This is precisely the estimate that numerical analysts

want, to guarantee that their scheme, e.g., a H
(m)
� �nite element (see, e.g., [21:p164]), has

the maximum possible order.
From this Theorem, L1-estimates for the error can easily be obtained. This is done

in Section 6.

Comparison with the results of Lai-Wang and Gao

The results of [19], [20] and [12] are written in terms of the multivariate divided
di�erences

[�1; : : : ; �j�j]
�f :=

Z
[�1;:::;�j�j]

D�f; 8� 2 ZZs+: (5:13)

The simplest of these results to state is the following error formula for Kergin interpolation.

Theorem5.14 ([20:Th.3.1]). If � 2 ZZs+ with j�j � j < k � 1, then

D�(f �H
(0)
� f)(x)

=

j�jX
r=0

X

��
j
j=r

X
����

j�j=j�r

r!

�
�



�
D��
!�(x)

nX
i=1

(x � �j�r+1)i [x; : : : ; x| {z }
r+1

; �1; : : : ; �j�r+1]
�+
+eif

�
k�1X

r=j+1

X

��
j
j=r

D�!
(x) [�1; : : : ; �r+1]

f;

(5:15)
where �

�
�

�
:=

�
�1
�1

�
� � �

�
�n
�n

�
;

and
!
(x) :=

X
ei1+���+e

ij
j=


(x � �1)i1 � � � (x � �j
j)ij
j :

The above uses standard multi-index notation. The i-th component of x 2 IRn is xi
and ei is the i-th unit vector in IRn.

Formula (5.15) of Theorem 5.14 involves derivatives of f of orders j + 1; : : : ; k � 1;
whereas the formula (5.10) involves only derivatives of order k. In the case of greatest
interest for this formula, namely when j+1 = k� 1 and � = 0, formula (5.15) reduces, in
the univariate case, to

f(x) �H�f(x) = !�k�1(x)

Z
[x;�1;:::;�k�1]

Dk�1f � !�k�1(x)

Z
[�1;:::;�k]

Dk�1f: (5:16)

Formula (5.16) clearly follows from one application of (3.10) to the Hermite error formula

f(x) �H�f(x) = (x � �1) � � � (x � �k)

Z
[x��1;���;x��k]

Dkf:
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Now formula (5.16) is a sum of elementary liftable maps, and so it is cleaner to present
the case j + 1 = k � 1 and � = 0 of Theorem 5.14 by lifting (5.16). This gives

f(x)�H
(0)
� f(x) =

Z
[x;�1;:::�k�1]

Dx��1 � � �Dx��k�1f �

Z
[�1;:::�k]

Dx��1 � � �Dx��k�1f: (5:17)

If one now expands (5.17) in multivariate divided di�erences, then one obtains (5.15) for
this case. However, it is not clear what has been gained in the process.

Similar considerations, can, and should, be given to other formulas in [19], [20] and
[12].

Additional comments

The only justi�cation for the term `multivariate divided di�erence' for (5.13) that the
author can see, is the identity (3.10), which is due to Micchelli (see [23:Th.6]), and (in its
many guises) pervades the multivariate spline literature. With that justi�cation, the term
might as well be applied to any linear combination of functionals

f 7!

Z
�

g(D)f; � 2 (IRn)k; g 2 �j (IR
n);

that can be expressed as a linear combination of other such functionals involving lower
order derivatives of f .

6. L1-estimates

In this �nal section, we obtain L1-estimates from the formul� of Section 5. Our
choice of the seminorm � k;1;K de�ned in (1.2) makes this a straight-forward task. Let

hx;� := max
�2�

kx � �k � diam[x;�]:

From the �rst error formula (5.6), we obtain the following L1-estimate.

Proposition 6.1. If m < k and f 2 Ck(IRn), then

jf(x) �H
(m)
� f(x)j �

mX
j=0

constj;k;m(hx;�)
k�j f k�j;1;conv[x;�];

where

constj;k;m :=
m!

(k +m� j)!

�
k
j

�
:

Proof. To the �rst error formula (5.6), apply Property 2.3 (c) then use (1.1) and
(1.2) to obtain

jf(x) �H
(m)
� f(x)j � m!

mX
j=0

X
~���
#~�=j

1

(k +m� j)!
(hx;�)

k�j f k�j;1;conv[x;�]:

Lastly, observe that

#f~� � � : #~� = jg =

�
k
j

�
:

From Theorem 5.12, we obtain the main result of this section.
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Theorem 6.2. If m < k, j < k �m and f 2 Ck�m(IRn), then

jDj(f �H
(m)
� f)j(x) �

1

(k �m� j)!
(hx;�)

k�m�j f k�m;1;conv[x;�]: (6:3)

The constant is the best possible in the sense that if � = [�; : : : ; �], then it cannot be
improved.

Proof. To prove the inequality, begin as in the proof of 6.1, then use the identity:

(m+ j)!

k!

kX
i=k�m�j

�
i� 1

m+ j + i� k

�
=

1

(k �m� j)!
:

Suppose � = [�; : : : ; �]. By (4.6) we have that H
(m)
� f is the Taylor interpolant from

�k�m�1(IR
n) to f at �. Let u := (x� �)=kx� �k. Note that hx;� = kx� �k. Then for the

plane wave
f := (� � u��)k�m � u� 2 �k�m(IR

n);

H
(m)
� f = 0, and we have, by (3.1), that

jDj(f �H
(m)
� f)j(x)

f k�m;1;conv[x;�]
�
jDj

uf(x)j

(k �m)!
=

(k �m) � � � (k �m� j + 1)

(k �m)!
(� � u��)k�m�j � (u�x)

=
1

(k �m� j)!
(hx;�)

k�m�j :

Thus, in the case � = [�; : : : ; �], the constant is the best possible.

When m = 0, Proposition 6.1 and Theorem 6.2 (with j = 0) reduce to

jf(x) �H(0)
� f(x)j �

1

k!
(hx;�)

k f k;1;conv[x;�];

which was given in [23]. For m > 0, none of the above L1-estimates are in the literature.

Example 6.4. In [4:Th.2.5] Bos gives the following estimate for Kergin interpolation on
the disc. Let � consist of k points equally spaced on the disc fx 2 IR2 : kxk = hg, where
h > 0. Then for f 2 Ck(IR2)

max
kxk�h

jf(x) �H
(0)
� f(x)j �

1

k!

4

2k
hk f k;1;fx:kxk�hg:

This indicates that it may be possible to reduce the size of the constant in (6.3)
for restricted values of hx;�. However, in view of the sharpness for the case of Taylor

interpolation (when � = [�; : : : ; �]) and the continuity of � 7! H
(m)
� f (by Theorem 3.11),

for unrestricted values of hx;� the constant is the best possible in all cases.
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It is not possible to apply Properties 2.3 (c) to the integral error formul� of this paper
to obtain Lp-estimates for 1 � p < 1. A partial solution to this impasse, which uses a
form of Minkowski's inequality, is given by the author in an upcoming paper.
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