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1. Introduction

Let k ∈ IN, t := (ti) nondecreasing (finite, infinite or biinfinite) with ti < ti+k, all i, and let (Ni) be
the sequence of B-splines of order k for the knot sequence t. This means that Ni = Ni,k,t is the B-spline of
order k with knots ti, . . . , ti+k, i.e., Ni is given by the rule

(1.1) Ni,k,t(t) :=
(

[ti+1, . . . , ti+k] − [ti, . . . , ti+k−1]
)

( · − t)k−1
+

with [tj , . . . , tj+r]f the r–th divided difference of f at the points tj , . . . , tj+r. In particular,

Ni(t) > 0 on [ti, ti+k] and = 0 off [ti, ti+k],

and, for t ∈ [tj , tj+1], (∑
i

Ni

)
(t) =

j∑
i=j−k+1

Ni(t) = 1,

i.e., such a B-spline sequence provides a partition of unity. For more information about B-splines, see Curry
and Schoenberg’s paper [9], and [5].

The present paper is concerned with linear functionals λi for which

(1.2) supp λi ⊆ [ti, ti+k], λiNj = δij , all j.

The first such linear functional seems to have been constructed in [1], for the purpose of demonstrating the
linear independence over an interval of all B-splines which do not vanish identically on that interval. Since
then, such linear functionals have been constructed in various ways and for a variety of jobs [2] – [7], [11],
[13], [16], some of which are listed in Section 2.

In particular, it was shown in [6] that there exists a smallest number Dk so that, for all t and all i with
ti < ti+k, an hi ∈ IL∞ can be found with supphi ⊆ [ti, ti+k], ‖hi‖∞ ≤ Dk/(ti+k − ti), and

∫
hiNj = δij , all

j. After a discussion in Section 3 as to how to construct linear functionals λi satisfying (1.2), it is shown in
Section 4 that

(π/2)k/2 ≤ Dk ≤ 2k 9k−1.

Also, numerical evidence is presented to indicate that probably

Dk = O(2k).

In Section 5, the related constant

Dk,∞ := sup
t

sup
i

1/ dist ∞,[ti+1,ti+k−1](Ni, span(Nj)j 6=i)

is discussed. As pointed out in [2], this number is related to the condition number of the B-spline basis,

condk := sup
t

condk,t

since

∗) Sponsored by the United States Army under Contract No. DAHC04–75–C–0024.

1



condk,t :=
sup ‖∑αjNj‖∞/‖α=‖∞
inf ‖∑αjNj‖∞/‖α=‖∞ =

1
infi dist ∞(Ni, span(Nj)j 6=i)

≤ Dk,∞.

It is shown that
(π/2)k−1/2 ≤ Dk,∞ ≤ Dk,

and numerical evidence is presented to suggest that

Dk,∞ ∼ 2k−1/
√

2.

2. Some results obtainable with the aid of such functionals.

In this section, we list some results obtainable through the explicit construction and analysis of specific
local linear functionals which vanish at all B-splines but one.

(1) [1], [4]. For any open I ⊆ IR, {Ni | suppNi

⋂
I 6= ∅} is linearly independent on I.

(2) [2]. Let $ = $k,t denote the linear space of all splines of order k with knot sequence t, i.e.,

$ := $k,t :=
{∑

j

αjNj,k,t | αj ∈ IR, all j
}

with the sum taken pointwise in case t is not finite. There exists a constant Dk,∞ depending only on k so
that

dist ∞(f, $) ≤ Dk,∞ max
j

dist ∞,[tj+1−k,tj+k](f, IPk).

Here, IPk denotes the collection of all polynomials of order k or degree < k, and the number Dk,∞
is found as maxj ‖λj‖, with (λj) a sequence of local linear functionals dual to the B-spline sequence, i.e.,
λiNj = δij , all i, j. This example raises the question of just how small one can make the norm of such linear
functionals, a question taken up again in Section 5.

(3) [2], [4], [6]. There exists a smallest number Dk (depending only on k) so that, for all t and all i
with ti < ti+k, an hi ∈ IL∞ can be found satisfying

supphi ⊆ [ti, ti+k],

‖hi‖p ≤ Dk/(ti+k − ti)1/q, (1/p+ 1/q = 1),∫
hiNj = δij , all j.

(Note that the constant Dk mentioned here is k times the number Dk mentioned in [6].)
This fact has many consequences, among them the following two.
(4) [4]. If f =

∑
αjNj , then αi =

∫
hif ≤ ‖hi‖q‖f‖p,[ti,ti+k], hence

(2.1) |αi|(ti+k − ti)1/p ≤ Dk‖f‖p,[ti,ti+k],

therefore, with E the diagonal matrix given by

E := d. . . , (ti+k − ti)/k, . . .c,

we have
‖E1/pα=‖p ≤ Dk‖

∑
αjNj‖p.

(5) [8]. In particular, with
2

N j := Nj/

(
tj+k − tj

k

)1/2

,
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we get

‖β
=
‖2 ≤ Dk‖

∑
βj

2

N j ‖2.

Let L be IL2–approximation by elements of $, i.e.,

Lf ∈ $, and f − Lf⊥$.

Then Lf =
∑
αjβj

2

N j , with Gβ
=

= (
∫ 2

N i f) and G := (
∫ 2

N i

2

N j). Let G−1 =: (αij). Then G−1 decays
exponentially away from the diagonal, i.e.,

|αij | ≤ const λ|i−j|

with λ := (1 −D−2
k )1/(2k−2) ∈ ]0, 1[ and const := D3

k/λ
k−1 both independent of t, as can be proved using a

very nice idea of Douglas, Dupont and Wahlbin [10]. This implies that, as a map on IL∞,

‖L‖ ≤ constk (M (k)
t )1/2,

a bound in terms of the global mesh ratio

M
(k)
t := max

i,j
(ti+k − ti)/(tj+k − tj).

Finally, here are two applications which have, offhand, nothing to do with splines, but rather are
concerned with the smooth interpolation of data.

(6) [6]. Suppose we are given t = (ti) nondecreasing with ti < ti+k, all i. For given f , let f
∣∣
t

:= (fi),
with fi = f (j)(ti), where j := max{r | ti−r = ti}. Then, given α= = (αi), there is no difficulty in finding some
smooth f so that f

∣∣
t

= α=, let fα=
be one such, but it is not at all clear a priori under what circumstances

such an f can be found in IL(k)
p (IR). But, using (3) above, one can show that there exists f ∈ IL(k)

p (IR) so
that f

∣∣
t

= α= if and only if
(
(ti+k − ti)1/p[ti, . . . , ti+k]fα=

) ∈ `p.
The argument is based on the observation that f , given by the conditions that it agree with fα=

at k
points and that

f (k) :=
∑

i

ci
(
(ti+k − ti)/k

)
hi

with
ci := k![ti, . . . , ti+k]fα=

=
k

ti+k − ti

∫
Nif

(k)
α=
,

necessarily agrees with fα=
at t since

∫
Njhi = δij , i.e., since f and fα=

have the same k–th divided differences.
(7) [6], [7]. In particular, with f the interpolant just constructed and tj < tj+1, at most k of the hi are

nonzero on [tj , tj+1], therefore, from (3),

‖f (k)‖∞,[tj ,tj+1] ≤ ‖
∑

hi [tj ,tj+1] 6=0

|ci| ti+k − ti
k

|hi| ‖∞

≤ max
hi [tj ,tj+1]

6=0
|ci|Dk.

This proves that, for given t and given α=, there exists f ∈ IL(k)
∞ so that f

∣∣
t

= α= and, for all tj < tj+1,

‖f (k)‖∞,[tj ,tj+1] ≤ Dk max
[tj ,tj+1]⊆[ti,ti+k]

k!|[ti, . . . , ti+k]fα=
|,

a fact of interest when carrying out an a posteriori error analysis for a finite difference approximation to the
solution of an ordinary differential equation.
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3. Construction of λi.

The following observations seem to have been made first in [1]. They are also used implicitly by Jerome
and Schumaker in [11].

Let
ψi(t) := (t− ti+1) · · · (t− ti+k−1)/(k − 1)!,
+

ψi (t) := (t− ti+1)+ · · · (t− ti+k−1)+/(k − 1)!.

Then
[tj , . . . , tj+k]

+

ψi= δij/
(
(ti+k − ti) (k − 1)!

)
since, for j < i,

+

ψi= 0 on tj , . . . , tj+k, while, for j > i,
+

ψi= ψi ∈ IPk on tj , . . . , tj+k, and, finally, for j = i,
+

ψi

agrees on tj , . . . , tj+k with ψi(t) (t− ti)/(ti+k − ti), a polynomial of exact degree k with leading coefficient
1/
(
(ti+k − ti) (k − 1)!

)
. Consequently,

(k − 1)!
(
[tj+1, . . . , tj+k] − [tj , . . . , tj+k−1]

) +

ψi= δij .

On the other hand, from Taylor’s expansion with integral remainder,

(
[tj+1, . . . , tj+k] − [tj , . . . , tj+k−1]

)
f =

∫
Nj,k,t(t)f (k)(t) dt/(k − 1)!

for f ∈ IL(k)
1 . This proves the following lemma.

Lemma 3.1. λ ∈ ILq ⊆ IL∗
p satisfies λNj = δij iff λ = f (k) for some f ∈ IL(k)

q with f =
+

ψi on t.

If we require from λ, in addition, that suppλ ⊆ [ti, ti+k], then f
∣∣
t<ti

and f
∣∣
t>ti+k

are both polynomials
of degree < k, hence then

0, t < ti
f = ,

ψi, t > ti+k

at least for sufficiently long t.

Corollary. If [a, b] ⊆ [ti, ti+k], and f ∈ IL(k)
q [a, b] with

f =

{ 0 , k-fold at a,
0 = ψi, at all tj ∈ ]a, b[,
ψi, k-fold at b,

then λi ∈ IL∗
p given by

λig :=
∫ ti+k

ti

g f (k)

has support in [a, b] and satisfies
λiNj = δij , all i, j.

As a simple example, choose r so that ti ≤ tr < tr+1 ≤ ti+k and let f ∈ IL(k)
1 [tr, tr+1] so that

f =
{

0, k-fold at tr
ψi, k-fold at tr+1

Then λi := f (k) satisfies λiNj = δij , all j, by the Corollary. Now note that, by assumption,

ψ
(m)
i (tr+1) = f (m)(tr+1) =

∫ tr+1

tr

(tr+1 − s)k−m−1f (k)(s) ds/(k −m− 1)!,
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i.e.,
λi : (tr+1 − · )k−m−1/(k −m− 1)! 7→ ψ

(m)
i (tr+1), m = 0, . . . , k − 1.

Since p(s) =
∑k−1

m=0(−)k−m−1p(k−m−1)(tr+1) (tr+1 − s)k−m−1/(k −m− 1)!, all p ∈ IPk, this implies that

λip =
k−1∑
m=0

(−)k−m−1p(k−m−1)(tr+1)ψ
(m)
i (tr+1), all p ∈ IPk.

But, for any p, ψ ∈ IP,

(d/dτ )
k−1∑
m=0

(−)k−m−1p(k−m−1)(τ )ψ(m)(τ )

= (−)k−1p(k)(τ )ψ(τ ) + p(τ )ψ(k)(τ )

= 0.

Hence

λip =
k−1∑
m=0

(−)k−m−1p(k−m−1)(τ )ψ(m)
i (τ ), all τ, all p ∈ IPk.

Further, for all j,Nj [tr,tr+1]
∈ IPk. Therefore

k−1∑
m=0

(−)k−m−1N
(k−m−1)
j (τ )ψ(m)

i (τ ) = δij , all τ ∈ [ti, ti+k], all j,

which is the identity on which the quasi-interpolant of [3] is based. The corresponding specific linear
functional λ̂i given by the rule

λ̂ig :=
k−1∑
m=0

(−)k−m−1g(k−m−1)(τ )ψ(m)
i (τ )

for some fixed τ ∈ [ti, ti+k] is the k–th derivative (in the weak sense) of the function

f := (· − τ )0+ψi

which indeed agrees with
+

ψi at t.

4. An estimate for Dk.

In this section, we get an estimate for the number Dk of (3) of Section 2 by constructing a specific linear
functional λi with λiNj = δij , all j, using Lemma 3.1 and its Corollary.

Let a < b with
ti ≤ a ≤ ti+1, ti+k−1 ≤ b ≤ ti+k

and take G ∈ IL(k)
∞ to be such that

(4.1) G =
{

0, k-fold at a
1, k-fold at b

Then, as was observed by D. J. Newman, the function f := Gψi on [a, b] satisfies the assumptions of the
Corollary to Lemma 3.1. Therefore, the function hi := f (k) on [a, b] is in IL∞ and satisfies

(4.2)

supphi ⊆[a, b] ⊆ [ti, ti+k]

‖hi‖p ≤‖hi‖∞(b− a)1/p∫
hiNj =δij , all j.
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Next, we estimate ‖hi‖∞. We have

‖hi‖∞ ≤
k−1∑
m=0

(
k

m

)
‖ψ(m)

i ‖∞‖G(k−m)‖∞

and

(4.3) ‖ψ(m)
i ‖∞ ≤ (k − 1) · · · (k −m)

(k − 1)!
(b− a)k−1−m, m = 0, . . . , k.

Also,

G(k−m)(t) =
∫ b

a

(t− s)m−1
+ G(k)(s) ds/(m− 1)!,

hence

(4.4) δmk = G(k−m)(b) =
∫ b

a

(b− s)m−1G(k)(s) ds/(m− 1)!, m = 1, . . . , k,

i.e., G(k) is orthogonal to IPk−1 on [a, b]. This implies that

G(k−m)(t) =
∫ b

a

[
(t− s)m−1

+ − p(t, s)
]
G(k)(s) ds/(m− 1)!,

all p(t, · ) ∈ IPk−1

and, choosing p(t, · ), e.g. by interpolation, so that∫ b

a

∣∣(t− s)m−1
+ − p(t, s)

∣∣ds ≤ 4
(
b− a

4

)m

,

we conclude that

(4.5) ‖G(k−m)‖∞ ≤ 4
(
b− a

4

)m

/(m− 1)! ‖G(k)‖∞.

Next, we choose G ∈ IL(k)
k [a, b] so as to minimize ‖G(k)‖∞ subject to the conditions (4.1), i.e., subject to

the conditions (4.4). This problem has been solved by Louboutin ten years ago and a solution is described
by Schoenberg in [15]. Here is a simple argument:

Conditions (4.4) describe G(k) ∈ IL∞[a, b] as an extension to all of IL1[a, b] of the linear functional µ on
IPk given by the rule

µ(b− · )m−1/(m− 1)! = δmk, m = 1, . . . , k,

i.e.,
µp = (−)k−1p(k−1), all p ∈ IPk.

Therefore, min ‖G(k)‖∞ = ‖µ‖, and G(k) is minimal iff G(k) takes its norm in IPk. Let Tk be the Chebyshev
polynomial of degree k. Then, sign T

(1)
k is well known to be orthogonal to IPk−1 on [−1, 1], while T (k)

k =
k! 2k−1. Hence, with

T̂k(t) := (−)k−1Tk

(
2
t− a

b− a
− 1
)
,

sign T̂ (1)
k is orthogonal to IPk−1 = kerµ on [a, b] while

µT̂k = (−)k−1T̂
(k)
k =

( 4
b− a

)k
k!/2.
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It follows that
Ĝ(k) := sign T̂ (1)

k

( 4
b− a

)k
k!/
(
2‖T̂ (1)

k ‖∞
) ∈ IL∞ = IL∗

1

extends µ to IL1 and takes on its norm in IPk (at the point T̂ (1)
k ∈ IPk), hence is minimal. Since

‖T̂ (1)
k ‖∞ = Var [a,b]T̂k = 2k,

this shows the minimal G(k) to be

(4.6) Ĝ(k) := sign T̂ (1)
k

( 4
b− a

)k (k − 1)!
4

with

(4.7) min ‖G(k)‖∞ = ‖Ĝ(k)‖∞ =
( 4
b− a

)k (k − 1)!
4

.

Correspondingly, Ĝ(1) is the perfect B-spline of order k with simple knots at the k+1 extrema of T̂k in [a, b]
and normalized to have unit integral.

For this particular choice for G, (4.3), (4.5) and (4.7) give

‖ψ(m)
i ‖∞‖G(k−m)‖∞ ≤ (k − 1) · · · (k −m)

(k − 1)!
(b− a)k−1−m

(b− a

4
)m−k (k − 1)!

(m− 1)!

=
(k − 1) · · · (k −m)

(m− 1)!
4k−m/(b− a), m = 1, . . . , k − 1,

and
‖ψi‖∞‖G(k)‖∞ ≤ 4k−1/(b− a),

hence

(b− a) ‖hi‖∞ ≤ 4k−1 +
k−1∑
m=1

(
k

m

)
(k − 1)!

(k −m− 1)!(m− 1)!
4k−m

< 4k−1 + 2(k − 1)

(
k∑

m=0

(
k

m

)
2k−m − 2k − 1

)
k−1∑
m=1

(
k − 2
m− 1

)
2k−m−1

= 4k−1 + 2(k − 1) (3k − 2k − 1)3k−2

< 2k 9k−1.

Theorem 4.1. Let Dk be the smallest number with the property that, for every t, every i and every a < b
with

ti ≤ a ≤ ti+1, ti+k−1 ≤ b ≤ ti+k,

there exists hi ∈ IL∞ such that

(4.8) supp hi ⊆ [a, b], ‖hi‖∞ ≤ Dk/(b− a),
∫
hiNj = δij , all j.

Then
(π/2)k/2 ≤ Dk ≤ 2k 9k−1.

Proof: Only the first inequality still requires proof. For this, take Schoenberg’s Euler spline [14],
[16],

Ek(t) := γk

∞∑
j=−∞

(−)jNj,k+1,ZZ

(
t− k + 1

2

)
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with

(4.9) γk = 1/ϕk+1(π) =
(π
2
)k+1

/
∑

j

( (−1)j

2j + 1

)k+1

≥ (π
2
)k
/2

so chosen that Ek(ν) = (−)ν , all ν ∈ ZZ. Then

E(1)
k (t) = 2γk

∑
j

(−)jNj,k,ZZ

(
t− k + 1

2

)
is a spline of order k, with knot sequence ZZ − s where s := (k + 1)/2, hence, by (2.1), and since Ek is
monotone between integers,

|2γkk| ≤ Dk‖E(1)
k ‖1,[s,s+k] = Dk Var [s,s+k]Ek = 2k Dk

and so (π
2
)k
/2 ≤ γk ≤ Dk; Q.E.D.

It is possible to compute Dk for small k as follows. For σ= := (σi)3k−1
1 with

0 = σ1 = · · · = σk ≤ σk+1 ≤ · · · ≤ σ2k = · · · = σ3k−1 = 1,

compute the norm of the linear functional µσ=
given on $k,σ=

⊆ IL1[0, 1] by the rule

µσ=
Nj,k,σ=

= δjk, j = 1, . . . , 2k − 1.

Much as in the computations reported in [7], this amounts to constructing (by Newton’s method, say) an
absolutely constant step function g on [0, 1] with dim$k,σ=

steps so that

∫ 1

0

g Nj = δjk, all j.

Then ‖µσ=‖ = ‖g‖∞, and
Dk = sup

σ=
‖µσ=‖.

Somewhat more explicitly, the construction of such a g proceeds as follows. With

s := dim $k,σ=
,

and 0 = ρ0 < · · · < ρs = 1, one computes (βj)s
1 such that

(4.10)
∑

j

βj

∫ ρj

ρj−1

Ni = δik, all i.

Now ∫ ρ

Ni,k =
σi+k − σi

k

∫ ρ

Mi,k =
σi+k − σi

k

∑
i≤n

Nn,k+1(p),

as one checks easily, therefore∫ ρj

ρj−1

Ni =
σi+k − σi

k

∑
i≤n

Nn,k+1(ρj) −Nn,k+1(ρj−1).
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Since σ2k − σk = 1, this shows that (4.10) is equivalent to∑
j

βj

∑
i≤n

(
Nn,k+1(ρj) −Nn,k+1(ρj−1)

)
= kδik, all i.

But, subtracting in order each equation in this system from all its predecessors, starting with the last, we
obtain the equivalent system

(4.11)
∑

j

βj

(
Ni,k+1(ρj) −Ni,k+1(ρj−1)

)
=

{ −k, i = k − 1
k, i = k ,
0, otherwise

which is very similar to the system dealt with in [7]. In particular, one proves that µσ=
has exactly one

extremal, i.e., there exists exactly one absolutely constant g with s steps on [0, 1] for which
∫ 1

0
gNi = δik, all

i. This means that the nonlinear system for the βj and ρj consisting of (4.11) and

(4.12) βj−1 + βj = 0, j = 2, . . . , s,

has exactly one solution.
For all k considered, such computations show supσ=

‖µσ=‖ to be taken on at the middle vertex of the

simplex over which σ= varies, i.e., at the point σ= = (σj) with

0, j < k + k/2
σj = ·

1, j ≥ k + k/2

Computed values for Dk are
k Dk ln2Dk

1 1 0
2 2.4142.. 1.2715..
3 5.2044.. 2.3797..
4 10.0290.. 3.3261..
5 21.3201.. 4.4141..
6 40.8972.. 5.3539..
7 86.3688.. 6.4324..
8 166.4052.. 7.3785..
9 348.5582.. 8.4452..

10 674.2949.. 9.3972..
11 1402.9478.. 10.4542..

These numbers strongly suggest that Dk grows like 2k rather than like the upper bound 9k established
in Theorem 4.1.

5. An estimate for Dk,∞.

If a < b and ti ≤ a ≤ ti+1, ti+k−1 ≤ b ≤ ti+k, then we can construct hi ∈ IL∞[a, b] so that
∫
hiNj = δij .

In fact, such a function hi with smallest possible ∞–norm can be constructed as a minimum norm extension
to all of IL1[a, b] of the linear functional µi on $

∣∣
[a,b]

⊆ IL1[a, b] given by the rule

µiNj = δij , all j.

This fact was the basis for the computation of Dk reported in the preceding section.
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In general, if we think of $
∣∣
[a,b]

as a subspace of IL∞[a, b], then a minimum norm extension of µi to all
of IL∞ does not exist in the form hi ∈ IL1, i.e., in the form of a function on [a, b]. For this reason, it is more
convenient to consider $

∣∣
[a,b]

as a subspace of C[a, b], – this requires the assumption

(5.1) tj < tj+k−1, all j, −

and to consider a norm preserving extension of µi to all of C[a, b] since the dual of C[a, b], while still not
representable by functions on [a, b], is in some sense simpler than that of IL∞. In particular, it is always
possible to find norm preserving extensions of µi of the form

(5.2)
s∑

m=1

αm[ρm]

with
s := dim $k,t

∣∣
[a,b]

and
[p] f := f(p).

In this section, we estimate the number

(5.3)
Dk,∞ := sup

t
sup

i
1/ dist ∞,[ti+1,ti+k−1](Ni, span(Nj)j 6=i)

= sup
t

sup
i

‖λ∗i ‖,

with
λ∗i := minimizer of ‖ · ‖ over

{
λi ∈ C∗[ti+1, ti+k−1] | λiNj = δij , all j

}
.

This number was shown to be finite in [2]. The argument relied on constructing explicitly a norm preserving
extension of µi of the form

∑
αi[ρi] with tr ≤ ρ1 < · · · < ρk ≤ tr+1 and [tr, tr+1] a largest interval of that

form in [ti+1, ti+k−1]. But the resulting bound for Dk,∞ seemed very pessimistic.

Theorem 5.1. The constant Dk,∞ defined by (5.3) satisfies

(5.4) (π/2)k−1/2 ≤ Dk,∞ ≤ Dk.

Proof: By Theorem 4.1, the linear functional µi on $k,t given by µiNj = δij , all j, satisfies

|µif | ≤ Dk‖f‖∞,[a,b]

for any a < b with ti ≤ a ≤ ti+1 ≤ ti+k−1 ≤ b ≤ ti+k. Hence, for ti+1 < ti+k−1,

dist ∞,[ti+1,ti+k−1] (Ni, span(Nj)j 6=i) = 1/‖µi‖ ≥ D−1
k

with ‖µi‖ the norm of µi with respect to ‖ · ‖∞,[ti+1,ti+k−1]. For ti+1 = ti+k−1, Nj(ti+1) = δij , hence
then dist ∞,[ti+1,ti+k−1]

(
Ni, span(Nj)j 6=i

)
= 1/‖µi‖ = 1. This proves that Dk,∞ ≤ Dk. The inequality

γk−1 ≤ Dk,∞ was already proved in [5], using Schoenberg’s Euler spline. Q.E.D.
To be precise, it was shown in [5] that

γk−1 = condk,ZZ

with

condk,t :=
sup ‖∑αjNj‖∞/‖α=‖∞
inf ‖∑αjNj‖∞/‖α=‖∞ =

1
infi dist ∞(Ni, span(Nj)j 6=i)

≤ Dk,∞
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hence
condk := sup

t
condk,t ≤ Dk,∞.

It is, of course, possible to prove that Dk,∞ = O(9k) directly without reference to Theorem 4.1: Let
[a, b] = [ti+1, ti+k−1] with a < b and consider λi of the form (Gψi)(k) with

G(t) :=
0, t < a

G(k)
{
(t− · )k−1

+ /(k − 1)!
}
, t ≥ a,

and G(k) ∈ C∗[a, b] so that

G(k)
{
(b− · )k−j/(k − j)!

}
= δ1j , j = 1, . . . , k.

Then Gψi agrees with
+

ψi at t, hence λiNj = δij , all j, i.e., λi ∈ C∗[a, b] and λi extends µi. Next, choose
G(k) to have as small a norm as possible. This requires G(k) to be a norm preserving extension to all of
C[a, b] of the linear functional µ on IPk given by the rule

µ(b− · )k−j/(k − j)! = δ1j , j = 1, . . . , k,

i.e.,
µp = (−)k−1p(k−1), all p ∈ IPk.

Hence, with a ≤ ρ1 < · · · < ρk ≤ b,

(−)k−1[ρ1, . . . , ρk] =
∑

αj [ρj ]

is an extension of µ. This extension is norm preserving provided it takes its norm in IPk. Since the coefficients
α1, . . . , αk strictly alternate in sign, this will happen iff ρ1, . . . , ρk are chosen as the extrema of the Chebyshev
polynomial of degree k − 1 adjusted to the interval [a, b]. The resulting minimal G is an old acquaintance,
viz. the integral of the perfect B-spline of order k − 1 with support equal to [a, b] and unit integral. We
record this curious fact in the following

Proposition. Let Gk(t) :=
∫ t

a
Bk(s) ds with Bk(s) := k[ρ0, . . . , ρk] (· − s)k−1

+ and

ρj =
(
a+ b+ (a− b) cos πj/k

)
/2, j = 0, . . . , k

the extrema of the k–th degree Chebyshev polynomial for [a, b]. Then, not only is G
(k)
k the unique norm

preserving extension to all of IL1[a, b] of the linear functional µk on IPk given by

µkp = (−)k−1p(k−1), all p ∈ IPk,

and therefore G
(k)
k is absolutely constant, hence Bk is perfect and

‖G(k)
k ‖∞ = ‖µk‖‖·‖1 =

(
4

b− a

)k (k − 1)!
4

– this much was shown already by Louboutin [15], – but also G
(k+1)
k is the unique norm preserving extension

of the form
∑
αj [ρj ] to all of C[a, b] of µk+1, therefore

‖G(k+1)
k ‖“1′′ = Var [a,b]G

(k)
k = ‖µk+1‖‖·‖∞ =

(
4

b− a

)k
k!
2
.

The rest of the argument for the estimate Dk,∞ = O(9k) now proceeds as in the proof of Theorem 4.1.
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It is possible to compute Dk,∞ for small k as

Dk,∞ = sup
σ=

‖µσ=‖

with

(5.5) 0 = σ1 = · · · = σk < σk+1 ≤ · · · ≤ σn < σn+1 = · · · = σn+k = 1,

n := 2k − 3,

and µσ=
the linear functional on S := $k,σ= [0,1] ⊆ C[0, 1] given by

µσ=
Nj,k,σ=

= δj,k−1.

In order to compute ‖µσ=‖, one constructs ϕ ∈ S\{0} and 0 = ρ1 < · · · < ρn = 1 so that

(−)jϕ(ρj) = ‖ϕ‖∞, all j.

This is possible since (Nj) is a weak Chebyshev system (see, e.g., [12]). Next, one constructs the extension
of µσ=

of the form
∑
αj [ρj ] to all of C[0, 1]. Then

∑
Nr(ρj)αj = δr,k−1, hence αj−1αj ≤ 0, all j, since

(Nr(ρj)) is totally positive (see, e.g., [12]). Therefore

|µσ=ϕ| = |
∑

αjϕ(ρj) | =
∑

|αj | ‖ϕ‖∞,
i.e.,

‖µσ=‖ =
∑

|αj |.
As with the earlier reported calculation of Dk, it appears from these computations that sup ‖µσ=‖ is

taken on at the “middle” vertex of the simplex described by (5.5), i.e., at the point σ= with

0, j ≤ k + k/2 − 1
σj = ·

1, j > k + k/2 − 1

This would mean that

(5.6) Dk,∞ = ‖(Nj,k,τ=
(ρi))−1‖∞

with τ= := (τi)2k
1 given by

0 = τ1 = · · · = τk, τk+1 = · · · = τ2k = 1

and 0 = ρ1 < · · · < ρk = 1 the extrema of the Chebyshev polynomial of degree k − 1 for [0, 1]. This gives
the following values for Dk,∞.

k Dk,∞ ln2 Dk,∞

2 1 0
3 3 1.5849..
4 5 2.3219..
5 11 2/3 3.5443..
6 21 4.3923..
7 46 1/5 5.5298..
8 85 4/5 6.4229..
9 183 6/7 7.5224..

10 347 2/7 8.4399..

15 .1169E 5 13.5128..
20 .3635E 6 18.4715..
25 .1193E 8 23.5075..
30 .3747E 9 28.4813..
35 .1219E11 33.5053..
40 .3850E12 38.4861..
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It is striking that the first few values of Dk,∞ are such simple rational numbers and that these numbers
conform so quickly to the pattern Dk,∞ ∼ 2k−1/

√
2, as can be seen by their logarithms to the base 2. This

raises the hope that such a relation might be provable with a little effort.
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