On local linear functionals which vanish at all B-splines but one

Carl de Boor®

1. Introduction

Let k£ € IN, t := (¢;) nondecreasing (finite, infinite or biinfinite) with t; < t;1, all ¢, and let (N;) be
the sequence of B-splines of order k for the knot sequence t. This means that N; = N, j ¢ is the B-spline of
order k with knots ¢;,...,t;1x, i.e., N; is given by the rule

(11) Ni,k:,t(t) = ([ti+1, N 7ti+k] - [ti, ey ti+k1]) ( c = t)iil

with [t;,..., ;4] f the r—th divided difference of f at the points ¢;,...,¢;4,. In particular,
N;(t) >0 on [t;tirr] and =0 off [t;,t;4k],

and, for t € [t;,t;11],
J
(2o g woes
i i=j—k+1

i.e., such a B-spline sequence provides a partition of unity. For more information about B-splines, see Curry
and Schoenberg’s paper [9], and [5].
The present paper is concerned with linear functionals \; for which

(12) supp )\Z g [ti,ti+k]7 )\iNj = (Sij, all j

The first such linear functional seems to have been constructed in [1], for the purpose of demonstrating the
linear independence over an interval of all B-splines which do not vanish identically on that interval. Since
then, such linear functionals have been constructed in various ways and for a variety of jobs [2] — [7], [11],
[13], [16], some of which are listed in Section 2.

In particular, it was shown in [6] that there exists a smallest number Dy, so that, for all t and all ¢ with
ti < tiyk, an h; € Lo can be found with supp h; C [ti, tiyi), [|hillo < Di/(tigr — i), and [ hiN; = 65, all
j. After a discussion in Section 3 as to how to construct linear functionals ); satisfying (1.2), it is shown in
Section 4 that

(m/2)F )2 < Dy <2k 971,

Also, numerical evidence is presented to indicate that probably
Dy = O(2").
In Section 5, the related constant
Dy oo = s%p sgp 1/ dist oo [t 1, t00 1] (Nis span(Nj);.i)
is discussed. As pointed out in [2], this number is related to the condition number of the B-spline basis,

condy, := sup condy, ¢
t

since
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It is shown that
(/2)"71/2 < Dy oo < Dy,

and numerical evidence is presented to suggest that

Do ~ 2F71/V/2.

2. Some results obtainable with the aid of such functionals.

In this section, we list some results obtainable through the explicit construction and analysis of specific
local linear functionals which vanish at all B-splines but one.

(1) [1], [4]. For any open I C IR, {N; | supp N; (I # 0} is linearly independent on I.

(2) [2]. Let $ = 3+ denote the linear space of all splines of order k¥ with knot sequence t, i.e.,

$ = $k,t = {Zaij’k’t ‘ Qo S IR, all j}
J

with the sum taken pointwise in case t is not finite. There exists a constant Dy, o, depending only on £ so
that
dist o (f,$) < Di.00 max dist oo, (1,41 p.t;00] (f5 Pi)-

Here, IP;, denotes the collection of all polynomials of order k£ or degree < k, and the number Dy, o
is found as max; [|A;]|, with (\;) a sequence of local linear functionals dual to the B-spline sequence, i.e.,
AiNj = 05, all ¢, . This example raises the question of just how small one can make the norm of such linear
functionals, a question taken up again in Section 5.

(3) [2], [4], [6]. There exists a smallest number Dy (depending only on k) so that, for all t and all ¢
with t; < t;1k, an h; € Ly, can be found satisfying

supp h; C [t titr)s
Ihillp < Di/(tisr — )", (1/p+1/q=1),

/th] = 5ija all j
(Note that the constant Dy mentioned here is k times the number Dy mentioned in [6].)
This fact has many consequences, among them the following two.

(4) [4]. If f =3 jNj, then o = [ h;f < Pill g1 £l p,1ts oy n]> DEDCE

(2.1) |ctil (tie — t)® < Dill Fllpufts s

therefore, with E the diagonal matrix given by

Ei=Too, (k= )k, ],

we have
IEYPall, < Dill > aiNllp.

) . . 1/2
N
Nj:= Nj/<7j+ - J) ,

(5) [8]. In particular, with



we get
2
181l2 < Dell Y 685 Ny |la-
Let L be ILy—approximation by elements of $, i.e.,

Lfe$, and f—Lf1S$.

2 2 2 2
Then Lf = Y a;3; N;, with GB = ([ N; f) and G := ([ N;N;). Let G™* =: (;;). Then G~' decays

exponentially away from the diagonal, i.e.,
|ai;| < const A=l

with \ := (1 — D;?)Y/(¥=2) €]0,1[ and const := D} /A\*~! both independent of t, as can be proved using a
very nice idea of Douglas, Dupont and Wahlbin [10]. This implies that, as a map on L.,

|LI| < consty (M2,
a bound in terms of the global mesh ratio

k
M = max (fi = t)/(t+1 = 1),

Finally, here are two applications which have, offhand, nothing to do with splines, but rather are
concerned with the smooth interpolation of data.

(6) [6]. Suppose we are given t = (¢;) nondecreasing with ¢; < t;;, all <. For given f, let f|t = (f1),
with f; = fU)(¢t;), where j := max{r | t,_, = t;}. Then, given a = (o), there is no difficulty in finding some
smooth f so that f| ¢ = Q, let fo be one such, but it is not at all clear a priori under what circumstances

such an f can be found in ]L](f) (IR). But, using (3) above, one can show that there exists f € ILI(,k)(IR) S0
that f’t = a if and only if ((tHk — ti)l/p[ti, .. ,ti+k]fg) € lp.
The argument is based on the observation that f, given by the conditions that it agree with fo at k

f(k) = Z z(( i+k )/k)

%

points and that

with
s t: — Nif (k)
C; [ Gy o e 1+k}f@
- z+k _t

necessarily agrees with fa at t since [ Njh; = d;;, i.e., since f and fa have the same k—th divided differences.

(7) 16], [7]. In particular, with f the interpolant just constructed and t; <tjt+1, at most k of the h; are
nonzero on [t;,t;41], therefore, from (3),

bitk
[T ST ARES Y |Cz\z—|h [ lso

hil (e ,541)70

IN

max |¢i| D,
170

hillts 54

This proves that, for given t and given a, there exists f € ]Lg;) so that f|t = a and, for all t; <t;,1,

®| ottt <D B[ty .ot
||f H(X>7[tj7tj+l] — k [tj,tj+11’1]1§[)§i,t,;+k] H (2l Y 1+k}f%|7

a fact of interest when carrying out an a posteriori error analysis for a finite difference approximation to the
solution of an ordinary differential equation.



3. Construction of \;.

The following observations seem to have been made first in [1]. They are also used implicitly by Jerome
and Schumaker in [11].
Let
Yi(t) = (t = tig1) -+ (t = tigp—1)/(k — 1),

Wy (8) = (b= tig1) s - (b= tipp1)1 /(b — 1)\
Then .
[ty tivw] Vo= 65/ (tisr — ts) (k= 1)!)

+ + +
since, for j < ¢,¢;,=0ont;,...,tj4x, while, for j >4, ;= ; € P ont;,..., ¢ 4k, and, finally, for j =1, ¢,
agrees on tj, ...t with ¢;(t) (¢t —t;)/(tiyr — t;), a polynomial of exact degree k with leading coefficient
1/((ti+r — t;) (k — 1)!). Consequently,

+

(k= DN[tj1,- - tign] = [ -+ tirn—1]) 1= ij.

On the other hand, from Taylor’s expansion with integral remainder,
(Ejrs- oo tjun] = [t tyana]) f = /Nj,k,t(t)f(k)(t) dt/(k —1)!

for f € ILgk). This proves the following lemma.

+
Lemma 3.1. ) € I, C IL;) satisfies AN; = 0;; iff A = f*) for some f € ]Lék) with f =, on t.

If we require from A, in addition, that supp A C [¢;, t;%], then f’t<tv and f’t>tv+k are both polynomials

of degree < k, hence then
0, t<t;

f= ;
i, t>tivk
at least for sufficiently long t.

Corollary. If [a,b] C [t;, tiys], and f € L [a, b] with

0, k-fold at a,
f—{O =1, atallt; €la,b,
wiu k-fold at b,

then \; € 1L, given by
tivk A
\ig = / g™
t

has support in [a, b] and satisfies
)\iNj = (Sij, all Z,j

As a simple example, choose r so that t; <t, <t,11 <t;1r and let f € IL(lk) [ty,tr41] so that

fe 0, k-fold at t,
- wi, k-fold at tr+1

Then \; := f*) satisfies AilNj = 6;5, all j, by the Corollary. Now note that, by assumption,

Z[}Z(m)(tr"'l) — f(m) (tr+1) = / " (tr+1 — s)kfmflf(k)(s) dg/(k —m — 1)!,

r
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ie.,
At (trgr — ) (k—m =1 = "™ (), m=0,... k—1.
Since p(s) = 201 (ykmmeLp(em=1) (¢ ) (t4q — s)*™ 1/ (k —m — 1)), all p € Py, this implies that

m=0

k—1

Aip =Y ()P pEm D (1™ (), all p € Py
m=0
But, for any p, ¢ € IP,
k—1
(d/dr) Y (=)F = tpEm =D ()t (7)
m=0
= (=) B (m)e(r) + p(r)p®) ()
=0.
Hence
k—1
\ip = Z (—)k_m_lp(k_m_l)(’r)wgm)(’7’), all 7, all p € Py
m=0

Further, for all j, Nj‘[trvtr+1] € IP;. Therefore

k—1
ST ()N (M (1) = 83, all T € [t tiga],  all g,

m=0

which is the identity on which the quasi-interpolant of [3] is based. The corresponding specific linear
functional \; given by the rule

k—1

Xig = Z (_)krfmflg(kfmfl)(,r)wz(m)(7_)

m=0

for some fixed 7 € [t;, ;1] is the k—th derivative (in the weak sense) of the function
f=0-7%%
+
which indeed agrees with 1, at t.

4. An estimate for Dy.

In this section, we get an estimate for the number Dy, of (3) of Section 2 by constructing a specific linear
functional A; with A\;N; = d;;, all 7, using Lemma 3.1 and its Corollary.
Let a < b with
ti <a<tiy1, tigr—1 <b <t

and take G € ILY) to be such that

(4.1) G—{O’ k-fold at a

1, k-fold at b

Then, as was observed by D. J. Newman, the function f := G1); on [a,b] satisfies the assumptions of the
Corollary to Lemma 3.1. Therefore, the function h; := f*) on [a,b] is in L, and satisfies

supp hl g[a’ab] - [tivti+k]
(12) il <hillc(d — 0)'7

/hiNj :51']'7 all ]



Next, we estimate ||h;|loo. We have

k—1 Ek
halloe < > (m> ™ o IG*™ oo

m=0

and
gy k=D (kmm) _
(4.3) 19" lloo < ) . m=0,....k
Also,
b
G““*m’(t):/ (t = $)T 1 GW () ds/(m — 1),
hence
b

(4.4) Omr = GE=™)(b) = / (b—s)"1GW (s)ds/(m —1)!, m=1,...,k,

i.e., G® is orthogonal to IPy_; on [a,b]. This implies that

b
GO () = / [t — )™ — p(t, 5)]G®)(s) ds/(m — 1),
all p(ta ) € Py

and, choosing p(t, ), e.g. by interpolation, so that

/ab (¢ — 521 — p(t, 5) |ds < 4 (b;“)m,

we conclude that

(15 6% <4 (*5%) /= Dt 169

Next, we choose G € ]L,(f) [a, D] so as to minimize ||G*) ||, subject to the conditions (4.1), i.e., subject to

the conditions (4.4). This problem has been solved by Louboutin ten years ago and a solution is described
by Schoenberg in [15]. Here is a simple argument:
Conditions (4.4) describe G*) € L. [a, b] as an extension to all of IL[a, b] of the linear functional x on
P, given by the rule
ph— )" m =1 =6, m=1,...,k,

ie.,
pp = (=) "1p1 ) all p € Py

Therefore, min |G ||, = ||u||, and G*) is minimal iff G*) takes its norm in IPy. Let T} be the Chebyshev

polynomial of degree k. Then, sign T,il) is well known to be orthogonal to IP;_; on [—1,1], while T,gk) =
k!'2F=1. Hence, with

~ t—a
Tio(t) := (—)" ' Tx (2 -1
k() = ()" T (25— — 1),
sign flgl) is orthogonal to IP;,_; = ker y on [a, b] while
7 k—175(k) 4k
ply = ()" T, = (m) k!/2.



It follows that 4
GH) = sign fél) (b—)kk"/(2|\f,§1)||oo) €L, =L]
—a
extends p to IL; and takes on its norm in Py, (at the point f,gl) € IPg), hence is minimal. Since

1T |0 = Var o4 T) = 2K,

this shows the minimal G®) to be

A o oy 70 (A k= 1)!
" 0 i 79 (1
with
. N 4 (k(k-=1)!
N (k) _ (k) =
(4.7) min |G| = |G| (b—a) 4

Correspondingly, GO is the perfect B-spline of order k& with simple knots at the k+ 1 extrema of T % in [a, b]
and normalized to have unit integral.
For this particular choice for G, (4.3), (4.5) and (4.7) give

(m) (k=) (k=1 (k—m) 1 mb—aymk (k—1)
;" Mool G loo < k=) (b—a)f=1=m( 1 ) (m—1)!
k=1 (k=m) g, _ _
= (m 1) 4 /(b—a), m=1,....,k—1,
and
[%illo0 IG® o0 < 4571/ (b — a),
hence
b N [ (k—1)! -
(b= a)[[hiflo < 4 +m=1<m>(k—m—1)!(m—1)!4

< 4Rl ok — 1)( Zk: (:1) oh—m _ ok _ 1) ch1 (:1—_21> oh—m—1

m=0 m=1
=41 4ok —1) (38 —2F —1)3kF2
< 2k9F L.
Theorem 4.1. Let Dy be the smallest number with the property that, for every t, every ¢ and every a < b
with
ti<a<tiy1, tivk—1 <b<tiy,

there exists h; € ILo, such that
(4.8) supp h; C [a,b], ||hilloo < Di/(b—a), /hiNj =0;;, allj.

Then
(m/2)k )2 < Dy <2k 971

Proof: Only the first inequality still requires proof. For this, take Schoenberg’s Euler spline [14],
[16],

Et) = >, (=) Njri1z (t - %)

j=—o00



with

(4.9) Vi = 1/prs1(m) = (g)kﬂ/z (2(;41_)1)]“1 = (E)kﬂ

so chosen that & (v) = ()", all v € ZZ. Then

010 = 2 T 5

is a spline of order k, with knot sequence ZZ — s where s := (k + 1)/2, hence, by (2.1), and since & is
monotone between integers,

|2’ykk| < DkHEIgl) ] = Dk Var [s,s-‘rk:]gk =2k Dk

and so _
(5) /2 <y < Dy; QE.D.

It is possible to compute Dy, for small k as follows. For g := (0:)3! with
O=01= =0 <opp1 << o9 =+ =031 = 1,
compute the norm of the linear functional g given on $k,g C 11 [0, 1] by the rule
tig Njko =0k, j=1,...,2k—1.

Much as in the computations reported in [7], this amounts to constructing (by Newton’s method, say) an
absolutely constant step function g on [0,1] with dim $; 5 steps so that

1
/ gNj = 0k, all j
0

Then [[ug || = [lgl[co, and
Dy = sup ||pg ||-
g L

Somewhat more explicitly, the construction of such a g proceeds as follows. With
s :=dim $; o,

and 0 = pg < --- < ps = 1, one computes (F;); such that

Pj
(4.10) Zﬁj/ N; = 6, alli.
7 F

pj—1

Now

Oi+k — Oitk — O
/ Nz, - l+ / Mzk l+ lZNnk+1

i<n

as one checks easily, therefore

b Titk — 0i
/ N; = +T > Noks1(ps) = Nogga(pji)-

Pj—1 i<n



Since oo — o = 1, this shows that (4.10) is equivalent to

Zﬁj Z (Nnkt1(pj) = Nngs1(pj—1)) = ki, all 4.
J

i<n

But, subtracting in order each equation in this system from all its predecessors, starting with the last, we
obtain the equivalent system

k i=k—1
(4.11) > Bi(Nina1(pj) = Nigr1(pj—1)) = { k, i=k
j 0, otherwise

which is very similar to the system dealt with in [7]. In particular, one proves that ug has exactly one

extremal, i.e., there exists exactly one absolutely constant g with s steps on [0,1] for which fol gN; = 01, all
i. This means that the nonlinear system for the 3; and p; consisting of (4.11) and

(412) Bj—l —|—ﬁj :O7 j :2,...,8,

has exactly one solution.
For all k considered, such computations show supy [|pg || to be taken on at the middle vertex of the

simplex over which g varies, i.e., at the point ¢ = (¢;) with

0, j<k+k/2
0; = .
1, j>k+k/2
Computed values for Dy are
kj Dk lnng

1 1 0
2 2.4142..  1.2715..
3 5.2044..  2.3797..
4 10.0290..  3.3261..
) 21.3201.. 4.4141..
6 40.8972..  5.3539..
7 86.3688..  6.4324..
8 166.4052..  7.3785..
9  348.5582..  8.4452..
10 674.2949.. 9.3972..
11 1402.9478.. 10.4542..

These numbers strongly suggest that Dy, grows like 2% rather than like the upper bound 9% established
in Theorem 4.1.

5. An estimate for Dy, ..

Ifa<bandt; <a <tip1, tivk—1 < b <t;yx, then we can construct h; € ILoo[a, b] so that [ h;Nj = §;;.
In fact, such a function h; with smallest possible co—norm can be constructed as a minimum norm extension
to all of Iy [a, b] of the linear functional u; on $‘[a 0 © IL; [a, b] given by the rule

‘LLZ'NJ‘ = 51’]’, all j
This fact was the basis for the computation of Dy reported in the preceding section.
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In general, if we think of $|[a p) 38 2 subspace of IL[a,b], then a minimum norm extension of p; to all

of IL, does not exist in the form h; € 1Ly, i.e., in the form of a function on [a, b]. For this reason, it is more
convenient to consider $‘[a p 38 2 subspace of C[a, b, — this requires the assumption

(5.1) tj <tjtr—1, all j, —

and to consider a norm preserving extension of u; to all of Cla,b] since the dual of Cfa,b], while still not
representable by functions on [a, )], is in some sense simpler than that of IL.,. In particular, it is always
possible to find norm preserving extensions of u; of the form

(5-2) Z O‘m[pm}

with

s := dim $k’t’[a,b]

and

In this section, we estimate the number

Dk70<> IZSIép sup 1/diStOOa[tiﬁ»lﬂeiJrkfl](Ni’ span(Nj)j¢i)

(5.3) .
= Sup sup A7 11

with
Ay := minimizer of || - || over {\; € C*[tig1, tizn—1) | NiN; = &5, all j}.

This number was shown to be finite in [2]. The argument relied on constructing explicitly a norm preserving
extension of y; of the form > a;[p;] with t,. < p1 < -+ < pg < try1 and [t tr41] & largest interval of that
form in [t;41,t;4k—1]. But the resulting bound for Dy, o, seemed very pessimistic.

Theorem 5.1. The constant Dy, , defined by (5.3) satisfies
(5.4) (1/2)k71/2 < Dy oo < Dy,
Proof: By Theorem 4.1, the linear functional p; on $j ¢ given by p;N; = 05, all j, satisfies
i f| < Dill flloo,fa,b)
for any a < b with t; <a <t;y1 <tiyr—1 <b <14 Hence, for t;11 < tisr—_1,

dist 00, [tit1,tith—1] (Ni’ Span(Nj)jii) = 1/“/“” = Dlzl

with [[u; the norm of p; with respect to || - lloo,ftisy tivs_y])- FOr tix1 = tixr—1,N;j(tiy1) = di;, hence
then distoo,[tiﬂ’twk_l](]\fi, span(Nj)j#) = 1/|lp;|| = 1. This proves that Dy o < Dji. The inequality
Yk—1 < Dg,0o was already proved in [5], using Schoenberg’s Euler spline. Q.E.D.

To be precise, it was shown in [5] that

Vk—1 = condy, z

with

sl SNl /lale 1
kt = inf || EaijHoo/H%Hoo inf; diStoo(Ni,Span(Nj)j#)

< Dk:po

10



hence
condy, := sup condy ¢ < Dy, .
t

It is, of course, possible to prove that Dy o = O(9%) directly without reference to Theorem 4.1: Let
[a,b] = [tiz1,tisn_1] With @ < b and consider \; of the form (Ga;)*) with

0, t<a

G(t) = GOt — )Yk -1}, t>a,

and G*) € C*[a,b] so that
G(k){(b_ ')k_j/(k_j)!} =6y, j=1,...,k

+
Then Gv; agrees with 9; at t, hence \;N; = 4,5, all j, i.e., A; € C*[a,b] and \; extends p;. Next, choose
G(k) to have as small a norm as possible. This requires G™®) to be a norm preserving extension to all of
C'la, b] of the linear functional x on Py, given by the rule

pb— )T (k=) =61, G =1,... .k

ie.,

pp = (=) 1pEY,all p € Py

Hence, with a < p; < --- < px < b,

(=) Hors- o ok] = Y sy
is an extension of p. This extension is norm preserving provided it takes its norm in IPy. Since the coefficients
Qq, - .., strictly alternate in sign, this will happen iff pq, ..., px are chosen as the extrema of the Chebyshev
polynomial of degree k — 1 adjusted to the interval [a,b]. The resulting minimal G is an old acquaintance,

viz. the integral of the perfect B-spline of order k — 1 with support equal to [a,b] and unit integral. We
record this curious fact in the following

Proposition. Let Gi(t) := fat By(s)ds with By(s) := k[po,...,px] (- — s)ﬁ_—l and
pj=(a+b+(a—b)ycosmj/k)/2, j=0,... k

the extrema of the k—th degree Chebyshev polynomial for [a,b]. Then, not only is G,(Ck) the unique norm
preserving extension to all of IL;[a, b] of the linear functional yy on Py, given by

pp = (—=)F1p* 0 all p € Py,

and therefore G,(ck) is absolutely constant, hence By, is perfect and

K 4\ (k-1
6%l = el = (52 ) 57

a 4

— this much was shown already by Louboutin [15], — but also G,(;H_l) is the unique norm preserving extension
of the form ) a;[p;] to all of Cla,b] of py+1, therefore

(k+1)
G

k
) o R
|u1// = Var [a,b]Gk - Hﬂk‘f’lH”Hoc - (b_a> 5

The rest of the argument for the estimate Dy o, = O(9%) now proceeds as in the proof of Theorem 4.1.
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It is possible to compute Dy, o for small k as

Di,o0 = sup [|ug |
g =

with
(5.5) O=01= =0, <01 <+ <0p<Opp1="""=0Opsg =1,
n =2k —3,
and pig the linear functional on § := $k,g|[0,1] C C0,1] given by
o Njko = 0jk—1-
In order to compute ||ug ||, one constructs ¢ € S\{0} and 0 = p; < --- < p,, =1 so that
(=Y e(p) = llellos,  all j.
This is possible since (N;) is a weak Chebyshev system (see, e.g., [12]). Next, one constructs the extension
of pug of the form )" a;[p;] to all of C[0,1]. Then > N,(p;)a; = 0rx—1, hence a;_1c; < 0, all 7, since
(NT(;J»)) is totally positive (see, e.g., [12]). Therefore

g el =1 azelpi) | = oyl l¢lloos
gl =3 Jagl.

As with the earlier reported calculation of Dy, it appears from these computations that sup ||ug || is

ie.,

taken on at the “middle” vertex of the simplex described by (5.5), i.e., at the point g with

0, j<k+k/2-1
g =

[t

., J>k+k/2-1
This would mean that

(5.6) Dyoo = |(Njz (p2)) " oo

with 7 := (7;)3* given by
O=m=-=T7 Thp1=-=Ty =1
and 0 = p; < -+ < pr = 1 the extrema of the Chebyshev polynomial of degree k — 1 for [0,1]. This gives

the following values for Dy, o.
k Dk:,oo IHQ Dk,oo

2 1 0
33 1.5849..
4 5 2.3219..
5 112/3  3.5443..
6 21 4.3923..
7 461/5  5.5298..
8 854/5  6.4229..
9 1836/7  7.5224..

10 3472/7  8.4399..

15 .1169E 5 13.5128..
20 .3635E 6 18.4715..
25 1193E 8 23.5075..
30 3747E 9 28.4813..
35 .1219E11 33.5053..
40 .3850E12 38.4861..
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It is striking that the first few values of Dy, o, are such simple rational numbers and that these numbers

conform so quickly to the pattern Dy oo ~ 2’“_1/\/5, as can be seen by their logarithms to the base 2. This
raises the hope that such a relation might be provable with a little effort.
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