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0. Introduction

Let ξξξξξ = (ξi)`+1
1 be a partition of the interval [a, b], i.e.,

a = ξ1, < · · · < ξ`+1 = b ,

and let
S := IPm

k,ξξξξξ := IPk,ξξξξξ ∩ C(m−1)[a, b]

denote the collection of piecewise polynomial functions of order k (i.e., of degree < k) with (interior) break-
points ξ2, . . . , ξl and in C(m−1)[a, b], i.e., satisfying m continuity conditions at each of its interior breakpoints.
We are interested in PS , the orthogonal projector onto S with respect to the ordinary inner product

(f, g) :=
∫ b

a

f(x)g(x)dx

on [a, b]. But, we are interested in PS as a map on C[a, b] or IL∞[a, b]. Specifically, we want to bound its
norm

‖PS‖∞ := sup
f

‖PSf‖∞\‖f‖∞
with respect to the max–norm

‖f‖∞ := sup
a≤x≤b

|f(x)| .

Conjecture (de Boor [2]): supξξξξξ;m ‖PS‖∞ ≤ constk(< ∞).
This conjecture has been verified for k = 1, 2, 3. The case k = 1 is, of course, trivial and the case k = 2

was first done by Ciesielski [5]. It is the purpose of this talk to survey the current status of this conjecture,
to correct a mistake in the verification of the case k = 3 in de Boor [1] and to verify the conjecture for k = 4.

For k > 4, the only results known prove boundedness of ‖PS‖∞ under some restriction on ξξξξξ and/or m.
For example,

sup
ξξξξξ;m=0

‖PS‖∞ ≤ constk

is trivial since in this case the IL2–approximation is found locally, on each interval [ξi, ξi+1] separately, and
so ‖PS‖∞ = ‖PIPk

‖∞ . It is also known (de Boor [4]) that

sup
ξξξξξ;m=1

‖PS‖∞ ≤ constk

but already the case m = 2 is open.
B. Mitiagin announced at a meeting at Kent State University in August 1979 that, for even k,

sup
ξξξξξ;m=k/2

‖PS‖∞ ≤ constk ,

but he gave no proof.
Finally, there is the result of Douglas, Dupont and Wahlbin [8] to the effect that

(0.1) sup
∆ξi/∆ξj≤c;m

‖PS‖∞ ≤ constk,c

in which the bound depends also on the global mesh ratio. This result subsumes Domsta’s [7] earlier result
for certain dyadic partitions ξξξξξ.
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1. A bound in terms of a global mesh ratio

In this section, I outline the proof of a slight strengthening of (0.1) in order to give an indication of
some of the arguments that have been used for the general problem.

Experience has shown that it usually pays to express a spline problem, particularly a linear one, in
terms of B-splines (see, e.g., de Boor [3]). These are spline functions whose support is as small as possible.
Let ttttt be a nondecreasing sequence constructed from ξξξξξ and m according to the recipe

ttttt =
(
a, . . . , a︸ ︷︷ ︸

k

, ξ2, . . . , ξ2︸ ︷︷ ︸
k−m

, . . . , ξ1, . . . , ξ1︸ ︷︷ ︸
k−m

, b, . . . , b︸ ︷︷ ︸
k

)
=: (ti)n+k

1 .

Then there is a corresponding sequence (Ni,k)n
1 of elements of S, with Ni,k depending on ti, . . . , ti+k only,

having its support in [ti, ti+k], and being positive on its support. In addition, these B-splines are normalized
to sum to one. Hence

‖
∑

αiNi,k‖∞ ≤ ‖ααααα‖∞ .

More generally, one can show (cf. de Boor [3]) that

(1.1) ‖
∑

αiκ
1/p
i Ni,k‖p ≤ ‖ααααα‖p, 1 ≤ p ≤ ∞

with
κi := k/(ti+k − ti)

and, in particular,

(1.2) ‖κiNi,k‖1 =
∫

κiNi,k = 1 .

Now consider PSf =:
∑

αj(f)Nj,k. Then

∑
j

∫
Ni,kNj,kαj(f) =

∫
Ni,kf, all i .

But, since we wish to bound ααααα(f) in terms of ‖f‖∞, we had better use the scale factors κi, since
∫

κiNi,kf ≤
‖f‖∞, by (1.2).
This gives

‖ααααα(f)‖∞ ≤ ‖A−1‖∞‖f‖∞
with

A :=
( ∫

κiNi,kNj,k

)
;

and so
‖PS‖∞ ≤ ‖A−1‖∞ .

As it turns out, it is quite hard to bound A−1 in the max-row-sum norm ‖ · ‖∞, and one therefore
wonders whether we have not replaced our original problem with a harder one. But that is not so. For, one
can show (cf. de Boor [3]) that also

(1.3) D−1
k ‖ααααα‖p ≤ ‖

∑
αiκ

1/p
i Ni,k‖p

for some positive constant Dk which depends only on k, and this implies that

(1.4) D−2
k ‖A−1‖∞ ≤ ‖PS‖∞ .

Hence, in bounding ‖PS‖ in the uniform norm, we are bounding ‖A−1‖∞ whether we want to or not.
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Now, the same kind of argument shows that

D−2
k ‖A−1

2 ‖2 ≤ ‖PS‖2 ≤ ‖A−1
2 ‖2

with

A2 :=
( ∫

κ
1/2
i Ni,kNj,kκ

1/2
j

)
= E−1/2AE1/2

and

E := diagd. . . , κi, . . .c

from which we conclude that

‖A−1
2 ‖2 ≤ D2

k .

If we now had to rely on the standard relationship between the 2–norm and the ∞–norm of a matrix, then
the order n of the matrix A would come now in to spoil the bound. But, fortunately, A is 2k–banded in the
sense that

∫
Ni,kNj,k = 0 for |i−j| ≥ 2k. This allows us to make use of Demko’s nice observation concerning

the exponential decay of the inverse of a banded matrix.
Theorem (Demko [6]). If A is r–banded and A−1 = (bij), then there exist λ ∈ [0, 1), K > 0 depending

only on r, ‖A‖ and ‖A−1‖ so that

|bij | ≤ Kλ|i−j|, all i, j .

Here, ‖A‖, ‖A−1‖ are measured in any particular p–norm. But then, the result gives a bound on ‖A−1‖p

for all p and dependent only on the numbers ‖A‖, ‖A−1‖ and r. In particular, the order of A does not matter.
In our case, ‖A2‖2 ≤ 1 by (1.1), and so we conclude that

‖A−1
2 ‖∞ ≤ constk

for some constk which depends on Dk. But then, since A = E1/2A2E
−1/2, we obtain

‖A−1‖∞ ≤ max
i,j

(κi/κj)1/2constk

and so get de Boor’s [4] strengthening

sup
κi/κj≤c;m

‖PS‖∞ ≤ constk,c

of (0.1).
This argument can also be used to give a bound on ‖PS‖∞ in terms of the local mesh ratio sup|i−j|=1 κi/κj =:

%, as long as % is sufficiently close to 1. In addition, as Güssmann [9] has recently pointed out, it gives a
bound independent of l for the specific breakpoint sequence

ξi =
(

i − 1
l

)α

, i = 1, . . . , l + 1

for [a, b] = [0, 1] and for any α ≥ 1.
But, this kind of argument has as yet not yielded a bound in terms of an arbitrary local mesh ratio, let

alone the conjectured mesh-independent bound. I therefore come now to the mesh-independent results for
low order mentioned earlier.
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2. Mesh-independent bounds for low order

For k = 1, A = 1. For k = 2, A is tridiagonal and strictly and uniformly row diagonally dominant.
Specifically,

aii − |ai,i−1| − |ai,i+1| ≥ 1/3, all i,

so that ‖A−1‖∞ ≤ 3 is immediate.
For k = 3, I published a proof mainly in response to a question from Schonefeld, then a student at

Purdue University. He had read about Ciesielski’s use of splines in the discussion of bases, and wanted to
extend that work. Already for this case, A fails to be diagonally dominant, so a different argument has to
be used.

The additional ingredient (in de Boor [1]) is the total positivity of A. This means that all minors of
A are nonnegative. Actually, only very little of this is used, namely that A−1 = (bij) is checkerboard:

(−)i+jbij ≥ 0, all i, j .

This is an immediate consequence of the total positivity of A since, by Cramer’s rule

bij = (−)i+j detA

(
1, . . . , j − 1, j + 1, . . . , n

1, . . . , i − 1, i + 1, . . . , n

)
/ detA .

But, this checkerboard behavior of A−1 can be used to get a bound on ‖A−1‖∞ as follows. Let xxxxx be any
vector for which yyyyy := Axxxxx alternates, i.e., (−)i+1yi > 0, all i. Then

|xi| = |
∑

j

bijyj | =
∑

j

|bij | |yj |

hence
‖xxxxx‖∞ = max

i

∑
j

|bij | |yj | ≥
(
max

i

∑
j

|bij |
)
min

j
|yj |

while ‖A−1‖∞ = maxi

∑
j |bij |. It follows that

(2.1) max
i,j

|xi/yj | ≥ ‖A−1‖∞

with equality iff minj |yj | = ‖yyyyy‖∞.
In the case k = 2, it is sufficient to take xi = (−)i, all i.

For then
(−)iyi = aii − ai,i−1 − ai,i+1 ≥ 1/3

and we get once again 3 ≥ ‖A−1‖∞ .

3. The case k = 3

In this case, it is sufficient to take the comparatively simple

(−)jxj =
(
1 +

(∆tj+1)2

(tj+2 − tj) (tj+3 − tj+1)
)
/2 .

Then ‖x‖∞ ≤ 1 and
yi = yi(ti−2, . . . , ti+5)

since
aij =

∫
κiNi,3Nj,3 = 0 for |i − j| ≥ 3
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and xj depends only on tj , . . . , tj+3, i.e., on the same knots on which alone Nj,k depends. We need to show
that

inf
ttttt

min
i

(−)iyi > 0,

but progress has already been made since this does not require consideration of a knot sequence ttttt of arbitrary
length but only of length 8.

In de Boor [1] I made a mistake in the formula for ai,i−1 (and in ai,i+1, by symmetry), as was pointed
out to me a year after publication by Lois Mansfield. I then corrected that mistake and went through the
subsequent estimate to find that the end result, viz.

(3.1) inf
ttttt

min
i

(−)iyi ≥ 1/30

remained unaffected. But, having once made such a mistake, how can I now be sure of having a correct
argument?

In order to gain further assurance, I went through the following steps.
For general k, the (i, j) entry of A can be computed as

(3.2)

aij =
∫

κiNi,kNj,k

=
(−)k(
2k−1

k

) (tj+k − tj)[ti, . . . , ti+k]x ⊗ [tj , . . . , tj+k]y(x − y)2k−1
+

= ck(tj+k − tj)
i+k∑
r=i

j+k∑
s=j

(tr − ts)2k−1
+

i+k∏
%=i
% 6=r

(tr − t%)
j+k∏
σ=i
σ 6=s

(ts − tσ)

.

Here

ck := (−)k/

(
2k − 1

k

)

and [ti, . . . , ti+k]xf(x, y) indicates the operation of taking the k–th divided difference at the points ti, . . . , ti+k

of the bivariate function f as a function of x for each fixed y, thus producing a function of y. Further, since

[ti, . . . , ti+k]x ⊗ [tj , . . . , tj+k]y(x − y)2k−1 = 0

while
(x − y)2k−1

+ − (y − x)2k−1
+ = (x − y)2k−1,

the result in (3.2) will be the same whether the divided difference is taken of (x − y)2k−1
+ or of (y − x)2k−1

+ .
But, when i > j, then use of (y − x)2k−1

+ will generate fewer nonzero summands in the double sum in (3.2).
With this, we now consider the specific expression

y = y(t0, . . . , t7) =
4∑

j=0

xja2j .

It is our goal to bound this expression from below in terms of t2, t3, t4, and t5 only. Since we can assume,
after a suitable translation and scaling, that, e.g., t3 = 0, t4 = 1, this would leave a problem with just two
parameters.

For this, we first consider the term x0a20. We have

a20 = c3(30)
(32)5

(30)(31)(32) · (23)(24)(25)
= −c3

(32)3

(31)(42)(52)
.
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Here and below, we use the abbreviation
(ij) := ti − tj .

In these terms, x0 = 1
2 (1 + (21)2/[(20)(31)]) ≥ 1/2, hence

20x0a20 ≥ (32)3

(31)(42)(52)
,

using the fact that
c3 = −1/10 .

This lower bound for x0a20 still involves t1, but we will get rid of it in a moment, after combining this term
with x1a21.

We have
x1 = −(1 + β)/2 with β := (32)2/[(42)(31)] .

Also,

10a21 = −(41)
{ (32)5

(12. 4) · (. 345)
+

(42)5

(123. ) · (. 345)
+

(43)5

(123. ) · (2. 45)

}

= − (32)
(52)

β − (32)3

(42)(43)(52)
+

(42)3

(43)(32)(52)
− (43)3

(42)(32)(53)
.

Here, I have used further abbreviations, such as

(12. 4) := (31)(32)(34) .

Thus

(3.3) 20(x0a20 + x1a21) ≥ (32)
(52)

β − (1 + β)
{ − (32)

(52)
β + C

}
with C independent of t1, while β increases with t1. The right side of (3.3) is convex in β, hence has a unique
minimum which Calculus identifies as the point βmin := 1

2C/ (32)
(52) − 1. But this number is bigger than the

largest value which β can take, given that t1 ≤ t2, viz., the value β t1=t2 = (32)/(42). Hence

x0a20 + x1a21 ≥ (x0a20 + x1a21) t0=−∞
t1=t2

.

Using symmetry, we conclude that

(3.4) y(t0, . . . , t7) ≥ y(−∞, t2, t2, t3, t5, t5,∞) =: ỹ(t2, t3, t4, t5) .

The various sums of products of terms of the form (ij)/(pq) which make up ỹ have the common denom-
inator

(3.5) D := (42)(53) ·
∏

2≤i<i≤5

(ji) .

With this,

(3.6)

20Dỹ = (42)(53) · (32)(52)(43)(54) · (32)2−
− (53) · (54) · [(42) + (32)]{−(32)3(42)(53)+

+ (42)4(53) − (43)4(52)}+
+ [(42)(53) + (43)2](52){(32)4(54) − (42)4(53) + (52)4(43)+

+ (43)4(52) − (53)4(42) + (54)4(32)}+
+ two more terms obtainable by symmetry .
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Now, finally, observe that ỹ is invariant under linear changes in its variables. In particular, under the linear
substitution

(3.7) t2 = −a, t3 = 0, t4 = 1, t5 = c

ỹ goes over into a rational function of just two variables
≈
y(a, c) := ỹ(−a, 0, 1, c)

whose minimum we are to determine as ∆t2 = a and ∆t4 = c vary over the nonnegative quadrant.
For this, I wrote a computer program which would generate symbolically D and 20Dỹ as polynomials

in a and c from the information (3.5)–(3.7). This produced the coefficient tables

0 1 2 3 4
0 0 0 0 0 0
1 0 1 3 3 1
2 0 3 8 7 2
3 0 3 7 5 1
4 0 1 2 1 0

0 1 2 3 4
0 0 0 0 0 0
1 0 2 5 4 1
2 0 5 8 4 2
3 0 4 4 2 1
4 0 1 2 1 0

for D and 20Dỹ, respectively, from which it is evident that

20Dỹ/D ≥ 2/3

for a, c ≥ 0. In fact, this lower bound could be improved just slightly. In any event, this proves (3.1) once
again.

4. The case k = 4

In this, the cubic case, I found by numerical experiment that the comparatively simple choice

(−)jxj = (3 + 4
(tj+3 − tj+1)2

(tj+3 − tj)(tj+4 − tj+1)
)/7, all j,

works, giving
inf
ttttt

min
i

(−)i
∑

j

xjaij ≥ 3/245

for this case. The methodical verification of this lower bound along the lines just given for the parabolic case
reduces the problem to one of minimizing a rational function of just three variables over the nonnegative
orthant. The details of this extended calculation will be given elsewhere.
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