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Preliminaries

While the material in this note is meant to be taught in a first course in Linear Algebra, it is written for
those teaching that course (rather than those taking it). Since maps play an essential role in this material,
I would assume such a course to begin with a detailed introduction to maps, to cover such items as: the
notation f : X → Y : x 7→ f(x) and the corresponding abbreviations dom f := X, tar f := Y, ran f := f(X)
for the domain, the target, and the range of the map f , the identity map idX from X to X , the composition
of maps and the fact that map composition is associative, and the basic properties: 1-1, onto, invertible.
Undergraduates often have trouble with these basic concepts, and Linear Algebra offers an ideal opportunity
to provide enough work with maps to overcome this trouble.

The discussion below further assumes as known the definition: (i) of a vector space over some field IF
(even if it is only the real field); (ii) of the coordinate spaces Fn := {(f1, f2, . . . , fn) : fj ∈ IF}, n = 0, 1, 2, . . .
and of the space IFm×n of m × n-matrices; (iii) of a linear map; and (iv) of the space L(X,Y ) of all linear
maps with domain X and target Y . It also assumes as known that the composition of linear maps is linear,
and that a linear map is 1-1 if and only if its nullspace is trivial.

Linear maps from coordinate space

Among the linear maps, those with domain one of the coordinate spaces F
n play a special role. Any

such map V ∈ L(Fn, Y ) is characterized by its columns vj := V ej , j = 1, . . . , n, in the sense that

V a = v1a1 + v2a2 + · · ·+ vnan,

with ej the jth unit vector. (Throughout, a superscript denotes a particular term in a sequence of vectors,
while a subscript denotes a particular entry in a sequence of scalars.) It is at times convenient to display the
characterizing sequence explicitly by writing [v1, v2, . . . , vn] for the linear map given by the rule

[v1, v2, . . . , vn] : Fn → Y : a 7→ v1a1 + v2a2 + · · ·+ vnan.

I call the number of columns of such V its order and denote it by #V . I also call any such map a column
map (for want of a better term).

When Y = F
m, V = [v1, v2, . . . , vn] becomes (or is represented by) the m × n-matrix with columns

v1, v2, . . . , vn. Thus, V ∈ IFm×n, and the action of V on some c ∈ F
n can be described by

(V c)i =
∑

k

vki ck =
∑

k

V (i, k)ck, all i.

The easily verifiable fact that A[v1, v2, . . . , vn] = [Av1, Av2, . . . , Avn] for any A ∈ L(X,Y ) is the basis
for the peculiar way in which we define the product of two matrices. It is at this point that it becomes
appropriate to do some matrix algebra. Of particular interest for the material below is the fact, easily
verified, that for any two compatible matrices A and B, (AB)′ = B′A′, with A′ the transpose or the
conjugate transpose of A. The only other matrix result needed is the central result from elimination that a
homogeneous linear system with more unknowns than equations has nontrivial solutions.

(1)Theorem. If A ∈ IFm×n with m < n, then nullA 6= {0}.

1



Rank

A factorization A = V Λ of A ∈ L(X,Y ) into Λ ∈ L(X,Fn) and V ∈ L(Fn, Y ) is essential for any kind of
computation with A, as we can only compute in coordinate space. We call the integer n = #V the order of
the factorization A = V Λ. The smaller the order n, the simpler the calculations. Hence the smallest possible
order is of particular interest. We call this smallest possible order the rank of A. In symbols:

(2) rankA := min{#V : A = V Λ}.

We say that A ∈ L(X,Y ) is of finite rank if it has such a factorization, since then the collection of all
such factorizations is not empty, and all have nonnegative order, therefore there is aminimal factorization,
i.e., a factorization of minimal order.

Any linear map from or to a coordinate space is of finite rank: If A ∈ L(Fn, Y ), then A = Aidn is a
(trivial) factorization, hence rankA ≤ n. Similarly, any A ∈ L(X,Fm) is of finite rank, since such a map has
the (trivial) factorization A = idmA. In particular, rankA ≤ min{m,n} for any A ∈ IFm×n. Also, with A′

the transpose or the conjugate transpose of A ∈ IFm×n, rankA′ = rankA for any A ∈ IFm×n, since A = V Λ
if and only if A′ = Λ′V ′.

(3)Theorem. The factorization A = V Λ for A ∈ L(X,Y ) is minimal if and only if V is 1-1 and ranV =
ranA.

The proof of this Theorem is given in a sequence of Lemmas of independent interest.

Proofs

(4)Lemma. If V ∈ L(Fn, Y ) is 1-1 and W ∈ L(Fm, Y ) is onto, then n ≤ m.

Proof: Since W is onto, we can find, for each column vj of V , some m-vector cj so that vj = Wcj .
This shows that V = WC, with C := [c1, c2, . . . , cn] ∈ IFm×n. If now m < n, then C would not be 1-1 (by
(1)Theorem), hence V would not be 1-1, contrary to our assumption.

(5)Corollary. If A = V Λ with the column map V 1-1 and ranV = ranA, then rankA = #V .

Proof: Since A = V Λ, we have rankA ≤ #V . On the other hand, whenever A = WM for some
column map W , then necessarily ranV = ranA ⊂ ranW , hence domV → ranW : a 7→ V a is a 1-1 column
map, therefore #V ≤ #W by (4)Lemma. Consequently, #V ≤ min{#W : A = WM} = rankA.

(6)Lemma. If A = V Λ is minimal, then V is 1-1.

Proof: If V ∈ L(Fn, Y ) is not 1-1, then its nullspace is not trivial, i.e., there is some a ∈ F
n\0 for

which V a = 0. Since a 6= 0, there must be some j so that aj 6= 0. In order to avoid some funny indexing or
reordering, assume that, in fact, an 6= 0. Since 0 = V a = v1a1 + v2a2 + · · ·+ vnan, we conclude that

vn = v1b1 + v2b2 + · · ·+ vn−1bn−1,

with b the (n− 1)-vector with entries bi := −ai/an, all i. This implies that V = V1M , with

V1 := [v1, v2, . . . , vn−1]

and M := [e1, e2, . . . , en−1, b] ∈ IF(n−1)×n, hence A = V1(MΛ) provides a factorization for A of order less
than n, showing that A = V Λ is not minimal.
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The proof establishes the following slightly stronger result of use in the construction of minimal factor-
izations.

(7)Corollary. If the column map V is not 1-1, then V = V1M , with V1 made up of all but one of the
columns of V .

Repeated application of this Corollary provides, for any V ∈ L(Fn, Y ), a factorization V = VsMs, with
Vs 1-1 and made up entirely of columns of V . The last fact implies that ranVs ⊂ ranV , hence ranVs = ranV ,
therefore V = VsMs is a minimal factorization for V , by (5)Corollary. I record this result, for later reference.

(8)Corollary. Every column map V has a minimal factorization V = VsMs, with every column of Vs also
a column of V .

At this point, all the assertions of (3)Theorem have been proved, except for the implication that, for a
minimal factorization A = V Λ, necessarily ranV = ranA. This implication is trivial in case A is onto, hence
we are entitled to use the Theorem in the sequel under this additional assumption. To complete the proof,
we need the concept of dimension.

Basis and dimension

We call any invertible linear map V ∈ L(Fn, Y ) a basis for Y , and call the n-vector V −1y the coordi-
nates of y ∈ Y with respect to the basis V .

It is customary to reserve the word ‘basis’ for the sequence v1, v2, . . . , vn of columns of V and not even
to mention the map [v1, v2, . . . , vn]. Further, it is customary to say that v1, v2, . . . , vn is linearly independent
(spanning for Y ) when V is 1-1 (onto), and to call any element of ranV a linear combination of the terms
of the sequence v1, v2, . . . , vn. The reason for this particular usage is not clear, given that the simple and
basic terms ‘1-1’, ‘onto’, ‘ranV ’ are available.

We conclude from (8)Corollary that any onto map W ∈ L(Fm, Y ) has a minimal factorization W = V Λ,
with every column of V a column of W . The factorization being minimal, V is necessarily a basis for Y ,
since V is necessarily onto, while V must be 1-1 by (6)Lemma. This proves

(9)Proposition. Every column map can be ‘thinned’ to a basis for its range.

If we follow custom and call Y finitely generated in case it is the range of a column map, then we
have

(10)Theorem. A finitely generated vector space has a basis.

The identity map idY on the vector space Y is trivially onto. Hence (3)Theorem as proved so far
provides the conclusion that idY = V Λ is minimal if and only if V is invertible, in which case necessarily
V −1 = Λ. This proves

(11)Proposition. The factorization idY = V Λ for the identity map on Y is minimal if and only if V −1 = Λ.

It follows that the number #V of columns in any basis V for Y equals the rank of idY . This number is
called the dimension of Y . In formulae:

(12) dimY := rank idY .

If, in particular, idranA = WM is minimal (i.e., if W is a basis for ranA), then A = W (MA) is a
minimal factorization for A by (3)Theorem, hence

(13)Corollary. rankA = dim ranA.

In particular,

(14) dim ranV ≤ #V

for any column map V .
Since rankA = rankA′ for any matrix A (as observed earlier), we obtain the important
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(15)Proposition. For any A ∈ IFm×n, dim ranA = dim ranA′.

Finally, I note that the proof of (3)Theorem can be completed with the aid of the important

(16)Proposition. If X ⊆ Y are two vector spaces, and dimY < ∞, then dimX ≤ dim Y , with equality if
and only if X = Y .

whose proof can be found in the next section. For, we now know (from (13)Corollary) that the minimality
of the factorization A = V Λ implies that #V = dim ranA, while dim ranV ≤ #V from (14), and A = V Λ
implies that ranA ⊂ ranV ; therefore ranA = ranV by (16).

Extending to a basis

The proof of (16) and other important results concerning dimension rely on the possibility of extending
a 1-1 column map to a basis. The basic fact needed for this is contained in the following

(17)Lemma. Let V ∈ L(Fn, Y ) and y ∈ Y . If V is 1-1, then, y 6∈ ranV if and only if [V, y] is 1-1.

Proof: Take y ∈ Y \ ranV and consider the equation V b + yc =: [V, y](b, c) = 0. If c 6= 0, then we
find that y = V (−b/c) ∈ ranV , contrary to our choice of y. Hence we must have c = 0, and therefore already
V b = 0 and therefore also b = 0 since V is 1-1, hence altogether (b, c) = 0, showing that also [V, y] is 1-1.

Conversely, if y ∈ ranV , then y = V b for some b ∈ F
n. But then [V, y](b,−1) = 0 and (b,−1) 6= 0, hence

[V, y] is not 1-1.

(18)Corollary. Every 1-1 column map into a finite-dimensional vector space can be extended to a basis
(for that space).

The proof is provided by the following Algorithm.

(19)Algorithm: Given: A ∈ L(Fn, Y ) 1-1 and W := [w1, w2, . . . , wn] ∈ L(Fm, Y ) onto.
Sought: a subsequence u1, u2, . . . , ur of w1, w2, . . . , wn for which V := [A,U ] is invertible.

Initial Step: Initialize V := A.

Loop: For j = 1, . . . , n, if wj 6∈ ranV , then set V := [V,wj ].

Output: The column map V which is a basis for Y and contains all the columns of A.

For the proof of the claim of the Algorithm, observe that, for the final V , every column of W is in
ranV by construction, hence V is onto, while, by (17)Lemma, V is 1-1.

Note that, by starting with the sole linear map A ∈ L(IF0, Y ), we recover the earlier result (9) that
every onto column map can be thinned to a basis.

The computational task of telling whether or not wj ∈ ranV is best handled by elimination. In fact,
it is usually not possible to tell whether or not wj ∈ ranV , unless one has in hand some 1-1 linear map
Λ : Y → F

m and can compute with the matrices ΛA and ΛW . With these matrices in hand, one would
apply elimination to the matrix

B := Λ[A,W ]

and thereby obtain a classification of the unknowns into bound and free. The columns of B corresponding
to bound unknowns provide a basis for ranB. Since Λ is 1-1, the corresponding columns of [A,W ] provide a
basis for ran[A,W ] = Y . Since elimination picks an unknown as bound if and only if its column is not in the
range of the preceding columns, and since A is 1-1, it follows that, in particular, A is part of the resulting
basis for Y .
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Here, finally, is the proof of (16)Proposition. Consider all possible 1-1 column maps V to X . There is
at least one, viz. the trivial map IF0 → X which maps the sole element of IF0 to 0. Further, #V ≤ dimY
from (4)Lemma, since X ⊆ Y . Therefore there is some 1-1 column map V to X with #V as large as
possible. By (17)Lemma, ranV = X for such maximal V , i.e., such V is a basis for X . In particular,
dimX = #V ≤ dimY .

If now dimX = dimY , then c 7→ V c is also maximally 1-1 when considered as a map into Y , hence
necessarily a basis for Y and so, in particular, X = Y .

As an illustration of the (also notational) ease which the proposed approach provides, here are two more
basic results concerning dimensions.

(20)Theorem. For every linear map A, dimdomA = dim ranA+ dimnullA.

Proof: Start with a basis U for nullA and use (18)Corollary to extend it to a basis V := [U,W ]
for domA. Then AV = A[U,W ] = [AV,AW ] = [0, AW ], hence ranA = ranAW . Also, AW is 1-1:
for, if AWc = 0, then Wc ∈ nullA, hence Wc = Ud for some d, therefore [U,W ](−d, c) = 0, hence
(−d, c) = 0 since [U,W ] is a basis, therefore, finally, c = 0. It follows that AW is a basis for ranA, therefore
dim ranA = #AW = #W = #V −#U = dimdomA− dimnullA.

(21)Theorem. If X,Y are vector spaces and X is finite-dimensional, then dimX = dimY if and only if
there exists an invertible A ∈ L(X,Y ).

Proof: Let V , W be a basis for X , Y , respectively. If dimX = n := dim Y , then domV = domW
and WV −1 is an invertible linear map from X to Y . If, conversely, A ∈ L(X,Y ) is invertible, then so is the
column map AV (as a map to Y ), hence dimY = #AV = #V = dimX .

Discussion

Some (e.g., Hans Schneider) would prefer not to use elimination, particularly in the proof of (4)Lemma.
It is certainly possible to prove (4)Lemma by first proving (17), then use an inductive argument (see, e.g.,
[SB; proof of (3.4.4) Theorem]) to prove (4) from the consequence of (17) that if U is 1-1 and [U,W ] is onto
but not 1-1, then one may construct W1 by dropping some column(s) from W and still have [U,W1] onto. I
prefer not to go this route because it is lengthy, its details are very close to doing elimination, yet I would
be missing the opportunity to impress upon the students the fundamental character of (1)Theorem.

The above definition of ‘basis’ for the vector space Y as any invertible column map to Y fails to cover
infinite-dimensional vector spaces. This was done above only for the sake of simplicity. By enlarging the
notion of ‘coordinate space’ in the customary way to include also the spaces IFT

0 of all finitely supported
scalar-valued maps on some arbitrary set T (with pointwise addition and multiplication by a scalar), the
general case is covered. In fact, it is often helpful to admit such coordinate spaces even with a finite T
since, in many practical situations, there is often no natural way to order a given basis. The space of all
polynomials of degree ≤ k in several variables provides a ready illustration.

It is possible to stress the ideas of duality by studying in just as much detail the second factor in a
factorization A = V Λ. Such a map Λ ∈ L(X,Fn) is characterized by an n-sequence of linear functionals on
X . If also X is a coordinate space, this corresponds to looking at the matrix Λ in terms of its rows rather
than its columns.

Finally, the heavy use of factorizations in the above development gives the student an early taste of
what is to come, as, in one view, the task of an Applied Linear Algebra course is to teach the student the
use of (matrix) factorizations (such as LU, QR, SVD, similarity, and congruence).
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