
UNIVERSITY OF WISCONSIN-MADISON
COMPUTER SCIENCES DEPARTMENT

Computational aspects of multivariate polynomial interpolation:
Indexing the coefficients

Carl de Boor1

January 1999

ABSTRACT

An algorithm is derived for generating the information needed to pass efficiently be-
tween multiindices of neighboring degrees, of use in the construction and evaluation of
interpolating polynomials and in the construction of good bases for polynomial ideals.

short title: Indexing the coefficients of multivariate polynomials

AMS (MOS) Subject Classifications: primary 41A05, 41A10, 41A63, 65D05, 65D15

Key Words: polynomials, multivariate, evaluation, differentiation

Authors’ affiliation and address:
Computer Sciences Department
University of Wisconsin-Madison
1210 West Dayton St.
Madison WI 53706

1 supported by the United States Army under Contracts No. DAAH04-95-1-0089 and
DAAG55-98-1-0443, and by the National Science Foundation under Grant No. DMS-
9626319.

Computational aspects of multivariate polynomial interpolation:
Indexing the coefficients

Carl de Boor

1. Introduction

In dealing with d-variate polynomials, in power form or in the related Bernstein-Bézier
form, one has to store the coefficients in some linear order, hence needs a total ordering of
the set ZZd

+ of multi-indices with d entries, i.e., an invertible map

N : ZZd
+ → IN.

With the standard abbreviation

|α| := ‖α‖1 :=
∑

i

|α(i)|, α ∈ ZZd
+,

we follow custom and impose on such N the condition

(1) |α| < |β| =⇒ N(α) < N(β).

Beyond that, there seem to be no further conditions, other than the more detailed condition

N(α) < N(β) =⇒ N(α + γ) < N(β + γ), all γ ∈ ZZd
+

(making it a ‘monomial ordering’; see, e.g., [CLO: p53ff]), and the nebulous one that N
should make calculations ‘easy’.

One such calculation is the evaluation of the (normalized) power form,

p(x) =
∑

α∈ZZd
+

c(α)xα
(|α|

α

)
, with

(|α|
α

)
:= |α|!/

∏
i

α(i)!,

using (symmetric) Nested Multiplication aka Horner’s method. With

ιi := (0, . . . , 0︸ ︷︷ ︸
i−1 terms

, 1, 0, . . .)

the ith coordinate vector, and assuming the polynomial to have (total) degree ≤ k, the
calculation

v(α) ← c(α), |α| = k,

for j = k:−1:1

v(α) ← c(α) +
d∑

i=1

v(α + ιi)x(i), |α| = j − 1,

1

produces, in v(0), the number p(x), as one easily verifies, using the observation that, in
the resulting explicit expression for v(0), the coefficient c(α) appears indeed only with the
factor xa and exactly as many times as there are sequences (0 = β0, β1, . . . , β|α| = α) with
βj+1 − βj ∈ {ι1, . . . , ιd}, i.e., exactly

(|α|
α

)
times.

Assuming c(α) to be the N(α)th entry in the vector used to store the coefficients
and v(α) stored analogously, one needs in this calculation, for given N(α), easy access
to the vector (N(α + ιi) : i = 1:d). Such easy access is also needed when multiplying
a homogeneous polynomial by the d monomials, ()ιi , all i, of use in the construction of
the least interpolant [BR] and of good bases for polynomial ideals. It is the purpose of
this note to describe such easy access for the graded lexicographic (grlex) ordering and
thereby fill the gap left in this regard in [BR].

2. Notation

Here and below, x(i) denotes the ith component of x ∈ IRd, all i. Also, MATLAB’s colon
notation is used, according to which, for any integers a and b,

a:b := (a, a + 1, . . . , b),

with the sequence empty if a > b. If, more generally, a, s, b are real numbers, then

a:s:b = (a, a + s, a + 2s, . . . , a + ms),

with m the natural number for which a+ms lies between a and b, while a+(m+1)s does
not. Also, if needed for clarity, a sequence is, at times, delimited by brackets rather than
parentheses (as is done in MATLAB). For example,

[i:d, 1:(i− 1)] := (i, i + 1, . . . , d, 1, 2, . . . , i− 1).

Such use of brackets is particularly helpful when using MATLAB’s convenient notation
A(b, c) for the matrix whose (i, j) entry is the number A(b(i), c(j)), all i, j. To be sure,
A(b, c) is of order #b×#c, with #a the number of entries in a sequence a. Also, if b and/or
c here are replaced by :, then all the rows and/or all the columns of A are to be taken (in
order). This MATLAB notation is particularly handy when dealing with permutations. Let a
be an n-vector and let p be (an n-vector containing) a permutation of order n. Then a(p)
is the n-vector that results from permuting the entries of a according to the permutation
(contained in) p. For that reason, the MATLAB statement

a(p) = b;

puts into a the entries of b permuted according to the inverse of the permutation (contained
in) p.

Finally, we use #A (rather than |A|) to denote the cardinality of the set A.

2

3. A formula for N(α)

Let
Aj := Aj(d) := {α ∈ ZZd

+ : |α| = j},
and

A≤k := A≤k(d) :=
⋃
j≤k

Aj(d).

Then condition (1) is equivalent to having

N(α) ≤ #A≤|α|(d), α ∈ ZZd
+.

Equivalently, N is of the form

N(α) =: #A<|α|(d) + n(α),

with
n(Aj) = {1, 2, . . . , #Aj}, j = 0, 1, 2,

The ‘standard’ choice for n on Aj is the reverse lexicographic ordering. For certain
reasons, I prefer here to use the lexicographic ordering instead. For this choice, consider
now the following:

Problem. Give a formula for n(α).

For its solution, let
Aj = Aj,d

be the matrix whose rows contain the elements of Aj(d) in lexicographic order. E.g., for
d = 3, the first four Aj are:

A0 = [0 0 0] , A1 =


 0 0 1

0 1 0
1 0 0


 , A2 =




0 0 2
0 1 1
0 2 0
1 0 1
1 1 0
2 0 0


 , A3 =




0 0 3
0 1 2
0 2 1
0 3 0
1 0 2
1 1 1
1 2 0
2 0 1
2 1 0
3 0 0




.

Now note that the rows of Aj that have i as their first entry have the elements of Aj−i(d−1)
in lexicographic order in their remaining d− 1 entries. In MATLAB terms,

Aj,d(find(Aj,d(:, 1)==i), 2:d) equals Aj−i,d−1, i = 0:j.

3

This says that the last d− 1 columns of Aj,d contain, in order, in their rows the elements
of Aj(d− 1), Aj−1(d− 1), . . . , A0(d− 1), or, in MATLAB terms,

A(:, 2:d) equals [Aj,d−1; Aj−1,d−1; . . . ; A0,d−1].

With α(2:d) := (α(2), . . . , α(d)), it follows that

n(α) =
∑

0≤i<α(1)

#A|α|−i(d− 1) + n(α(2:d)).

Therefore, by induction,

n(α) =
d∑

r=1

∑
0≤i<α(r)

#A|α(r:d)|−i(d− r).

Since
#Aj(d) =

(
j+d−1

j

)
,

we could now express this double sum in terms of binomial coefficients. But we refrain
from doing so since the resulting formula is of limited use: it provides n(α) as a function
of α, while we really would like n(α + ιi) as a function of N(α).

4. The map N(α) 7→ n(α + ιi)

In the terms introduced, the practical problem of interest mentioned at the outset is
the following:

Problem. Describe the map

N(α) 7→ (n(α + ιi) : i = 1:d).

We propose to solve this problem here in the sense of providing an algorithm for the
calculation of the first few (however many) columns of the d-rowed matrix M for which

(2) M(i, N(α)) = n(α + ιi), i = 1:d, α ∈ ZZd
+.

For this, we now describe a process of generating the matrix Aj+1 = Aj+1,d (whose
rows contain the elements of Aj+1(d) in lexicographic order) from the matrix Aj . This
time, we block the matrix Aj in a different way. We notice that

Aj(1:#Aj(i), (d− i + 1):d) equals Aj,i, i = 1:d.

Further, by adding 1 to all the entries of column d + 1 − i of the corresponding segment
Aj(1:#Aj(i), :) of Aj (i.e., the leftmost column in this block that is not entirely zero),
we obtain a segment of Aj+1. Hence, if we now concatenate these modified matrices in

4

this order, we obtain a matrix containing
∑d

i=1 #Aj(i) = #Aj+1(d) distinct elements of
Aj+1(d) in lexicographic order, hence this must be Aj+1.

This has two consequences of interest here.
(i) If mj is the last column of Aj , then the last column of Aj+1 is the sequence

(3) mj+1 = (j + 1, mj(1:#Aj(2)), mj(1:#Aj(3)), . . . , mj).

(ii) Since adding 1 to the first column of Aj , as we do in the last step of the above
process, corresponds to adding ι1 to each of the rows of Aj , we know now that, for |α| = j
and with

Mj(:, n(α)) := M(:, N(α)), |α| = j,

necessarily

(4) Mj(1, :) = (#Aj+1(d)−#Aj(d)) + (1:#Aj(d)).

From this, we obtain Mj(i, :) for i > 1, by considering the effect of rotating the columns
of Aj , i.e., by considering the matrix Aj(:, [2:d, 1]) obtained from Aj by moving the first
column all the way to the right, to become the last column. The rows of this new matrix
still comprise all the elements of Aj(d), but in some new order. Hence there exists exactly
one permutation, call it qj , that restores lexicographic order, i.e., for which

Aj(qj , [2:d, 1]) = Aj .

Therefore, by induction,

(5) Aj(qi−1
j , [i:d, 1:(i− 1)]) = Aj , i = 1:d,

with qk
j the kth power of the permutation qj , all k. Hence, also

Aj+1(qi−1
j+1, [i:d, 1:(i− 1)]) = Aj+1, i = 1:d.

Therefore, by (4), on adding ι1 to row r of the matrix Aj(qi−1
j , [i:d, 1:(i − 1)]) = Aj ,

we obtain row Mj(1, r) of the matrix Aj+1(qi−1
j+1, [i:d, 1:(i− 1)]) = Aj+1. In other words, by

adding ιi to row qi−1
j (r) of Aj , we obtain row qi−1

j+1(Mj(1, r)) of Aj+1. In formula,

(6) Mj(i, qi−1
j) = qi−1

j+1(Mj(i, :)), i = 1:d.

It remains to construct qj . For this, assume that pj is the permutation that puts the
last column of Aj =: Aj into increasing order with the least number of interchanges, as
would be (contained in) the vector p generated by the MATLAB statement

[ignore,p] = sort(Aj(:,d))

5

and consider the matrix B := Aj(pj , :). Then the last column of B is in increasing order.
Further, since pj fails to reorder any two rows with the same entry in column d, each of
the j + 1 submatrices

B(find(B(:, d)==i), [1:(d− 1)]), i = 0:j,

is in lexicographic order (given that Aj is in lexicographic order, by assumption). It follows
that B(:, [d, 1:(d− 1)]) is in lexicographic order. Since the rows of B comprise the elements
of Aj , it follows that

Aj(pj , [d, 1:(d− 1)]) = Aj ,

or, equivalently,

(7) Aj(p−1
j , [2:d, 1]) = Aj ,

with p−1
j the inverse of the permutation pj . In other words,

qj = p−1
j .

In particular, with p= pj , for any vector b of length #Aj(d), the vector b(qj) can be
obtained by the MATLAB statement

b(p) = b

i.e., without having to generate the vector q= qj explicitly (as could be done by the
command [ignore,q] = sort(p)).

We have proved the following

Proposition. For a ∈ ZZd
+, let N(α) =: #A|α|−1(d) + n(α) be its position in the grlex

order, i.e., the unique linear order N : ZZd
+ → IN that satisfies (1) and is lexicographic

within each set Aj(d) := {α ∈ ZZd
+ : |α| = j}, j = 0, 1,

Then
n(α + ιi) = M|α|(i, n(α)), α ∈ ZZd

+, i = 1:d,

with (see (4))
Mj(1, :) = (#Aj+1(d)−#Aj(d)) + (1:#Aj(d)),

and (see (6))
Mj(i, qi−1

j) = qi−1
j+1(Mj(i, :)), i = 2:d,

and qj the inverse of the permutation pj that puts the vector mj into increasing order with
the least number of interchanges, and the vector mj obtainable inductively by m0 = (0) and
(see (3))

mj+1 = (j + 1, mj(1:#Aj(2)), mj(1:#Aj(3)), . . . , mj), j = 0, 1,

The matrix Aj can be obtained from the vector mj and the permutation pj by the assign-
ments:

Aj(:, d) ← mj ,

Aj(pj , i− 1) ← Aj(:, i), i = d:−1:2.

6

5. Algorithm for generating Mj inductively

The resulting algorithm for generating Mj inductively is quite simple, at least in MAT-
LAB.

Assume the following items available:
(i) The vector m := mj containing the last column of the matrix Aj .
(ii) The vector p := pj containing the permutation that puts mj into increasing order (as

could have been obtained from m by the MATLAB command [ignore,p] = sort(m)).
(iii) The vector blaises containing the sequence

(#Aj(i) : i = 1:d) = (
(
j+i−1

j

)
: i = 1:d).

Then the following MATLAB script will produce Mj := Mj and update m, p, and blaises
in the process.

d = length(blaises); mp1 = blaises(2);
for i=2:d

mp1 = [mp1 m(1:blaises(i))];
end

[ignore,pp1] = sort(mp1);
nAjd = blaises(d); blaises = cumsum(blaises);
rangej = (blaises(d)-nAjd) + [1:nAjd];

Mj = zeros(d,nAjd); next = 1:blaises(d);
for i=1:d

Mj(i,:) = next(rangej); Mj(:,p) = Mj; next(pp1) = next;
end

6. The normalized shifted power form

The above algorithm is used in [B], a package of m-files for multivariate polynomial
work, to generate the appropriate initial segment of the matrix M as a part of the (normal-
ized shifted) power form of a d-variate polynomial.

If the polynomial is of degree k, then M(:, 1:#A<k(d)) is so generated and carried
along with the coefficient array coefs, of order df ×#A≤k, with df the dimension of the
target space of the polynomial. (Even if one only deals with scalar-valued polynomials,
it is very convenient in the multivariate context to be able to accommodate vector-valued
polynomials, as one is likely to have to deal with gradients, Hessians, and the like.) In
addition, the vector dimPjd, containing the sequence

(#A≤j(d) : j = −1:k),

7

is part of that form, as is the vector center, containing a point in IRd chosen somewhere
in the middle of the domain on which the polynomial p represented is to be considered.

In these terms,

p(x) =
∑
|α|≤k

coefs(:, N(α))
(|α|

α

)
(x− center)α.

Hence, for given x, the value p(x) can be obtained, as v(:,1), from v generated by
the following MATLAB script:

v = coefs; xmc = x - center;
for j=k:-1:1

rangej = dimPjd(j)+1:dimPjd(j+1);
for i=1:d

v(:,rangej) = v(:,rangej) + xmc(i)*v(:,dimPjd(j+1)+M(i,rangej));
end

end

To be sure, the inner loop can be avoided by use of MATLAB commands reshape and sum
or permute; see mpval in [B].

As another example, consider the construction of the directional derivative of the
above polynomial, in the direction y. We have

Dyp(x) =
∑
|α|<k

dcoefs(:, N(α))
(|α|

α

)
(x− center)α,

with the coefficient array dcoefs given by

(8) dcoefs(:, N(α)) = (|α|+ 1)
d∑

i=1

y(i)coefs(:, N(α + ιi)), α ∈ ZZd
+,

hence obtained in the following MATLAB script:

dcoefs = zeros(df,dimPjd(k+1));
for j=1:k

rangej = dimPjd(j)+1:dimPjd(j+1);
for i=1:d

dcoefs(:,rangej) = dcoefs(:,rangej) + ...
j*y(i)*coefs(:,dimPjd(j+1)+M(i,rangej));

end
end

Again, the inner loop can be avoided by use of reshape and sum or permute; see mpder
and mpdir in [B].

8

7. The plain (shifted) power form

To be sure, the symmetric nested multiplication algorithm used above is not the most
efficient way to evaluate a polynomial in power form. Since all but one of its coefficients
are to be multiplied by some power of x, with the resulting factors in general different from
coefficient to coefficient, the minimum number of adds and of multiplies needed is each at
least as big as one less than the number of terms in the form. Moreover, that lower bound
is attained by plain (i.e., asymmetric) nested multiplication,

v(α) ← c(α), |α| ≤ k,

for j = k:−1:1
for i = 1:d
for α(1) = · · · = α(i− 1) = 0 < α(i), |α| = j,

v(α− ιi) ← v(α− ιi) + x(i)v(α)

which produces, in v(0), the number

(9) p(x) :=
∑
|α|≤k

c(α)xα,

i.e., the value at x of p from its plain power form. Note that this calculation is easy for
the ordering N since, as used earlier, Aj+1 is the concatenation, in order, of the segments

Aj(1:#Aj(i), (d− i + 1):d)

after 1 has been added to all the entries of its (d + 1 − i)th column, i = 1:d, hence the
inner assignment becomes

v(dim Πj−2(d) + [1:#Aj−1(i)]) ← v(dimΠj−2(d) + [1:#Aj−1(i)]) +
x(d + 1− i)v(dimΠj−1(d) + [#Aj(i− 1)+1 : #Aj(i)]).

The sequences
blaise(:, j + 1) := (#Aj(i) : i = 1:d), j = 0:k

needed here would be carried along as part of the plain (shifted) power form.

The normalized (shifted) power form would be at a disadvantage here since, for it,
the initial assignment here would have to be changed to

v(α) ← c(α)
(|α|

α

)
, |α| ≤ k,

thus doubling the multiplications needed and requiring the vector

b := (
(|α|

α

)
: |α| ≤ k).

9

To be sure, that vector b is easily generated with the aid of the matrix M and the
vector dimPjd used earlier, as in the following MATLAB script:

b = zeros(1,dimPjd(end)); b(1) = 1;
for j=1:k

range = dimPjd(j)+1:dimPjd(j+1); bj1 = b(range);
for i=1:d

temp = dimPjd(j+1)+M(i,range);
b(temp) = b(temp) + bj1;

end
end

But, why bother with the normalized power form at all, when the plain power form
is cheaper to evaluate? Aside from the satisfaction of having results that are independent
of the particular ordering of the independent variables (though some ordering will occur
in any calculation on a serial computer), the symmetry becomes essential when working
with piecewise polynomials, using the closely related Bernstein-Bézier form.

Indeed, in this form, a polynomial of degree ≤ k is written

p(x) =
∑
|α|=k

ξ(x)α
(|α|

α

)
c(α),

with ξ(x) the affine or barycentric coordinates of x with respect to some affinely indepen-
dent (d + 1)-set V , i.e.,

x =
∑
v∈V

ξv(x)v, with
∑
v∈V

ξv(x) = 1,

and, correspondingly, α = (α(v) : v ∈ V) ∈ ZZd+1
+ . In other words, it is in the normalized

power form of a polynomial in d + 1 variables.
The normalization is also handy, as we saw earlier, in the construction of a directional

derivative. For the plain power form, the corresponding formula is

Dyp(x) =
∑
|α|<k

dcoefs(:, N(α))(x− center)α,

with the coefficient array dcoefs given by

(10) dcoefs(:, N(α)) =
d∑

i=1

(α(i) + 1)y(i)coefs(:, N(α + ιi)), α ∈ ZZd
+.

Offhand, we now need, in addition to M, the inverse map, N(α) 7→ α, e.g., the matrices
Aj , j = 1:(k − 1), and the Proposition suggests a particular way for their generation. The
alternative is to carry along the vector b, in order to normalize, differentiate the normal-
ized form, then unnormalize. This requires (roughly) two additional multiplications per
coefficient, but replaces the d multiplications per coefficient in (10) by one multiplication
per coefficient in (8).

10

8. List of m-files presently available in [B]

Here, at the editors’ request, is a brief listing of the m-files for work with multivariate
polynomials presently available in [B]. By the time you read this, the actual list may well
be more extensive. No claim is made of particular efficiency.

mp2fm(mp) converts between the normalized and the plain power forms.

mpapi(t,f,tol,center) constructs the least interpolant (in normalized power form,
optionally centered at the specified center) to the given data (t(:, i), f(:, i)), all i, with
tol an optional value for the relative tolerance used during Gauss elimination (by degrees)
to determine whether a proposed pivot element is zero.

mpbrk(mp,part) supplies parts of the multivariate polynomial in mp.

mpcov(mp,A) makes the linear change of variables x 7→ Ax.

mpder(mp,X) provides the derivative (
∏

x∈X Dx)p of the multivariate polynomial p
in mp.

mpdir(mp,directions) provides the directional derivative in all the directions speci-
fied by columns of the matrix directions. For example, if p is the d-variate m-vector-valued
polynomial described by mp, and x is some point in its domain, then

reshape(mpval(mpdir(mp, eye(d)), x), m, d)

is the Jacobian of that function at that point.

mpmak(coefs,d,k,center,blaise,mm) puts together the normalized power form (cen-
tered at center, default is the origin) of the d-variate k-th degree polynomial whose nor-
malized power coefficients are given by the array coefs. Supplying the combinatorial and
indexing information blaise and mm obviates the need to generate that information.

mpnext(blaises,mp) is used in the construction of polynomial forms.

mpshft(mp,newcenter) shifts the polynomial form to the given newcenter.

mptest is a script file containing various tests of these m-files.

mpval(p,x) provides the value(s) at (the points provided by the columns of) x for
the polynomial specified by p.

dcube(d) provides the corners of the d-cube, needed in mptest.
Thomas Grandine of Boeing has written a C version of least interpolation that covers

arbitrary interpolation conditions. His code suite, called MVP, is available, via email or over
the web, from netlib.

11

9. One other application

The map N(α) 7→ n(α + ιi) is also handy for generating the polynomials

pi : x 7→ x(i)p(x), i = 1:d,

from a given polynomial p, as is needed in the construction of good generating sets for
polynomial ideals. Indeed, with

p =
∑
α

c(α)xα,

we have
pi =

∑
α

c(α)xα+ιi =
∑

β

ci(β)xβ,

with

ci(β) :=
{

c(β − ιi), β − ιi ∈ ZZd
+,

0, otherwise.

Hence, if coefs is the sequence containing the coefficients c according to the grlex ordering,
and the matrix M from (2), as well as the vector blaise(d,:) containing the sequence
(#Aj−1(d) : j = 1:k + 1) mentioned earlier, are available, then

cb = cumsum(blaise(d,:));
addon = zeros(1,cb(end));
addon(1+cb(1:end-1)) = blaise(d,1:end-1);
addon = cumsum(addon);
coefsi(M(i,:)+addon) = coefs;

provides the correspondingly ordered sequence of coefficients for pi (assuming that coefsi
has been initialized as a zero vector of the appropriate length).

In fact, it might be worthwhile to carry the vector addon as part of the power form
since it gives the map

N(α) 7→ N(α + ιi) = addon(N(α)) + M(i, N(α)).

References
[B] C. de Boor, A package of m-files for work with multivariate polynomials, available by

anonymous ftp from ftp.cs.wisc.edu/Approx
[BR] C. de Boor and A. Ron, Computational aspects of polynomial interpolation in several

variables. Math. Comp. 58(1992), 705–727.
[CLO] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms. Springer-Verlag,

Heidelberg, 1992.

12

