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Convergence of cubic spline interpolation with the not-a-knot condition

Carl de Boor

The cubic spline interpolant to a given function agrees with that function at the knots
t1 < · · · < tn of the spline; its complete specification requires two additional conditions.
Originally, the slope at the end points t1 and tn was used, giving the complete spline
interpolant. But, in the absence of such information, one has to try something else. One
proposal is the not-a-knot condition [B3: Ch. IV] in which the third derivative of Pg
is made continuous at t2 and at tn−1. In effect, these next-to-boundary knots are not
knots. But, whereas the convergence of complete spline interpolation has been established
in various ways, there doesn’t seem to be a proof of the convergence of not-a-knot cubic
spline interpolation in the literature (except for [SV] in which it appears as a special case
but is only treated for a uniform mesh).

The argument here follows the standard path (see [B1], [B2]): One considers the
derived projector P ′′ obtained from P by the rule

(1) P ′′D2g := D2(Pg)

and shows it to be bounded in the uniform norm independently of the mesh, i.e., one shows
that

(2) M := sup t‖P
′′‖ < ∞

with
‖P ′′‖ := sup f‖P

′′f‖/‖f‖

and
‖f‖ := ‖f‖∞ := sup

t1≤x≤tn

|f(x)|.

Since P ′′ is a linear projector with range

S := $2,s,

i.e., with range the span of the linear B-splines on the knot sequence

s := (si)
m+2
1 := (t1, t1, t3, t4, . . . , tn−3, tn−2, tn, tn), hence m := n − 2,

this implies that

‖D2(g − Pg)‖ = ‖D2g − P ′′(D2g)‖ ≤ ‖1 − P ′′‖ dist (D2g, S) ≤ (1 + M)ωD2g(|s|)

with ωf the modulus of continuity of f (on [t1, tn]) and

|s| := max i∆si.

Consequently,
‖g − Pg‖ ≤

(

(1 + M)|t|2/8
) (

|s|2/8
)

‖D4g‖,
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using the fact that Pg agrees with g at t and using the standard estimate for dist (D2g, S)
in case D2(D2g) is bounded.

This leaves the hard part of the argument, namely a proof of (2), but here, too, the
approach is standard, as follows.

Since Pg agrees with g at t, P ′′D2g agrees with D2g at

λi :=

∫

Mi · , i = 1, . . . , m,

with Mi := Mi,2,t the linear B-splines for the knot sequence t (and normalized to have
∫

Mi = 1). This follows from the fact that

2![t1, ti+1, ti+2]g =

∫

Mi(x)D2g(x) dx.

Hence, with Ni := Ni,2,s the linear B-splines for the knot sequence s (and normalized to
sum to 1), and f := D2g, we obtain P ′′f in the form

P ′′f =:
∑

ai Ni,

where a is the unique solution of the linear system

(3) Aa = (λif)

with

(4) A :=
(

∫

MiNj

)

.

Consequently,

‖P ′′f‖ = ‖a‖∞ ≤ ‖A−1‖∞ max i|

∫

Mif | ≤ ‖A−1‖∞‖f‖∞.

This shows that

(5) ‖P ′′‖ = ‖A−1‖∞

and so reduces the proof of (2) to finding a uniform lower bound for A.
Since A is totally positive, a lower bound for A is obtained from any vector x for

which
d := min j (−)j(Ax)j > 0.

For, the total positivity of A implies (by Cramer’s Rule) that its inverse is checkerboard,
i.e.,

(−)i+jA−1(i, j) > 0.
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Therefore,

|x(i)| = |
∑

A−1(i, j)(Ax)j| =
∑

|A−1(i.j)|(−)j(Ax)j ≥
∑

|A−1(i, j)| d

hence
‖x‖∞ = max i|xi| ≥ ‖A−1‖∞ d

or

(6) ‖A−1‖∞ ≤ ‖x‖∞/d.

The matrix 3A is tridiagonal, with typical row

∆si/(si+2 − si), 2, ∆si+1/(si+2 − si), i = 3, . . . , m − 2,

and only the first two and last two rows deviate from this. Here are the first two rows:

1 + (∆t2)/(s3 − s1), 2 − (∆t2)/(s3 − s1)

(∆t2)
2

(s3 − s1)(t4 − t2)
,

1

(t4 − t2)
[
2(∆t2)

2 + 3∆t2∆t1
(s3 − s1)

+ 2∆t3], ∆s3/(t4 − t2)

The last two rows can be obtained from this by the appropriate change in variables. The
typical row of 3A suggests the vector x := (−1, 1,−1, 1, . . .) as suitable since this gives

b := 3Ax = (b1, b2,−1, 1,−1, 1, . . . , bm−1, bm),

i.e., an appropriate result except, perhaps, for the first two and last two components. One
can check that, as t2 varies in the interval [s1, s3], the first component of b becomes positive
and this destroys the desired alternation. This can be helped, though, by choosing x1 and
x2 in dependence on t2. Specifically, I choose x in the form

x = (x1, x2,−1, 1,−1, 1, . . .)

so that
b = (−1, 1, b3, 1,−1, 1, . . .),

with the analogous happening at the other end. This requires that m > 4, to avoid
destructive interference of the machinations on one end with those at the other. With this
assumption, though, it is sufficient to run through the details for the left end only. This
means that I solve the linear system

A(1, 1)x1 + A(1, 2)x2 = −1

A(2, 1)x1 + A(2, 2)x2 = 1 − A(2, 3) ∗ (−1)

Since the system is invariant under a linear change in the independent variable, I normalize
the situation to one where

s1 = 0, s3 = 1
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and define
k := ∆t2, h := ∆s3.

This means that I am interested in the range k ∈ [0, 1], h ≥ 0. In these terms, the system
reads

[

1 + k 2 − k
k2 3k − k2 + 2h

]

x = (−1, k + 2h).

Its solution is

x = (−5k + 2k2 − 6h + 2hk, k + 2k2 + 2h + 2hk)/D,

with

D := (3k + 2h + 2hk) ≥ 0.

Now observe that, for (k, h) ∈ [0, 1]× IR+,

x1 − (−3) = (4k + 2k2 + 8hk)/D ≥ 0 with equality only if k = 0,

−1 − x1 = 2(1 − k)(k + 2h)/D ≥ 0 with equality only if k = 1.

Finally,

x2 = 1 − 2k(1 − k)/D ≤ 1 with equality only if k = 0 or 1.

I conclude that x1 ∈ [−3,−1] and x2 ∈ [2/3, 1], hence

‖x‖∞ ≤ 3.

Also, b3 ≤ −1, since x2 ≤ 1, while bi = (−)i otherwise, hence

3d := min i(−)i3bi ≥ 1.

This shows that

(7) ‖A−1‖∞ ≤ 9

independently of t (as long as n ≥ 6).

Remarks (i) As t2 → t1 and tn−1 → tn, not-a-knot cubic spline interpolation
reduces to complete cubic spline interpolation, hence P ′′ becomes least-squares approxi-
mation from $2,t. The above argument then reduces to the standard one. In particular,
the computed x is just the alternating vector (−1, 1,−1, 1, . . .) and the resulting bound is
the customary one: ‖A−1‖∞ = 3.

(ii) It may be possible to carry out the argument by perturbation, starting off with
the known stability of P ′′ for complete cubic spline interpolation and showing that the
change in the side conditions to the not-a-knot conditions is gentle enough (at least for
large n) to change ‖P ′′‖ by a bounded amount.
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(iii) When I wrote this note in August of 1984, I wrote that “It should be possible to
show the boundedness, independently of t, of the derived linear projector P ′, given by the
rule

P ′(Dg) := D(Pg).

But the argument via total positivity would be a bit messier.’ In the meantime, R.K.
Beatson, who had earlier brought my attention to the fact that there did not seem to be
a convergence proof for spline interpolation with the not-a-knot condition, has indepen-
dently studied this question and has shown that, strictly speaking, P ′ is not boundable
independent of the mesh. The difficulty lies in the first and last data interval. If one
measures the size of P ′f by the number

‖P ′f‖′ := sup
t2≤t≤tn−1

|P ′f(t)|,

then he obtains a mesh-independent bound for ‖P ′‖ := sup f‖P
′f‖′/‖f‖. See Beatson’s

forthcoming paper “On the convergence of some cubic spline interpolation schemes”, ms.,
Feb. 85, Mathematics, University of Connecticut, Storrs CN 06268.

Further remarks (1986) Beatson’s paper has meanwhile appeared; see [Be].

Further remarks (20 sep 95) Since the matrix in question here is tridiagonal,
use of the alternating vector x = (−1, 1,−1, 1, . . .) is equivalent to using the diagonal
dominance of the matrix for purposes of a bound on its inverse. Use of the modified vector
x = (x1, x2,−1, 1, . . .) amounts to postmultiplication by an invertible diagonal matrix
followed by an argument based on diagonal dominance, hence still needs no reference to
total positivity.

Also, Donald Kershaw has recently pointed out to me that he proposes the not-a-knot
condition in [K], though with a rather different motivation; the fact that it is actually the
not-a-knot condition is stated only at the very end of the paper. In that paper, Kershaw
also states, without proof, the convergence, for g ∈ C(5) and for ∆t1/∆t2 bounded.
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