
Polynomial interpolation in several variables

C. de Boor

Carl de Boor, University of Wisconsin-Madison

1

0. PREAMBLE

I want to thank the organizers for inviting me to this meeting as it gives me the

opportunity to help celebrate Sam Conte who gave me my first academic job. More than

that, he provided my children with many years of summer camp in the wilds of New

Hampshire and Wisconsin, and at least two of them think that those summers in New

Hampshire were essential for their growing up (and I tend to agree with them).

Now I realize that Sam does not yet know what I am talking about, so I will

explain. I was young and impetuous when I came to Purdue, and ready to complain

about everything, including the courses I had to teach and the books I had to use.

Sam’s textbook was not exempted from these gratuitous comments. But, instead of

becoming miffed or angry, Sam merely invited me to work with him on a revision. Now,

that may have ruined the book, as far as Sam is concerned, for it made it a much harder

book. But it and a later edition have continued to sell enough copies to allow me the

luxury of sending my children to summer camps in faraway places, and for that my

children and I will forever be grateful.

1. INTRODUCTION

One of the things I changed rather drastically in that textbook was the treatment of

polynomial interpolation. I was then (and still am) much impressed with the efficiency

of the divided difference notion. It is a somewhat tricky Notion for the beginning

student, and its treatment in the current edition is still not quite right. Perhaps we will

get it right in the next one. In any case, polynomial interpolation occurs in the first real

chapter of the book since polynomial interpolation is fundamental to much of numerical

analysis.

It has therefore been something of a puzzle and disappointment to me that there is

not a theory of multivariate polynomial interpolation as elegant and convincing and as

basic as the univariate theory.

The trouble is easy to spot: Univariate polynomial interpolation starts with the

observation that, for every set Θ of k + 1 points, and for every function f defined (at

2

least) on Θ, there is exactly one polynomial p of degree ≤ k that matches f at Θ, that

is, for which

p|Θ = f|Θ.

Thus, when someone walks in with k + 1 points on the line, we immediately reach for

Πk := polynomials of degree ≤ k as the space from which to choose the interpolant

to given data at those points. But if our point set Θ is a subset of the plane or, more

generally, of IRd for d > 1, then we do not know what to reach for. We would like

to reach again for Πk, but now it is not always possible to come up with a Πk whose

dimension

dimΠk(IRd) =
(

k + d

d

)

matches the cardinality of Θ; for example, with two points in the plane, we have too

many points for Π0 and too few points for Π1. Further, even if #Θ = dimΠk, it

may not be possible to interpolate from Πk to every f on Θ. For example, if we take

three points in the plane, then we can usually interpolate at those points with a linear

polynomial, but if these three points happen to lie on a line, then our given f has to be

linear before we can find an interpolant from Π1, and even if we do, there are now many

different interpolants.

Thus, the difficulty has been to come up, for given Θ ⊂ IRd, with a polynomial

space P for which the pair 〈Θ, P 〉 is correct in the sense that any f defined (at least)

on Θ matches exactly one p ∈ P on Θ, that is, for which the restriction map

P → IRΘ : p 7→ p|Θ

is invertible. Generically, any polynomial space P with dim P = #Θ would do. The

difficulty with multivariate polynomial interpolation has been that the point sets Θ

one usually deals with are anything but generic. They may be regular meshes or lie on

(other) simple algebraic surfaces.

This difficulty has been dealt with in the past in at least three ways.

3

2. STANDARD APPROACHES

Firstly, most past work has been spent deriving conditions on the set Θ for 〈Θ,Πk〉
to be correct. While much of this work is a variation on the eternal theme that a matrix

is invertible if and only if its determinant is not zero, some of it is truly inspired. For

example, Chung and Yao [1] (see also [2]) start with a sequence a1, a2, . . . , an ∈ IRd such

that 0, a1, a2, . . . , an are in general position, which means that no (proper) hyperplane

can contain more than d of these n + 1 points. This implies that

∀I ⊆ {1, . . . , n}with #I = d ∃!xI s.t. ∀i ∈ I 1 + ai∗xI = 0

∀i 6∈ I 1 + ai∗xI 6= 0

since it implies that any d of the ai must be linearly independent, thus providing that

unique point xI , but also implies that, in addition to the d points ai, i ∈ I, no point ai

with i 6∈ I can lie in the hyperplane

{x ∈ IRd : 1 + x ∗ xI = 0}.

This shows that the functions

`I(x) :=
∏
i6∈I

1 + ai∗x
1 + ai∗xI

are well-defined and, being products of n − d linear factors, are elements of Πn−d, and

satisfy the conditions

`I(xJ) = δIJ .

Thus, for arbitrary f , ∑
I

`I f(xI)

interpolates to f on

Θ := {xI : I ⊂ {1, . . . , n}, #I = d}.

Further, since

#Θ =
(

n

d

)
= dimΠn−d,

this is the unique interpolant to f on Θ from Πn−d.

4

Altogether, this is a most elegant generalization of the Lagrange form familiar

from univariate polynomial interpolation. Its failing is simple: It is rarely of help in the

common situation that one is given Θ.

Secondly, an entirely different effort, along the lines of the Newton form, was started

by Gasca and Maeztu [3] some years ago. I follow these authors in describing the idea

in the bivariate context. They start with a first instalment Θ1 of data points all on a

straight line, l1(x) = 0 say. The interpolating polynomial p1 for these is chosen as

the unique interpolating polynomial of appropriate degree that is constant along lines

perpendicular to the data line l1(x) = 0. (Actually, Gasca and Maeztu permit greater

freedom in the choice of p1, but this will suffice to get the basic idea across.) A second

instalment Θ2 of data points, all on some straight line l2(x) = 0, is dealt with by

constructing the unique polynomial p2, of appropriate degree and constant along lines

perpendicular to the second line, that matches the modified data

f − p1

l1

at Θ2. This ensures that the polynomial

p1 + l1p2

matches f at Θ1 ∪Θ2. A set of points on a third data line leads to the interpolant

p1 + l1p2 + l1l2p3

in which p3 matches the modified function

f − p1 − l1p2

l1l2

at the data points on the third line; and so forth.

This scheme has the advantage of providing an interpolant in a form that is efficient

for evaluation. Further, it is not that difficult to add repeated interpolation points

to achieve osculatory (that is, Hermite) interpolation. On the other hand, there may

be many ways of writing Θ as a disjoint union of sets on straight lines, and there

5

is, offhand, no reason to prefer one over any of the others. Also, compared to other

possibilities, the degree of the resulting interpolating polynomial may be much higher

than is necessary.

Finally, the most intriguing method for me was one I learned from the thesis of

Kergin [4], and which seems to have been inspired by Pierre Milman (see, for example,

[5]). Here, one interpolates at the k + 1 points in Θ by polynomials of degree ≤ k,

exactly as in the univariate case. Of course, one must then deal with all the additional

degrees of freedom available from Πk(IRd) when d > 1. These are used in the Kergin

scheme to make sure that various mean-value theorems hold for the interpolant Kf to

given f , of the following kind:

Mean-Value Conditions. For every subset T of Θ, and for every homogeneous

polynomial q of degree j := #T − 1, there exists some point τ in the convex hull of T

at which q(D)(f −Kf)(τ) = 0.

Here and below, p(D) is the constant-coefficient differential operator
∑

α c(α)Dα

obtained by “evaluating” the polynomial p : x 7→∑
α c(α)xα at x = D.

Kergin proves that there is exactly one linear projector K on C(k)(IRd) into Πk

that satisfies all the Mean-Value Conditions. This makes it possible even to let some

Θ coalesce and thereby obtain Hermite interpolation in the limit. For example, if all the

points coalesce at some point z, then Kf is necessarily the Taylor expansion of f , at z,

to terms of order k.

Kergin interpolation is particularly close to univariate polynomial interpolation

in the sense that, when applied to any “plane wave” f : x 7→ g(ϑ∗x) (with g some

univariate function), then

(Kf)(x) = (Iϑ∗Θg)(ϑ∗x),

with Iϑ∗Θg the univariate interpolant, at the points

ϑ∗Θ := {ϑ∗θ : θ ∈ Θ},

to g. I am particularly fond of Kergin interpolation since it led Micchelli [6] to the

recurrence relations for simplex splines and so started the outpouring of work on

6

multivariate B-splines of the last ten years. But, as a means of multivariate polynomial

interpolation, its greatest drawback is the fact that the interpolant it provides has a

much higher degree than may be required.

Of course, I am free to make all these negative comments about other people’s

efforts because I am about to describe a new effort, by my colleague Amos Ron and

me, that avoids all the difficulties I complained about. I leave it to you and others to

complain about the flaws in our approach.

3. NEW APPROACH

The approach centers on constructing a map

Θ 7→ ΠΘ

that assigns to each finite point set Θ ∈ IRd a polynomial space ΠΘ for which 〈Θ,ΠΘ〉 is

correct.

Since almost any polynomial space P with dimP = #Θ gives a correct 〈Θ, P 〉,
it would be good to have some guidelines. I give now a commented list of desired

properties, based on the list Amos Ron put together when he talked about our scheme

a year ago at the Texas A&M Approximation Theory meeting.

P1: well-defined , that is, 〈Θ,ΠΘ〉 should be correct, regardless of the choice of Θ.

P2: continuity (if possible), that is, small changes in Θ should not change ΠΘ by

much. There are limits to this. For example, if Θ ⊂ IR2 consists of three points, then

one would usually choose ΠΘ = Π1. But, as one of these points approaches some point

between the two other points, this choice has to change in the limit, hence it cannot

change continuously. As it turns out (see [7]), our scheme is continuous at every Θ for

which Πk ⊆ ΠΘ ⊆ Πk+1 for some k.

P3: coalescence =⇒ osculation (if possible), that is, as points coalesce,

Lagrange interpolation should approach Hermite interpolation. This, of course, depends

on just how the coalescence takes place. If, for example, a point spirals in on another,

then we cannot hope for osculation. But if, for example, one point approaches another

7

along a straight line, then we are entitled to obtain, in the limit, a match at that point

also of the directional derivative in the direction of that line.

P4: translation-invariance, that is,

∀(p ∈ ΠΘ, a ∈ IRd) p(a + ·) ∈ ΠΘ.

This means that ΠΘ is independent of the choice of origin, and it implies that ΠΘ is D-

invariant, that is, it is closed under differentiation.

P5: coordinate-system independence, that is, a linear change of variables

x 7→ Ax (for some invertible matrix A) should affect ΠΘ in a reasonable way. Precisely,

∀(invertible A) ΠAΘ = ΠΘ ◦AT .

This implies that ΠΘ inherits any symmetries that Θ may have. It also implies (with a

line or two of argument) that each p ∈ ΠΘ is constant along any lines orthogonal to the

affine hull of Θ.

P6: scale-invariance, that is,

∀(p ∈ ΠΘ, α ∈ IR) p(α·) ∈ ΠΘ.

This implies that ΠΘ is spanned by homogeneous polynomials. Note that P4 and P6

together are quite restrictive in the sense that the only spaces of smooth functions

satisfying P4 and P6 are polynomial spaces.

P7: minimal degree, that is, the elements of ΠΘ should have as small a degree as

is possible, since we would like the same property for the resulting interpolant. Here is

the precise description:

〈Θ, P 〉 correct =⇒ ∀j dim P ∩Πj ≤ dimΠΘ ∩Πj .

Equivalently,

deg IΘp ≤ deg p for every p ∈ Π.

This implies, for example, that if 〈Θ,Πk〉 is correct, then ΠΘ = Πk. In other words,

in the most heavily studied case, namely of Θ for which Πk is an acceptable choice, our

assignment would also be Πk.

8

P8: monotonicity, that is,

Θ ⊂ Θ′ =⇒ ΠΘ ⊂ ΠΘ′ .

This makes it possible to develop a Newton form for the interpolant. Also, in

conjunction with P2, P7 and P9, this ties our scheme closely to standard choices.

P9: Cartesian product =⇒ tensor product, that is,

ΠΘ×Θ′ = ΠΘ ⊗ ΠΘ′ .

In this way, our assignment in the case of a rectangular grid coincides with the

assignment standard for that case. In fact, by P8, it coincides with the standard

assignment even when Θ is a shadow subset of a rectangular grid

d×
i=1
{xi(1), . . . , xi(γ(i))},

that is, Θ = {θα : α ∈ Γ} for

θα := (x1(α(1)), . . . , xd(α(d))),

with

α ∈ Cγ := {1, . . . , γ(1)} × · · · × {1, . . . , γ(d)}

and Γ an order-closed subset of Cγ , that is, α ∈ Γ and β ≤ α implies β ∈ Γ. Thus,

Γ =
⋃
α∈Γ

Cα.

Since, for any α ∈ Γ, the subset

Θα := {θβ : β ∈ Cα}

of Θ is a Cartesian product of sets from IR, our assignment for it is necessarily

Πα := span{()β : β ≤ α},

by P9. By P8, each such Πα must be contained in ΠΘ, hence

span{()β : β ∈ Γ} ⊂ ΠΘ,

9

and, since

dim ΠΘ = #Θ = #Γ,

ΠΘ must coincide with that span. Here and below,

()β : x 7→ xβ := x
β(1)
1 · · · xβ(d)

d

is a self-evident notation for the power map.

P10: constructible, that is, it should be possible to produce ΠΘ in finitely many

arithmetic steps.

This list is detailed enough to determine ΠΘ uniquely in certain simple situations.

For example, if #ΠΘ = 1, then necessarily ΠΘ = Π0 (by P7). If #Θ = 2, then, by P5

and P7, necessarily ΠΘ = Π1(affine(Θ)) := all linear polynomials that are constant in

any direction perpendicular to the affine hull of Θ, that is, to the straight line containing

Θ. If #Θ = 3, then ΠΘ = Πk(affine(Θ)), with k := 3 − dimaffine(Θ). The case #Θ = 4

is the first one that is not clear-cut. In this case, we again have

ΠΘ = Πk(affine(Θ)), k := 4− dim affine(Θ),

but only for k = 1, 3. When affine(Θ) is a plane, we can use P4-P6 to normalize to the

situation that Θ ⊂ IR2 and Θ = {0, (1, 0), (0, 1), θ}, with θ, offhand, arbitrary. Since Π1

is the choice for the set {0, (1, 0), (0, 1)}, this means that ΠΘ = Π1 + span{q} for some

homogeneous quadratic polynomial q. While P4-P6 impose further restrictions, it seems

possible to construct a suitable map IR2 → Π0
2 : θ 7→ q (into homogeneous quadratic

polynomials) in many ways so that the resulting Θ 7→ ΠΘ has all the properties P1-P10,

except P8 perhaps. But neither Amos Ron nor I have so far been able to show that

there is only one map Θ 7→ ΠΘ satisfying all conditions P1-P10. (Added remark (1992):

On the other hand, it can be shown (see [8]) that

ΠΘ = ∩p|Θ=0 ker p↑(D)

with p↑ the leading term of the polynomial p, that is, the unique homogeneous

polynomial for which deg(p− p↑) < deg p.)

10

Of course, we did not make up the above list and then set out to find the map

Θ 7→ ΠΘ. Rather, Amos Ron noticed that the pair 〈Θ, (expΘ)↓〉 is always correct, and

this motivated us to study the assignment

ΠΘ := (expΘ)↓.

To explain,

H := expΘ := span(eϑ)ϑ∈Θ

with

eϑ : x 7→ eϑ·x

the exponential with frequency ϑ. Further, for any space H of smooth functions,

H↓ := span{f↓ : f ∈ H},

with f↓, the least of f , the first nontrivial term in the power series expansion

f = f (0) + f (1) + f (2) + . . .

for f , in which f (j) is the sum of all terms of (homogeneous) degree j, all j. Thus, f↓ is

the homogeneous polynomial of largest degree for which

f = f↓ + higher order terms.

It is not difficult to verify that this assignment satisfies P4-P6, P8-P9, and I will

take up P10 in a moment. But it may not be clear why this has anything to do with

interpolation.

4. REPRESENTATION OF POINT EVALUATION BY AN

EXPONENTIAL

To make the connection, you need to be aware of the fact that the rule

〈p, f〉 := p(D)f(0)

11

defines a pairing between polynomials p and smooth functions f and that eϑ represents

the linear functional p 7→ p(ϑ) with respect to this pairing, that is,

〈p, eϑ〉 = p(ϑ).

Further, 〈·, ·〉 is an inner product on (real) polynomials, as can be seen from the fact

that

〈p, q〉 =
∑
α

(
Dαp

)
(0)

(
Dαq

)
(0)

α!
, p, q ∈ Π. (1)

This suggests (as detailed in [7]) the construction of a basis for H↓ of the form

g1↓, . . . , gn↓ so that 〈gi↓, gj〉 = 0 if and only if i 6= j, with g1, g2, . . . , gn a basis for H

constructed from a basis f1, f2, . . . , fn for H by a variant of the Gram-Schmidt process.

Specifically, with suitable g1, g2, . . . , gj−1 already available (and spanning the same space

as f1, f2, . . . , fj−1), one would compute

gj := fj −
∑
i<j

gi

〈gi↓, fj〉
〈gi↓, gi〉 ,

thereby ensuring that

〈gi↓, gj〉 = 0, i < j, (2)

while gj 6= 0 (by the linear independence of the fi), and therefore 〈gj↓, gj〉 6= 0. The

further modification

gi ← gi − gj

〈gj↓, gi〉
〈gj↓, gj〉

does not disturb the biorthogonality in Equation 2 already achieved, and it guarantees

that

〈gj↓, gi〉 = 0, i < j.

In this way, one obtains a basis g1, g2, . . . , gn for H for which

〈gj↓, gi〉 = 0 ⇐⇒ i 6= j.

But this implies that the matrix
(
〈gi↓, gj〉

)
is invertible, hence (since g1, g2, . . . , gn and

f1, f2, . . . , fn are bases for the same space) the matrix
(
〈gi↓, fj〉

)
is also invertible. If we

start this calculation specifically with fj := eϑj
for all j, then this last matrix equals

(
gi↓(ϑj)

)
,

12

and this proves that the pair 〈{ϑ1, . . . , ϑn},H↓〉 is correct. Further, for given f ,

∑
i

gi↓
〈f, gi〉
〈gi↓, gi〉

is the unique interpolant to f from H↓ = ΠΘ, with

〈f, gi〉 :=
∑

j

aijf(ϑj)

in case gi =:
∑

j aijfj .

5. NUMERICS

Actual calculations depend a bit on just how one intends to represent this

interpolant. While it is possible in principle to use a Newton form, it seems, as a first

try, sufficient to write the interpolant in power form. One would want to shift this form,

for example by the average of the ϑj , to avoid an obvious source of bad condition. For

simplicity, I will ignore here this shift. Further, it seems advisable to use the modified

power form

p =
∑

α

|α|!
α!

()α Dαp(0)
|α|! ,

since its evaluation by the following “nested multiplication” (or “Horner’s scheme”) is

immediate. (I have not been able to find this technique in the literature, but I have not

looked for it very hard, either.) In this scheme, one sets

c(α) :=
Dαp(0)
|α|! , |α| = deg p,

and generates from this

c(α) :=
Dαp(0)
|α|! +

d∑
i=1

xic(α + ii), |α| = k,

for k = deg p − 1,deg p − 2, . . . , 0, with ii the ith unit vector. This works because one

obtains

c(0) =
∑

|α|≤deg p

Dαp(0)
|α|! nαxα,

13

with nα the number of different increasing paths to α from the origin through points of

ZZd
+. This number is

nα =
(|α|

α

)
=
|α|!
α!

,

hence c(0) = p(x).

Thus the goal of the calculation are the numbers

Dαp(0)
|α|!

for the interpolant p, and the calculations involve the scalar product

〈p, q〉 =
∑
α

(
Dαp

)
(0)

(
Dαq

)
(0)

α!

with p ∈ Π and q “smooth”. This implies that it is sufficient in the calculations to

deal with any function g entirely in terms of the (first few entries in the) corresponding

vector

Dg := (Dαg(0))

(except for the function f to be interpolated, for which we know, offhand, nothing other

than the vector f|Θ =
(
f(ϑ) : ϑ ∈ Θ

)
). Note that D(g↓) is obtained from Dg by

direct truncation, hence also the needed computational step of obtaining g↓ from g can

be carried out trivially in terms of the vector Dg.

While actual calculations require the imposition of some ordering on the points ϑ ∈
Θ and the integer vectors α ∈ ZZd

+, it is more convenient, and less messy notationally,

not to stress this computational requirement. Thus, for the time being, I let the ϑ in

Θ and the α ∈ ZZd
+ index themselves. This means that our calculations start with the

matrix

V :=
(
Dαeϑ(0) : ϑ ∈ Θ, α ∈ ZZd

+

)

whose rows are indexed by ϑ ∈ Θ and whose columns are indexed by α ∈ ZZd
+. Since

p(D)eϑ = p(ϑ) for any polynomial p, the matrix V is the Vandermonde matrix for Θ,

that is,

V =
(
ϑα : ϑ ∈ Θ, α ∈ ZZd

+

)
.

14

This suggests the following slight detour, and this detour provides some insight into

the special nature of our asssignment Θ 7→ ΠΘ.

6. CONNECTION TO GAUSS ELIMINATION

Consider, for the moment, the possibility that we have not yet made up our minds

from which polynomial subspace P to interpolate at Θ. We could then consider all

possible choices for P by looking at the linear system

V ? = f|Θ. (3)

Any solution c with all but finitely many of its entries zero provides a polynomial,

namely the polynomial p :=
∑

α()αc(α), that agrees with f on Θ, and vice versa. We

could now try to determine particularly “good” interpolants p. A possible criterion is

that p have smallest possible degree. We could achieve this by ordering the columns of

V by degree, that is, by |α|, and then applying elimination, that is, Gauss elimination

with partial pivoting, to V , in just the way it is taught in Linear Algebra courses. The

result is a factorization

LW = V,

with L unit lower triangular, and W in row echelon form. This means that there is a

sequence β1, β2, . . . , βn that is strictly increasing, in the same total ordering of ZZd
+ that

was used to order the columns of V , and so that, for some ordering {ϑ1, ϑ2, . . . , ϑn} of

Θ and for all j, the entry W (ϑj , βj) is the first nonzero entry in the row W (ϑj , :) of W .

This makes the square matrix

U :=
(
W (ϑi, βj) : i, j = 1, . . . , n

)

upper triangular and invertible, and so provides the particular interpolant
∑

i()
βia(i),

whose coefficient vector

a := (LU)−1(f(ϑ1), . . . , f(ϑn)) (4)

is obtainable from the original data f|Θ by permutation followed by forward- and

backsubstitution.

15

There is no reason to believe that the resulting sequence β1, β2, . . . , βn always

consists of consecutive terms. It is exactly this fact that has prevented the development

of a simple theory of multivariate polynomial interpolation. Rather, elimination has to

face the numerical difficulty of deciding when all the pivots available for the current

step in the current column are “practically zero”, in which case the pivot search is

extended to the entries in the next column (and in any row not yet used as pivot row).

But this can also be viewed positively. Just as partial row pivoting has the “smallness”

of the factors L and U as its goal, so the additional freedom of column pivoting allowed

here provides further means of keeping the factors L and U “small”. The smaller these

factors, the better is the condition of the corresponding basis
(
()βj : j = 1, . . . , n

)
for the

polynomial space P selected, when considered as a space of functions on Θ.

Surprisingly, the computational process for ΠΘ outlined earlier differs from this

straightforward approach in only one detail: the entries of V are grouped by polynomial

degree. In effect, V is viewed as the matrix

V :=
(
Dkfϑ(0)

)
=

(
ϑk : ϑ ∈ Θ, k = 0, 1, 2, . . .

)
, (5)

with vector entries

ϑk :=
(
ϑα : |α| = k

)
.

Note that

Dkg :=
(
Dαg(0) : |α| = k

)

represents the nontrivial part of D(g↓) in case g↓ has degree k. Now we cannot expect

elimination to zero out all entries in the pivot column below the pivot row. We can

merely expect to make these entries orthogonal to the pivot element. The particular

scalar product relevant here is

〈Dkg,Dkq〉 :=
∑
|α|=k

Dαg(0)Dαq(0)
α!

,

since, with this definition and in terms of the scalar product in Equation 1 for

polynomials defined earlier,

〈g↓, q〉 = 〈g↓, q(k)〉 = 〈Dkg,Dkq〉

16

in case k := deg g↓.

It is now easy to verify (see [9]) that the earlier Gram-Schmidt-like algorithm,

applied to fj := eϑj
, j = 1, . . . , n, is Gauss elimination with column pivoting applied

to the matrix in Equation 5. Once this is understood, it is also understood that Gauss

elimination with row pivoting (that is, with possible reordering of the points in Θ) is just

as effective. In fact, row pivoting provides the mechanism for choosing a “good” order in

which to introduce the interpolation points into the calculations. Note that elimination

with row pivoting necessarily leads to the same polynomial space, since ΠΘ does not

depend on any particular ordering of the points in Θ and, with the ordering suggested

by Gauss elimination with row pivoting, the two algorithms coincide.

This last remark is but one example of the importance of the theoretical

underpinnings provided by [7], even though the calculations turn out to be nothing more

than Gauss elimination (with a twist). For example, is it obvious from these calculations

alone that ΠΘ ⊂ ΠΘ′ in case Θ ⊂ Θ′, or that, during Gauss elimination with partial

pivoting, the next column has to contain a nontrivial pivot if the current column fails to

contain one?

7. COMPUTATIONAL DETAILS

The calculations can be organized as follows. At the jth step, one looks for a pivot

of the current order k among the rows not yet used as pivot rows. This means that one

looks for i ≥ j that maximizes
〈Dkgi,D

kgi〉
〈Dkfi,Dkfi〉 .

Here and below, gi denotes the function obtained from fi := fϑi
by the elimination

process as carried out so far; specifically,

gi ⊥ gl↓ for l < j ≤ i.

A row interchange (in all pertinent matrices) is made to bring the relatively largest pivot

“element” into row j; kj is set to the current k; and the appropriate multiple

LU(i, j) :=
〈Dkgj ,D

kgi〉′
〈Dkgj ,Dkgj〉′ (6)

17

of row j is subtracted from row i for all i > j. Here, the scalar product

〈Dkg,Dkf〉′ := 〈Dkg,Dkf〉k! =
∑
|α|=k

|α|!
α!

Dαg(0)Dαf(0) (7)

is used instead of 〈Dkg,Dkf〉, since this makes the requisite weights integers (the

multinomial coefficients), but it does not change the ratios in Equation 6.

It seems computationally efficient to compute the entire column LU(:, j) by Equation

6, for later use, but set

LU(j, j) := 〈Dkgj ,D
kgj〉′.

It may of course happen that

〈Dkgi,D
kgi〉

〈Dkfi,Dkfi〉 < tol, ∀ i ≥ j,

with tol some necessarily assigned tolerance. Then it is time to increase the order k by

one and look again. As claimed earlier, there must now be some nonzero pivot available

(though there is no guarantee that it will pass our tolerance test). Since we have no

way of knowing a priori what the maximal degree in ΠΘ is going to be, it seems best

to generate the columns of V as needed. Thus, at this stage, we must generate

Vk := (ϑα : ϑ ∈ Θ, |α| = k),

for the new value of k. It seems most efficient to assume that, at this point, we still have

in hand Vk−1, hence we can generate Vk by the appropriate multiplication of the entries

of Vk−1 by the components of the ϑr. The initial V0 is the n × 1-matrix [1, 1, . . . , 1]T .

Further, having recorded the earlier elimination steps 1, . . . , j − 1 in LU, we can compute

the vectors Dkgi from Vk by forward substitution, that is, by applying L−1
j from the left,

with Lj the unit lower triangular matrix that agrees with LU in its first j − 1 columns

and below the diagonal, and has zeros otherwise.

In the end, we have available in our working array all the relevant entries of the

vectors Dgi = (Dαgi(0) : α); hence we can construct our interpolant p in the form∑
i gi↓c(i), with

c := D−1U−1L−1(f(ϑ1), . . . , f(ϑn)),

18

and with L, U , and D the unit lower triangular, unit upper triangular, and diagonal

matrix, respectively, whose nontrivial terms we stored in the array LU. Actually, since we

have used the scalar product in Equation 7, c(i) is too small by a factor (deg gi)!, hence

just right for the modified power form discussed earlier.

The algorithmic details will appear in [9], but two (bivariate) examples follow.

8. INTERPOLATION AT THE VERTICES OF A REGULAR

HEXAGON

Figure 1 shows (part of) the polynomial interpolant to the data f(ϑj) = (−1)j , with

ϑj := (cos(2πj/6), sin(2πj/6)), j = 1, . . . , 6.

For six generic points in the plane, one expects to interpolate from Π2 since its

dimension is 6. but these particular six points lie on the unit circle, that is, the

quadratic polynomial

p2 := 1− ()2,0 − ()0,2

vanishes on Θ, so Π2 cannot be correct for this Θ. Since any five of these points are

linearly independent over Π2, we know that ΠΘ has the form

ΠΘ = Π1 +
(
Π0

2 	 span(p2)
)

+ span(p3),

with the orthogonal complement in the space Π0
2 of homogeneous second-degree

polynomials taken in terms of the scalar product in Equation 1, and with p3 a particular

homogeneous cubic polynomial. In fact, p3 coincides, up to a scalar multiple, with the

interpolant depicted in Figure 1, for the following reason: By symmetry, there are three

straight lines through the origin that do not contain any interpolation point and are

such that reflection across any one of them leaves Θ invariant but changes the given

function values to their negatives, hence this reflection must change the interpolant to

its negative, and therefore the interpolant must vanish along these three lines. But this

implies that all its derivatives of order ≤ 2 at the origin must be zero. This argument,

19

Figure 1. The cubic term in interpolation at the hexagon points

Figure 2. The Lebesgue function for interpolation at the hexagon points ◦
equals 1 on this entire domain.

20

incidentally, shows that, for this (highly symmetric) Θ, the Properties P1 - P10 uniquely

determine ΠΘ.

This resolves in a simple way the following puzzle: Since in this case AΘ = Θ for

A := rotation by π/3, we know from Property P5 that ΠΘ = ΠΘ ◦ A. Since, up to

scalar multiples, p3 is the unique cubic homogeneous polynomial in ΠΘ, this leads to the

(careless) conclusion that p3 must have the symmetry p3 = p3 ◦ A. But that implies

that p3 is constant on Θ, hence necessarily coincident with the appropriate multiple

of the constant function ()0 (note that Π0 is contained in any ΠΘ, by Properties P7

and P8). The picture reminds us of the fact that, strictly speaking, we only know that

span(p3) = span(p3) ◦A, for, according to the picture, p3 ◦A = −p3.

The Lagrange polynomial associated with the point (1,0) is given by

`(x) := ((1 + 2x1 + 2x2
1 + x3

1)− x2
2(2 + 3x1))/6.

This makes it easy to determine its zero set, hence to see that it and its five rotates are

nonnegative on a rather large portion of the hexagon. This domain is shown in Figure

2. At any point of this domain, the value of the interpolating polynomial is an average

of the given function values. Equivalently, the Lebesgue function of the process (that

is, the sum of the absolute values of all the Lagrange polynomials) is 1 on this entire

domain. In univariate polynomial interpolation, the Lebesgue function is 1 on a set

larger than just the interpolation points only for linear interpolation.

For the hexagon points, ΠΘ does not contain Π2; hence the interpolant provides

only a second-order approximation (as we let the diameter of the circle of points shrink).

By also adding the center of the circle, ΠΘ becomes Π2 + span(p3) (by P7 and P8). The

additional function is the polynomial p2 mentioned earlier; it serves as the Lagrange

polynomial for the new point. The other Lagrange polynomials are ` − p2/6 and its

five rotates. Now the Lebesgue function equals 1 only at the interpolation points. But,

as Figure 3 shows, the Lebesgue function does not exceed 1.5 on the hexagon spanned

by the points, and it does not exceed 1.7 on the unit disk. This says that, as a map on

continuous functions on the unit disk in the max-norm, this interpolation scheme has

norm less than 1.7. That is remarkable.

21

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

Figure 3. Contour lines, for values 1, 1.05, . . ., 2, of Lebesgue function for interpolation

at hexagon points and their center.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

Figure 4. Contour lines for error in interpolation at 40 random points.

22

9. INTERPOLATION AT 40 RANDOMLY CHOSEN POINTS

Figure 4 shows contour lines (corresponding to ten equally spaced function values

between maximum and minimum value) of the absolute error in the polynomial

interpolant to

f : x 7→ exp(−x2
1 − x2

2)

at 40 points chosen at random from the square [0 . . 1]2. These interpolation points are

also marked in Figure 4. Not surprisingly, they all fall on the zero contour line and so

indicate that the error is near zero in most of the square. Only near the corners of the

square is the error not close to zero. In fact, the maximum error on the square [0 . . 1]2

turned out to be 2.6e-4. (The calculations were done with MATLAB, hence in roughly

16-decimal-digit arithmetic. The maximum difference between the input function values

and the corresponding values of the computed interpolating polynomial was 7.8e-16.)

Examples like these are making me re-examine the standard conviction that polynomial

interpolation at many points is not expected to be useful. It may well be that this is less

true in several variables than in one, since, in several variables, the polynomial degree

usually grows much slower than the number of data points if an interpolating polynomial

of smallest possible degree is used. On the other hand, there is no reason to expect that

the Lebesgue function behaves any better in several variables than in one.

10. ACKNOWLEDGMENTS

This research was supported by the National Science Foundation under grant no.

DMS-8701275 and by the US Army under contract no. DAAL03-87-K-0030.

23

11. REFERENCES

[1] K. C. Chung and T. H. Yao (1977), “On lattices admitting unique Lagrange

interpolations”, SIAM J. Numer. Anal. 14, 735–741.

[2] W. Dahmen and C. A. Micchelli (1981), “On limits of multivariate B-splines”, J.

Analyse Math. 39, 256–278.

[3] M. Gasca and J. I. Maeztu (1982), “On Lagrange and Hermite interpolation in IRk”,

Numer. Math. 39, 1–14.

[3] Kergin, P. Interpolation of Ck Functions, Ph.D. diss., Univ. of Toronto,

Canada, (1978); published as: “A natural interpolation of Ck functions.” J. Approx.

Theory 29, 278–293 (1980).

[5] C. A. Micchelli and P. Milman (1980), “A formula for Kergin interpolation in IRk”,

J. Approx. Theory 29, 294–296.

[6] C. A. Micchelli (1980), “A constructive approach to Kergin interpolation in IRk:

multivariate B-splines and Lagrange interpolation”, Rocky Mountain J. Math. 10,

485–497.

[7] C. de Boor and A. Ron (1990), “On multivariate polynomial interpolation”, Constr.

Approx. 6, 287–302.

[8] C. de Boor and A. Ron (1992), “The least solution for the polynomial interpolation

problem”, Math. Z. 210, 347–378.

[9] C. de Boor and A. Ron (1992), “Computational aspects of polynomial interpolation

in several variables”, Math. Comp. 58, 705–727.

24

