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Polynomial interpolation to data on flats in IRd

Carl de Boor, Nira Dyn, Amos Ron

1. Introduction

When going from univariate to multivariate polynomial interpolation, one can follow the point
of view of [HS2] that a point in IR = IR1 corresponds to a hyperplane in IRd and, correspondingly,
attempt to interpolate to information given on hyperplanes. It is one message of the present paper
that the efficient way to solve such interpolation problems is nevertheless via an equivalent problem
of interpolation to (derived) information given at points. The relevant pointset is obtained as the set
of all 0-dimensional intersections of hyperplanes from the set that comprises the given hyperplanes
and d − 1 additional hyperplanes in general position. Interpolation at such pointsets was studied
already in [DR].

In [DR] and [BDR], we considered interpolation problems in which two polynomial spaces
that emerge from box spline theory, P(Ξ) and D(Ξ), are involved. Usually, one of these spaces is
used to determine the interpolation conditions and the interpolant is sought from the other. In
the above-cited papers, the interpolation conditions are always of Lagrange type or Hermite type,
i.e., we interpolate function values and ‘consecutive’ derivative values at these points. Motivated
by the recent interesting paper [HS2] of Hakopian and Sahakian, we study in this paper polyno-
mial interpolation to data given on certain linear manifolds or flats (for short) in IRd, all of the
same dimension s, and this dimension is held fixed throughout. The case s = 0 reduces to the
interpolation problem considered in [DR].

The collection of s-dimensional flats involved is denoted by Ms(IH); it consists of all s-
dimensional intersections of hyperplanes taken from a given sequence IH.

Generically, each M ∈ Ms(IH) is the intersection of exactly d−s hyperplanes, and we call this
situation (whether generic or not) the simple case, and expect, in this case, to match values given
at all the flats in Ms(IH), i.e., Lagrange type interpolation. The examples 1.1-3 in §2 are of this
type.

In the contrary case (see, e.g., the examples 2.1-4 in §2), some M ∈ Ms(IH) is the intersection
of more than d − s hyperplanes, and, correspondingly, we would expect to match at such M also
some ‘successive’ derivatives, leading to Hermite type interpolation. However, in contrast to [HS2],
we would not demand the matching of all derivatives up to a certain order. Rather, in a ready
generalization of the approach introduced in [DR], we impose Hermite conditions that can be shown
to be exactly those satisfied, in a suitable limiting process, by a Lagrange interpolant to data taken
from a smooth function. In this way, the resulting Hermite interpolation is osculatory or ‘repeated’
interpolation in the classical sense.

Specification of data on flats of dimension s > 0 raises the question of consistency: Since
distinct M,M ′ ∈ Ms(IH) may well have a nontrivial intersection, there is the possibility that the
information supplied on M and M ′ is contradictory on M ∩ M ′. In the Lagrange case, this is
simply a question of having the two polynomials, specified on M and M ′ respectively, coincide on
M ∩M ′. In the Hermite case, matters are a bit more subtle. Fortunately, in contrast to [HS2],
we are able to reduce all such consistency questions to checking consistency at a certain finite set
(namely the set M0(IHs); see below).

Given that, even in the simple case, the cardinality of Ms(IH) is not just a function of #IH,
we must also specify a suitable IH-dependent polynomial space from which to interpolate. This was
already recognized in [DR] where the case s = 0 of our current problem was settled. In fact, our
approach reduces the general problem to the special case treated in [DR]: we extract from the given
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data a discrete (finite) set of Hermite type interpolation conditions, and choose the interpolant from
a polynomial space P = Ps(IH) which depends only on the sequence IH and the number s. We
will not be able to match the information given at all the M ∈ Ms(IH) by some p ∈ P unless the
information is compatible with P, i.e., unless the datum specified on a given M ∈ Ms(IH) is
taken from some element of P (with that element, offhand, different from datum to datum).

With this, our main result, Theorem 7.19, states that, for an arbitrary finite sequence IH of
hyperplanes and arbitrary consistent and P-compatible data, there is exactly one element p ∈ P
that matches these data.

Our proof of this result is quite technical, and provides, perhaps unexpected, insights into
the structure of the spaces D(Ξ) which play such a central role in box spline theory (see, e.g.,
[BDR]). These insights are contained in Theorem 7.7 which is a consequence of Theorem 7.9, and
in Theorem 7.13. It is our hope that these insights will also find use elsewhere.

The paper is laid out as follows. All of our functions hereafter are complex-valued and defined
on IRd. In order to simplify the presentation, we consider first (in §5) the simple case, i.e., the
Lagrange type interpolation that is analysed here. This simplifies almost all aspects of the analysis:
the description of the interpolation conditions, the compatibility requirements on the interpolation
conditions, and the solution we provide to the interpolation problem. In contrast, the polynomial
space that is to supply the interpolant is the same for the Lagrange and non-Lagrange problems,
hence we need first to introduce and discuss that space, as we do in (§3 and) §4.

In §2, we illustrate our interpolation problems by treating the case of three lines in 2-space,
and we outline, in §3, for the simple case in some detail the basic idea of our construction and
proofs.

The general interpolation problem is analysed in §7. Some simple facts, concerning D-invariant
polynomial subspaces, especially polynomial ideals and their polynomial kernels, needed there are
discussed in §6.

The results in this paper were obtained in 1991, in reaction to [HS2]. We delayed publication
initially so as not to precede publication of [HS2] and later because we wanted to follow [HS2] and
include also a treatment of interpolation to information ‘at infinity’. However, our results in that
regard are still not complete while, at this time, there are signs of interest in [HS2] and we feel
that, in any case, the present paper is already substantial enough.
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2. An example

The seven cases of interpolation to data given on three lines in IR2.

We are given three (straight) lines in IR2 and, on each line, a ‘univariate’ quadratic polynomial
(i.e., the restriction of some quadratic polynomial to that line), and seek to extend this information
to a quadratic polynomial on all of IR2. Of course, we assume that the data are consistent, but the
precise meaning of this depends on the specific circumstances, as discussed below. In any event, we
proceed by choosing an additional line, in general position, and then constructing the interpolant
from point data, derived from the given data, at all the intersections of pairs of lines.

Case 1.1 (general position): The three given lines are in general position, meaning that
any two have exactly one point in common, and this point does not lie on the third line.

In this case, a fourth line in general position will intersect each of the given lines at a point not
also on another line, thus giving us a 6-point set that is well known (see, e.g., [DR]) to permit unique
interpolation from the space Π2 of bivariate quadratic polynomials to arbitrary data. In particular,
let p be the interpolant from Π2 to the data derived from the given quadratic polynomials. This
requires consistency, in the sense that, at the point common to two given lines, the corresponding
polynomials prescribed on these two lines have to agree. Then, on each of the given lines, p
reduces to a ‘univariate’ quadratic polynomial. That quadratic polynomial agrees with the original
‘univariate’ quadratic polynomial given on the line, since they agree at three points on that line.

Case 1.2 (two (but not three) lines are parallel (but not coincident)): This is a
limiting case of the Case 1.1, reached by rotating one of the lines.

Now our procedure produces only 5 points of intersection, hence interpolation from Π2 would
be underdetermined. In this situation, [HS2] derive, in effect, information at the point at infinity at
which the two parallel lines intersect. We prefer to interpolate instead from a certain 5-dimensional
linear subspace P(Ξ) of Π2. Precisely, Ξ = [ξ1, . . . , ξ4] is a matrix whose jth column contains a
(nontrivial) vector perpendicular to the jth line, j = 1, . . . , 4, and P(Ξ) is the linear span of all
functions of the form x 7→ ∏

j∈J (ξj ·x), with J such that {ξi : i 6∈ J} spans IR2.
In Case 1.1, P(Ξ) = Π2. In the present case, however, all elements of P(Ξ) are necessarily

linear in the direction of the parallel lines (which implies that P(Ξ) is obtained from Π2 by the
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imposition of one linear constraint). There is a unique interpolant from P(Ξ) to the derived data
at the five points, provided that the data are compatible with P(Ξ), i.e., provided the polynomials
given on the two parallel lines are actually linear (this is a special case of the general result in [DR],
to be used in the sequel). With this proviso, the restriction of the interpolating polynomial to a
given line agrees with the given polynomial there since it matches it there at as many points as
are needed, given the degrees involved, to conclude agreement on the entire line from agreement at
those points.

Case 1.3 (three parallel lines): In this case, P(Ξ) (defined as in Case 1.2) reduces to the
3-dimensional space of all quadratic polynomials constant in the direction of those three lines.
Compatibility of the data now means that they must be constant on each of those three lines,
while consistency is vacuous here (since the lines have empty intersection). With that, existence of
exactly one element of P(Ξ) matching such data is evident.

The three cases covered so far are examples of what we call the simple case; it leads to an
interpolation problem of Lagrange type and the reader only interested in this case may safely skip
the rest of this section.

In the nonsimple, or general, case, one has to deal with interpolation to derivative information
as well, derived from the given information (as in Case 2.1 below) and/or given explicitly (as in
Cases 2.2 – 2.4 below).

Case 2.1 (the three lines intersect at a common point, but no two lines coincide):
This is a limiting case of 1.1, reached by translating (but not rotating) one of the lines. In particular,
P(Ξ) does not change, i.e., it is still Π2 for this case. Having the function specified on a straight
line means, of course, that we have also specified, on that line, any derivative of any order in
the direction of that line. Since, on IR2, it takes just two directional derivatives at a point (in
nonparallel directions) to specify every directional derivative at that point, consistency now requires
that the three directional derivatives specified by the data at the point common to all three lines
be consistent. That being understood, the rest is as before, with the slight complication that the
common point is a triple point for interpolation from Π2, and is a double point when arguing that
the interpolant from Π2 agrees with the given data on each of the three given lines.

Case 2.2 (two lines are coincident, the third not parallel): This is a limiting case of
Case 1.2, as we translate (but not rotate) the given lines suitably, hence P(Ξ) is the same as in
Case 1.2. (It is also a limiting case of Case 2.1, as we rotate one of the lines suitably.)

We now assume given on the double line also the derivative normal to that line (necessarily a
linear polynomial along that line even if we only knew that it was the normal derivative of some
element of Π2), hence know on that line any directional derivative. The only change from the
preceding case is that some points now become double points and that we must (and can) also
verify that the given normal derivative is matched on the entire double line.

Case 2.3 (three parallel lines, two coincident): This is a limiting case of Case 1.3, as we
translate (but not rotate) one of the given lines suitably, hence P(Ξ) is the same as in Case 1.3.
(It is also a limiting case of Case 2.2, as we rotate one of the lines suitably.)

We now assume given on the double line also the derivative normal to that line, and compati-
bility requires (as in Case 1.3) that all data, including this normal derivative, be constant, making
it easy to verify the existence of exactly one element in P(Ξ) that matches the given data.

Case 2.4 (three coincident lines): This is a limiting case of Case 1.3 (and Case 2.3) as we
translate (but not rotate) the given lines suitably, hence P(Ξ) is the same as in Cases 1.3 and 2.3.
(It is also a limiting case of Case 2.2, as we rotate one of the lines suitably.)

In this case, assuming the data compatible with this, i.e., constant along the triple line, we
also assume that the first and the second normal derivative is prescribed at that triple line (as a
constant along that line) and conclude directly that the unique interpolant from P(Ξ) matching the
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information at the triple point (picked out by our additional line) matches the given information
on the entire triple line.

In this example, the orthogonal complement of a flat is only one-dimensional. The problem
of choosing a minimal set of derivative information to be specified on a repeated flat becomes
significantly more complicated when data are given on certain s-dimensional flats in IRd for s < d−1.

3. The basic idea

Let IH be a sequence of hyperplanes in IRd, let 0 ≤ s < d, and recall from the Introduction the
collection Ms(IH) of all s-dimensional intersections of hyperplanes from IH. We are interested in
polynomial interpolation to data given at all the flats in Ms(IH).

For s = 0, this is the interpolation problem addressed in [DR]. We propose to reduce the
general case s ≥ 0 to the known case s = 0 by working with the larger sequence IHs, obtained
from IH by adjoining to it s hyperplanes in general position with respect to it, and then considering
interpolation at all the points in M0(IHs) to data there as derived from the data given on the
flats in Ms(IH). In this, we assume that the given data are consistent, i.e., provide unambiguous
information at the points in M0(IHs). Since [DR] readily provides a suitable interpolant to data
on M0(IHs), this reduces our task to showing that this interpolant does, indeed, match the data
given on the flats in Ms(IH).

If the hyperplanes in IH are in general position, then M0(IHs) consists of exactly
(
#IHs

d

)
points,

i.e., the cardinality of M0(IHs) equals the dimension of the space

Πk

of all polynomials of degree ≤ k, with

k := #IHs − d = #IH − (d− s).

More than that, in this case, Πk is well known to contain a unique interpolant to arbitrary data
given at the points in M0(IHs). In particular, let p be that interpolant from Πk to data at M0(IHs)
derived from the given data. Then, assuming that the data are compatible, i.e., that the given datum
pM at a flat M in Ms(IH) is the restriction to that flat of some element of Πk, our interpolant p
from Πk is guaranteed to agree with pM at sufficiently many points to force its restriction to M to
coincide with pM .

In the contrary case, various complications arise that will be dealt with fully later on. In
the remainder of this introductory section, we now discuss just one such complication, namely the
possibility that M0(IHs) consists of fewer than dimΠk points but still each such point lies in exactly
d of the hyperplanes from IHs. The latter condition characterizes what we call in this paper the
simple case. Already this case will provide the reader with a good feeling for the nature of the
interpolation problem considered and some of the difficulties overcome by us in solving it.

When #M0(IHs) < dim Πk, we can only interpolate at M0(IHs) from some subspace of Πk. Of
the infinitely many choices possible, we take the subspace used in [DR], as this permits us to prove
(later on) existence and uniqueness of an interpolant from that space to arbitrary (consistent and
compatible) data given on Ms(IH). For a description of that subspace, we find it more convenient
to switch now, from the hyperplanes, to their normals and associated constants.

Precisely, we think, as we may, of IH as having been obtained from a matrix X, with d rows and
no null column, and a corresponding scalar sequence (λx : x ∈ X) as the collection of hyperplanes

Hx := {t ∈ IRd : qx(t) = 0}
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with
qx : t 7→ x·t− λx,

and with x running over the columns of the matrix X. The relation U ⊂ X we take to mean that U
is obtained from X by deletion of some (or none) of its columns. Also, we denote by #X the length
of the sequence X, i.e., the number of columns of the matrix X. The ordering of the columns of
X is immaterial here. Because of the role such matrices play in box spline theory, we call them
direction sets (in IRd).

With this, we associate with each U ⊂ X the following homogeneous polynomial of degree
#U :

(3.1) `U : t 7→
∏
u∈U

(u·t),

but write `x instead of `{x} or `[x] for x ∈ X. Further, we introduce the following subset of 2X :

(3.2) IL(X) := {L ⊂ X : rank(X\L) = rankX}.
In these terms, [DR] show that (under the assumption that we are in the simple case with s = 0)
there is a unique interpolant to arbitrary values on the set M0(IH) from the polynomial space

(3.3) P(X) := span{`L : L ∈ IL(X)}.
Note that P(X) = Π#X−d in case IH is in general position (provided that there are at least d
hyperplanes in the sequence). For more information on P(X), see §4 below.

Now let Y be a sequence of s directions, or, equivalently, a (d×s)-matrix of directions associated
with the s hyperplanes in general position adjoined to IH to obtain IHs, and continue to assume
that we are in the simple case, i.e., each point in M0(IHs) lies in exactly d of the hyperplanes in
IHs. Set

Z := X ∪ Y.
Then [DR] provides a unique interpolant from P(Z) to arbitrary values at the points of M0(IHs).
We will show below that

P(Z) = Ps(X) := P(X)Πr := span{pq : p ∈ P(X), q ∈ Πr},
with r := (s− d+ rank(X))+. In particular, P(Z) only depends on X and s.

Assume now that we have been given consistent data on the flats in Ms(IH), i.e., data

(pM : M ∈ Ms(IH))

so that, for every M1,M2 ∈ Ms(IH), the polynomials pM1 and pM2 coincide on M1∩M2∩M0(IHs).
Such consistency is clearly necessary if we are to construct an interpolant to these data.

For each θ ∈ M0(IHs), there exists some basis B ⊂ Z such that θ ∈ Hx for every x ∈ B. Since
#Y = s, X ∩ B contains some B′ of length d − s. Therefore, M := ∩x∈B′Hx is a flat in Ms(X)
that contains θ, hence the derived datum

aθ := pM (θ)

is well-defined. Also, by the assumed consistency, this definition is independent of our choice of M .
It follows from [DR: Theorem 7.1] (see Theorem 5.11 below) that there is exactly one element

of P(Z) that matches these data (aθ : θ ∈ M0(IHs)). To show that, for all M ∈ Ms(IH), this
element also matches pM on M takes additional work; see the proof of Theorem 5.10 below. In
particular, for such a conclusion, we need to assume that the given data are X-compatible in the
sense that each pM is the restriction to M of some element of P(Z). But the above discussion
already makes clear that an interpolant from P(Z) to any X-compatible and consistent data on
Ms(IH) is unique.
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4. The space Ps(X)

In this preparatory section, we discuss the polynomial space Ps(X), to be used eventually as
the space of interpolants to information given on certain flats determined by X.

We start off with a direction set, as introduced in the preceding section, i.e., a matrix X
with d rows and no null columns. We denote the column span of X by

ranX.

Recall from (3.3) the polynomial space

(4.1) P(X) := span{`L : L ∈ IL(X)}

with

(4.2) `U : t 7→
∏
x∈U

(x·t),

and

(4.3) IL(X) := {L ⊂ X : rank(X\L) = rankX}.

This polynomial space naturally arises in box spline problems. It reflects in its structure much of
the geometry of the multiset X, and was independently discovered by several authors ([HS1], [J],
[DR]; some of us regret that this is the chronological order; see also [DM]).

Now note that `L is a homogeneous polynomial of (exact) degree #L, and is constant in all
directions perpendicular to ranL, i.e., Dz`L = 0 for all z ⊥ ranL. Since each L ∈ IL(X) can
have at most #X − rankX elements, it is clear that P(X) is a dilation-invariant subspace of
Π#X−rankX(ranX), with

Πk(M) ⊆ Π

the subspace of all polynomials of degree ≤ k on IRd that are constant in all directions orthogonal
to the flat M . It is also clear that P(X) = P(X ∪ B), with B any basis for a linear subspace
complementary to ranX since IL(X) = IL(X ∪ B) for any such B. The dimension of P(X) is
known to equal the number of submatrices of X that are bases for ranX. For more information,
see, e.g., [DR]. It is important to note that if X is in general position (i.e., if every U ⊂ X with
#U ≤ rankX is 1-1), then the space P(X) coincides with Π#X−rankX(ranX).

We are ready for the definition of Ps(X).

Definition 4.4. Let X be a direction set and let s be an integer. Then

(4.5) Ps(X) := P(X)Π(s−d+rank(X))+ .

Note that Ps(X) = P(X) for s ≤ d− rank(X), and that the sequence (Ps(X) : s = 0, 1, 2, . . .)
is nested, i.e., Ps′(X) ⊆ Ps(X) whenever s′ < s.

In the sequel, the following characterization of Ps(X) will be important since it shows the
characterization of P(Ξ) from [DR] to be applicable here, and shows that, for Y in general position,
P(X ∪ Y ) only depends on X and #Y :
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Proposition 4.6. Let X and Y be direction sets in IRd, with X ∪ Y of full rank, and s := #Y .
Then

P(X ∪ Y ) ⊆ Ps(X),

with equality if (and only if) Y is in general position with respect to X, i.e., no y ∈ Y lies in
a proper subspace spanned by elements of (X ∪ Y )\y.

Proof. Since X ∪ Y is of full rank by assumption, Y must contain some basis B for a
subspace complementary to ranX. Then X ∪ B is of full rank, P(X ∪ B) = P(X) and s − d +
rank(X) = #(Y \B). We may therefore assume without loss that already X is of full rank, hence

Ps(X) = P(X)Πs.

Given L ∈ IL(X ∪ Y ), we let k := #(L ∩ Y ). Then the rank-d matrix (X ∪ Y )\L contains
exactly s− k elements from Y , and thus rank(X\L) ≥ d − (s− k). Since rankX = d, there exists
Z ⊂ L ∩X with #Z ≤ s− k such that rank((X\L) ∪ Z) = d. Now,

(4.7) `L = `L\(Y ∪Z)`(L∩Y )∪Z ,

and we have that #((L ∩ Y ) ∪ Z) ≤ k + (s − k) = s, hence `(L∩Y )∪Z ∈ Πs. At the same time,
L\(Y ∪ Z) is a subset of X, and its complement in X is (X\L) ∪ Z which is known to be of full
rank. This means that L\(Y ∪ Z) ∈ IL(X), and therefore `L\(Y ∪Z) ∈ P(X). Consequently, we
infer from (4.7) that `L ∈ P(X)Πs. This being true for every L ∈ IL(X ∪ Y ), we conclude that a
spanning set for P(X ∪ Y ) lies in Ps(X), and hence P(X ∪ Y ) ⊂ Ps(X).

For the converse inclusion, let L ∈ IL(X), and let B ⊂ (X\L) be a basis for IRd (i.e., a square
invertible d × d matrix). The existence of such a B is guaranteed by the definition of IL(X) and
our assumption that rankX = d. Let Z := B ∪ Y . Then #Z = s+ d, and, by our assumption on
Y , Z is in general position, hence P(Z) = Πs. This implies that, given an element of the form `Lq
with q ∈ Πs, we are able to write this polynomial in the form

`Lq =
∑

L′∈IL(B∪Y )

cL′`L∪L′

for certain scalars cL′ . Each L∪L′ in this sum lies in IL(X∪Y ) since (X∪Y )\(L∪L′) ⊃ (B∪Y )\L′,
and the latter is of rank d because L′ ∈ IL(B ∪ Y ). Consequently, `Lq ∈ P(X ∪ Y ), and we have
thus proved that a spanning set for Ps(X) lies in P(X ∪ Y ), and hence Ps(X) ⊂ P(X ∪ Y ).

Finally, the “only if” assertion follows from the above proof and the known formula for the
dimension of P(X) as follows. Suppose that Y is not in general position with respect to X,
and let Z be a set of s directions that is in general position with respect to X. Then, X ∪ Z
contains more bases than does X ∪ Y . Since this basis count determines the dimension of the
corresponding P-space, it follows that dimP(X ∪ Y ) < dimP(X ∪ Z). However, we proved above
that P(X ∪ Z) = Ps(X), whence the desired conclusion.
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5. The interpolation problem: the simple case

Recall that we introduced the direction set X as a sequence or matrix of normal vectors, one
for each of the hyperplanes

Hx := {t ∈ IRd : x·t = λx}, x ∈ X,

in the given sequence IH, with suitable constants λx ∈ IR. These constants will be held fixed
throughout the discussion. With s ∈ {d − rank(X), . . . , d − 1} fixed, we wish to interpolate to
polynomial information given on the collection

(5.1) Ms(X) := {∩x∈UHx : U ⊂ X, rankU = d− s}

of all flats of dimension s that can be expressed as the intersection of hyperplanes from (Hx : x ∈ X).
Note that we have now switched, from the notation Ms(IH) to the (less precise) notation Ms(X).
Since the hyperplanes (Hx : x ∈ X) depend on (λx : x ∈ X), so does the set Ms(X), but we
have suppressed the λ subscript here, as we did with Hx, since these constants are being held fixed
throughout. However, we will write

Ms,0(X)

instead of Ms(X) when we want to stress the fact that all hyperplanes contain the origin, i.e., in
the determination of these s-dimensional flats, all λx were chosen to be zero.

For each M ∈ Ms(X), we consider the following subset XM of X:

(5.2) XM := (x ∈ X : M ⊂ Hx).

By the definition of Ms(X), rankXM = d− s, and thus #XM ≥ d− s.

Definition 5.3. Let X, λ = (λx : x ∈ X), and Ms(X) be as above. We call the pair (X,λ)
simple if each M ∈ Md−rankX(X) is contained in no more than rankX hyperplanes from IH, i.e.,
if #XM = rankX for each such M . In that case, we also call the corresponding interpolation
problem simple.

For instance, in the example in Section 2, the cases 1.1-3 are simple, while the cases 2.1-4 are
not. Note that Md−ranX(X) is just the pointset M0(X) in case X is of full rank and has at least
d columns. In other words, if rankX = d, then simplicity means that each θ ∈ M0(X) is the
intersection of exactly d hyperplanes in IH.

For the rest of this section, we assume that our interpolation problem is simple. Note that this
assumption is entirely on the constants (λx : x ∈ X) and not on the matrix X.

We now assume that, with each flat M ∈ Ms(X), we are given a polynomial pM on M , i.e.,
the restriction p M of some p ∈ Π, and it is this polynomial information we hope to match by some
element of Ps(X). We will not be able to accomplish this unless

(5.4) pM ∈ Ps(X) M .

Surprisingly, this simple necessary condition for the existence of a solution to our problem (along
with the obvious consistency condition discussed below) is also sufficient, leading to the following.
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Definition 5.5. The data (pM : M ∈ Ms(X)) are termed X-compatible if (5.4) holds for every
M ∈ Ms(X).

We now take time out to study this notion of compatibility in some depth. The analysis of
our interpolation problem is resumed after Proposition 5.8.

In order to characterize X-compatible data and for later use, we next prove that, on M ,
Ps(X) coincides with P(ZM ) for a certain direction set ZM . The construction of ZM involves the
orthogonal projector

PM

onto the linear subspace M−M parallel to the flat M . Explicitly,

ZM := PM (Z\ZM ) ∪BM ,
with

(5.6) Z := X ∪ Y,
with Y an arbitrary s-set of directions in general position with respect to X, and with BM any
basis from ZM for the orthogonal complement

M⊥ := {t ∈ IRd : t ⊥ (M−M)}
of M in IRd. Having made appropriate choices for Y and BM , we now keep them fixed for the
remainder. Note that, necessarily, P(ZM ) ⊂ Π(M). The exclusion of ZM is needed since PM maps
all of ZM to 0. Here is the relevant formal statement and its proof.

Lemma 5.7. Let Z be a direction set, and let M ∈ Ms(Z). Then

P(Z) M = P(ZM ) M .

In particular, with Y an s-direction set in general position with respect to X,

Ps(X) M = P((X ∪ Y )M ) M , ∀M ∈ Ms(X).

Proof. The map
L 7→ L̃ := PM (L\ZM )

carries IL(Z) onto IL(ZM ). Indeed, PM carries a spanning set of IRd to a spanning set of M−M ,
hence PM (Z)\L̃ = PM (Z\L) spans M−M . Then PM (Z\ZM )\L̃ spans M−M , too, since it differs
from PM (Z\L) by PM (ZM ) = {0}. Since ZM\L̃ = PM (Z\L) ∪BM , and since BM spans M⊥, we
conclude that L̃ ∈ IL(ZM ).

To show that the map is onto, let K ∈ IL(ZM ). Since ZM contains exactly d−s elements (viz.,
the elements of BM ) not contained in the s-dimensionalM−M , and since ZM\K spans IRd, K must
be disjoint from BM . Hence K lies in PM (Z\ZM ). In particular, K = PM (L) for some L ⊂ Z\ZM .
On the other hand, ZM\K spans IRd, and is the union of BM and PM (Z\ZM )\K. Therefore, since
rank(BM ) = d − s, we have that rank(PM (Z\ZM )\K) ≥ s, a fortiori rank(Z\(ZM ∪ L)) ≥ s. It
easily follows then that rank(Z\L) = d, hence that L ∈ IL(Z).

With this, let L ∈ IL(Z) and consider `L on M . If t ∈M , then

`L(t) =
∏
x∈L

(x·t) =
∏
x∈L

(
(PMx)·t+ (x− PMx)·t

)
,

and cx := (x − PMx)·t is a constant on M . This shows that, on M , `L agrees with some scalar
multiple of the function f : t 7→ ∏

x̃∈L̃(x̃·t + cx), and, since L̃ ∈ IL(ZM ), such f is in P(ZM )
(as a linear combination of polynomials of the form `K , K ∈ IL(X)). Consequently, P(Z) M ⊆
P(ZM ) M . The converse containment is obtained in an analogous way.

The second equality in the Lemma is a consequence of the first and of Proposition 4.6.
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We recall from [BDR: (2.22)] that, for a full-rank direction set Ξ, p ∈ Π is in P(Ξ) iff, for every
1 ≤ r ≤ d and every N ∈ Mr,0(Ξ) and every t ∈ IRd,

deg(p t+N ) ≤ #(Ξ\N⊥) − r.

After identifying the datum pM given on M ∈ Ms(X) with its unique extension to an element of
Π(M) ⊂ Π, we therefore obtain, with the aid of Lemma 5.7, the following.

Proposition 5.8. The data (pM : M ∈ Ms(X)) are X-compatible if and only if, for r ≤ s and
every N ∈ Mr,0(ZM ) and every t ∈M−M ,

deg(pM t+N ) ≤ #(ZM\N⊥) − r = #(XM\N⊥) + s− r.

We now resume the discussion of our interpolation problem. We want to interpolate all the
data (pM : M ∈ Ms(X)) by some p ∈ Ps(X), hence must ensure also that these data are consistent
enough to guarantee the existence of a smooth interpolant at least locally. These conditions, which
we refer to as “the consistency conditions”, are very natural and simple in the present case.

Definition 5.9. We say that the data (pM : M ∈ Ms(X)) are consistent if, for every M1,M2 ∈
Ms(X), the polynomials pM1 and pM2 coincide on M1 ∩M2 ∩M0(Z) (with Z as in (5.6)).

Theorem 5.10. Assume that (X,λ) is simple, and let (pM : M ∈ Ms(X)) be consistent and
X-compatible data. Then there exists exactly one p ∈ Ps(X) that interpolates these data, i.e., that
satisfies

p M = pM , ∀M ∈ Ms(X).

If s = 0, then the information is given at points. In this case, Ps(X) = P(X), and both the
consistency and compatibility conditions are vacuous. Thus, for the case s = 0, our theorem reads
as follows:

Theorem 5.11 ([DR]). Any data given on the pointset M0(X) is interpolated by a unique
element in P(X).

The existence part of this theorem can be easily proved by finding in P(X) Lagrange polyno-
mials for the data, i.e., polynomials that vanish at all points in M0(X) but one. The uniqueness
is harder and can be proved by showing that dimP(X) = #M0(X). We omit all these details
since Theorem 5.11 has already been proved in [DR]; it is a special case of Theorem 7.1 there,
which covers also the general case for s = 0, Theorem 7.4, here. The construction of the Lagrange
polynomials together with the fact that these polynomials form a basis for P(X) is the content of
Theorem 4.1 of [DR].

We now reduce the general Theorem 5.10 to the known Theorem 5.11:

Proof of Theorem 5.10. Recall the direction set Y ∈ IRd×s in general position with respect to
X chosen earlier and the notation Z := X∪Y , and the fact that, by Proposition 4.6, Ps(X) = P(Z).
We associate with each y ∈ Y a constant λy such that also M0(Z) is simple, i.e., such that exactly
d hyperplanes Hz, z ∈ Z, contain a given point θ ∈ M0(Z). Our proof then proceeds in two steps:
the first one, we already took in §3, where we used the assumed consistency to show that the given
information (pM : M ∈ Ms(X)) determines uniquely data values (aθ : θ ∈ M0(Z)), and then
invoked Theorem 5.11 to find exactly one p ∈ P(Z) = Ps(X) that interpolates these data, thus
concluding uniqueness of the interpolant. In the second step, we show that, for every M ∈ Ms(X),
the fact that the interpolant p coincides with pM on M ∩M0(Z) implies that p = pM on all of M ,
thus showing existence of the interpolant.

Here are the details for that second step.
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To prove the existence, we fix M ∈ Ms(X) and wish to show that the interpolant p coincides
on M with pM . Now, pM and p M agree on M0(Z) ∩M , and both are in P(Z) M (the former
by the assumed X-compatibility and the latter by construction), while P(Z) M = P(ZM ) M ,
by Lemma 5.7. Further, by Theorem 5.11 (easily applied to the current situation by an affine
change of variables), the space P(ZM ) contains a unique interpolant to arbitrary data at the
point set M̃0(ZM ), with the tilde indicating that the zero-dimensional flats are constructed from
hyperplanes Hx̃ = {t : qx̃(t) = 0}, x̃ ∈ ZM , and the corresponding constant λx̃ in the linear
polynomial qx̃ : t 7→ x̃·t− λx̃ chosen in such a way that qx̃ agrees on M with the polynomial qx, as
is done in the proof of Lemma 5.7. Thus, we can conclude that p M = pM (and so declare Theorem
5.10 proved), once we prove that

(5.12) M0(Z) ∩M = M̃0(ZM ).

For this, θ ∈ M̃0(ZM ) iff the submatrix ZθM of all directions x̃ ∈ ZM with θ ∈ Hx̃ contains a
basis for IRd. Any basis in ZM necessarily contains the basis BM for M⊥, hence M̃0(ZM ) ⊂ M .
For any other element x̃ of such a basis, we have Hx̃ ∩M = Hx ∩M , by the construction of Hx̃

just detailed, hence θ also lies in the corresponding Hx. Consequently, M0(Z) ∩M ⊃ M̃0(ZM ).
Conversely, θ ∈ M0(Z)∩M iff the submatrix Zθ of all directions x ∈ Z with θ ∈ Hx contains

some basis B for IRd and, within that basis, a basis for M⊥ taken from XM . For any element
x ∈ B\XM , qx = qx̃ on M , hence θ ∈ M̃0(ZM ). This finishes the proof of (5.12) and, thereby, the
proof of the theorem.

6. Some facts about polynomials

Some of the theorems (in the next section) that are needed for proving our main result make
claims of the form

(6.1) F ⊂ G,

with both F and G a polynomial space (i.e., a linear subspace of Π), but not necessarily of finite
dimension nor of finite codimension. However, in all cases of interest to us, the spaces F and G
are D-invariant i.e., invariant under differentiation in any direction, hence invariant under any
constant-coefficient differential operator p(D) :=

∑
α(Dαp(0)/α!)Dα, taken as a map on Π, with

Dα :=
∏d
i=1D

α(i)
i , and Di differentiation with respect to the ith argument.

ForD-invariant F and G, one may try to prove the inclusion F ⊂ G by inspecting the constant-
coefficient differential operators that annihilate these spaces, since, for an arbitrary subset G of Π,
the set

IG := {p ∈ Π : G ⊂ ker p(D)}
is an ideal (hence has a finite generating set) and, further,

G ⊂ ker IG :=
⋂
p∈IG

ker p(D) =
⋂
p∈G0

ker p(D)

for any generating set G0 for IG, with equality if and only if G is a co-ideal, i.e., a D-invariant
polynomial space that is closed in the weak topology induced by the pairing

Π × Π : (p, q) 7→ 〈p, q〉 :=
∑
α

Dαp(0)Dαq(0)/α!.
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Hence, if G is a co-ideal, then we can conclude (6.1) as soon as we know that, for all p in some
generating set for the ideal IG, p(D) annihilates F . For, then we know that IG ⊂ IF , hence

F ⊂ ker IF ⊂ kerIG = G.

In our particular applications, G will be a homogeneous polynomial space, i.e., is spanned
by homogeneous polynomials (or, equivalently, is invariant under dilations). For that case, we have
the following simple, yet very useful, observation:

Proposition 6.2. Any sum of homogeneous D-invariant polynomial spaces is a co-ideal.

Proof. Since the sum of homogeneous D-invariant polynomial spaces is also homogeneous
and D-invariant, we need only to prove the case when there is a single summand, F , in the sum.

Since we assume that F is D-invariant, we need only to prove that it is closed. Let (fn) be a
sequence in F weakly convergent to f ∈ Π. Then f ∈ Πk for some k and so, necessarily, already

f [k]
n =:

∑
|α|≤k

Dαfn(0)
α!

()α

converges weakly to f , while, by the homogeneity of F , each f [k]
n is in the finite-dimensional space

F ∩ Πk, hence so must f be.

We conclude this section with two further simple observations of use in the next section.

Proposition 6.3. Let F and G be co-ideals, with IG = I(Γ), and let p ∈ Π. Then, p ∈ F +G if
and only if there exists f ∈ F so that, for all γ ∈ Γ, γ(D)(p− f) = 0.

For our last statement, let M be a flat in IRd and recall our notation PM for the orthogonal
projector onto M−M . Then

(6.4) Dyp = DPMyp, ∀y ∈ IRd, p ∈ Π(M).

Indeed, since p ∈ Π(M) is constant in all directions perpendicular to M , we have Dy−PMyp = 0.
In particular, Dy maps Π(M) onto itself unless PMy = 0, i.e., unless y ∈M⊥. Since Dy(qp) =

(Dyq)p+ q (Dyp), this implies (by induction on deg q) the following

Proposition 6.5. For any flat M in IRd, any y ∈ IRd\M⊥, and any D-invariant linear subspace
F of Π,

Dy(FΠ(M)) = FΠ(M).

7. The interpolation problem: the general case

The basic set-up in the general case is the same as in the simple case: we are given the
direction set X and the constants (λx : x ∈ X) and want to interpolate from Ps(X) to polynomial
information given on the flats in Ms(X). Only that at this time, we no longer assume simplicity,
i.e., while still for every M ∈ Ms(X) the set XM (of all vectors whose corresponding hyperplane
contains M) spans M⊥, there might be more than d−s vectors in XM , which is to say that the flat
M appears with some multiplicity. Therefore, the initial task is to define precisely the multiplicity
notion. This will eventually determine the type of interpolation conditions we expect to satisfy.
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Before embarking on the precise definition of “multiplicity” here, we make the following simple
count: suppose that M ∈ Ms(X) is given and assume that XM contains more than d− s vectors.
In this case, the interpolating polynomial should match not only function values given on M but
also some prescribed derivatives on M , i.e., we expect to be given data

(pM,ϕ : ϕ ∈ Φ)

consisting of polynomials on M , with Φ some M -dependent polynomial space that describes the
derivatives to be interpolated, in the sense that we require our interpolant p to satisfy all of the
following conditions

(ϕ(D)p) M = pM,ϕ, ∀ϕ ∈ Φ.

Of course, some consistency requirements must be enforced; for example, it should be assumed that

αpM,ϕ + βpM,ψ = pM,αϕ+βψ, ∀ϕ, ψ ∈ Φ, ∀α, β ∈ C.

As we will see in a moment, the exact definition of the space Φ is fairly complicated, but one thing
can be observed easily in advance: the dimension of Φ should be the number of bases for M⊥ that
can be extracted from XM (i.e., the number of submatrices of XM of length and rank d− s). This
is so because this number counts the number of flats in Ms(X) that have been merged into the
one M while passing from the generic or simple case to the present general case.

We now define exactly the type of derivatives that should be interpolated. For this purpose,
we recall the polynomial space D(Ξ) which is also intimately related to box spline theory:

Definition 7.1. Let Ξ be any matrix with d rows. Let IK(Ξ) be the complement of IL(Ξ) in 2Ξ,
i.e.,

(7.2) IK(Ξ) := {K ⊂ Ξ : rank(Ξ\K) < rankΞ}.
Then the polynomial space D(Ξ) ⊂ Π(ranΞ) is defined as the joint kernel of the differential oper-
ators on Π(ranΞ) induced by IK(Ξ):

D(Ξ) := {ϕ ∈ Π(ran Ξ) : `K(D)ϕ = 0, ∀K ∈ IK(Ξ)} = kerI(`K : K ∈ IK(Ξ)) ⊂ Π(ranΞ).

In particular,
D(Ξ) = D(Ξ ∪B)

for any basis B for (ranΞ)⊥.

We are now ready to describe the information to be interpolated: we assume that the data
consist of polynomials

pM,ϕ ∈ Π(M), M ∈ Ms(X), ϕ ∈ D(XM ),

and that the interpolant p should then satisfy

(ϕ(D)p) M = pM,ϕ, ∀M ∈ Ms(X), ϕ ∈ D(XM ).

It may be helpful for the reader to consider briefly the spaces D(XM ) that occur in the example
in §2. In Cases 1.1-3 and 2.1, each XM has just one column, XM = [x] say, and, correspondingly,
IK(XM ) = {[x]}, hence D(XM ) = Π0. In Cases 2.2 and 2.3, one of the M has XM = [x, x] for
a certain x, hence now IK(XM ) = {[x x]}, and therefore D(XM ) = Π1(ran[x]) = span{1, `x}.
Finally, Cases 2.4 is quite similar in that the one and only M has XM = X = [x x x], hence
D(XM ) = span{1, `x, `2x} in this case. As we said at the end of §2, one needs to go to higher
dimensions in order to fully appreciate the power of the construct D(XM ).

We postpone the discussion concerning the consistency of the data, but we can already present
our compatibility requirements for the data with Ps(X):
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Definition 7.3. We say that the given data (pM,ϕ : M ∈ Ms(X), ϕ ∈ D(XM )) are X-
compatible if

pM,ϕ ∈ (Ps(X)) M , ∀M ∈ Ms(X), ∀ϕ ∈ D(XM ).

While one might have expected here the stronger condition pM,ϕ ∈ (ϕ(D)Ps(X)) M , the given
condition turns out to suffice.

So, with the notion of consistency yet to be defined, we assume that we are given consistent
information (pM,ϕ : M ∈ Ms(X), ϕ ∈ D(XM )) that is X-compatible and want to prove the
existence and uniqueness of p ∈ Ps(X) that matches these data. As in the simple case, our solution
method is based on the reduction of this problem to the case s = 0 and uses the known results for
this case that were established in Theorem 7.1 of [DR], as follows.

Theorem 7.4 ([DR]). Let Ξ be a direction set in IRd, of rank d, and let (Hx : x ∈ Ξ) be a
corresponding sequence of hyperplanes, each perpendicular to its associated x. For each θ ∈ IRd,
let Ξθ be defined as

Ξθ := (x ∈ Ξ : θ ∈ Hx),

and let M0(Ξ) be the set of all θ with rankΞθ = d. Then, for every smooth function f : IRd → C,
there exists exactly one p ∈ P(Ξ) that satisfies

ϕ(D)p(θ) = ϕ(D)f(θ), ∀θ ∈ M0(Ξ), ϕ ∈ D(Ξθ).

The smooth function f in this theorem serves only to ensure the consistency of the data
(ϕ(D)f(θ) : θ ∈ M0(Ξ), ϕ ∈ D(Ξθ)). We could have replaced each value ϕ(D)f(θ) by a number
pθ,ϕ and required the consistency conditions

αpθ,ϕ + βpθ,ψ = pθ,αϕ+βψ, θ ∈ M0(Ξ), ϕ, ψ ∈ D(Ξθ), α, β ∈ C,

since these conditions are equivalent to the existence of a smooth interpolant to the data.
With the aid of Theorem 7.4, we treat the case s > 0 as follows: We assume that Ms(X) is

not empty (since otherwise there is nothing to prove), i.e., we assume that rankX ≥ d−s, and add
to X, as in the simple case, s vectors Y that are in general position relative to X, thus obtaining
the direction set

Z := X ∪ Y,
of full rank. Since, by Proposition 4.6, Ps(X) = P(Z), we seek our interpolant from P(Z). Precisely,
we will derive from the data (pM,ϕ : M ∈ Ms(X), ϕ ∈ D(XM )) uniquely determined data
(pθ,ϕ : θ ∈ M0(Z), ϕ ∈ D(Zθ)) and show that the unique interpolant in P(Z) to the latter data
(which is provided by Theorem 7.4, with Ξ = Z) also interpolates the original data.

Our first step is to derive the information (pθ,ψ : θ ∈ M0(Z), ψ ∈ D(Zθ)) from the given data
(pM,ϕ : M ∈ Ms(X), ϕ ∈ D(XM )). Precisely, we think of each pM,ϕ as specifying (ϕ(D)p) M ,
with p being our desired interpolant, and want to be able to compute from this information the
numbers ψ(D)p(θ) for ψ ∈ D(Zθ) and θ ∈ M0(Z).

We fix now θ ∈ M0(Z) and proceed as follows: we first remove from Ms(X) all flats that
do not contain θ. The remaining set is easily shown to coincide with Ms(Xθ), i.e., the set of
s-dimensional flats associated with the hyperplanes that contain θ. The information available to
us at θ is of the form

(pM,ϕ(θ) : M ∈ Ms(Xθ), ϕ ∈ D(XM )).

However, since pM,ϕ specifies ϕ(D)p on all of M , we thereby also know q(D)ϕ(D)p on M for any
q ∈ Π(M). This means that the data supply the number ϕ(D)p(θ) for any

ϕ :=
∑

M∈Ms(Xθ)

∑
i

ϕMi q
M
i ∈

∑
M∈Ms(Xθ)

D(XM )Π(M),
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in the form
ϕ(D)p(θ) =

∑
M∈Ms(Xθ)

∑
i

qMi (D)pM,ϕM
i

(θ).

Of course, for this to work, we must be certain that the resulting number ϕ(D)p(θ) is independent
of the particular way we are writing ϕ as such a sum. This leads to the following.

Definition 7.5. We say that the given data (pM,ϕ : M ∈ Ms(X), ϕ ∈ D(XM )) are consistent
if, for some Y ∈ IRd×s in general position with respect to X and for every θ ∈ M0(Z) (with
Z := X ∪ Y ),

0 =
∑

M∈Ms(Xθ)

∑
i

ϕMi q
M
i ∈

∑
M∈Ms(Xθ)

D(XM )Π(M)

implies that ∑
M∈Ms(Xθ)

∑
i

qMi (D)pM,ϕM
i

(θ) = 0.

Note that such consistency is demanded here only at certain finitely many points, which is very
helpful, since an equivalent definition on an entire intersection of flats seems to be comparatively
awkward.

It follows that the original information determines the desired information (ψ(D)p(θ) : ψ ∈
D(Zθ)) if and only if

(7.6) D(Zθ) ⊂
∑

M∈Ms(Xθ)

D(XM )Π(M).

As we now explain, it suffices to establish the above inclusion for the special case when Xθ = X,
and θ = 0; Theorem 7.7 below establishes the inclusion for this seemingly special case. The general
case of (7.6) then follows by the following reasoning.

First, since Zθ ∩X = Xθ, and since each XM (with M ∈ Ms(Xθ)) is a submatrix of Xθ (and
not only of X), the vectors in X\Xθ play no role here, hence nothing is lost in assuming Xθ = X.
Second, assuming Xθ = X, the map

M 7→M − θ

maps Ms(X) 1-1 onto Ms,0(X). At the same time, since all the spaces involved in (7.6) are
translation-invariant, nothing is changed there if we translate them all by θ; the only change is that
the index set Ms(X) = Ms(Xθ) of the summation is replaced by Ms,0(X).

Consequently, (7.6) will be proved as soon as we have shown the following:

Theorem 7.7. Let Ξ be a direction set in IRd. Let s ∈ {1, . . . , d− 1}, and let Y be an arbitrary
collection of k ≤ s vectors. Then

(7.8) D(Ξ ∪ Y ) ⊂
∑

M∈Ms,0(Ξ)

D(Ξ ∩M⊥)Π(M).

We note that the statement in the theorem is sharp: for example, if Ξ∪Y is in general position
and Y contains exactly s vectors, then the inclusion of (7.8) already ceases to hold if we remove
from the right-hand side any single summand. For, in that case, each D(Ξ∩M⊥) equals Π0, while,
for any M ∈ Ms,0(Ξ), p := `Ξ\M⊥ is of exact degree #Ξ + s − d, hence p(D) fails to annihilate
D(Ξ ∪ Y ) = Π#Ξ+s−d, yet it annihilates all the summands in the right-hand side except Π(M).

On the other hand, the two sides in (7.8) are never equal since the left side is contained in
Π#Ξ+s−d while the right side contains polynomials of arbitrarily high degree.
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In order to prove the theorem, we observe that both sides of (7.8) are co-ideals, the right side
by Proposition 6.2. The claim of the theorem follows then from the fact (about to be established)
that the ideal that determines the right-hand side of (7.8) is contained in the ideal that determines
the left-hand side.

As a matter of fact, D(Ξ ∪ Y ) is defined as the kernel of the ideal

I(`K : K ∈ IK(Ξ ∪ Y )).

Since the space D(Ξ ∪ Y ) gets larger with increasing Y , we will assume without loss that #Y = s.
On the other hand, the following theorem asserts that the right-hand side of (7.8) is the kernel
of the ideal I(`K : K ⊂ Ξ, rank(Ξ\K) < d − s). Since Y has only s elements, each such K is in
IK(Ξ ∪ Y ). Thus, the next theorem provides a proof for (7.8).

Theorem 7.9. Let Ξ be a direction set in IRd, let s be a non-negative integer ≤ d, and let

IKs(Ξ)

be the collection of allK ⊂ Ξ that are minimal with respect to the property that rank(Ξ\K) < d−s.
Then

(7.10)
∑

M∈Ms,0(Ξ)

D(Ξ ∩M⊥)Π(M) =
⋂

K∈IKs(Ξ)

ker `K(D) =: Ds(Ξ).

Proof. We note that, necessarily, rank(Ξ\K) = d − s − 1 for all K ∈ IKs(Ξ), and that
IK0(Ξ) consists of all minimal elements of IK(Ξ), hence

D(Ξ) = kerI(`K : K ∈ IK0(Ξ)) = D0(Ξ).

Also, both sides of (7.10) are co-ideals (the left side by Proposition 6.2), hence their equality is
equivalent to the equality of their corresponding ideals.

As a warm-up, we prove the simpler inclusion in (7.10) by showing that each of the operators
`K(D) in (7.10) annihilates the left-hand side of (7.10). Indeed, if K ∈ IKs(Ξ) and M ∈ Ms,0(Ξ),
then Ξ\K has rank < d−s = rankΞ∩M⊥, therefore (Ξ∩M⊥)\(K∩M⊥) has rank < rank(Ξ∩M⊥),
i.e., K ∩M⊥ ∈ IK(Ξ ∩M⊥). But since, for every q ∈ Π(M) and any x ∈ Ξ ∩M⊥, `x(D)(pq) =
(`x(D)p)q, this shows that `K∩M⊥(D) annihilates every pq with p ∈ D(Ξ ∩M⊥) and q ∈ Π(M),
hence annihilates all of D(Ξ ∩M⊥)Π(M); a fortiori, that latter space is annihilated by `K(D).

We now prove the converse. First, if rank Ξ < d− s, then Ms,0(Ξ) = {} and also IKs(Ξ) = {},
hence both sides of (7.10) are {0}. We settle the contrary case by induction on #Ξ ≥ d − s. If
#Ξ = d − s, then Ds(Ξ) = ∩x∈Ξ kerDx, and hence indeed Ds(Ξ) = Π0(M), with M := Ξ⊥ the
single element of Ms,0(Ξ).

Assume now that the statement of the theorem holds for Ξ, and let

Z := Ξ ∪ {y}.

Assume that ϕ(D) annihilates
∑
M∈Ms,0(Z) D(Z∩M⊥)Π(M). Since this sum contains the left-hand

side of (7.10), the induction hypothesis implies that ϕ ∈ I(`K : K ∈ IKs(Ξ)), i.e.,

ϕ =:
∑

K∈IKs(Ξ)

`KψK ,
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where (ψK) are some polynomials. We need to show that ϕ ∈ I(`U : U ∈ IKs(Z)). We do this by
showing that

`K0ψK0 ∈ I(`U : U ∈ IKs(Z))

for every K0 ∈ IKs(Ξ).
Here is the way the proof goes. If K0 ∈ IKs(Z), there is nothing to prove. Otherwise, (Ξ\K0)∪

{y} is of rank d − s. Let M ∈ Ms,0(Z) be the subspace perpendicular to (Ξ\K0) ∪ {y}. We will
show below that ψK0(D) annihilates D((Ξ\K0) ∪ {y})Π(M), hence (see the proof of Proposition
6.2) ψK0 ∈ I(`K : K ∈ IK((Ξ\K0) ∪ {y})).

The desired result follows from this since, for any K ∈ IK((Ξ\K0) ∪ {y}), Z\(K0 ∪ K) =
((Ξ\K0)∪{y})\K, with the latter matrix of rank < d− s, therefore some submatrix of K0 ∪K lies
in IKs(Z). Hence, `K0ψK0 lies in the ideal generated by {`U : U ∈ IKs(Z)} which is exactly what
we had to prove.

It remains to prove that ψK0(D) annihilates D((Ξ\K0)∪{y})Π(M). For this, we observe that

Z ∩M⊥ ⊃ (Ξ\K0) ∪ {y} = (Z ∩M⊥)\K0.

By assumption,
∑
K∈IKs(Ξ) `K(D)ψK(D) annihilates D(Z ∩ M⊥)Π(M). In addition, there are

certain terms in this sum that already annihilate D(Z ∩M⊥)Π(M) (without any “aid” from other
terms): if K ∈ IKs(Ξ), then rank(Ξ\K) = d−s−1, hence (Ξ\K) 6⊂M⊥ implies that rank((Ξ\K)∩
M⊥) < d − s − 1. Therefore, for such K, ((Ξ\K) ∪ {y}) ∩M⊥ is of rank < d − s and, since this
last matrix is (Z∩M⊥)\K, we conclude that K ∩M⊥ ∈ IK(Z∩M⊥) which means that `K∩M⊥(D)
annihilates D(Z ∩M⊥) and hence annihilates D(Z ∩M⊥)Π(M). Thus, for such K, the operator
`K(D)ψK(D) annihilates D(Z∩M⊥)Π(M), and consequently, the sum of the rest of the summands
annihilates this space as well.

Thus, with
IKM
s := {K ∈ IKs(Ξ) : (Ξ\K) ⊂M⊥},

we know that ∑
K∈IKM

s

(`KψK)(D)

annihilates D(Z∩M⊥)Π(M). We also know that our original K0 is in IKM
s . Also, (Z∩M⊥)\(K0 ∩

M⊥) = (Z ∩M⊥)\K0 = (Ξ\K0) ∪ {y}. This makes the following map interesting for us.
Identifying M⊥ with IRd−s, we define

L : D(Z ∩M⊥) → ×
K∈IKM

s

D((Z ∩M⊥)\(K ∩M⊥)) : p 7→ (`K∩M⊥(D)p : K ∈ IKM
s ).

Note that by varying K over IKM
s , we actually vary K ∩ M⊥ over all minimal submatrices of

Ξ∩M⊥ whose complement in Ξ∩M⊥ does not span M⊥ any more. I.e., {K ∩M⊥ : K ∈ IKM
s } =

IK0(Ξ∩M⊥). Thus, by [DM:Theorem 3.2] (a complete proof of which can be found, e.g., in [BRS]),
the map L is onto, and therefore, for ourK0 there exists F ⊂ D(Z∩M⊥) such that `K∩M⊥(D)F = 0
for K ∈ IKM

s \{K0} but `K0∩M⊥(D)F = D((Z ∩M⊥)\K0). Thus, for K ∈ IKM
s \{K0},

`K(D)ψK(D)(F Π(M)) = `K\M⊥(D)ψK(D)((`K∩M⊥(D)F )Π(M)) = {0},
and so,

{0} =
∑

`K(D)ψK(D)(D(Z ∩M⊥)Π(M)) ⊇
∑

`K(D)ψK(D)(FΠ(M))

= `K0(D)ψK0(D)(F Π(M)) = `K0\M⊥(D)ψK0(D)((`K0∩M⊥(D)F )Π(M))

= ψK0(D)(`K0\M⊥(D)(D((Z ∩M⊥)\K0)Π(M))) = ψK0(D)(D((Z ∩M⊥)\K0)Π(M)),
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the last equality since, by Proposition 6.5, `Y (D) is a surjective endomorphism on every space of
the form F Π(M), with F a D-invariant polynomial space, provided that Y ∩M⊥ = {}. Noting
that (Z ∩M⊥)\K0 is exactly our old (Ξ\K0) ∪ {y}, we have proved what we wanted to.

Now, we finally know that the information required for solving the interpolation problem
related to M0(X ∪ Y ) is uniquely determined by the original data. Thus, by Theorem 7.4, there
exists a unique polynomial in Ps(X) = P(X∪Y ) that interpolates all the information at the points.
This already implies the uniqueness of the solution to our original data.

It remains to show that this interpolant p to the pointwise data matches also the original data
on Ms(X). Fixing M ∈ Ms(X), we begin by showing that p M = pM , and do this by applying
Theorem 7.4 to the situation on M , i.e., use, as in the simple case, the coincidence of P(Z) and
P(ZM ) on M (see Lemma 5.7) to conclude that p M = pM from the fact that p M “matches” pM
at each θ ∈ M0(Z) ∩M = M̃0(ZM ) (see (5.12)) in the sense that

ϕ(D)(p M − pM )(θ) = 0, ∀ϕ ∈ D(ZθM ),

and, assuming consistency, this will be so provided D(ZθM ) ⊂ D(Zθ). The next lemma, applied to
Ξ = Zθ, proves this containment.

Lemma 7.11. Let Ξ be a direction set of rank d. Let M ∈ Ms(Ξ), let PM be the orthogonal
projector onto M−M , and let

ΞM := PM (Ξ\M⊥).

Then,

(7.12) D(ΞM ) ⊂ D(Ξ).

Proof. Since D(Ξ) is the joint kernel of {`K(D) : K ∈ IK(Ξ)}, it suffices to show that each
`K(D),K ∈ IK(Ξ), annihilates D(ΞM ). IfK∩(Ξ∩M⊥) 6= {}, then this is obvious since in such a case
`K(D) annihilates all of Π(M) and in particular its subspace D(ΞM ). Otherwise, Ξ∩M⊥ ⊂ Ξ\K,
and therefore PM (Ξ\K) cannot be of rank s (to avoid the contradictory conclusion that Ξ\K is
of rank d, which contradicts the assumption K ∈ IK(Ξ)). We thus conclude that PMK ∈ IK(ΞM ),
which implies that `PMK(D)D(ΞM ) = {0}. But since D(ΞM ) ⊂ Π(M), there is no difference
between the action of `K(D) and `PMK(D) on D(ΞM ). Consequently, `K(D)D(ΞM ) = {0}.

To finish the general case, we also have to show that, for each ϕ ∈ D(XM ), ϕ(D)p M = pM,ϕ.
This we prove by induction on j := degϕ (having just settled the case j = 0), with the aid of the
following theorem (which we mean to apply with Ξ = Xθ = Zθ, hence Ξ ∩M⊥ = XM ).

Theorem 7.13. Let Ξ be a direction set of rank d. Let M ∈ Ms(Ξ), let PM be the orthogonal
projector onto M−M , and set

ΞM := PM (Ξ\M⊥).

Then, for every non-negative integer j,

(7.14) (D(Ξ ∩M⊥) ∩ Πj)D(ΞM ) ⊂ D(Ξ) + (D(Ξ ∩M⊥) ∩ Πj−1)Π(M).

Proof. The case j = 0 is just Lemma 7.11. The case j > 0 is proved with the aid of
differential operators, as we did in earlier proofs. Specifically, both spaces on the right-hand side
of (7.14) are co-ideals (as both are homogeneous). Therefore, we are entitled to use Proposition
6.3 for the proof of (7.14). We start by identifying a generating set for the associated ideal of the
second summand in the right hand side of (7.14).
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Lemma 7.15. Let Y ∈ IRd×n be a matrix of rank d. Then D(Y ) ∩Πj−1 is the kernel of the ideal
generated by the union Gj := GIK

j ∪GIL
j of the following two sets:

GIK
j := {`K : K ∈ IK(Y ), #K ≤ j}, GIL

j := {`L : L ∈ IL(Y ), #L = j}.
Proof. It is clear that Gj generates all of {`K : K ∈ IK(Y )}: if #K ≤ j, then `K appears

in GIK
j ; otherwise, a factor of it appears in GIL

j . Therefore,

kerI(Gj) ⊂ D(Y ).

On the other hand, it is clear that D(Y ) ∩ Πj−1 lies in kerI(Gj), since GIK
j (D) annihilate D(Y ),

and GIL
j (D) annihilate Πj−1.

Thus, we only need to show that kerI(Gj) ⊂ Πj−1, or, in other words, that Gj generates
all of Π0

j . For this, observe that ID(Y ) + P(Y ) = Π. Since both summands are homogeneous,
(ID(Y )∩Π0

j )+(P(Y )∩Π0
j ) = Π0

j . But, GIK
j generates ID(Y )∩Π0

j and GIL
j spans P(Y )∩Π0

j , whence
the desired conclusion.

Corollary 7.16. The ideal whose kernel is (D(Ξ ∩ M⊥) ∩ Πj−1)Π(M) is generated by Gj :=
GIK
j +GIL

j , with

GIK
j := {`K : K ∈ IK0(Ξ ∩M⊥),#K ≤ j} and GIL

j := {`L : L ∈ IL(Ξ ∩M⊥), #L = j}.
Combining this corollary with Proposition 6.3, we see that our Theorem 7.13 follows from the

following claim:

Proposition 7.17. Let Gj be as in the preceding corollary. Then, for every p ∈ (D(Ξ ∩M⊥) ∩
Πj)D(ΞM ), there exists f ∈ D(Ξ) such that

`Z(D)(p− f) = 0, ∀`Z ∈ Gj .

Proof. Let
PΞ

be the projector of Π onto D(Ξ) with respect to P(Ξ). Namely,

ϕ(D)(p− PΞp)(0) = 0, ∀ϕ ∈ P(Ξ), ∀p ∈ Π.

This projector exists (and is unique) because of the duality between D(Ξ) and P(Ξ). It is proved
in [DR] (cf. §6 there) that for every Y ⊂ Ξ we have

`Y (D)PΞ = PΞ\Y `Y (D).

Now let p ∈ (D(Ξ∩M⊥)∩Πj)D(ΞM ) and choose q := PΞp ∈ D(Ξ). Let `Z ∈ Gj ; then, in particular,
Z ⊂ Ξ ∩M⊥ ⊂ Ξ, and hence, by the above,

(7.18) `Z(D)(p− q) = `Z(D)p− PΞ\Z(`Z(D)p).

We will show now that, whatever `Z ∈ Gj was chosen, `Z(D)p ∈ D(Ξ\Z). Since PΞ\Z is the identity
on D(Ξ\Z), (7.18) will then imply that `Z(D)(p− f) = 0.

Whatever Z we did choose, Z ⊂M⊥, and hence

`Z(D)(D(Ξ ∩M⊥)Π(M)) = (`Z(D)D(Ξ ∩M⊥))Π(M).

If Z ∈ IK(Ξ ∩M⊥), then `Z(D)p = 0 ∈ D(Ξ\Z). Otherwise, `Z ∈ GIL
j and hence #Z = j, and

therefore `Z(D)(D(Ξ ∩M⊥) ∩ Πj) ⊂ Π0. Consequently, `Z(D)p ∈ D(ΞM ) ⊂ D(Ξ\M⊥) ⊂ D(Ξ\Z),
the middle inclusion by virtue of the proven j = 0 case of the theorem. This completes the proof
of the present proposition, and thereby completes the proof of the whole Theorem 7.13.
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With this, we have almost proved the following main result of this paper.

Theorem 7.19. Let X be a direction set in IRd, and let (Hx : x ∈ X) be a corresponding sequence
of hyperplanes, each perpendicular to its associated x. For a fixed s ∈ {0, . . . , d− 1}, let there be
given consistent (see 7.5) and X-compatible (see 7.3) data (pM,ϕ : M ∈ Ms(X), ϕ ∈ D(XM )).
Then, there exists exactly one p ∈ Ps(X) that satisfies

(ϕ(D)p) M = pM,ϕ, ∀M ∈ Ms(X), ϕ ∈ D(XM ).

Proof. The only thing still not proved is the claim that the (unique) interpolant p ∈
P(X ∪ Y ) to the data (

pθ,ψ : θ ∈ M0(X ∪ Y ), ψ ∈ D((X ∪ Y )θ)
)

(derived with the aid of Theorem 7.7, as explained before) satisfies

ϕ(D)p M = pM,ϕ

for all ϕ ∈ D(XM ) and all M ∈ Ms(X). We prove this by induction on j := degϕ, the case j = 0
having already been settled.

Consider ϕ ∈ D(XM ) of degree j. Since p ∈ Ps(X), so is ϕ(D)p, hence ϕ(D)p M ∈ Ps(X) M ,
while pM,ϕ ∈ Ps(X) M by the assumed X-compatibility of the data. By Theorem 7.4 and Lemma
5.7, it is therefore sufficient to prove that

ψ(D)
(
ϕ(D)p M − pM,ϕ

)
(θ) = 0, ∀θ ∈ M0(Z) ∩M, ∀ψ ∈ D(ZθM ).

By Theorem 7.13, any such ψϕ is expressible as a finite sum

ψϕ = ψ0 +
∑
i

ϕiψi,

with ψ0 ∈ D(Zθ) and ϕi ∈ D(ZM ) ∩ Πj−1, ψi ∈ Π(M), all i. By Theorem 7.7,

ψ0 =
∑

N∈Ms,0(Zθ)

∑
i

ϕNi ψ
N
i

for some ϕNi ∈ D(Z ∩N⊥), ψNi ∈ Π(N), and, by construction of p,

ψ0(D)p(θ) =
∑

N∈Ms,0(Zθ)

∑
i

ψNi (D)pN,ϕN
i

(θ).

Therefore,

ψ(D)ϕ(D)p(θ) =
(
ψ0(D) +

∑
i

ϕi(D)ψi(D)
)
p(θ)

=
∑

N∈Ms,0(Zθ)

∑
i

ψNi (D)pN,ϕN
i

(θ) +
∑
i

ψi(D)pM,ϕi(θ)

= ψ(D)pM,ϕ(θ),

the second equality by induction hypothesis and the last equality by the assumed consistency of
the data.
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