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Negative observations concerning approximations from

spaces generated by scattered shifts of functions vanishing at ∞

Amos Ron

1. Introduction

In recent years, approximation from spaces spanned by integer translates of one or several

functions became a major theme in various areas of approximation theory (and in other fields,

e.g., wavelets). In most of the examples one starts with a function φ : IRd → C which grows

(polynomially, exponentially) at infinity and localizes the function by an application of a difference

operator, i.e., obtains a function ψ in the form

(1.1) ψ =
∑

α∈ZZd

a(α)φ(· − α),

with the infinite sum being convergent in some topology (e.g. the C(IRd)-topology). The localized

function ψ is either compactly supported (in the case of B-splines and box splines), or, alternatively,

decays at some suitable rate at infinity (in the case of radial basis functions).

Approximation from spaces spanned by non-uniform (=scattered) translates of a single function

is also a popular topic in multivariate approximation, with the major emphasis being put on radial

basis functions (because of computational reasons). The most common setup starts with a set of

translation centers A ⊂ IRd, and attempts to write the approximant as a linear combination of

A(φ) := {φ(· − α)}α∈A.

Localizations are very helpful in this more general setting, as well. Even when A is finite, a

localization procedure can help improve the stability of the evaluation process of the approximant

(cf. [DL] and [DLR]).

There are several different approaches for extending the idea of “localization then approxima-

tion” from the uniform case to the scattered case, and we describe below two essentially different

approaches, whose comparison is important here. The first (referred to hereafter as Method A)

starts with a function φ which grows at infinity, and adheres to using only A(φ) (with A the set of

translation centers as before). The idea here is to form, for each α ∈ A, some linear combination

ψα :=
∑

β∈A

c(α, β)φ(· − β),

such that c(α, β) decays fast to zero as ‖α − β‖ → ∞ (to make the sum suitably convergent) and

that ψα is a “bump function” with the bump centers around α. The basic strategy behind Method

A is that, in essence, we want to use linear combinations of A(φ), and use the localization process

only to group these translates in a way that makes the computations more feasible. The drawback

of this method is quite apparent: since A is non-uniform, we need, separately for each center α, to

determine the “magic combination” that will generate the bump function ψα. Much of the possible

computational simplicity of the original φ is lost in this way.
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Because of that difficulty, one might be tempted to use a simpler alternative method named

hereafter as Method B, that starts with a function ψ which already has distinguished decay prop-

erties (e.g., ψ is compactly supported, decay exponentially at ∞, etc.), and use the set of shifts

A(ψ) = {ψ(· − α)}α∈A to construct a suitable approximation scheme. Candidates for ψ exist in

abundance: for example, one can choose his favorite radial function φ, apply some fixed localization

process (e.g., using integer centers) to obtain ψ, and then proceed to consider A(ψ). It is important

to note that this variant of Method B incorporates, once more, suitable translates of φ into the

approximation process, but in a different manner: since the set B of centers that are used in the

localization process is determined independently of the set A of translation centers, the shifts of φ

which are used in approximation schemes based on Method B are taken from the larger set A+B.

At present, a theory that unfolds the approximation properties of spaces generated by scattered

shifts of a basis function is yet to be established; only partial preliminary results are known [P],

[BP], [BDL], and [DR], all of them are based on Method A. The use of Method A is not accidental,

since there is already strong enough evidence to support the claim that Method B cannot, in general,

yield good approximation schemes.

In this short note I will sketch two examples that illustrate the claim just made. The note was

originated during discussions I had with Nira Dyn in which we found ourselves sharing the same

opinion on Method B.

In preparing for this note, I tried to find some heuristic argument that explains the phenomenon

revealed by the examples below. Here is the most “convincing” one I could get: In general, for a

given center set A, only very few basis functions φ are “adequate” for A (in the sense of the existence

of “good” approximation schemes based on A(φ)). A typical radial basis function φ, though, is

universally adequate, i.e., is adequate for any center set A. Now, given a universally adequate basis

function φ, a set of centers A, and a corresponding set of localized functions {ψα}α∈A (each of which

is a linear combination of translates of φ), the test the functions {ψα}α∈A should stand is whether

each (or at least most) of the original translates in A(φ) can be reproduced by linear combinations

of {ψα}α∈A. In the case of Method A, since the centers in A are the only ones employed in the

localization, the test amounts to the (linear) invertibility of some biinfinite matrix, a property that

holds if the localization is done correctly. On the other hand, in the case of Method B, since many

more translates of φ are used during the localization (viz., all centers in A + B), it is generally

impossible to recover any translate of φ with the aid of A(ψ) = {ψ(· − α)}α∈A. Therefore, the

(possibly) good approximation qualities of spanA(φ) are not necessarily inherited by spanA(ψ).

2. A discussion concerning uniform translation centers

Suppose that we start with some basis function φ and wish to obtain from φ a localized function

ψ, in order to use

ψ(· − α), α ∈ ZZd

for subsequent approximation schemes. The question at stake is what translates of φ to use in the

localization process. Method A insists on using integer translates, while Method B, although might

favor this choice over others, leaves room for other choices as well. Let’s see the devastating effect

of the choice of non-integer centers for localization.
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We assume, for simplicity and without much loss of generality, that ψ decays at ∞ (at least)

as fast as ‖ · ‖−k
2 (with ‖ · ‖2 being the Euclidean norm) for some k > d, and that ψ has a non-zero

mean value (i.e., ψ̂(0) 6= 0). We further assume that the initial space of approximants we start with

is refined by dilation (this is stationary refinement, cf. e.g., [R]). Under such (and even milder)

assumptions, the approximation properties of our space (measured asymptotically by the criterion

of approximation orders) are known to be governed by the so-called Strang-Fix conditions ([SF],

[BJ], [BR], [BDR]). Roughly speaking, these conditions say that good approximation orders require

ψ̂ to have a high order zero at each of the points of the set

2πZZd\0.

However, the Fourier transform of a typical basis function φ usually vanishes nowhere, and in

particular does not vanish at any of the points in 2πZZd\0. The required zeros of ψ̂ are thus

generated during the localization process.

Since our original φ is (tacitly) assumed to grow at ∞, we expect its Fourier transform to be

singular somewhere. Further, stationary refinements usually make sense only when the origin is

the most singular point of φ̂. In turn, if this is the case, then the difference scheme

T : f 7→
∑

β∈B

c(β)f(· − β),

which is used in the localization (i.e., the one that defines ψ as Tφ) should annihilate polynomials

of sufficiently high degree, or equivalently, the (assumed to be) function

T̂ (ω) :=
∑

β∈B

c(β)e−iβ·ω

has a high order zero at the origin (more details can be found, e.g., in [DJLR] and [P]). Since

ψ̂ = T̂ φ̂,

high order zeros for ψ̂ on 2πZZd\0 can be obtained if the following three conditions hold (a) φ̂ has

a high order singularity at 0 (forcing T̂ to have a high order zero there) (b) φ̂ is not too singular on

2πZZd\0 (for radial functions the origin is assumed to be the only point of singularity, cf. [R]) and

(c) the high order zero T̂ has at the origin is projected on each of the points of 2πZZd\0. While the

first two conditions have to do with the choice of the original basis function φ, the last condition is

directly connected to the localization process: the zero T̂ has at the origin is reflected in the most

effective way at each of the points in 2πZZd\0 if T̂ is 2π-periodic, which is equivalent to having

B ⊂ ZZd.

A beautiful concrete example for the above abstract discussion exists in box spline theory. We

outline here the box spline situation and refer the reader to [RS] and the references therein for

more details. We take the original “universally acceptable” function φ to be the truncated power

function, [D], whose Fourier transform has the form

φ̂(ω) =
∏

ξ∈Ξ

(−iξ · ω)−1,
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where Ξ is a finite collection of non-zero vectors in IRd which we assume here to be integers.

Choosing a finite difference operator T by the rule

T̂ (ω) =
∏

ξ∈Ξ

(e−ixξ·ω − 1),

with xξ any non-zero constant multiple of ξ, ξ ∈ Ξ, results in a compactly supported ψ, known

as a box spline. Choosing spanZZd(ψ) to be our space of approximants, it is known that the

approximation orders that correspond to this space intimately depend not only on the original Ξ

but also on the type of localization procedure used. In particular, for a fixed given Ξ, the best orders

are obtained when each xξ is an integer vector (which implies that we use only integer translates

for localizing), and the approximation order is zero (worst possible) if, for instance, each xξ is an

irrational multiple of the integer ξ.

3. An example concerning scattered translation centers

While my personal understanding of the issue is primarily based on the observations detailed

in the previous section, interested readers might argue that the discussion there considers only

uniform translation centers, while our major objective here is the scattered case. In this section

thus, we attempt to fill this gap. Because analogs of general principles such as the Strang-Fix

conditions are yet to be discovered here, I am not able to maintain the level of generality of the

discussion of §2, and concentrate on a modest, still quite illustrative, example.

Our function ψ is taken to be the univariate cardinal spline of order n. This function is

supported on [0, n] and is obtained as a localization of the truncated power xn−1
+ , using {0, 1, ..., n}

as the localization centers. We take A to be any set of translation centers with no accumulation

points, and define S to be the space of all infinite linear combinations of A(ψ) = {ψ(· − α)}α∈A.

We refine this space by dilation, and approximate in the uniform norm. Under those conditions we

have the following:

Proposition 3.1. If S provides positive approximation orders to infinitely differentiable compactly

supported functions, then for any bounded interval I there exist coefficients {c(α, I)}α∈A such that

(3.2)
∑

α∈A

c(α, I)ψ(x− α) = 1, x ∈ I.

Proof: The statement “S provides positive approximation order to infinitely differentiable

compactly supported functions” means, by definition, that for some k > 0 and for every smooth

compactly supported f ,

(3.3) dist(f(h·), S) := inf
s∈S

‖f(h·) − s‖∞ = O(hk).

We take f to be as above, and assume also that it is 1 on some neighborhood of the origin. For

sufficiently small h, f(h·) is 1 on the interval I, and therefore (3.3) implies that

inf
s∈S

‖1 − s‖L∞(I) = O(hk).

Denoting by S|I the restrictions of the functions in S to I, we conclude that 1 is in the closure

of S|I , but since this latter space is finite dimensional, it is closed, and hence 1 ∈ S|I , which is

equivalent to the statement of the proposition.
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The previous result shows that S cannot approximate well unless the constant function belongs,

at least locally, to the space. At the same time, the next proposition shows that this latter property

can hold only under very restrictive conditions on the distribution of the centers in A: either A

contains a complete uniform set of centers, or that A contains at least two “almost complete”

uniform sets of centers. In particular, the use of truly irregular sets A results in 0 approximation

order, and thus using scattered translates of the B-spline ψ should be avoided. In contrast, we

remind the reader of the classical fact (cf. e.g., [S]) that, for φ(x) := xn−1
+ , the functions in A(φ)

can be easily localized by Method A to obtain the standard B-splines of order n that correspond

to the knot sequence A, and these B-splines yield approximation order n.

In the proposition, Πk stands for the space of univariate polynomials of degree ≤ k. Also, for

any two sets C, D, the notation C\D should be understood as C\(C ∩D).

Proposition 3.4. With ψ, A and S defined as in the second paragraph of this section, if, for every

bounded I, there exist coefficients {c(α, I)}α∈A that satisfy (3.2), then one of the two following

conditions holds:

(a) There exists α ∈ IR such that α+ ZZ ⊂ A.

(b) There exist αk ∈ IR, k = 1, 2, such that α1 6= α2 (modZZ), and such that, for each k, (αk+ZZ)\A

contains no more than n− 1 points.

Proof: Let I be a bounded open interval. large enough to contain α ∈ A for which

c(α) 6= 0. By assumption, there exist I-dependent coefficients (c(α))α such that:

(3.5) 1 =
∑

α∈A

c(α)ψ(x− α), x ∈ I.

In particular,

(3.6)
∑

α∈A

c(α)ψ(· − α) coincides on I with a polynomial in Πn−1\0.

Picking any α1 ∈ A ∩ I for which c(α1) 6= 0, and denoting J := α1 + ZZ, we define a sequence

d : J → C as follows:

d(j) :=

{
c(j), j ∈ A,
0, otherwise.

Since A has no accumulation points, we can find, for each j ∈ J , a neighborhood Vj ⊂ (j− 1/2, j+

1/2) of j that satisfies

Vj ∩ (∪n
k=0(A+ k)) ⊂ {j}.

The choice of Vj is made to guarantee that, for β ∈ A\J , none of the knots β, β + 1, ..., β + n of

the spline ψ(· − β) lies in Vj , and hence, each ψ(· − β), β ∈ A\J , coincides with some polynomial

(necessarily of degree < n) on Vj . Also, for a purely technical reason, we choose each Vj small

enough to ensure the relation

(3.7) I ∩ Vj 6= 0 ⇐⇒ Vj ⊂ I.
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From the above discussion, we conclude that the sum

∑

β∈A\J

c(β)ψ(· − β)

is a piecewise-polynomial with no breakpoints in any Vj . Invoking (3.6), we conclude that the same

is true for

(3.8)
∑

β∈A∩J

c(β)ψ(· − β) =
∑

j∈J

d(j)ψ(· − j),

provided that Vj ⊂ I, or, what is equivalent, (3.8), that Vj ∩I 6= ∅. On the other hand, J ⊂ ∪j∈JVj

(since j ∈ Vj , ∀j), and the points in J are the only candidates for knots of the sum in (3.8), and,

consequently, this sum has no breakpoints in I, i.e., it coincides on I with a polynomial p; also,

necessarily, p ∈ Πn−1. As is well known (see, e.g., the discussion about Marsden’s identity in [B]),

this implies that the sequence d|I∩J
coincides with the restriction to I ∩ J of some q ∈ Πn−1, with

deg q = deg p. Also, q 6= 0, since q(α1) = d(α1) = c(α1) 6= 0, hence p, q ∈ Πn−1\0. In particular,

q can vanish at most n − 1 times on J , and remembering that j ∈ A whenever d(j) = q(j) 6= 0,

we finally conclude that #((J\A) ∩ I) < n. Since I can be chosen arbitrarily, it follows that

#(J\A) < n.

If, for all sufficiently large I, the I-dependent polynomial q is of degree 0, then J ∩ I ⊂ A, all

I, and hence J ⊂ A. Thus, to complete the proof, we assume that deg q > 0 for some large I, and

prove that in such a case we can find α2 ∈ A, such that α2 6∈ J = α1 +ZZ, and such that A contains

α2 + ZZ with the possible exception of n− 1 centers. To do this, we consider on I the sum

(3.9)
∑

β∈(A\J)

c(β)ψ(· − β) = 1 − p.

Since deg p = deg q > 0, 1 − p 6= 0, and consequently, we have verified that (3.6) holds even when

A is replaced there by A\J . Thus, with α2 any number in A\J , the first part of the proof can be

invoked to conclude that #((α2 + ZZ)\A) < n.

References

[B] C. de Boor, Splines as linear combinations of B–splines, a survey, in Approximation Theory II,

G. G. Lorentz, C. K. Chui, and L. L. Schumaker eds., Academic Press (New York) 1976, 1–47.

[BP] R.K. Beatson and M.J.D. Powell, Univariate multiquadric approximation: quasi-interpolation

to scattered data, Constructive Approx. 8 (1992), 275–288.

[BDL] M.D. Buhmann, N. Dyn, and D. Levin, On quasi-interpolation by radial basis functions with

scattered centers, DAMTP 1992/NA6, Silver St., Cambridge, England CB3 9EW, 1992.

[BDR] C. de Boor, R.A. DeVore and A. Ron, Approximation from shift-invariant subspaces of L2(IR
d),

Trans. Amer. Math. Soc., to appear.

[BJ] C. de Boor and R.Q. Jia, Controlled approximation and a characterization of the local approx-

imation order. Proc. Amer. Math. Soc., 95 (1985) 547-553.

6



[BR] C. de Boor and A. Ron, Fourier analysis of approximation power of principal shift-invariant

spaces, Constructive Approximation, 8 (1992), 427–462.

[D] W. Dahmen, On multivariate B-splines, SIAM J. Numer. Anal. 17 (1980), 179-191.

[DJLR] N. Dyn, I.R.H. Jackson, D. Levin, A. Ron, On multivariate approximation by the integer

translates of a basis function, Israel Journal of Mathematics 78 (1992), 95–130.

[DL] N. Dyn and D. Levin, Bell shaped basis functions for surface fitting, in Approximation Theory

and Applications (Z. Ziegler Ed.), Academic Press, New York, (1981), 113–129.

[DLR] N. Dyn, D. Levin and S. Rippa, Numerical procedures for global surface fitting of scattered

data by radial functions, SIAM J. Sci. and Stat. Computing 7 (1986), 639–659.

[DR] N. Dyn and A. Ron, Approximation by scattered shifts of a radial basis function, ms.

[P] M. J. D. Powell, The theory of radial basis function approximation in 1990, in: Advances

in Numerical Analysis Vol. II: Wavelets, Subdivision Algorithms and Radial Basis Functions,

W.A. Light, ed., Oxford University Press, (1992), 105–210.

[R] A. Ron, Approximation orders from principal shift-invariant spaces generated by a radial basis

function, in Numerical Methods of Approximation Theory Vol. 9, D. Braess & L.L. Schumaker

eds., International Series of Numerical Mathematics Vol. 105, Birkhäuser Verlag, Basel, 1992,
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