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Abstract. A linear algebra proof is given of the fact that the nullspace of a finite-rank linear projector, on
polynomials in two complex variables, is an ideal if and only if the projector is the bounded pointwise limit of
Lagrange projectors, i.e., projectors whose nullspace is a radical ideal, i.e., the set of all polynomials that vanish
on a certain given finite set. A characterization of such projectors is also given in the real case. More generally, a
characterization is given of those finite-rank linear projectors, on polynomials in d complex variables, with nullspace
an ideal that are the bounded pointwise limit of Lagrange projectors. The characterization is in terms of a certain
sequence of d commuting linear maps and so focuses attention on the algebra generated by such sequences.
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1. Introduction

The purpose of this note is to provide a proof, self-contained and elementary in that it uses only tools
from Linear Algebra, of the fact that every ideal projector of finite rank on the space of polynomials in two
complex variables is the bounded pointwise limit of Lagrange projectors.

Here, to recall Birkhoff’s definition [B], an ideal projector is an idempotent linear map on the space
k[x], of polynomials in x = (x1, . . . , xd) over the field k, whose kernel is an ideal (i.e., a linear subspace that
is also closed under pointwise multiplication by any g ∈ k[x]), while a Lagrange projector is an idempotent
linear map on some space of functions whose kernel is the joint kernel of some linear functionals of point
evaluation. Further, it is well-known (see, e.g., [M77] or the retelling in [dB05]) that a zero-dimensional
ideal I in C[x], such as the kernel of a finite-rank ideal projector, is the joint kernel of linear functionals of
the form

g 7→ q(D)g(v), q ∈ Qv, v ∈ V := V(I),

with V the variety of the ideal and Qv a D-invariant polynomial space depending on v and I, all v ∈ V . Hence,
in general, an ideal projector involves not just matching of function values but also of certain derivatives,
provided only that if a certain derivative is matched at a site, then also all ‘lower-order’ derivatives be
matched at that site.

In the univariate case, this means that ideal interpolation is Hermite interpolation, and this is well-
known to be the limit of Lagrange interpolation as some of the interpolation sites coalesce. This encouraged
the first author to conjecture (in [dB05]) that, also in the multivariate setting, ideal interpolation is Hermite
interpolation in the sense that it is the limit of Lagrange interpolation (thus deviating from [M77] where
“Hermite interpolation” is used for what we are calling “ideal interpolation” here). However, this conjecture
was disproved by the second author (in [S06]) when more than two variables are involved.

For the bivariate case, the second author proved the conjecture (in [S06]) albeit with the aid of tools
from Algebraic Geometry. Given the basic nature at issue here (Lagrange interpolation and its limits as
interpolation sites coalesce), it seems worthwhile to provide a proof that uses only linear algebra.

In the process, we prove that an ideal projector on k[x] can be approximated by Lagrange projectors if
and only if a certain sequence of commuting matrices can be approximated by a sequence of diagonalizable
matrices (with entries in k), and the known fact (see [MT] or [G]) that any pair of commuting matrices
can be approximated by pairs of diagonalizable commuting complex matrices then supplies the proof in the
bivariate case. However, the proof of this fact (in [MT] or [G]) uses Algebraic Geometry, so we felt obliged
to supply a proof that only uses linear algebra. In addition, since [GS] also prove such approximation for
certain commuting sequences of more than two matrices, we also obtain that certain low-rank multivariate
ideal projectors are the limit of Lagrange projectors.

The note is organized as follows. In section 2, we bring a recipe for generating an ideal projector with a
given range F in k[x] from a suitable sequence A = (A1, . . . , Ad) of commuting linear maps on some linear
space Y via the corresponding ring homomorphism ΦA : p =:

∑
α p̂(α)xα 7→

∑
α p̂(α)Aα, with the resulting

projector PA := (ΦA F )−1ΦA depending continuously on the sequence A, and relate this to the well-known
multiplication maps associated with the quotient ring over a 0-dimensional ideal. In section 3, we prove that,
for k = C, the resulting ideal projector is a Lagrange projector if the linear maps Ai are diagonalizable. In
section 4, we give a linear algebra proof that two commuting matrices can be approximated by diagonalizable
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commuting matrices and thereby finish the promised proof. Section 5 discusses the case k = R, where we
cannot hope to approximate by Lagrange projectors but only by certain projectors that are restrictions
of Lagrange projectors on C[x] to R[x]. In the final section, we urge further study of the relationship
between the spectrum of a sequence A of commuting linear maps and the kernel of the corresponding ring
homomorphism ΦA, to match the very well understood relationship in the special case d = 1.

2. Multiplication maps and ideal projectors

It is standard in algebraic geometry (see, e.g., the textbook [CLO: pp 51ff]) to consider, for a zero-
dimensional ideal I in k[x], the map m, from k[x] into the linear maps on the quotient ring

k[x]/I = {[g] := g + I : g ∈ k[x]},

that carries h ∈ k[x] to the map
mh : [g] 7→ [hg].

In contrast, we are interested in ideal projectors (something not explicitly mentioned in the textbooks), i.e.,
linear projectors P on k[x] whose kernel is a zero-dimensional ideal, I say, hence their range is an algebraic
complement, F say, of I. To be sure, for such a projector, the factor map

P/I : k[x]/I → F : [f ] 7→ Pf

of P by its kernel is well defined, linear, and invertible, hence the map of interest to us, namely

(2.1) M : k[x] → L(F ) : g 7→ Mg : F → F : f 7→ P (gf),

is similar to m in the sense that [f ] = [Pf ], hence

[Mgf ] = mg[f ], g, f ∈ k[x].

But since we are focusing on all ideal projectors with range a given F , we find it easier to deal directly with
the map M , freely adapting the well-known arguments that establish the various corresponding properties
of m. In particular, we will be constructing maps like M , from k[x] into the ring L(F ) of linear maps on F ,
before we even know a corresponding P or I in hopes of thereby obtaining P and I suitable for our needs,
hence could not stick to the standard situation even if we wanted to.

Our main tool is the observation (which, for d = 2 and Y = C
n, can already be found in [N: p. 7, Theorem

1.9]) that any sequence A = (A1, . . . , Ad) of pairwise commuting linear maps on a finite-dimensional linear
space Y over the field k induces a map

(2.2) ΦA : k[x] → L(Y ) : g 7→ g(A) :=
∑

α

ĝ(α)Aα,

with α ∈ Z
d
+ := {α ∈ Z

d : α(j) ≥ 0, j = 1:d}, g =:
∑

α ĝ(α)xα, and with

Aα :=
∏

j

A
α(j)
j

independent of the order in which this product is formed from its factors. This implies that the map
ΦA defined in (2.2) is a ring homomorphism, hence has an ideal as its kernel. Conversely, every ring
homomorphism Φ on k[x] into L(Y ) is of the form ΦA, with

Aj := Φxj , j = 1:d.

Now, since Y is finite-dimensional, kerΦA has finite codimension (hence is a 0-dimensional ideal).
Therefore, for any linear subspace F of k[x],

(2.3) ΦA F : F → ranΦA is invertible
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if and only if F is an algebraic complement of kerΦA and, in that case,

(2.4) PA := (ΦA F )−1ΦA : k[x] → k[x]

is well-defined, linear, onto F , and the identity on F , and has kerΦA as its kernel. In short, PA is the ideal
projector with ranPA = F and kerPA = kerΦA.

(2.5) Example. Assume that the sequence A = (A1, . . . , Ad) in L(Y ) satisfies

AiAj = 0, i, j = 1:d.

Then, in particular, the Ai commute with each other, hence ΦA is well-defined and maps every xα with
|α| := ‖α‖1 > 1 to 0, therefore

(2.6) kerΦA ⊇ k>1[x] := span{xα : |α| > 1}

and
ΦAp = p(A) =

∑

|α|<2

p̂(α)Aα.

In particular,
ranΦA = ran[idY , A1, . . . , Ad].

Therefore, if [idY , A1, . . . , Ad] is 1-1 (i.e., if (idY , A1, . . . , Ad) is linearly independent), then ΦA is 1-1 on
k<2[x] := span{xα : |α| < 2}, therefore, as k<2[x] is an algebraic complement of k>1[x], there is equality in
(2.6), and

PA = (ΦA k<2[x])
−1ΦA = T<2,

the Taylor projector of order 2, i.e., the linear projector that associates p ∈ k[x] with
∑

|α|<2 p̂(α)xα.

How would one verify (2.3)? One way is to check that

(2.7) F (A)y := {f(A)y : f ∈ F} = Y for some y ∈ Y.

This condition is offhand stronger than that A be cyclic, i.e., that k[A]y = Y for some y ∈ Y , and readily
implies that

(2.8) F (A) = k[A] := {g(A) : g ∈ k[x]} = ranΦA,

as follows: For any g ∈ k[x], g(A)y = f(A)y for some f ∈ F (since g(A)y ∈ Y ), therefore, for every p ∈ F ,
g(A)p(A)y = p(A)g(A)y = p(A)f(A)y = f(A)p(A)y, i.e., g(A) = f(A) on F (A)y = Y , hence g(A) = f(A).
In other words, (2.8) holds. Note that this argument even proves the stronger statement that

(2.9) F (A) = C(A) := {B ∈ L(Y ) : BAj = AjB, j = 1:d}

since the only property of the linear map g(A) used here is that it commutes with all the Aj .
In short, (2.7) implies that ΦA F is onto ranΦA. It further implies that dimF ≥ dim ΦA(F ) ≥ dimY ,

therefore, under the additional assumption dimY ≥ dim F , (2.7) also implies that ΦA F is 1-1 (since dim F <
∞).

Thus, with the assumption dimY ≥ dimF , (2.7) implies (2.3) (and dimY = dimF ). The converse
does, in general, not hold, as Example 2.12 shows, but, as the discussion following that example shows, does
hold when A is cyclic.

Conversely, for any ideal projector P with ranP = F , the map M defined in (2.1) is a ring homomor-
phism into L(F ) with kernel kerP , as follows at once from the identity

(2.10) P (fPg) = P (fg), f, g ∈ k[x]
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which characterizes ideal projectors among all linear maps on k[x]; see, e.g., [dB05]: Indeed, (2.10) implies
that

MfMg − Mfg : h 7→ P (fP (gh)) − P ((fg)h) = 0, f, g, h ∈ k[x],

showing that M is a ring homomorphism, hence M = ΦA with

Aj := Mxj
: F → F : f 7→ P (xjf), j = 1:d.

Further, kerM = kerP since Pf = 0 implies that Mfg = P (fg) = P (gPf) = P (0) = 0, hence kerP ⊂
kerM , while, conversely, Mf = 0 implies that, in particular, Pf = P (fx0) = Mfx

0 = 0, hence, also
kerM ⊂ kerP .

Therefore, (2.3) holds, and (M F )−1M is defined and equal to P . More than that, for all f ∈ F ,
f = Pf = P (fx0) = P (fPx0) = Mf(Px0), hence even (2.7) holds for this A (with Y = F and y = Px0).

The following theorem summarizes the fruits of this discussion.

(2.11) Theorem. Let F be a finite-dimensional linear subspace of the linear space k[x] of polynomials in
x := (x1, . . . , xd) with coefficients in the field k.

(i) Every sequence A = (A1, . . . , Ad) of commuting linear maps on the finite-dimensional linear space Y
(over k) whose corresponding map ΦA as defined in (2.2) satisfies (2.3) gives rise to an ideal projector
with range F , namely the ideal projector PA := (ΦA F )−1ΦA whose kernel is kerΦA.

(ii) Every ideal projector P with range F gives rise to a sequence A = (A1, . . . , Ad) of commuting linear
maps on Y = F (namely the linear maps Aj = Mxj

: f 7→ P (xjf)) for which P = PA = (ΦA F )−1ΦA

and, in particular, (2.7) with y = Px0, hence also (2.3), is satisfied.

Here is an example to show how tenuous might be the relationship between the sequence A and the
ideal kerΦA.

(2.12) Example. Choose Y = k3 and (with ij the jth coordinate vector)

Ai : ij 7→

{
i1, j = i + 1;
0 otherwise,

j = 1:3, i = 1, 2.

Then

AiAj = 0, i, j ∈ {1, 2},

while [idY , A1, A2] is 1-1, therefore, by Example 2.5, kerΦA = k>1[x] and, with F = k<2[x], we get PA = T<2.
In particular, (2.3) holds in this example. On the other hand,

Aiw ∈ span(i1), w ∈ k3, i = 1, 2,

therefore span(w, A1w, A2w) ⊂ span(w, i1). Hence, for any y ∈ Y , (y, A1y, A2y) is linearly dependent,
therefore (2.7) does not hold in this example.

On the other hand,

kerΦA = kerΦB,

with B = (Bi := AT
i : i = 1, 2), since p(AT ) = p(A)T for p ∈ k[x], while

Bi = AT
i : ij 7→

{
ii+1, j = 1;
0 otherwise,

j = 1:3, i = 1, 2,

hence, in contrast to A, B satisfies (2.7) since, e.g., [i1, B1i1, B2i1] = id3 is evidently 1-1.
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The example also illustrates the fact that, while similarity of A and B (in the sense that, for some
invertible linear map S, Bi = S−1AiS for all i) implies that kerΦA = kerΦB, the converse does not hold.
This, however, changes if we know, in addition, that both A and B are cyclic. For, if k[A]y = Y for some
y ∈ Y , then the map

ΦA,y : k[x] → Y : g 7→ g(A)y

is linear and onto, and kerΦA,y ⊇ kerΦA but, also, for any g ∈ kerΦA,y and any p ∈ k[x], g(A)p(A)y =
p(A)g(A)y = p(A)0 = 0, hence g ∈ kerΦA. In short,

kerΦA,y = kerΦA,

hence ΦA,y maps any algebraic complement F of kerΦA 1-1 onto Y , thus providing the linear invertible map

S : F → Y : f 7→ f(A)y.

In particular, (2.7) holds. Now consider the linear maps

Ci := S−1AiS : F → F, i = 1:d.

With P the linear projector with range F and nullspace kerΦA, we compute, for arbitrary f ∈ F ,

Aif(A)v = (xif)(A)v = (P (xif))(A)v,

hence Ci = Mxi
, all i, with M the ring homomorphism defined in (2.1). In short, if A is cyclic, then it is

similar to (Mxi
: i = 1:d), with M as defined in (2.1) hence depends only on the ideal kerΦA (and the choice

of the algebraic complement F to kerΦA).
Remark. This is far from the first paper to consider polynomial ideals in terms of ring homomorphisms

whose kernel they are. A recent, quite pertinent example is [R] which considers ring homomorphisms from
k[x] into the ring of linear maps on arbitrary finite-dimensional vector-spaces, as a means for constructing
ideal bases for their kernel. In particular, the claim in the preceding paragraph is proved there.

3. Lagrange projectors and diagonalizable commuting matrices

In this section, we choose the underlying field to be C but any algebraically closed field would do since
we only use the Nullstellensatz in the proof of the following proposition.

(3.1) Proposition. Let Φ be a ring homomorphism from C[x] (with x = (x1, . . . , xd)) into the ring L(Y )
of linear maps on the finite-dimensional linear space Y over C, and, for j = 1:d, let Bj be the matrix
representing the linear map Φxj on Y with respect to some fixed basis V : C

n → Y for Y , and assume that
n := dimY = codimkerΦ.
If B := (B1, . . . , Bd) is approximable by diagonalizable commuting sequences in C

n×n, then every linear
projector on k[x] with nullspace kerΦ is an Hermite projector, i.e., the (pointwise) limit of Lagrange
projectors.
If B is cyclic, then also the converse holds, i.e., the fact that some linear projector with nullspace kerΦ is
Hermite implies that B is approximable by diagonalizable commuting sequences.

For the proof, we need the following variant of [CLO: (4.5)Theorem, on p. 54], for which we also provide
a simple proof, for completeness.

(3.2) Lemma. Let A = (A1, . . . , Ad) be a sequence of commuting linear maps on the finite-dimensional
vector space Y over C, and let I := kerΦA be the corresponding ideal, necessarily zero-dimensional.
Then, for every g ∈ C[x],

spect(g(A)) = g(V),

with

(3.3) V := VI := {z ∈ C
d : g(z) = 0, g ∈ C[x]}
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the (necessarily finite) variety of the ideal I.

Proof: We need the well-known fact that

(3.4) C[x] → C
V : g 7→ g V is onto.

Perhaps the fastest proof is the following: For each v ∈ V , define

ℓv :=
∏

w∈V\v

〈· − w, v − w〉,

with 〈v, w〉 :=
∑

j v(j)w(j) the standard scalar product in C
n. Evidently, ℓv is a polynomial (of degree

< #V), and vanishes on all of V\v but not at v, hence the columns of [ℓv V : v ∈ V ] form a basis for C
V .

Now, take g ∈ C[x], µ ∈ C, and consider

g − µ =: h.

If µ = g(v) for some v ∈ V , then r := hℓv vanishes on V , hence, by the Nullstellensatz, (hℓv)
j ∈ I =

kerΦA for some j, therefore h(A)jℓv(A)j = 0, yet ℓv(A)j 6= 0 since ℓv(v) 6= 0 and therefore ℓj
v 6∈ I for any j,

therefore, finally, h(A) is not invertible, hence g(v) ∈ spect(g(A)). In short, g(V) ⊆ spect(g(A)).
If µ 6∈ g(V), then h does not vanish on V , therefore, by (3.4), for some polynomial r, 1− hr vanishes on

V , hence, by the Nullstellensatz, some power of it, say the jth, lies in I = kerΦA. This says that

0 = (1 − hr)j(A) = (A0 − h(A)r(A))j = id − h(A)C

for some C ∈ L(Y ), showing h(A) = g(A) − µid to be invertible. In short, spect(g(A)) ⊆ g(V).

Proof of Proposition 3.1: Since Bj = V −1(Φxj)V , all j, with V : C
n → Y linear and invertible,

the matrices Bj commute with each other, and the corresponding ring homomorphism, ΦB, has the same
kernel as Φ.

Let P be a linear projector on C[x] with nullspace kerΦ = kerΦB and let F := ranP . Then P is an
ideal projector, and ΦB maps F 1-1 onto ranΦB, hence

P = (ΦB F )−1ΦB

and, in particular, ΦB(F )Px0 = F . By assumption, we can find, for each ε > 0, commuting sequences
A = (A1, . . . , Ad) consisting of diagonalizable matrices of order n for which ‖Bj − Aj‖ < ε (in whatever
norm we choose to use on C

n).
The corresponding ring homomorphism ΦA : g 7→ g(A) converges boundedly pointwise to ΦB as Aj →

Bj , all j, hence the fact that ΦB(F )Px0 = F implies that, for all ε > 0 small enough, also F (A)Px0 = F ,
therefore ΦA F is invertible and

PA := (ΦA F )−1ΦA

is an ideal projector with range F and kernel the ideal

I := kerΦA.

We claim that PA is a Lagrange projector, i.e., that the ideal I is radical or, what is the same thing,
that the variety V := VI (see (3.3)) has cardinality codim I = dimF (hence all the points in the variety are
simple). For the proof, recall, e.g., from [HJ: 1.3.19 Theorem] that any such finite sequence of commuting
and diagonalizable matrices has a common eigenbasis, i.e., we can so choose the basis

V : C
n → Y

that, for all g = xj , hence for all g ∈ C[x], V −1g(A)V is a diagonal matrix. Since the map g 7→ V −1g(A)V
is linear, this implies the existence of linear functionals λ1, . . . , λn so that

V −1g(A)V = diag[λig : i = 1:n], g ∈ C[x],
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therefore, since the map g 7→ V −1g(A)V has kerΦA as its kernel,

kerΦA = ∩i kerλi.

Since kerΦA has codimension n, this implies that the linear map

C[x] → C
n : g 7→ (λig : i = 1:n)

is onto. This implies that #V(I) = n = dimY , hence that PA is a Lagrange projector, since, with Lemma
3.2,

{λig : i = 1:n} = spect(g(A)) = g(V),

while always #V ≤ n.
For the proof of the converse, let P be an Hermite projector with kerP = kerΦ and let F := ranP . Then

we can find a bounded sequence (Pk) of Lagrange projectors that converges pointwise to P . In particular
(see, e.g., [dB06: section 1]), for all sufficiently large k, F = ranP is an algebraic complement of kerPk,
hence there is the linear projector Rk with range F and nullspace kerPk, and P is also the pointwise limit of
the resulting sequence (Rk). In particular, on the finite-dimensional linear space F +

∑d
i=1 xiF , Rk converges

pointwise to P . But this implies that, for each i, the linear maps M
[k]
i : F → F : f 7→ Rk(xif) converge as

k → ∞ to the corresponding linear map Mi : F → F : f 7→ P (xif). Also, by Lemma 3.2, for any such k and
any g ∈ C[x], spect(g(M [k])) = g(V [k]), with V [k] the variety for the ideal kerRk = kerPk, and that ideal is
radical since Pk is a Lagrange projector, i.e., #V [k] = n, therefore, with (3.4), for some g ∈ C[x], the linear
map g(M [k]) has n distinct eigenvalues, hence is, in particular, non-derogatory. But this implies (see, e.g.,
the proof of Fact 4.1 for details) that all linear maps commuting with it are diagonalizable, and this is, in

particular, true of the M
[k]
i . If now B is cyclic, then we know that B is similar to M := (M1, . . . , Md) via

the linear map V −1S with S : F → Y : f 7→ Φ(f)y and y a cyclic vector for Y . But then

B[k] := (V −1SM
[k]
i S−1V : i = 1:d)

is a sequence of diagonalizable commuting matrices, and it converges as k → ∞ to the sequence B.

(3.5) Example. It seems worthwhile to point out, by way of an example, that the approximability
of the commuting sequence B in Proposition 3.1 by sequences of diagonalizable commuting matrices is
not necessary for the ideal kerΦ to be approximable by radical ideals, which further stresses the tenuous
relationship between an ideal and a sequence A of commuting linear maps for which kerΦA is that ideal. To
be sure, in light of the last part of Proposition 3.1, any example like the following must fail to be cyclic.

For this, we use, once more, Example 2.5, this time with d = 16, hence n = dimY = d+1 = 17, assured
that the resulting kerΦA is k>1[x] which is well-known to be approximable by radical ideals.

Specifically, we take
Y := C

17 = Y0 ⊕ Y1 ⊕ · · · ⊕ Y8,

with
Y0 := C, Yj := C

2, j = 1:8,

and, for
γ ∈ Γ := {1:4} × {5:8},

consider the linear map Aγ on Y that carries y =: (yk : k = 0:8) to

( 0, . . . , 0︸ ︷︷ ︸
γ(2) terms

, yγ(1), 0, . . .).

Then
AγAβ = 0, γ, β ∈ Γ,
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hence, from Example 2.5, kerΦA = k>1[x], as hoped for.
Now assume that A := (Aγ : γ ∈ Γ) were approximable by sequences of pairwise commuting diago-

nalizable matrices. Being commuting and diagonalizable would mean that they would be simultaneously
diagonalizable, therefore

(3.6) Aγ = lim
n→∞

Sn diag[dγ,n, Dγ,n]S−1
n , γ ∈ Γ,

with Sn invertible matrices, dγ,n scalars, and Dγ,n diagonal matrices of order 16. More than that, since
A2

γ = 0, hence spect(Aγ) = {0}, we would know that

(3.7) lim
n

dγ,n = 0, lim
n

Dγ,n = 0, γ ∈ Γ.

Now write all matrices in block form corresponding to the blocking of the diagonal matrices. Specifically,

Sn =:

[
s0,n s01,n

s10,n s1,n

]
, S−1

n =:

[
t0,n t01,n

t10,n t1,n

]
, Aγ =: diag[0, aγ ], γ ∈ Γ.

Then, in particular,

(3.8) s10,nt01,n + s1,nt1,n = id16,

and so
aγ = lim

n
(dγ,ns10,nt01,n + s1,nDγ,nt1,n)

= lim
n

(dγ,n(id16 − s1,nt1,n) + s1,nDγ,nt1,n)

= lim
n

s1,n(Dγ,n − dγ,nid16)t1,n,

the last equality by (3.7).
This implies that, for any choices of scalars xγ ,

∑

γ

xγaγ = lim
n

s1,n

(
∑

γ

xγ(Dγ,n − dγ,nid16)

)
t1,n,

hence suggests that we choose, for each n, scalars x0,n and xγ,n, γ ∈ Γ, so that

(3.9) x0,nid16 =
∑

γ

xγ,n(Dγ,n − dγ,nid16).

This is a homogeneous linear system of 16 equations in 17 unknowns, hence has nontrivial solutions. In
particular, we choose a solution with

|x0,n| +
∑

γ

|xγ,n| = 1, n = 1, 2, . . . ,

hence, after going to a subsequence, may assume that

x0 := lim
n

x0,n, xγ := lim
n

xγ,n, γ ∈ Γ,

exist and satisfy |x0| +
∑

γ |xγ | = 1.
But then, ∑

γ

xγaγ = lim
n

∑
xγ,naγ

= lim
n

∑

n

s1,n

(
∑

γ

xγ,n(Dγ,n − dγ,nid16)

)
t1,n

= lim
n

x0,ns1,nt1,n

= lim
n

x0,n(id16 − s10,nt01,n)

while limn x0,n = 0 by (3.9) and (3.7). Therefore, finally,
∑

γ

xγaγ = − lim
n

x0,ns10,nt01,n,

with the left side a matrix of rank ≥ 2 (since
∑

γ |xγ | = 1 while the aγ have disjoint support and each is of
rank 2) while all the terms in the sequence on the right side are of rank 1, which is impossible.
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4. Hermite projectors and commuting matrices

(4.1) Fact. ([MT], [G]) Any two matrices A, B ∈ C
n×n that commute can be approximated by two diago-

nalizable matrices that commute.

Proof: This result follows from stronger statements (namely the irreducibility of the variety of all
pairs of commuting matrices of a given order with entries in an algebraically closed field; see [MT], [G]), but
can be proved directly, by purely linear algebra arguments, as follows.

Recall that A ∈ C
n×n is called non-derogatory if all its eigenvalues have geometric multiplicity 1,

hence, equivalently, each eigenvalue of A is associated with only one Jordan block, hence, equivalently,
its characteristic polynomial is its minimal annihilating polynomial, hence, equivalently, if A has a cyclic
vector, i.e., if, for some v ∈ C

n, [v, Av, A2v, . . . , An−1v] is a basis for C
n, for which reason we will use here

the shorter, but non-standard, term cyclic for such A (as we did already earlier in the more general situation
of d commuting matrices). This notion is important here since, if A is cyclic, then the set

C(A)

of matrices commuting with A equals C[A] = {g(A) : g ∈ C[x]} (a special case of the implication (2.7) =⇒
(2.9) proved earlier).

The crux of the argument for (4.1) is Guralnick’s observation that the cyclic matrices are dense in
C(A). His proof: (i) C(A) contains cyclic matrices; e.g., assuming without loss that A is in Jordan form,
A = diag[Ji : i = 1:r] say, with µi the eigenvalue of Ji, then any matrix R = diag[(νi − µi) + Ji : i = 1:r]
is in C(A) and is cyclic whenever the νi are pairwise distinct. Therefore, (ii) for every B ∈ C(A) and any
cyclic matrix R ∈ C(A) and every z ∈ C, B + zR is in C(A) and is cyclic with at most n(n− 1)/2 exceptions
since, with v a cyclic vector for such R and V (z) := [(B + zR)jv : j = 0:n−1], detV (z) is a polynomial in z
of degree ≤ n(n− 1)/2 that is nonzero for large |z|, hence can be zero only for at most n(n− 1)/2 values of
z, and must be nonzero otherwise, i.e., V (z) is a basis for C

n otherwise and, in particular, B + zR is cyclic
for all nonzero z close to 0.

With that, if AB = BA, then there are diagonalizable B′ close to B and cyclic B′′ ∈ C(A) close to B,
therefore A = g(B′′) for some g ∈ k[x], and then A′ := g(B′) is close to A, diagonalizable, and commutes
with B′.

(4.2) Theorem. ([S06]) Any ideal projector on the bivariate polynomials with complex coefficients is an
Hermite projector, i.e., the bounded pointwise limit of Lagrange projectors.

Proof: Combine Theorem 2.11.(ii), Proposition 3.1, and Fact 4.1.

Along the same lines, the fact (proved in [GS: Theorem 8]) that any triplet of commuting matrices
of order 4 can be approximated by a triplet of commuting diagonalizable matrices implies that any ideal
projector of rank ≤ 4 on trivariate polynomials is an Hermite projector. In particular, this holds for any
ideal projector onto the space k<2[x] of trivariate linear polynomials. By now (see [H], [Si]), it is known
that, for n ≤ 8, every commuting triplet of (complex) matrices of order n is approximable by diagonalizable
commuting triplets and that this is not true for n ≥ 30.

5. The real case

Theorem 4.2 relies on Proposition 3.1 whose proof does not apply to the real case since it uses the
Nullstellensatz. At the same time, there is, of course, no hope of approximating every real matrix by real
diagonalizable matrices and, correspondingly, we should not expect to approximate all ideal projectors by
Lagrange projectors in the real case. However, as is made clear in [S0y], one can do the next best thing which
is to approximate ideal projectors by ideal projectors whose kernel has R<n[x1] as an algebraic complement.
The next proposition makes clear why that is such a good thing.
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(5.1) Proposition. If P is an ideal projector on k[x] with range F := k<1[x1], where k is some field with
algebraic closure k, then P can be approximated by restrictions to k[x] of Lagrange projectors on k[x].

Proof: Consider the univariate polynomial r := xn
1 − Pxn

1 . As an element of k[x1], it has n roots,
counting multiplicities, and, after an arbitrarily small perturbation, we may assume these roots τj , j = 1:n,
to be distinct. Correspondingly, let

zj := ((Pxi)(τj) : i = 1:d) ∈ k
d
, j = 1:n.

Since zj(1) = (Px1)(τj) = τj , all j, any f ∈ F vanishing on all the τj is necessarily zero. Since there are
n = dimF distinct zj , there is therefore a Lagrange projector R on k[x] corresponding to interpolation
from F at the n sites zj , j = 1:n. Moreover, on k[x], R agrees with P . Indeed, R = P on F . Also,
Rxn

1 = xn
1 − r = Pxn

1 , hence, for any f ∈ F , P (x1f) = R(x1f). Therefore, as P and R are ideal projectors
even when restricted to k[x1] (recall the pointwise characterization (2.10) of an ideal projector), this implies,
by (ii) of Theorem 2.11, that R = P on k[x1]. Further, Rxi = Pxi for i = 2:d since

(Rxi)(zj) = xi(zj) = zj(i) = (Pxi)(τj) = (Pxi)(zj), j = 1:n.

Therefore, finally, for j = 0:n−1 and all i,

R(xj
1xi) = R(xj

1Rxi) = P (xj
1Pxi) = P (xj

1xi),

the middle equality since R = P on k[x1] ∋ Rxi = Pxi, and the outer equalities since both R and P are
ideal projectors. With that, we know that R(xif) = P (xif) for i = 1:d and all f ∈ F , hence, by (ii) of
Theorem 2.11, that R = P on all of k[x].

This suggests the following theorem as a proper analogue of Theorem 4.2 for k = R.

(5.2) Theorem. Every ideal projector of finite rank n on the space R[x1, x2] of bivariate real polynomials
is the (pointwise) limit of ideal projectors whose kernel has R<n[x1] as an algebraic complement.

In particular, this settles (in the negative) the question, raised in Remark 3.2 of [S0y], whether there
might be “bad” ideals in R[x1, x2], i.e., ideals of colength n having nontrivial intersection with R<n[x1].

Before proving this theorem, we discuss some ancillary results. In this discussion, we call, for simplicity,
a real matrix cyclic if it is cyclic on C

n, i.e., is non-derogatory over C.

(5.3) Proposition. Let A = (A1, . . . , Ad) be a sequence of commuting real matrices of order n. If A1 is
cyclic, then the real ideal

I
(R)
A := {p ∈ R[x] : p(A) = 0}

is an algebraic complement of R<n[x1] = ran[1, x1, . . . , x
n−1
1 ] in R[x].

Proof: Let y be a cyclic vector for A1. Then

C
n = {g(A1)y : deg g < n},

hence (2.7) holds with k = C, Y = C
n and F = C<n[x1], thus with dimY ≥ dim F , and therefore, as shown

earlier for an arbitrary such k, Y , and F , also (2.3) holds in this case. In particular, C<n[x1] is an algebraic
complement of kerΦA in C[x], and, since the Aj are real matrices, this implies that R<n[x1] is an algebraic

complement of = I
(R)
A in R[x].

(5.4) Fact. For every real matrix of order n, there are cyclic real matrices that commute with them.

(5.5) Corollary. Any pair (A1, A2) of real commuting matrices can be approximated by pairs (B1, B2) of
real commuting matrices with B1 cyclic.

Proof: The earlier proof that cyclic matrices are dense in C(A) goes through verbatim after C is
replaced by R except, perhaps, for the claim that there are real cyclic matrices in C(A). But this is taken
care of by Fact 5.4.
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Proof of Theorem 5.2: Let P be an ideal projector of rank n on R[x1, x2], set F := ranP , and,
for j = 1, 2, let Aj be the matrix representation of the linear map F → F : f 7→ P (xjf). By Corollary 5.5,
we can approximate the pair A := (A1, A2) with commuting pairs B := (B1, B2) of real matrices with B1

cyclic and, for all such B close enough to A, the linear map ΦB : p 7→ p(B) on R[x1, x2] also carries F 1-1
onto ranΦB (since ΦA does), hence the map

PB := (ΦB F )−1ΦB

is well-defined, a linear projector with range F and nullspace kerPB = kerΦB, and close to P , while, by
Proposition 5.3, kerΦB has R<n[x1] as an algebraic complement.

6. Minimal annihilating polynomials

In this final section, we briefly touch on questions raised by our use of the algebra

ranΦA = {p(A) : p ∈ k[x]}

generated by a sequence A = (A1, . . . , Ad) of commuting linear maps on some finite-dimensional linear space
Y over some field k.

We did not find much discussion of it in the Linear Algebra literature, – except, of course, for the
case d = 1, in which the ideal kerΦA is principal and its generator is the minimal annihilating polynomial
for the sole matrix involved, and for the case of arbitrary d, in which the Ai are simultaneously upper
triangularizable (over C).

Because of the major role played by minimal annihilating polynomials in basic Linear Algebra, we had
expected to find the analogous discussion for d > 1, with the role of minimal annihilating polynomial played
by some suitable basis for the ideal kerΦA.

In view of the fact that [R] proposes to obtain such an ideal basis by a version of the Möller-Buchberger
algorithm [MB], it might be worthwhile to point out that straightforward Gauss elimination suffices for this
task, as described in [dB07], applied to the column map

[Aα : α ∈ Z
d
+] : k

Z
d
+

0 → L(Y ) : a 7→
∑

α

a(α)Aα,

with the columns so ordered that the corresponding ordering

≺

of Z
d
+ is monomial in the sense that (i) every subset has a first element, and (ii) α ≺ β implies that

α + γ ≺ β + γ for all α, β, γ ∈ Z
d
+.

Recall that Gauss elimination classifies the columns of a matrix, hence, more generally, the columns of
a column map, into free and bound , with a column free if it is a linear combination of the columns to the
left of it, and bound otherwise. The particular ordering of the columns of [Aα : α ∈ Z

d
+] guarantees that if

column α is free, then so is column α + γ for every γ ∈ Z
d
+. Thus we should look for the minimally free

columns, i.e., those columns α for which all columns α − γ with 0 6= γ ∈ Z
d
+ are bound. Each such column

can be written as a weighted sum of bound columns to the left of it, thus supplying an element of kerΦA of
the form

pα = xα −
∑

β≺α

a(β)xβ ,

with a(β) = 0 for any free column β. The resulting set {pα} is not only a reduced Groebner basis for kerΦA,
it is a reduced H-basis.

It remains to discuss the actual determination of the free columns. This can be done for any column
map W := [w1, w2, . . .] into a linear space X by choosing a linear map Q on X into some ks that carries
ranW onto ks and then applying Gauss elimination to the matrix QW = [Qw1, Qw2, . . .]. In our specific
case, the columns are k-valued matrices of some order n, hence a natural choice for Q would associate a
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matrix with the ‘vector’ of its entries. Further, we are not really interested in finding all free columns but
only the minimally free ones. Hence, as soon as we find a free column, α say, we immediately remove all
columns α + γ with γ ∈ Z

d
+\0 from further consideration. This guarantees that the next free column found

is minimally free, too, and the Hilbert Basis theorem guarantees that we will run out of columns to look at
after finitely many steps.

For the univariate case, i.e., d = 1, we think of the minimal annihilating polynomial as giving us much
information about the spectrum of the sole matrix in question. For arbitrary d, recall from Lemma 3.2 that

(6.1) spect(g(A)) = g(V), g ∈ C[x].

Also, the (univariate) minimal annihilating polynomial hi ∈ C[xi] of the linear map Ai is, as a polynomial
in x, in I, hence vanishes at the ith coordinates of the points in V . This connection between the variety of
the ideal I and the spectrum of the Ai has been put to good use, e.g., in [AS], [St] and [M93], to determine
the former from the latter in the special case that the Ai are the linear maps mxi

that carry [g] = g + I to
[xig], all i.

In this special case, A is cyclic, hence any cyclic B with kerΦB = kerΦA is similar to A. However,
(6.1) holds for any A, cyclic or not, as long as the underlying field is C (or, more generally, algebraically
closed). This raises the question of how much ΦA will tell us about the spectral structure of the Ai or, more
generally, of g(A) when A is not cyclic. In that case, as Example 2.12 shows, there may not even exist y ∈ Y
with kerΦA,y = kerΦA.

Acknowledgement: The authors are very grateful to Hans Schneider and Robert Guralnick for point-
ers to the literature, in particular to Guralnick’s results concerning the approximability of commuting ma-
trices by diagonalizable commuting matrices.
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