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Introduction

The (cubic) smoothing spline, of Schoenberg [S64] and Reinsch [R67], [R71],
has become the most commonly used spline, particularly after the introduction
of generalized cross validation by Craven and Wahba [CW79] for an automatic
choice of the smoothing parameter. It is the purpose of this note to derive the
computational details, in terms of B-splines, for the construction of the weighted
smoothing spline, in hopes of promoting its use.

The λ-weighted smoothing spline is the unique minimizer of

(1) ρ
∑

j

wj(yj − f(xj))2 +
∫ b

a

λ(t)(Dmf)(t)2 dt

over all f in
X := L

(m)
2 [a . . b],

given the data sites x1 < · · · < xN in [a . . b], the data y = (yj), the weight
vector w = (wj) of positive weights (usually equal to 1), the smoothing parameter
ρ ∈ [0 + . .∞−], the natural number m, and the nonnegative integrable function λ.

As ρ → ∞, this weighted smoothing spline converges to the (natural) λ-weighted
interpolating spline, and the latter has been around for some time, at least since
Cinquin’s thesis [C81], and K. Salkauskas’ independent paper [Sa84] (see also Fo-
ley [Fo86]), albeit only with a piecewise constant weight with breaks at the data
sites and only for m = 2. In fact, more general weighted splines already appear
in [KW71], but only for smooth λ since the development there is via L-splines.
Weighted splines with the weight the reciprocal of a piecewise polynomial function
q were introduced by Kulkarni and Laurent [KL91] (and given the name Q-splines).
These share with the weighted splines for piecewise constant weight the happy prop-
erty that they are piecewise polynomial, but are smoother if the weight function is
at least continuous. They also occur, independently, in [BSa92]. The approxima-
tion of more general weights by piecewise constant weights is considered in [SaB92],
[BSa93].

The above list of papers concerning the interpolating weighted spline is far from
exhaustive. But I could find only one paper discussing a weighted smoothing spline
(namely [KL91] which details the case m = 2 and λ = 1/q with q a continuous
broken line) and could find no programs for the construction of a weighted smooth-
ing spline. On the other hand, the few people familiar with the weighted spline
will not be surprised to learn that it takes very little effort to modify an existing
program for the construction of the standard smoothing spline to also produce a
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weighted smoothing spline, as long as the weight λ is piecewise constant with breaks
only at the data sites (or, more generally, the reciprocal of a piecewise polynomial
with breaks only at the data sites). Even if breaks are also permitted to occur at
places other than the data sites, the needed adjustments are quite simple. Carry-
ing out such a modification seems eminently worthwhile since it makes available
considerably more flexibility in the shaping of the smoothing spline.

Derivation

It seems simplest to me (and to some others, see, e.g., [A92] and the references
there) to view the minimization of (1) as a special case of best approximation in
an inner product space. Since this is not the standard approach, I take the time to
give the details, making, of course, no claim that the results are new.

Use the linear maps

α : X → Y := IRN : f 7→ f x :=
(
f(xj)

)N

j=1
,

β : X → Z := L2[a . . b] : f 7→ Dmf,

to embed X in the Hilbert space

H := Y × Z

with natural inner product

〈(f, g), (h, k)〉 := ρ〈f, h〉Y + 〈g, k〉Z
with

〈f, g〉Y :=
∑

j

wjfjgj , f, g ∈ IRN ,

〈f, g〉Z =
∫ b

a

λfg, f, g ∈ L2[a . . b].

Assuming as I do that 0 < ρ < ∞, the only issue here is whether

X → H : f 7→ (α(f), β(f))

is an embedding and whether, with this embedding, X becomes a closed subspace
of H. For the former, it is necessary and sufficient that

ker α ∩ ker β = {0},

and, since
kerα = {f ∈ X : f x = 0}, ker β = Π<m
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(the space of polynomials of degree < m), this will be so iff N ≥ m, an assumption
I make from now on. As to the latter, it is, in essence, the claim that D, hence Dm,
is a closed linear map. Explicitly, I take for granted the standard representation
theorem

(2) f = Ta,mf + Rβ(f), ∀f ∈ X,

with Ta,mf the Taylor polynomial of order m for f at a and with

R : Z → X : g 7→
∫ b

a

(· − s)m−1
+ g(s) ds/(m − 1)!.

This identifies X as the sum Π<m + R(Z) of a finite-dimensional linear subspace
(which therefore is closed) and the subspace R(Z) which is closed, hence X itself is
closed.

Thus, the smoothing spline fρ is the unique best approximation from X ⊂
H to the element (y, 0) ∈ H, hence is characterized by the fact that the error,
(y, 0) − (α(fρ), β(fρ)), is perpendicular to X ⊂ H, i.e.,

(3) ρ〈y − α(fρ), α(f)〉Y + 〈−β(fρ), β(f)〉Z = 0 ∀f ∈ X.

Since kerβ = Π<m, (3) implies that

(4) 〈y − α(fρ), α(f)〉Y = 0 ∀f ∈ Π<m

and, with (2) and this, (3) implies that

(5) ρ〈y − α(fρ), α(Rg)〉Y = 〈β(fρ), g〉Z ∀g ∈ Z.

Conversely, (4)–(5) imply (3).
Since the left side of (5) is a continuous linear functional as a function of g, it is

expressible in the form 〈z, g〉Z for some z ∈ Z. Explicitly, with h := y − α(fρ),

〈y − α(fρ), α(Rg)〉Y =
∑

j

wjhj

∫ b

a

(xj − s)m−1
+ g(s) ds/(m − 1)!

=
∫ b

a

( ∑
j

wjhj (xj − s)m−1
+ /(m − 1)!

)
g(s) ds

= 〈 1
λ

∑
j

wjhj(xj − ·)m−1
+ /(m − 1)!, g〉Z .

It follows that (5) is equivalent to

(6) ρ
∑

j

wj(yj − fρ(xj))(xj − ·)m−1
+ /(m − 1)! = λDmfρ.
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This shows that λDmfρ is piecewise polynomial of order m with break sequence x,
hence fρ itself is, by definition, a (λ-)weighted spline of order 2m. Further, λDmf
vanishes to the right of xN . However, by (4),

∑
j

wj(yj − fρ(xj))(xj − ·)m−1/(m − 1)! = 0,

hence, with (xj − t)m−1
+ = (xj − t)m−1 − (−1)m−1(t − xj)m−1

+ , also

(7) ρ(−1)m
∑

j

wj(yj − fρ(xj))(· − xj)m−1
+ /(m − 1)! = λDmfρ,

showing that λDmfρ also vanishes to the left of x1. Consequently, we may write

(8) λDmfρ =:
∑

k

Bk,m,xck,

with Bk,m,x the normalized B-spline with knots xk, . . . , xk+m, i.e.,

Bk,m,x(t) = (xk+m − xk)[xk, . . . , xk+m](· − t)m−1
+

=:
∑

j

(xj − t)m−1
+ cj,k,

hence

cj,k =
{

(xk+m − xk)/
∏{(xj − xi) : i ∈ {k, . . . , k + m}\{j}}, j = k, . . . , k + m;

0, otherwise.

Following the standard terminology in the special case λ = 1, call any fρ satisfying
(8) a natural (λ-)weighted spline of order 2m with break sequence x.

Now, on expressing λDmfρ in (6) in this way and comparing coefficients of
(xj − ·)m−1

+ , we obtain

(9) ρW (y − α(fρ)) = Cc,

with

W := diag(w), C := (m − 1)!(cj,k : j = 1, . . . , N ; k = 1, . . . , N − m),

and c the B-spline coefficient sequence for λDmfρ, as defined in (8). Next, note
that, for any f ∈ X,

(10) (Ctα(f))j = (m − 1)! (xj+m − xj)[xj , . . . , xj+m]f =
∫ b

a

Bj,m,xDmf,
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using the fact that the (appropriately normalized) B-spline is the Peano kernel for
the divided difference. Therefore, any α(fρ) satisfying (9) automatically satisfies
(4), since, for any such α(fρ) and any f ∈ X,

〈y − α(fρ), α(f)〉Y = α(f)tW (y − α(fρ)) = α(f)tCc/ρ = (Ctα(f))tc/ρ,

while Ctα(f) = 0 for f ∈ Π<m by (10). Since (9) with (8) implies (6), hence (5),
it follows that, with (8), (9) is equivalent to (3). We therefore now concentrate on
(9).

For that, from (10) with (8),

(11) Ctα(fρ) = Ac,

with

A := (
∫ b

a

1
λ

Bj,m,xBk,m,x : j, k = 1, . . . , N − m).

Substitution of (9), in the form

(12) α(fρ) = y − W−1C(c/ρ),

into (11) gives the equation

(13) Cty = (CtW−1C + ρ A)(c/ρ)

which may be solved stably for u := c/ρ, for given data y (since its coefficient matrix
is symmetric positive definite). From this, we obtain the smoothed values α(fρ)
directly from (12). To obtain fρ, integrate the resulting Dmfρ = (1/λ)

∑
j Bj,m,xcj

m times, to obtain f := D−m(Dmfρ), which differs from fρ only by some q ∈ Π<m.
Determine this q as the unique q ∈ Π<m for which α(q + f) = α(fρ), i.e., for which
α(q) = α(fρ) − α(f), with the vector α(fρ) computed from (12).

It is only at this point, of m-fold integration, that the choice of the weight λ
in the roughness measure begins to matter (other than an assumption that λ be
measurable and essentially positive, to ensure that 〈 , 〉Z is an inner product). For
the special case λ = 1, one would use the standard formula, see, e.g., [pgs : p.150],
to carry out the integration, obtaining, in that case, fρ as a natural spline of order
2m with simple interior knots (xi : i = 2, . . . , N − 1). While the integration can be
carried out in closed form for a somewhat larger class, I will, at this point, restrict
attention to those λ for which fρ is still piecewise polynomial and, specifically, on
the simplest of these, namely the piecewise constants with breaks only at the xi,
i.e.,

(14) λ ∈ Π0,x.

It would not be very hard to consider more general choices, namely a λ that is the
reciprocal of a piecewise polynomial function, as in [KL91] and [BSa92].
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The behavior of the error as a function of ρ

According to (13), as ρ → 0, u := c/ρ converges to (CtW−1C)−1Cty, hence
c = ρu → 0, therefore f0+ is the unique polynomial q ∈ Π<m that minimizes
‖y−α(q)‖. At the other extreme, as ρ → ∞, (13) approaches the equation Cty = Ac,
hence, with (11), f∞− is the unique natural (λ)-weighted spline of order 2m with
knots x that interpolates to the given data.

As a function of ρ, the error

Eρ := ‖y − α(fρ)‖2

decreases with increasing ρ, as can be seen as follows: For each f ∈ X,

IR+ → IR : ρ 7→ ρ‖y − α(f)‖2 + ‖β(f)‖2

is a straight line, hence the function

F : IR+ → IR : ρ 7→ min
f∈X

(
ρ‖y − α(f)‖2 + ‖β(f)‖2

)
,

as the pointwise minimum of a collection of straight lines with nonnegative y-
intercepts and nonnegative slopes, is continuous, nondecreasing, concave downward
and is bounded (above) by its asymptote at infinity, the constant line of height
‖β(f∞−)‖2, while the asymptote at the other extreme (i.e., the tangent at the ori-
gin) is the line through the origin with slope ‖y − α(f0+)‖2. Since the straight
line

ρ 7→ ρ‖y − α(fρ)‖2 + ‖β(fρ)‖2

is the tangent to F at ρ, we have

DF (ρ) = Eρ,

showing that Eρ decreases with increasing ρ and that, correspondingly, ‖β(fρ)‖2

(the y-intercept of the tangent) increases with increasing ρ.
For this reason, Reinsch and others have proposed to choose the smoothing

parameter ρ as small as possible subject to the constraint that Eρ not exceed a
given tolerance, tol. Further, Reinsch has pointed out that the function

G : ρ 7→ 1/‖y − α(fρ)‖

is concave upward and becomes ever more linear with growing ρ, hence Newton’s
method applied to the equation

(15) 1/E1/2
ρ − 1/(tol)1/2 = 0
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for ρ and started at ρ = 0 is bound to converge, and to converge quite fast, partic-
ularly if the solution is ‘large’. Further, since

Eρ = utCtW−1Cu

by (12), one gets DEρ = 2utCtW−1CDu, while, from (13), Du uniquely solves the
equation

−Au = (CtW−1C + ρA)Du.

In particular, for ρ = 0, this says that DEρ = −2utAu, with u = (CtW−1C)−1Cty
needed in any case for the calculation of α(fρ) via (12). This provides the slope
needed for the starting step, at ρ = 0, of Newton’s method applied to (15). For
subsequent steps, I would avoid calculation of DEρ (which requires solution of a
linear system) by using the secant method instead.

Another limiting case of interest concerns the confluence of some of the xj . If the
data y come from a smooth function and the relevant weights behave appropriately,
then confluence of r ≤ m neighboring points leads to the smoothing problem in
which α also involves all the derivatives of order < r at the multiple point and, cor-
respondingly, fρ has only 2m−1−r continuous derivatives across that multiple point.
Of course, the relevant formulæ for such an α can be derived directly in the above
way, using divided differences with repeated nodes and, correspondingly, B-splines
with repeated knots, in the standard way. In particular, there is some practical use
for the complete cubic smoothing spline for which α(f) = (Df(x1), f x, Df(xN )).

Numerical construction of the B-spline Gramian

There is one final hurdle to writing a program for the computation of fρ for
general m, namely the construction of the matrix A of (weighted) inner products
of B-splines. This is the second point at which the choice of λ becomes important.
With our choice of

λ =:
N−1∑
j=1

λjχ(xj ..xj+1)
∈ Π0,x

instead of just λ = 1, the calculation of the entries of A is not at all complicated
since, for small m, the integrals

Aj,k =
∫ b

a

Bj,m,xBk,m,x/λ, j, k = 1, . . . , N − m,

are most easily evaluated break interval by break interval anyway. To be sure,
for λ = 1, there are stable recurrence relations for the integrals available in the
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literature, e.g., in [BLS76]. In that case, one might also make use of the formula

∫
Bi,kBj,k =(−1)k (2k − 1)!

(k!)2
(ti+k − ti)(tj+k − tj)

× [ti, . . . , ti+k]x[tj , . . . , tj+h]y(x − y)2k−1
+ ,

which, in slightly different form, appears already for that purpose in [JS68].
For m = 1, 2 (and, perhaps, even m = 3) it is easy to work out the matrix

entries directly.
case m = 1: In this case, Bj,m,x = χ

[xj ..xj+1)
. Correspondingly, Dfρ = cj/λj

on (xj . . xj+1). Further, A is the diagonal matrix with diagonal entries ∆xj/λj ,
j = 1, . . . , N − 1.

case m = 2: In this case, Bj,m,x is the piecewise linear function that is zero at
all its breaks x, except at xj+1, where it is 1. Correspondingly,

D2fρ(t) =
{

cj/λj for t = x+
j ;

cj−1/λj−1 for t = x−
j .

Hence, with α(fρ) computed from (12), construction of the local cubic pieces is
immediate once c (or c/ρ) is obtained from (13).

Further, with t = xj + s∆xj ,

∫ xj+1

xj

Bj,2(t)2 dt = ∆xj

∫ 1

0

s2 ds = ∆xj/3,

while
∫ xj+1

xj

Bj−1,2(t)Bj,2(t) dt =
∫ xj+1

xj

Bj,2(t) dt −
∫ xj+1

xj

Bj,2(t)2 dt

= ∆xj/2 − ∆xj/3 = ∆xj/6.

Consequently, A is the tridiagonal matrix with general row

(
∆xj

λj
, 2(

∆xj

λj
+

∆xj+1

λj+1
),

∆xj+1

λj+1
)/6, j = 1, . . . , N − 2.

Note that, for λ = 1, the entries in such a row add up to (xj+2 − xj)/2 =
∫

Bj,2,x,
exactly as they should.

case m > 2: Already for m = 3, the explicit expressions for the integrals∫ xr+1

xr
BiBj/λ become complex enough that it seems easier simply to employ Gauss
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quadrature, mindful of the fact that the integrand is a polynomial of order 2m,
hence the m-point Gauss-Legendre quadrature rule

∫ xr+1

xr

f ≈ ∆xr

m∑
j=1

wjf(xr + ∆xrτj)

will give the exact integral (up to rounding error). Formally,

A = BtV B,

with
V := diag((∆xr/λr)w : r = 1, . . . , N − 1),

and B the B-spline collocation matrix

B := (Bj,m,x(ti) : i = 1, . . . , m(N − 1); j = 1, . . . , N − m),

where
t := (xr + ∆xrτ : r = 1, . . . , N − 1).

However, one would want to take full advantage of the fact that all matrices here
are almost block diagonal (in the sense introduced in [BW80]), and how that is
done will depend crucially on the programming language used.
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Birkhäuser Verlag, Basel

[BW80] Boor, C. de and Richard Weiss (1980): SOLVEBLOK : A package for solving
almost block diagonal linear systems. ACM Trans. Math. Software 6, 80–87

[BSa92] Bos, L. and K. Salkauskas (1992): Weighted splines based on piecewise poly-
nomial weight functions. In: H. Hagen, ed, Curve and Surface Design, 87–98.
SIAM Publications, SIAM, Philadelphia PA

[BSa93] Bos, L. and K. Salkauskas (1993): Limits of weighted splines based on piecewise
constant weight functions. Rocky Mountain J. Math. 23(2), 483–493

9



[C81] Cinquin, Ph. (1981): Splines unidimensionelles sous tension et bidimensionelles
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