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Due to their so-called time-frequency localization properties, wavelets have become a pow-
erful tool in signal analysis and image processing. Typical constructions of wavelets depend on
the stability of the shifts of an underlying re�nable function. In this paper, we derive necessary
and su�cient conditions for the stability of the shifts of certain compactly supported re�nable
functions. These conditions are in terms of the zeros of the re�nement mask. Our results are
actually applicable to more general distributions which are not of function type, if we generalize
the notion of stability appropriately. We also provide a similar characterization of the (global)

linear independence of the shifts. We present several examples illustrating our results, as well
as one example in which known results on box splines are derived using the theorems of this
paper.

1. Introduction

In this paper we present a characterization of the stability and linear independence
of the shifts of certain compactly supported re�nable functions in terms of the re�nement
mask. Our results are applicable to a large class of multivariate distributions which includes
(but is not limited to) tensor products and box splines.

For 1 � p � 1, we denote by Lp(IRd) the set of all measurable functions f : IRd ! C
satisfying

kfkLp :=

�Z
IRd

jf(x)jpdx

� 1
p

<1:

We also denote by D0(IRd) the set of all continuous linear functionals � : D(IRd) ! C,
where D(IRd) is the set of all compactly supported in�nitely di�erentiable functions with
the standard topology (cf., e.g., [13, ch. 6]).

A function � 2 Lp(IRd) is said to have `p-stable shifts if there exist positive constants
C and D such that

Ckak`p � k
X
�2ZZd

a(�)�(� � �)kLp � Dkak`p

for all a 2 `p(ZZd) (it is often said that � provides a Riesz basis in Lp(IRd) in this case);
a compactly supported � 2 D0(IRd) is said to have linearly independent shifts if the
map

��0 : CZZd ! D0(IRd) : a 7!
X
�2ZZd

a(�)�(� � �)
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is one-to-one; and a function � 2 L2(IRd) is said to have orthonormal shifts if

h�; �(� � �)i :=

Z
IRd

�(t)�(t� �)dt = �� :=

�
1; if � = 0;
0; if � 2 ZZdn0.

It is worth pointing out at this time that, for the shifts of a compactly supported � 2
L2(IRd), orthonormality implies linear independence implies `p-stability for 1 � p � 2.

All of these properties can be characterized in terms of the Fourier transform of �.
For example, if � has orthonormal shifts, then

�� =

Z
IRd

�(t)�(t � �)dt =

Z
IRd

jb�(!)j2eih�;!id�(!)
=

Z
TTd

X
�2ZZd

jb�(! + 2��)j2eih�;!id�(!);

where TTd := [0; 2�)d and (2�)dd�(!) := d!. It follows that a compactly supported
function � 2 L2(IRd) has orthonormal shifts if and only ifX

�2ZZd

jb�(�+ 2��)j2 = 1:

As this paper deals with compactly supported distributions, b� will be used to represent
the Fourier-Laplace transform of �, which is an entire function de�ned on all of Cd for all
compactly supported � 2 D0(IRd).

In [7], Jia and Micchelli proved that a compactly supported � 2 Lp(IRd) (1 � p � 1)
has `p-stable shifts if and only if the set

NIR(�) :=
n
# 2 TTd : b�(# + 2��) = 0 8� 2 ZZd

o
is empty. And it was proved by Ron in [12] that a compactly supported � 2 D0(IRd) has
linear independent shifts if and only if the set

NC (�) :=
n
# 2 TTd + iIRd : b�(# + 2��) = 0 8� 2 ZZd

o
is empty.

Notice that the stability criterion, that NIR(�) be empty, is independent of p. For this
reason, we will say that a compactly supported � 2 D0(IRd) has suitable shifts if NIR(�)
is empty. If it does happen that � is in Lp(IRd) for some p, then suitability and `p-stability
are equivalent. In this paper, we investigate the suitability and linear independence of the
shifts of compactly supported re�nable distributions.

A compactly supported � 2 D0(IRd) is said to be re�nable if (� is not identically
zero and) there exists a �nitely supported sequence a : ZZd ! C satisfying

� =
X
�2ZZd

a(�)�(2 � ��):
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Equivalently, � is re�nable if

b�(2!) = A(!)b�(!) for all ! 2 Cd; (1:1)

where

A :=
1

2d

X
�2ZZd

a(�)e�ih�;�i:

Eq. (1.1) is called the re�nement equation and we refer to the trigonometric polynomial
A as the (re�nement) mask. It is known (cf. [4]) that if A(0) = 1, then there exists a

unique distributional solution to Eq. (1.1) with b�(0) = 1.
The characterizations given above for orthonormality, stability, and linear indepen-

dence are all in terms of the Fourier-Laplace transform b�. However, for re�nable � it is
actually more desirable to characterize these properties in terms of the mask A. Since,
as is well known, a compactly supported re�nable function � 2 L2(IRd) with mask A has
orthonormal shifts if and only if � has `2-stable shifts andX

�2f0;1gd

jA(�+ ��)j2 = 1 on IRd;

it is su�cient to characterize suitability and linear independence (assuming one has some
way to ensure that � 2 Lp(IRd) if necessary).

In the univariate case (d = 1), suitability and linear independence of the shifts of
a compactly supported distribution have been characterized in terms of the mask by Jia
and Wang [8]. Their arguments relied on the fact (cf. [12]) that, for a non-zero compactly
supported distribution � 2 D0(IR), the set NC (�) is �nite. Unfortunately, this statement
is invalid for multivariate distributions.

To analyze the multivariate case, we consider distributions � whose Fourier-Laplace
transform b� has the form: b� = b�� :=

Y
�2�

b��(h�; �i); (1:2)

where � is a �nite subset of ZZdn0 and, for each � 2 �, �� is a univariate distribution of

compact support. This de�nes a compactly supported distribution � 2 D0(IRd).

It is important to note that, with this de�nition, each �� is univariate, while b�f�g =b��(h�; �i) de�nes �f�g as an element of D0(IRd) (with support in the line IR�). We also
point out that if �� is re�nable for every � 2 �, say with mask A�, then �� is also re�nable
with mask

A� :=
Y
�2�

A�(h�; �i):

It is clear from (1.2) and the characterization of suitability (resp. linear independence)
in terms of the set NIR(�) (resp. NC (�)) that, if the shifts of �� are suitable (resp. linearly
independent), then the shifts of �Y must be suitable (resp. linearly independent) for every
Y � �.
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Now, suppose � = �� is of the type (1.2) and suppose Y � � satis�es dY :=

dimspanY < d. Then b�Y is constant in directions orthogonal to Y . Therefore, if NIR(�Y )

is non-empty, say # 2 NIR(�Y ), then for any � 2 Y ?, b�Y (# + � + 2��) is zero for all
� 2 ZZd. I.e., the set NIR(�Y ) is in�nite. The main results of this paper are based on the
converse of this, namely:

Lemma 1.1. If � = �� 2 D0(IRd) is of the type (1.2), and if NIR(�) is in�nite, then
there is some Y � � with dY = dimspanY < d so that NIR(�Y ) is already non-empty.

It should be noted that this lemma does not require that � be re�nable.
This lemma will actually lead to a complete characterization of suitability and linear

independence in terms of the mask for re�nable distributions of the type (1.2). If the
shifts of �� are not suitable and NIR(��) is in�nite, for example, then any minimal Y � �
with NIR(�Y ) 6= fg will satisfy dY < d by Lemma 1.1. In this case, �Y actually has its
support in the subspace spanned by Y , and the map ��0 is not even bounded below when
restricted to `2(ZZd \ spanY ). We may then analyze those shifts of �Y with support in
spanY . Equivalently, we may analyze the set NIR(�Y )\ spanY which, since Y is minimal,
must be �nite. This reasoning, which will be more rigorously presented later, works for
suitability. To handle linear independence, we use the following result due to Zhou:

[15]Result 1.2. Suppose the compactly supported distribution � is re�nable with
mask A. Then � has linearly independet shifts if and only if � has suitable shifts and A
has no �- periodic zeros in Cd.

2. Statement of Main Results

From this point forward we assume only that � is a compactly supported distribution.
If we refer to � = ��, then we are also assuming that � is of the type (1.2). We make no
assumption that � 2 Lp(IRd), or even of function type at all. Nor do we assume that �
is necessarily re�nable (if this is needed, it will be stated explicitly). However, when we
do refer to a re�nable �, we will assume that A(0) = 1 and that � is the distributional

solution to Eq. (1.1) with b�(0) = 1.
In the statement of results that follows, and throughout this paper, we will say that

the function A has a
�-periodic zero in IRd (resp. Cd) if there exists z 2 IRd (resp. Cd) such that

A(z + ��) = 0 for all � 2 ZZd;

contaminating zero in IRd if there exists an integerm � 2 and � 2 ZZdn(2m�1)ZZd

such that

A(2k
2��

2m � 1
+ ��) = 0 for all � 2 ZZdn2ZZd; k 2 f0; 1; 2; : : :g:

Equivalent de�nitions follow from the 2�-periodicity of A. Namely, A has a
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�-periodic zero in IRd if there exists x 2 TTd such that A(x + ��) = 0 for all � 2

f0; 1gd;
�-periodic zero in Cd if there exists z 2 TTd+ iIRd such that A(z+��) = 0 for all � 2

f0; 1gd;

contaminating zero in IRd if there is an integer m � 2 and � 2 f0; 1; : : : ; 2m � 2gdn0

such that A(2k 2��
2m�1 + ��) = 0 for all � 2 f0; 1gdn0; k 2 f0; 1; 2; : : : ; m� 1g:

The following two theorems will be proved using the arguments of [8]. Note that we
assume the relevant set, NIR(�) or NC (�), to be �nite, whereas this assumption is not
explicit in the statement of results in [8]. It is, however, implied by the fact that, for
univariate �, NC (�) is always �nite.

Theorem 2.1. Suppose � is re�nable and NIR(�) is �nite. Then the shifts of � are
suitable if and only if the re�nement mask A satis�es
(i) A has no �-periodic zeros in IRd, and
(ii) A has no contaminating zeros in IRd.

Theorem 2.2. Suppose � is re�nable and NC (�) is �nite. Then the shifts of � are
linearly independent if and only if the re�nement mask A satis�es
(i) A has no �-periodic zeros in Cd, and
(ii) A has no contaminating zeros in IRd.

The assumption that NIR(�) or NC (�) be �nite will only be used to prove the su�-
ciency. We therefore have the following

Theorem 2.3. Suppose � is re�nable. If the shifts of � are suitable (resp. linearly
independent), then
(i) A has no �-periodic zeros in IRd (resp. Cd) and
(ii) A has no contaminating zeros in IRd.

It should be noted that none of the theorems up to this point in this section required that
� be of the type (1.2).

Unfortunately, the assumption that NIR(�) or NC (�) be �nite in Theorems 2.1 and
2.2 cannot be easily veri�ed in terms of the mask. Moreover, Example 4.1 shows that this
assumption cannot be eliminated in general. We will, however, eliminate it for distributions
of the type (1.2), under the mild conditions that dimspan� = d and A�(�) = 0 for all
� 2 �.

Theorem 2.4. Suppose � = �� of type (1.2) is re�nable. Suppose dimspan� = d
andA�(�) = 0 for every � 2 �. Then the shifts of � are suitable (resp. linearly independent)
if and only if the re�nement mask A := A� satis�es
(i) A has no �-periodic zeros in IRd (resp. Cd), and
(ii) A has no contaminating zeros in IRd.

By assuming that � spans, we are merely assuming that the support of �� is not
contained in some lower dimensional subspace. We should also point out that the easily
veri�able assumption that A�(�) be zero is very reasonable. For example, the proof of

Theorem 2.4 from [7] shows that b�� vanishes on the set 2ZZ�n0 whenever b�� vanishes
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at in�nity. If the shifts of �� are suitable, this in turn implies that A�(�) is zero. The

condition that b� vanishes at in�nity is satis�ed, for example, for compactly supported
� 2 Lp(IR) with 1 � p � 1. These observations lead immediately to the

Corollary 2.5. Suppose dimspan� = d. For each � 2 �, let � = �� be the solution
to Eq. (1.1) with mask A = A�. If �� 2 Lp(IR) for each � 2 �, then the shifts of �� are
suitable (resp. linearly independent) if and only if
(i) A� has no �-periodic zeros in IRd (resp. Cd),
(ii) A� has no contaminating zeros in IRd, and
(iii) A�(�) = 0 for every � 2 �.

Remark. It can be shown that if �� 2 Lp(IR) andA�(�) 6= 0 thenA� has a �-periodic

zero in IRd. In other words, the three conditions in Corollary 2.5 are actually equivalent
to just the �rst two.

As already pointed out, the necessity of the conditions in Theorem 2.4 still holds for
compactly supported re�nable functions not of type (1.2). A natural question that arises
is whether these conditions are still su�cient (say under the assumption that � 2 L1(IRd)).
It is clear from Theorem 2.2 and Result 1.2, that if a re�nable function � with mask A has
dependent shifts while A has no �-periodic or contaminating zeros, then NIR(�) must be

in�nite. This would be the case, for instance, if � were of the form b� = b�1b�2 where �1, say,
did not have suitable shifts and was supported in some lower dimensional subspace. In fact,
we are not aware of any re�nable function � for which NIR(�) is in�nite and which is not
of this form (though we make no conjecture that none exists). Under some assumptions
on �2, it is likely that the arguments of this paper could be generalized to handle this
(slightly) more general situation.

The proof of Theorem 2.4 will be facilitated by the following

Lemma 2.6. Suppose dimspan� = d and that A�(�) = 0 for every � 2 �. If there is

a basis B � � with detB 2 2ZZ then A� has a �-periodic zero in IRd. If some basis B � �
satis�es detB 6= �1 and detB =2 2ZZ then A� has a contaminating zero in IRd.

Already, Lemma 2.6 together with Theorem 2.3 provides a proof of the known

Result 2.7. Suppose dimspan� = d and that A�(�) = 0 for every � 2 �. If the
shifts of �� are suitable, then jdetBj = 1 for every basis B � �.

However, the condition jdetBj = 1 for all bases is not su�cient. Example 4.2 illustrates a
situation in which dimspan� = d, each �� has linearly independent shifts, each A� has a
zero at �, and jdetBj = 1 for all bases B � �; yet the shifts of �� are not even suitable.

We would like to point out that, in [9], Lawton, Lee, and Shen provided a characteri-
zation of orthonormality based on the 1-eigenspace of the operator

L2(TTd)! L2(TTd) : f 7!
X

�2f0;1gd

jA(�+ ��)j2 f(� + ��):

In [10, x4], Long and Chen provided similar criteria for the related property of biorthogo-
nality. Their paper also provided a multivariate version of the so-called Cohen conditions.
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These results require that � 2 L2(IRd). Moreover, the conditions provided can be very
di�cult to check. In this paper, we present conditions which we believe to be simpler and
which are valid even for � =2 L2(IRd).

3. Proof of Main Results

A fair portion of our analysis will involve the Smith normal form of an integral matrix
(cf., e.g., [11, pp. 26{28]):

Smith normal form. Every matrix Y 2 ZZd�n has the form

Y = UDV

with U 2 ZZd�d and V 2 ZZn�n satisfying detU = det V = 1, and D 2 ZZd�n satisfying
Dij 6= 0 if and only if i = j � rankY .

More speci�cally, we will use the

Corollary 3.1. For any �nite Y � ZZd with dY = dimspanY , there exists U 2
ZZd�dY and V = f v(y) : y 2 Y g � ZZdY such that
(i) Y = UV (i.e., y = Uv(y) for each y 2 Y ),
(ii) ZZdU = ZZdY ,

Proof. For Y 2 ZZd�n with Smith normal form eU eDeV , de�ne U 2 ZZd�dY and V 2
ZZdY�n by

Uij := eUij 1 � i � d; 1 � j � dY ; and

Vij := eDii
eVij 1 � i � dY ; 1 � j � n:

Then, Y = UV and ZZdU = ZZdY . The sets Y and V of Corollary 3.1 are the column sets
of the matrices Y and V here.

The arguments in the proof of Theorems 2.1 and 2.2 are based on arguments given
in [8]. The proof will depend on the following lemma, the univariate version of which also
appears in [8].

Lemma 3.2. Suppose the compactly supported distribution � is re�nable with mask
A. Suppose further that NIR(�) is �nite. If A has no �-periodic zeros in IRd, then every
element of NIR(�) is of the form

z =
2��

2m � 1

for some integer m � 2 and some � 2 f0; 1; : : : ; 2m � 2gn0.

Proof. Let z be an element of NIR(�). Then b�(z + 2��) = 0 for every � 2 ZZd. In

particular, z is not in 2�ZZd, since b�(0) = 1. By Eq. (1.1),

0 = b�(z + 2�� + 4��) = A(z=2 + ��)b�(z=2 + �� + 2��)
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for all �; � 2 ZZd. Our hypotheses ensure that A(z=2 + ��) 6= 0 for some � 2 f0; 1gd.
Hence, for this �, we have z=2 + �� 2 NIR(�).

Let z0 := z; z1 :=
z
2 + ��. Then z0; z1 2 NIR(�) and 2z1 � z0 2 2�ZZd. Since z1 is

again in NIR(�), we can repeat the process ad in�nitum to obtain a sequence z0; z1; : : :
satisfying zk 2 NIR(�) and 2kzk � z0 2 2�ZZd all k. Since NIR(�) is �nite, we must
have zk = zl for some l > k. Then z0 is equal to 2kzk + 2�k� for some �k 2 ZZd, and
z0 = 2lzl + 2�l� = 2m2kzk + 2�l� for some �l 2 ZZd where m := l � k. Combining these

two we get z = z0 =
2(2m�k��l)�

2m�1 = 2��
2m�1 where � := 2m�k � �l 2 ZZdn(2m � 1)ZZd since

z =2 2�ZZd. In particular, m 6= 1:
Proof of Theorems 2.1 and 2.2. It follows immediately from Eq. (1.1) that, if A has

a �-periodic zero in Cd, say A(z +��) = 0 for all � 2 ZZd, then 2z 2 NC (�) and the shifts
of � are not linearly independent. If z 2 IRd, then 2z 2 NIR(�) and the shifts of � are not
suitable.

Next we show that the shifts of � are not suitable (hence not linearly independent) if A

has a contaminating zero in IRd. Suppose the integerm � 2 and � 2 f0; 1; : : : ; 2m � 2g
d
n0

satisfy

A(2k
2��

2m � 1
+ ��) = 0 for all k 2 f0; 1; 2; : : :g; � 2 ZZdn2ZZd: (3:1)

We claim that 2��
2m�1 2 NIR(�).

We observe from Eq. (1.1) that

b� = b�(�=2)A(�=2) = b�(2�n�) nY
j=1

A(2�j �):

So A(z) = 0 implies b�(2jz) = 0 for every j 2 f1; 2; 3; : : :g. Since we are assuming (3.1),

we may show that b�( 2��
2m�1 + 2��) = 0 by �nding j 2 f1; 2; 3; : : :g, k 2 f0; 1; 2; : : :g, and

� 2 ZZdn2ZZd so that
2��

2m � 1
+ 2�� = 2j(2k

2��

2m � 1
+ ��)

or equivalently,
�+ (2m � 1)� = 2j�1(2k+1�+ (2m � 1)�):

Since � =2 (2m�1)ZZd (hence �+(2m�1)� 6= 0), we can write �+(2m�1)� = 2j�1�
with j 2 f1; 2; 3; : : :g and � 2 ZZdn2ZZd. Now choose n 2 ZZ so that j � mn < j +m and
de�ne k := mn� j, then k 2 f0; 1; 2; : : :g and

� = 2mn�j+12j�1� � (2mn � 1)�

= 2mn�j+1(�+ (2m � 1)�) � (2m � 1)(2m(n�1) + � � �+ 2m + 1)�

= 2k+1� + (2m � 1)(2k+1�� (2m(n�1) + � � �+ 2m + 1)�)

= 2k+1� + (2m � 1)�
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where � := 2k+1�� (2m(n�1)+ � � � 2m+1)� 2 ZZdn2ZZd: This completes the proof that the
shifts of � are not suitable if A has a contaminating zero.

By Result 1.2, it is su�cient to complete the proof only for Theorem 2.1. We assume
that A has no �-periodic zero in IRd and that NIR(�) is (�nite but) not empty; and we
show that A must then have a contaminating zero in IRd. This will be simpler if we work
not with NIR(�), but introduce instead the set

N+ := NIR(�) + 2�ZZd =
n
# 2 IRd : b�(# + 2��) = 0 8� 2 ZZd

o
We begin by showing that, for any integer m � 2 and � 2 ZZdn(2m � 1)ZZd,

4��

2m � 1
2 N+ =)

( 2��
2m�1 2 N+ and

A
�

2��
2m�1 + ��

�
= 0 for all � 2 ZZdn2ZZd

: (3:2)

Notice that, given � 2 ZZdn2ZZd, 2��
2m�1 + �� is not of the form 2�0�

2m0�1
for any integer

m0 � 2 and �0 2 ZZdn(2m
0

� 1)ZZd, hence by Lemma 3.2,

2��

2m � 1
+ �� =2 N+ for any � 2 ZZdn2ZZd: (3:3)

Now �x � 2 ZZdn2ZZd. Since 4��
2m�1 2 N+,

0 = b�� 4��

2m � 1
+ 2�� + 4��

�
= b�� 2��

2m � 1
+ �� + 2��

�
A

�
2��

2m � 1
+ ��

�
for all � 2 ZZd. This, together with (3.3), yields

A

�
2��

2m � 1
+ ��

�
= 0:

Since � 2 ZZdn2ZZd was arbitrary and we have assumed that A has no �-periodic zeros, it
follows that

A

�
2��

2m � 1

�
6= 0: (3:4)

Again, 4��
2m�1 2 N+ implies that for all � 2 ZZd,

0 = b�� 4��

2m � 1
+ 4��

�
= b�� 2��

2m � 1
+ 2��

�
A

�
2��

2m � 1

�
which, together with (3.4), yields

2��

2m � 1
2 N+;
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proving the claim (3.2).
Now, by Lemma 3.2, if A has no �-periodic zeros in IRd and NIR(�) is �nite and non-

empty, then NIR(�) contains a point of the form 2��
2m�1 where m � 2 and � 2 ZZdn(2m �

1)ZZd. In fact, since 2m+1��
2m�1

� 2��
2m�1

= 2��, we actually have

4
2m�1��

2m � 1
2 N+:

Applying (3.2) repeatedly, we see that for k 2 f0; 1; 2; : : : ; m� 1g,

A

�
2k

2��

2m � 1
+ ��

�
= 0 for all � 2 ZZdn2ZZd:

I.e., A has a contaminating zero in IRd.
The proof of Lemma 1.1 will require the following de�nitions. For Y � �, we de�ne

hY i := (spanY )\�; for X � � with linearly independent elements and a 2 IRX , we de�ne

SX;a :=
n
z 2 IRd : hz; �i = a(�) 8� 2 X

o
;

and for � 2 �, we de�ne
K� := f hz; �i : z 2 NIR(��) g:

So, hY i is a subset of �, SX;a is an a�ne subspace of IRd of dimension d�dX = d�#X
(recall dX := dimspanX), and K� is a subset of IR. Note that if X � � is empty, then

IRX is a zero-dimensional vector space consisting of only one element which we call 0. In
this case, the set Sfg;0 is the entire space IR

d.
Proof of Lemma 1.1. The statement is trivial if dimspan� < d, so we assume

throughout that dimspan� = d. We also assume that NIR(�Y ) is empty for any Y � �
satisfying dY < d. We then show that NIR := NIR(�) is �nite. This is the case X = fg,
a = 0 of the

Claim 3.3. For any X � � with linearly independent elements and any a 2 IRX , the
set NIR \ SX;a is �nite.

The proof is by induction on d � dX (with a arbitrary). To begin, we show that the
claim is valid when dX = d. In this case, SX;a consists of a single point, so of course
NIR \ SX;a is �nite.

Now suppose that X � � consists of m linearly independent vectors with dX = m < d
and that a 2 IRX is given. Further, assume that for any eX � � consisting of deX = m+ 1

linearly independent vectors and any ~a 2 IReX , the set NIR \ SeX;~a
is �nite. We want to

show that NIR \ SX;a is also �nite.
To this end, let z 2 NIR\SX;a be given. Since dhXi = dX < d, we know that NIR(�hXi)

is empty and there exists � 2 ZZd so that b�hXi(z+2��) 6= 0. In fact, since b�hXi is constant

on sets of the form SX;a, b�hXi(z + 2��) is non-zero for this � and any z in NIR \ SX;a.
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Now, since z is in NIR, we must have b��(z + 2��) = 0. So b��(hz + 2��; �i) = 0, for
some � 2 �nhXi. That is, any z in NIR \ SX;a is actually an element of[

�2�nhXi

n
# 2 NIR \ SX;a : h#; �i 2 Z(b��)� 2�h�; �i

o
;

where Z(b��) := fz 2 C : b��(z) = 0g. Equivalently,

NIR \ SX;a �
[

�2�nhXi

[
u2U(�)

�
NIR \ SeX�;~a�;u

�
; (3:5)

where
U(�) := K� \ (Z(b��)� 2�h�; �i);eX� := X [ f�g;

~a�;u(�) := a(�) for � 2 X; and

~a�;u(�) := u:

Since the set NIR � TTd is bounded, each K� is also bounded. As each b�� is entire,
the sets Z(b��) are locally �nite (i.e., K \Z(b��) is �nite for any bounded K � C). We see
therefore that the sets U(�) are each �nite.

In (3.5), each set in the union is �nite by the induction hypothesis and of course �nhXi
is �nite. The union is thus �nite, and the claim and theorem are proved.

In order to prove Lemma 2.6, we will need the following lemmata:

Lemma 3.4. For B 2 ZZd�d and n 2 ZZ, if the determinant of B divides n then the

set nZZd is a subset of ZZdB =
n
�B : � 2 ZZd

o
.

Proof. We use the Smith normal form, B = UDV , where U and V map ZZd one-to-
one onto ZZd, and D is a diagonal matrix. Since detB =

Qd
i=1Dii and detB divides n,

Dii divides n for all i. This implies that nZZd � ZZdD =
n
�D : � 2 ZZd

o
, which in turn

implies that nZZd � ZZdB since nZZd = nZZdV and ZZdB = ZZdUDV = ZZdDV .

Lemma 3.5. For B 2 ZZd�d, if �B 2 2ZZd for any � 2 ZZdn2ZZd then the determinant
of B is even.

Proof. We use the Smith normal form, B = UDV , where U and V map ZZd one-to-
one onto ZZd, and D 2 ZZd�d is a diagonal matrix.

Suppose we have � 2 ZZdn2ZZd and �B = �UDV 2 2ZZd. Then we have �U 2 ZZdn2ZZd

while �UD 2 2ZZd. This implies that Dii 2 2ZZ for some i, which proves the claim since
detB =

Qd
i=1Dii.

Proof of Lemma 2.6. Suppose the basis B � � satis�es detB 2 2ZZ. We work with
the �eld ZZ2 := ZZ=2ZZ, and we consider the matrix, eB 2 ZZd�d2 , obtained from B by the

canonical projection of its entries onto ZZ2. Then detB 2 2ZZ =) det eB = 0. So the map
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ZZd2 ! ZZd2 : x 7! x eB is not onto. I.e., there exists w 2 ZZd2 so that every � 2 ZZd satis�es

w 6= ~� eB = g�B. Since B is a basis, we can �nd z 2 IRd so that fzB = w�. We see that
for any � 2 ZZd, ((z=� + �)B)� = (w +g�B) 6= 0. Equivalently, for any � 2 ZZd, some
� 2 B � � satis�es hz + ��; �i 2 (ZZn2ZZ)�. Since A� is 2�-periodic and A�(�) = 0, this

implies that Af�g(z +��) = A�(hz +��; �i) = 0. Since � 2 ZZd was arbitrary, we see that

A� =
Q

�2�Af�g has a �-periodic zero in IRd.
Now suppose that jdetBj 6= 1 and detB =2 2ZZ. Fermat's Little Theorem guarantees

an integer m � 2 with
2m � 1 mod detB:

Since jdetBj 6= 1, the set ZZdB :=
n
�B : � 2 ZZd

o
is not all of ZZd. Let � 2 ZZdn(ZZdB).

Then, since detB divides 2m � 1, hence (2m � 1)ZZd � ZZdB by Lemma 3.4, there is some
� 2 ZZd so that (2m � 1)� = �B. And since � =2 ZZdB, we must have � =2 (2m � 1)ZZd.
So for this � 2 ZZdn(2m � 1)ZZd and any k 2 f0; 1; 2; : : : ; m� 1g we have 2k 2�

2m�1
B =

2k+1� 2 2ZZd. Finally, the fact that detB is odd, along with Lemma 3.5 implies that�
2k

2�

2m � 1
+ �

�
B 2 ZZdn2ZZd for all k 2 f0; 1; 2; : : : ; m� 1g; � 2 ZZdn2ZZd:

Since A�((2ZZ+1)�) = f0g for each � 2 B, and AB(z) = 0 =) A�(z) = 0, we see that A�

has a contaminating zero in IRd.
Proof of Theorem 2.4. The necessity of conditions (i) and (ii) in this theorem is

immediate from Theorem 2.3. Moreover, it is su�cient, by Result 1.2, to prove su�ciency
for suitability alone. So assume that NIR(�) is non-empty. We must show that A has either
a �-periodic zero in IRd or a contaminating zero in IRd.

To begin with, let Y be a minimal subset of � for which NIR(�Y ) is not empty, i.e.,
�x some Y � � satisfying NIR(�Y ) 6= fg, while NIR(�X) = fg whenever X �

6= Y . Let U

and V be as guaranteed by Corollary 3.1 and de�ne

b�V :=
Y
y2Y

b�y(h�; v(y)i):
This de�nes a compactly supported �V 2 D0(IRdY ), which is re�nable with mask

AV :=
Y
y2Y

Ay(h�; v(y)i):

We claim that NIR(�V ) is �nite. If not, then Lemma 1.1 implies the existence of eV � V

satisfying dim span eV < dY = dim spanV (in particular, eV 6= V ) such that NIR(�eV ) is not
empty, say � 2 NIR(�eV ). (3.1.ii) implies that IRdU = IRdY , so there exists # 2 IRd such

that � = #U . Now de�ne X := U eV ; then we have

b�X(# + 2��) = b�eV (� + 2�U�) = 0
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for all � 2 ZZd. The �rst equality follows from (3.1.i), and the second follows from (3.1.ii)
together with the fact that � is inNIR(�eV ). ButX is a proper subset of Y , which contradicts
our choice of Y as minimal.

Next we show that NIR(�V ) is non-empty. Suppose that # is in NIR(�Y ), i.e., thatb�Y (# + 2��) = 0 for all � 2 ZZd. Let � 2 ZZdY be arbitrary. Then (3.1.ii) implies the
existence of � 2 ZZd such that �U = �. Therefore

b�V (#U + 2��) = b�Y (# + 2��) = 0

by (3.1.i). Since � 2 ZZdY was arbitrary, we see that NIR(�V ) contains #U .
So, we may apply Theorem 2.1 or 2.2 to conclude that AV has either a �-periodic

zero in IRdY or a contaminating zero in IRdY . If AV contains a �-periodic zero, say
AV (w + ��) = 0 for all � 2 ZZdY , then, as above, there exists z 2 IRd such that zU = w
by (3.1.ii) and we have

AY (z + ��) = AV (w + �U�) = 0

for all � 2 ZZd, i.e., AY has a �-periodic zero. Since AY is a factor of A, we see that A
has a �-periodic zero in IRd in this case.

Suppose now that AV contains a contaminating zero in IRdY . Let eV � V be a basis
for IRdY and de�ne eY := U eV . Then eY � Y is a basis for spanY . Since � spans, we can
choose X � �neY , so that X [ eY forms a basis for IRd. By Lemma 2.6, we may assume
without loss of generality that this basis has determinant equal to �1. Since

� eY X
�
= (U X )

� eV 0
0 I

�
;

we must also have jdet (U X ) j = 1.

Now, let m 2 f2; 3; 4; : : :g and � 2 ZZdY n(2m � 1)ZZdY be such that

AV (2
k 2��

2m � 1
+ ��) = 0 for all � 2 ZZdY n2ZZdY ; k 2 f0; 1; 2; : : :g:

Since jdet (U X ) j = 1, there exists � 2 ZZdn(2m � 1)ZZd such that �U = �, while
h�; xi = 0 for all x 2 X. Moreover, for any � 2 ZZdn2ZZd satisfying �U 2 2ZZdY , there
exists x 2 X for which h�; xi is odd. Therefore

AX[Y (2
k 2��

2m � 1
+ ��) =

Y
x2X

Ax(h�; xi�)AV (2
k 2��

2m � 1
+ �U�) = 0
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4. Examples

Example 4.1. Our �rst example will show that the hypothesis dimspan� = d is
necessary to arrive at the characterizations in Theorem 2.4.

We analyze the distribution � 2 D0(IR2) de�ned by

� : D(IR2)! C : f 7! h�; fi :=
1

3

Z 3

0

f(t; t)dt

or equivalently, b�(!1; !2) = e�3i(!1+!2) � 1

�3i(!1 + !2)
for (!1; !2) 2 C2: (4:1)

Eq. (4.1) makes it easy to see that b�((�
3
; �
3
) + 2��) = 0 for every � 2 ZZd; so the shifts of

� are neither linearly independent nor suitable.
This distribution is re�nable and of type (1.2) with mask A� given by

� := f�g :=

��
1
1

��
and A� = A�(h�; �i) :=

e�3ih�;�i + 1

2

We will see that although the shifts of � are not suitable, A� has no �-periodic zeros in C2

and no contaminating zeros in IR2. Since A�(z�) is zero if and only if 3z is an odd integer,

it will be su�cient to �nd �1; �2 2 f0; 1g
2n0 such that 3h�1; �i is even while 3h�2; �i is odd.

The choice �1 = (1; 1); �2 = (0; 1) will do.
We could build on this example to see that the assumption dimspan� = d is still not

su�cient without further assuming that A�(�) = 0 for all � 2 �. Let � = f�; �g where �
and A� are as above and � is any vector in ZZ2n span � (so dimspan� = d = 2). De�ne
A�(!) :=

1
3
+ 2

3
e�i!. Then A� is a trigonometric polynomial with A�(0) = 1 (hence it is

the mask of some compactly supported re�nable distribution ��). The shifts of �� are not
suitable (by the same reasoning as above), while it is clear that A� has neither �-periodic
nor contaminating zeros in IR2. (Since A� has no real zeros, the real zeros of A� are as
above).

It is true that �� (and in fact ��) in this construction is not of function type. But,
as the remark following Corollary 2.5 indicates, the assumption A�(�) = 0 for all � 2 � is
not necessary when �� are all of function type.

Example 4.2. Our next example will show that the su�cient conditions provided in
Result 2.7 are not necessary in general.

For this example, we de�ne the univariate mask

A� :=
e�3i� + (1 � 2 cos �)e�2i� + (1 � 2 cos �)e�i� + 1

4� 4 cos �

=

�
e�i� + 1

� �
e�i� � e�i�

� �
e�i� � ei�

�
4� 4 cos �
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for �=3 < � < �. Then A� is a trigonometric polynomial with real coe�cients which
satis�es A�(0) = 1. This is enough to imply the existence of a real-valued compactly
supported re�nable distribution with mask A�. There is a unique such distribution, ��, if
we insist further that b��(0) = 1. In fact, for �=3 < � < �, �� is a continuous function with
supp�� = [0; 3].

The zeros of the mask A� are f�; �; 2� � �g + 2ZZ�. From this we can see that the
shifts of �� are linearly independent for all � 6=

�
2 . We also see that A�(�) = 0.

In this example, we consider the bivariate function �� of type (1.2) given by

� = f�; �; �g :=

��
1
0

�
;

�
0
1

�
;

�
1
1

��
;

�� = �15�=32; �� = �17�=32; and �� = �
[0;1)

;b�� = b��(h�; �i)b��(h�; �i)b�� (h�; �i)
which has mask

A�(!1; !2) = A 15�
32
(!1)A 17�

32
(!2)

�
e�i(!1+!2) + 1

2

�
:

This de�nes a function � := �� 2 C1(IR2).
Each of the univariate functions has linearly independent shifts. Moreover, convolving

any two also results in a function with linearly independent shifts. Also note that every
basis B � � satis�es jdetBj = 1. However, the shifts of �� are not even suitable, as you
can see by observing that the zero set of A� consists of points (x1; x2) 2 IR2 satisfying

x1 2

�
�;

15�

32
;
49�

32

�
+ 2ZZ� or x2 2

�
�;

17�

32
;
47�

32

�
+ 2ZZ� or x1 + x2 2 � + 2ZZ�:

Thus A� has two �-periodic zeros: A�

�
(15�32 ;

17�
32 ) +��

�
= 0 and A�

�
(17�32 ;

15�
32 ) +��

�
= 0

for all � 2 ZZ2.

Example 4.3. We provide an example of a box spline whose mask has a contami-
nating zero to generate some familiarity with contaminating zeros.

As far as this paper is concerned, it will be su�cient to de�ne box splines in terms of
their re�nement mask. We can de�ne a box spline M� associated with � � ZZdn0 by the
re�nement equation

cM�(2�) = A�
cM� where A� :=

Y
�2�

A�(h�; �i) and A� :=

�
1 + e�i�

2

�n�

(along with cM�(0) = 1). Here, n := (n�)�2� 2 IN� is the multiplicity of the direction
set �.
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We have suppressed the dependence on the multiplicity n because the results of this
paper are in terms of the zeros of the mask A�. It is clear that this set is independent of
n. In fact, we see that

A�(z) = 0() hx; �i 2 (ZZn2ZZ)� for some � 2 �:

We should point out that, although our de�nition of box splines requires � � ZZd, the
standard de�nition of box splines allows for arbitrary � � IRdn0. However, box splines
with non-integer directions are, in general, not re�nable. Hence we are not concerned with
them here.

In this example, we let d = 2 and we consider �� :=M�, where

� = f�; �g :=

��
6
5

�
;

�
�3
5

��
:

Since jdet [ � � ]j = 45 6= 1, Result 2.7 implies that the shifts of �� are not suitable. Indeed,
�� has a contaminating zero with m = 4 and � = (5; 3). In Figure 1 we have denoted the
points 2k 2��

2m�1 2 TTd by bullets(�). The contaminating zero set is marked by asterisks(�).
We have also displayed particular curves h�; �i 2 (ZZn2ZZ)� and h�; �i 2 (ZZn2ZZ)� which
cover this contaminating zero set.

h�; �i = 5�

h�; �i = 3�

h�; �i = �

h�; �i = �3�

h�; �i = 17�

h�; �i = 13�
h�; �i = 11�h�; �i = 3�

(0;0)

(2�;2�)

2��
2m�1

Figure 1. Contaminating zero set with 2��
2m�1

=
�
2�
3
; 2�
5

�
from Example 4.3.
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Example 4.4. Our �nal example involves box splines M� for which dim span� is
d. We will see that the necessary conditions for suitability provided in Result 2.7 are also
su�cient for these functions. More speci�cally, the theorems of this paper provide a simple
proof of the classic

[6,5]Result 4.5. For � � ZZdn0 with dim span� = d, the shifts of any box spline
M� associated with � are linearly independent if and only if they are `p-stable for all
1 � p � 1 if and only if every basis in � has determinant �1.

Linear combinations of shifts of box splines appear in the �rst paper on box splines,
[1]. The fact that all bases B must satisfy jdetBj = 1 for linear independence was proved
in [2]. The su�ciency of this condition was proved in [6] and, independently, in [5]. A
more recent exposition of the theory of box splines is provided in [3].

Result 4.5 deals only with box splines for which dimspan� = d. Under this assump-
tion, M� is a compactly supported function on IRd. In fact, M� 2 Lp(IRd) for 1 � p �1.
So, suitability implies stability for the shifts of M�. Also, since A� has only real zeros,
stability is equivalent to linear independence. So we only need to prove Result 4.5 with
regard to suitability.

Proof of Result 4.5. By Result 2.7, if the shifts ofM� are suitable, then jdetBj = 1
for every basis B � �. Now we must prove the converse. This is done using Theorem 2.4.
I.e., we will show that if A := A� has either a �-periodic zero in IRd or a contaminating
zero in IRd, then there exists a basis B � � with jdetBj 6= 1.

We begin by assuming that A has a �-periodic zero in IRd. I.e., we assume the
existence of z 2 IRd so that for all � 2 ZZd, there exists � 2 � for which

hz + ��; �i 2 (ZZn2ZZ)�:

We also assume that jdetBj = 1 for all bases B � � and arrive at a contradiction.
Let Y � � be a minimal subset of � for which AY (z + ��) = 0 for all � 2 ZZd. Since

A�(x) = 0 =) x 2 ZZ� for any �, we must have hz; yi 2 ZZ� for every y 2 Y . Moreover,

the elements of Y must be linearly independent. For, suppose we have a 2 IRY n0 for whichX
y2Y

ya(y) = 0:

Since Y � ZZd, we may assume that a 2 ZZY n2ZZY . Suppose ~y 2 Y is such that a(~y) is
odd. Then we have

a(~y)hz + ��; ~yi = �
X

x2Y n~y

a(x)hz + ��; xi:

We see that any � for which hz + ��; ~yi =2 2ZZ� has the same property for some other
element of Y . So z would actually be a �-periodic zero of AY n~y .

Now, Y is a subset of some basis B which, by assumption, satis�es jdetBj = 1. So
ZZdB = ZZd. In particular, we can �nd � 2 ZZd so that

h�; yi =

�
1 if hz; yi 2 (ZZn2ZZ)�;
0 otherwise:
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We see that, for this �, no y 2 Y satis�es hz + ��; yi 2 (ZZn2ZZ)�. And this contradicts
our assumptions.

Next, we assume that A� has a contaminating zero in IRd. I.e., we assume the existence

of m 2 f2; 3; : : :g and � 2 ZZdn(2m � 1)ZZd so that, for all � 2 ZZdn2ZZd; k 2 f0; 1; 2; : : :g,
there exists � 2 � for which

h2k
2��

2m � 1
+ ��; �i 2 (ZZn2ZZ)�:

We also assume that jdetBj = 1 for every basis B � � to arrive at another contradiction.
With Y � � minimally satisfying the condition that AY have a contaminating zero

in IRd, we must have h�; yi 2 (2m � 1)ZZ for every y 2 Y , and that the elements of Y be
linearly independent.

If #Y = d, then the elements of Y actually form a basis with determinant �1. But
this is impossible, since � 2 ZZdn(2m � 1)ZZd, while we must have h�; yi 2 (2m � 1)ZZ, for
all y 2 Y . On the other hand, if #Y < d, then Y is a proper subset of some basis B which,
by assumption, satis�es jdetBj = 1. We can therefore �nd � 2 ZZd for which h�; yi is even
for each y 2 Y , while � =2 2ZZd. Since h 2�

2m�1
; �i is an even integer for any � 2 ZZd, we

have AY (
2��
2m�1

+ ��) 6= 0.
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