
Ideal Interpolation

Carl de Boor

Abstract. A linear interpolation scheme is termed ‘ideal’ when its
errors form a polynomial ideal. The paper surveys basic facts about
ideal interpolation and raises some questions.

Ideal interpolation is, by definition, given by a linear projector on the
space Π of polynomials whose kernel is a polynomial ideal. It is therefore
also any linear map, as used in algebra, that associates a polynomial with
its normal form with respect to a polynomial ideal. This article lists
(and mostly proves) basic facts about ideal interpolation and raises some
questions.

§1. Definition and Basic Algebraic Facts

If P is a linear projector of finite rank on the linear space X over the
commutative field IF with algebraic dual X ′, then we can think of it as
providing a linear interpolation scheme on X : For each g ∈ X , f = Pg is
the unique element of ranP := P (X) for which

λf = λg, ∀λ ∈ ranP ′ = {λ ∈ X ′ : λP = λ},

with P ′ the dual of P , i.e., the linear map X ′ → X ′ : λ 7→ λP . In other
words, given that kerP := {g ∈ X : Pg = 0} = ran(id − P ),

ranP ′ = (kerP )⊥ := {λ ∈ X ′ : kerP ⊂ ker λ},

the set of interpolation conditions matched by P . Not surprisingly, there are
exactly as many independent conditions as there are degrees of freedom,
i.e.,

dim ranP = dim ranP ′.
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Put into more practical terms, if the column maps

V : IFn → X : a 7→
n∑

j=1

vja(j) =: [v1, . . . , vn]a

and

Λ : IFn → X ′ : a 7→
n∑

j=1

λja(j) =: [λ1, . . . , λn]a,

into X and X ′ respectively, are such that their Gram matrix

ΛtV := (λivj : i, j = 1:n)

is invertible, then, in particular, both V and Λ are 1-1, hence bases for
their respective ranges and there is, for given b ∈ IFn, exactly one element,
call it V a, of ranV that satisfies the equation

Λt(V a) = b,

thus giving rise to the map

P = V (ΛtV )−1Λt

on X , evidently a linear projector, that associates g ∈ X with the unique
element f = Pg in ranV = ranP for which

Λtf := (λif : i = 1:n)

agrees with Λtg, hence λf = λg for all λ ∈ ran Λ = ranP ′.
Consider now, in particular, the linear space

Π ⊂ (IFd → IF)

of all IF-valued polynomials in d real (IF = IR) or complex (IF = C)
variables. It will be important that Π is also a ring under pointwise mul-
tiplication,

(pq)(x) := p(x)q(x), p, q ∈ Π, x ∈ Cd.

In [Bi], Garrett Birkhoff defined ideal interpolation as a linear projector
P on Π whose nullspace or kernel is an ideal, i.e., not only closed under
addition and multiplication by scalars but also under (pointwise) multi-
plication by arbitrary polynomials. Lagrange interpolation is mentioned
by Birkhoff as a particular example. However, ideal projectors are already
looked at carefully in [M76], where they are called ‘Hermite interpolation’.

Ideal projectors are, in a sense, aware of the multiplicative structure
of Π, hence we would expect insights from considering their interaction
with multiplication, as exhibited by the following very handy fact.
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Lemma 1.1 ([B03]). A linear projector∗ P on Π is ideal if and only if

P (pq) = P (pPq), ∀p, q ∈ Π. (1.2)

Proof: The condition (1.2) is equivalent to having

P (Π(id − P )(Π)) = {0},

and, since P is a linear projector hence (id − P )(Π) = ker P , this is
equivalent to

Π kerP ⊂ kerP,

hence, given that ker P is a linear subspace, to ker P being an ideal.

An ideal projector is completely determined by its action on a sub-
space only slightly larger than its range. This is readily seen by the fol-
lowing considerations.

Each ideal projector P induces a map,

M : Π→ L(ranP ) : p 7→Mp, (1.3)

on Π into the space L(ranP ) of linear maps on ranP , by the prescription

Mp : ranP → ranP : f 7→ P (pf), p ∈ Π. (1.4)

Indeed, Mp so defined is a linear map on ranP , and depends linearly on
p, hence the map M is well-defined and is linear. More than that, for
arbitrary p, q ∈ Π and f ∈ ranP ,

MqMpf −Mqpf = P (qP (pf))− P (qpf) = 0,

the last equality by (1.2), hence M is also a homomorphism, on the ring
Π into L(ranP ) considered as a ring with respect to map composition as
multiplication. Also, since Π is a commutative ring, so is ran M , even
though it is a subring of the noncommutative ring L(ranP ).

The ring Π is generated by the specific polynomials

()j := ()εj , εj := (δjk : k = 1:d), j = 0:d,

with

()α : IFd → IF : x 7→ xα :=
∏

j

x(j)α(j), α ∈ ZZd
+,

∗ dec05: sufficient to assume that P is a linear map
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a convenient if nonstandard notation for the monomials. Consequently,
ranM is generated by the specific linear maps

Mj : ranP → ranP : f 7→ P (()jf), j = 0:d, (1.5)

in terms of which

Mp = p(M) :=
∑

α

p̂(α) Mα, p ∈ Π,

with
p =:

∑

α

p̂(α)()α,

and with
Mα :=

∏

j

(Mj)
α(j) = M()α

independent of the order in which this product is formed from its factors.
(Since the map M cannot be composed with itself, hence a polynomial in
M makes no sense, it may be excusable to use, as I have done here, the
notations Mα and p(M) for a related but different purpose.)

By way of background, the transpose of the matrix representations
of the Mj with respect to a monomial basis for ranP (if any) are known
as ‘multiplication tables’ and the maps Mf as ‘multiplication maps’; see
[CLO98: p.51ff]. The latter term derives from the fact that it is customary
(see, e.g., [CLO98] and [AS]) to think of M as mapping into L(Π/ kerP )
(rather than into L(ranP )) and, in that setting, Mp models multiplication
by p+ker P in the algebra Π/ kerP , i.e., carries the coset q +ker P to the
coset pq + kerP = (p + kerP )(q + ker P ).

It follows, directly from (1.2), that

p(M)P ()0 = P (p P ()0) = P (p ()0) = Pp, p ∈ Π. (1.6)

This representation of P has been used in [B03] to uncover the close con-
nection between the Opitz formula and the Leibniz formula for univariate
divided differences and to prove such formulæ for certain multivariate di-
vided differences.

Proposition 1.7. If we know the ideal projector P on ()0 and on

Π1(ranP ) :=
d∑

j=0

()j ranP,

then we know P everywhere.

Proof: As soon as we know P on Π1(ranP ), we can compute the linear
maps Mj , hence can compute p(M) for any p ∈ Π and, with that, can
determine Pp from (1.6) provided we also know P ()0.
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Example As an example, consider the following situation, discussed in
[Sh] in the bivariate case: P is an ideal projector with range

F := ran[()j
1 : j = 0:n−1],

and IF = C hence ()n
1 − P ()n

1 , considered as a univariate polynomial, has
n zeros counting multiplicities. Assume, finally, that these zeros are all
simple, hence

(()n
1 − P ()n

1 )(x) =:

n∏

j=1

(x(1)− τ(j))

defines the sequence τ with pairwise distinct entries. Set

zj := (τj , (P ()2)(τj), . . . , (P ()d)(τj)), j = 1:n.

Then any p ∈ F vanishing on z is necessarily zero, hence since z has n
entries and dimF = n, there is, for each p ∈ Π, exactly one element of F ,
call it Rp, that agrees with p on z. I claim that R = P and, by Proposition
1.7, need to check this only for ()α with α(1) < n, α(2:d) = (δij : j =
2:d), i = 2:d, since it is already evident for α = (n, 0, . . . , 0), hence for
α = (m, 0, . . . , 0) for all m ∈ IN, by Proposition 1.7 (since ()n

1 spans an
algebraic complement of F in Π1(F ) when considering only the ring of
univariate polynomials). For the check, notice that

(R()i)(zj) = ()i(zj) = zj(i) = (P ()i)(τj) = (P ()i)(zj),

hence R = P on ()i for i = 2:d. With that, for any j,

P (()j
1()i) = P (()j

1P ()i) = R(()j
1R()i) = R(()j

1()i),

the middle equality since P ()i = R()i ∈ F , while the other two equalities
follow from P and R being ideal.

§2. A Basis for the Ideal ker P

By (1.6), ker M ⊂ ker P , while, if p ∈ kerP , then p(M)f = P (pf) =
P (fPp) = P0 = 0 for all f in ranP which is the domain of p(M), hence
then p(M) = 0. Thus, altogether,

kerM = kerP. (2.1)

Hence, by Proposition 1.7, we should be able to derive ker P from ()0−P ()0
and the action of the restriction

N := P Π1(F )
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of P to Π1(F ), with
F := ranP.

Proposition 2.2. If ()0 ∈ ranP , then

ker P = ideal(ker N) =: I. (2.3)

Proof: Since kerN = ker P ∩Π1(F ) and ker P is an ideal, we immediately
have

ker P ⊇ I.

For the converse containment, let

Πk(S) :=
∑

|α|≤k

()αS, ∅ 6= S ⊂ Π.

Then, for any additive subset S of Π, we have

Πr+s(S) = Πr(Πs(S)).

In particular,

Πk := Πk(IF) = Π1(Π<k), with Π<k := Πk−1.

Specifically, ∪kΠk(F ) = Π since we assumed F = ranP to contain ()0.
Therefore, we know that kerP ⊆ I once we show, by induction on k, that

p ∈ ker P ∩Πk(F ) =⇒ p ∈ I.

For k = 1, this is so by definition of I. So assuming it to hold for all
k < h, let p ∈ ker P ∩Πh(F ). Then

p =
∑

j=0:d

()jpj

with pj ∈ Π<h(F ), hence (id − P )pj is in Π<h(F ) + F = Π<h(F ) as well
as in kerP , hence in I by induction hypothesis. Thus,

p ∈
∑

j

()j(Ppj + I) =
∑

j

()jPpj + I,

while, by (1.2), P
∑

j()jPpj = P
∑

j()jpj = Pp = 0, hence
∑

j()jPpj ∈
ker P ∩Π1(F ), therefore in I.

It follows that ker P is generated, as an ideal, by any (vector-space)
basis for ker P ∩ Π1(F ). Further, such a basis is readily obtained in the
form

(b−Nb : b ∈ B),

with B any basis for an algebraic complement of F in Π1(F ). As the
example of bivariate tensor-product interpolation to gridded data shows,
the resulting (ideal) basis may be far from minimal.
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§3. Mourrain’s Condition

Proposition 2.2 (though not the proof given here) is essentially due to
Mourrain [Mo] who proved it under the additional assumption that F
satisfy what I will call here

(3.1) Mourrain’s condition. For f ∈ F , f ∈ Π1(F ∩ Π<deg f ); i.e., in
Mourrain’s words, F is connected to 1.

Here, as usual, for p ∈ Π\0,

deg p := min{k : p ∈ Πk} = max{|α| : p̂(α) 6= 0}, with |α| :=
∑

j

α(j).

Mourrain’s condition implies that ()0 ∈ F but is, offhand, much stronger.
For example, in the univariate case, (3.1) implies that F = Πk for some
k, hence also that F is D-invariant, i.e., closed under differentiation. See
[B05b] for the fact that, in the multivariate case, (3.1) and D-invariance
are not related.

Mourrain [Mo] investigates the following problem: Given a finite-
dimensional linear subspace F of Π and a linear projector N on Π1(F )
with range F , provide necessary and sufficient conditions on N to be the
restriction to Π1(F ) of an ideal projector P with range F .

There is at most one such ideal projector since, by Proposition 2.2,
its kernel is necessarily the ideal generated by ker N . Mourrain shows
the existence of such an ideal projector under the (obviously necessary)
assumption that the linear maps

Mj : F → F : f 7→ N(()jf), j = 1:d,

commute, but only for an F that satisfies (3.1).

Theorem 3.2 ([Mo]). Let F be a finite-dimensional linear subspace of
Π satisfying Mourrain’s condition, (3.1). Let N be a linear projector on
Π1(F ) with range F . Then, the following are equivalent:

(a) N is the restriction to Π1(F ) of an ideal projector P with range F .

(b) The linear maps Mj : F → F : f 7→ N(()jf), j = 1:d, commute.

Further, if either holds, hence both hold, then kerP = ideal(kerN).

Proof: It only remains to prove that (b) implies (a). With the Mj

commuting, we can define

R : Π→ Π : p 7→ p(M)()0

and find it to be a linear map into F , but it is, offhand, not clear that it
coincides with N on F , nor that it is a projector.
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To begin with, we know for sure that R and N agree on Π0 ⊆ F . If
C is a linear subspace of F for which we already know that R = N on it,
then, for any f =:

∑
j()jcj ∈ Π1(C),

Nf =
∑

j

N(()jcj) =
∑

j

Mjcj =
∑

j

Mjcj(M)()0 = f(M)()0 = Rf,

hence we also know it for Π1(C). So, starting with C = Π0, we can iterate
C ← Π1(C) ∩ F , and in this way generate an increasing sequence of
subspaces. Since F is finite-dimensional, this leads to the linear subspace
C∗ of F containing ()0 and satisfying C∗ = Π1(C∗)∩F , and, on it, R = N ,
but it is not clear that C∗ = F .

It is exactly this difficulty that Mourrain’s condition, (3.1), is designed
to deal with. For, Mourrain’s condition certainly ensures that C∗ = F ,
hence that R extends N , i.e., R = N on Π1(F ). Since ranR ⊂ F ⊂ Π1(F ),
this also implies that R is a linear projector, with range F .

For a simple univariate example, consider F = ran[()0, ()2] ⊂ Π ⊂
(IF→ IF), for which Π1(ran[()0]) ∩ F = ran[()0], hence Mourrain’s condi-
tion fails spectacularly. At the same time, let N be the linear projector
on Π1(F ) = Π3 specified by

N(()0, ()1, ()2, ()3) = (()0, ()0, ()2, 0).

N is indeed a linear projector, with range equal to F , but ker N contains
both ()1 − ()0 and ()3 and, as these are relatively prime, ideal(kerN) =
Π. Hence, while the Mj trivially commute (there being only one), no
extension of N to an ideal projector exists.

To be sure, since the question of whether a projector is ideal only
depends on its nullspace, it is easy to construct an ideal projector having
this particular F as its range. Simply take ranP ′ = ran[δ0, δ1] (with
δv : f 7→ f(v)). Then N := P Π1(F ) is given by the recipe

N(()0, ()1, ()2, ()3) = (()0, ()2, ()2, ()2).

Now ker N = ran[()2− ()1, ()3− ()2 = ()1(()2− ()1)], hence ideal(ker N) =
ideal(()2 − ()1) = kerP . This confirms Proposition 2.2. In effect, N has
an extension to an ideal projector with the same range if and only if

F ∩ ideal(ker N) = {0}.

See [B05b] for an example showing that, in Theorem 3.2, Mourrain’s
condition cannot be replaced by D-invariance.

As a historical aside, Hakopian and Tonoyan announced in 1998 (see,
e.g., [HT98]) the following closely related result which is fully detailed and
further extended in [HT02].
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Proposition. Let

fα =: ()α −
∑

β∈J

()βaα,β, α ∈ I,

with I := {α : |α| = k +1}, J := {β : |β| ≤ k}, and let Aj be the matrices
defined by the quadratic system equivalent to fα(x) = 0, α ∈ I, namely

Ajx = x(j)x, j = 1:d,

with x := (()β : β ∈ J), hence

Aj(α, β) =

{
aα,β, α + εj ∈ J ;
δα+εj ,β, otherwise.

Then, the polynomial system fα(x) = 0, α ∈ I, has at most #J solutions,
with equality if and only if the matrices Aj commute and are diagonaliz-
able.

Hakopian and Tonoyan came to this result as part of their effort to
derive, for a given system of partial differential equations, an equivalent
first-order system; see, e.g., [HT04]. In that context, they trace the com-
muting condition back to Frobenius, [F]. They also prove this result in
the more general context when J is a ‘lower’ set (as defined in the next
section).

To be sure, Aj is the transpose of the matrix representation of Mj

with respect to the monomial basis of F = ΠJ ; the eigenstructure of the
Mj is discussed in section 6.

§4. Normal Forms

Mourrain’s intent in [Mo] is to construct a convenient “normal form” for
the ideal

I := ideal(G)

generated by a given finite set G of polynomials. This is a basic task in
computational algebraic geometry (see, e.g., [CLO92] where the material
discussed in this section can be found) and is traditionally performed with
the aid of a Gröbner basis for the ideal. This, in turn, involves a so-called
monomial order, i.e., an ordering < on the set ZZd

+ of multi-indices that
respects addition, i.e.,

∀α, β, γ ∈ ZZd
+ α < β =⇒ α + γ < β + γ, (4.1)

and is a well-ordering, meaning that every subset of ZZd
+ has a smallest

element. Standard examples are the Lexicographic Order (lex) in which
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α < β means that the first nonzero entry in β − α is positive, and the
Graded Reverse Lexicographic Order (grevlex) in which α < β if, either
|α| < |β|, or else |α| = |β| and the last nonzero entry in β − α is positive.

Any such ordering admits the definition of the corresponding polyno-
mial degree:

Deg : Π\0→ ZZd
+ : p 7→ max supp p̂,

with (4.1) ensuring that

Deg(pq) = Deg(p) + Deg(q). (4.2)

Note that, in this, the degree of the zero polynomial is undefined. Perhaps
a mathematically cleaner definition of Deg(p) would be the set {α ∈ ZZd

+ :
α ≤ max supp p̂} which now has the empty set as the natural definition of
Deg(0) yet still satisfies (4.2) (since A + ∅ = ∅).

With respect to such an ordering, one then constructs a Gröbner basis
G for I, meaning that G is a finite subset of I with the property that

∀p ∈ I, p ∈
∑

g∈G

g Π≤Deg(p)−Deg(g).

Here and below, for any subset Γ of ZZd
+ (including subsets merely specified

by the condition its elements are to satisfy),

ΠΓ := ran[()γ : γ ∈ Γ].

Actually, a simpler definition in use identifies a Gröbner basis for I as a
finite subset G of I with

⋃

g∈G

(Deg(g) + ZZd
+) ⊃ {Deg(f) : f ∈ I} =: Deg(I).

Note that, directly from (4.2),

Deg(I) = Deg(I) + ZZd
+,

showing Deg(I) to be an upper set. But (by Dickson’s Lemma), any upper
set U in ZZd

+ is necessarily of the form

U = extr(U) + ZZd
+,

with
extr(U) := {α ∈ U : U\α is upper}

its necessarily finite set of extreme points. This proves the existence of
Gröbner bases. A naive definition of the normal form mod I for p ∈ Π is
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the element r of p+I of minimal Deg. However, there is, offhand, nothing
to prevent I from containing f 6= 0 with Deg(f) < Deg(r), and then also
(r + f)/2 is a different element of p + I of minimal degree.

So, a better definition is the following. The normal form mod I for
p ∈ Π is the unique element in

(p + I) ∩ Π\Deg(I).

Indeed, if both r and s are in this intersection, then their difference is
in I, yet, if r − s were nonzero, then Deg(r − s) 6∈ Deg(I). This shows
uniqueness.

As to existence, let

F := Π\Deg(I) = ran[()α : α 6∈ Deg(I)].

Then, as we just pointed out, F and I are linear subspaces of Π with
trivial intersection,

F ∩ I = {0}.

Further if, in the monomial order, the left shadow

ZZ≤α := {β ∈ ZZd
+ : β ≤ α}

of every α is finite (as is the case, e.g., in grevlex), then, for arbitrary p ∈
Π, the following elimination algorithm produces an r ∈ F with p− r ∈ I.

Division by G.
Input: p ∈ Π, G.
r ← p.
for α = argmax(Deg(G) ∩ supp r̂), and g ∈ G so that α = Deg(g),
r ← r − (r̂(α)/ĝ(α))g.
Output: The resulting r is “the remainder of the division of p by G”.

Indeed, for a monomial ordering such as grevlex, the entire calcula-
tion takes place on the finite index set ZZ≤Deg(p), hence necessarily stops
after finitely many steps, at which point, assuming we chose G to be I,
r ∈ F while, at every step, p− r ∈ I.

For a monomial ordering, such as lex, in which left shadows can be
infinite, a more subtle argument is required to prove that, nevertheless,
the elimination algorithm terminates in finitely many steps. This more
subtle argument leads naturally to the creation of a Gröbner basis G for
I and its use in more refined versions of the elimination algorithm; see,
e.g., [CLO92].

In any case, taking this for granted, we conclude that

Π = F ⊕ I,

with the normal form for p mod I nothing but the projection of p to F
along I, i.e., the image of p under the ideal projector with range F and
kernel I.
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Proposition 4.3. Each ideal I of finite codimension has a D-invariant
algebraic complement spanned by monomials, hence also satisfying Mour-
rain’s condition.

Proof: Take for F the space F = Π\Deg(I) just constructed, already
shown to be an algebraic complement for I. It is monomial, in the sense
that it is spanned by monomials, but, with that, F is also D-invariant,
since Deg(I) = Deg(I) + ZZd

+, hence

α 6∈ Deg(I) =⇒ (α− ZZd
+) ∩Deg(I) = ∅.

In other words, ZZd
+\Deg(I) (like the complement of any upper set) is a

lower set. This also implies that F satisfies Mourrain’s condition (3.1).

Now, Mourrain’s point is that the construction of a Gröbner basis is,
in general, time-consuming, as is working term by term. Can we, he asks
(as have others before him), construct the normal form by some other,
perhaps more efficient, way? If G spans an algebraic complement of some
polynomial space F within Π1(F ), and if this F satisfies his condition (3.1)
and is complementary to I = ideal(G), then, as we saw, for any p ∈ Π, its
normal form mod I is the polynomial p(M)()0, with the Mj determined
as above from the linear projector N on Π1(F ) with range F whose kernel
is span(G).

Mourrain also investigates the question of just what to do if we have
to start with some arbitrary finite G, and develops an algorithm for con-
structing an H-basis for I = ideal(G), i.e., a finite subset H of I for which
{h↑ : h ∈ H} is a basis for the homogeneous ideal

I↑ := ideal(p↑ : p ∈ I),

with p↑ (also denoted L(p) or, in conflict with other notation used here,
Λ(p), and called the leading term of p) uniquely determined (for p 6= 0) by
the requirements that it be homogeneous and satisfy

deg(p− p↑) < deg p.

Lack of time and space prevents me from pursuing this further here. For H-
bases in connection with multivariate polynomial interpolation, see [B94],
[MSa], [MSb], [MSc], [S98], [S01], [S02], [S05].

§5. The Nature of ranP ′

We now take a look at the interpolation conditions for the ideal projector
P , under the assumptions that P is of finite rank and that IF = C.
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Polynomial ideals arise naturally in the study of the common zeros of
a collection G of polynomials, i.e., the set

V(G) := {v ∈ Cd : g(v) = 0, g ∈ G}.

Any finite weighted sum ∑

g∈G

agg

of elements g of G will have these same zeros, even if we use for the weights
ag not just scalars but polynomials. In other words,

V(G) = V(ideal(G)).

To what an extent is an ideal I characterized by its variety, V(I)? A
partial answer is provided by

Hilbert’s Nullstellensatz. If p ∈ Π vanishes on V(I), then some power
of p lies in I.

So, while there is no 1-1 correspondence between varieties and ideals,
the connection is, nevertheless, quite close.

In particular, Hilbert’s Nullstellensatz is a kind of multivariate fun-
damental theorem of algebra: for, if V(I) is empty, then, e.g., the polyno-
mial ()0 vanishes on that variety, hence must be in I, therefore so must
be ()0 ·Π = Π. In other words, any proper ideal has zeros.

In particular, assuming our ideal projector, P , not to be trivial, its
kernel

I := ker P

is a proper ideal, hence has zeros. Let

v ∈ V := V(I).

This says that the linear functional

δv : p 7→ p(v)

vanishes on I = ker P , hence is in ranP ′, i.e., provides an interpolation
condition for P . More than that,

[δv : v ∈ V]

is 1-1, hence,
#V ≤ dim Π/I. (5.1)

But, and this is a subtlety, there need not be equality here. This
is already hinted at by Hilbert’s Nullstellensatz which only requires a
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sufficiently high power of p to lie in I. Now, if p(v) = 0, then also p∗k(v) :=
(p(v))k = 0, but (for k > 1) v is more of a zero of p∗k in the sense that
p∗k(z) goes to zero faster than p(z) as z → v. Various derivatives of p∗k

are zero at v as well. So, as the Nullstellensatz hints at, in order for p
to belong to I, it must vanish at each v ∈ V(I) to the right ‘order’ or
multiplicity.

Even this notion of ‘order’ or multiplicity is subtle. It isn’t just that

p(z) = O(|z − v|k)

for some k. The full story is the following.

“Lefranc’s Nullstellensatz” [Le]. For an arbitrary polynomial ideal I
in Π = Π(Cd),

I =
⋂

v

(I⊥v)⊥v, (5.2)

where, for any S ⊂ Π,

S⊥v := {q ∈ Π : q(D)s(v) = 0, s ∈ S}

and

S⊥v := {p ∈ Π : s(D)p(v) = 0, s ∈ S}.

Corollary. For an ideal projector P with I = kerP of finite codimension,

ranP ′ =
∑

v

δvQv(D),

with

Qv := I⊥v = {q ∈ Π : q(D)f(v) = 0, f ∈ I}.

Actually, the corollary can already be found in basic algebra books,
e.g., [G70: p.168ff], but see already [G49] and the very nice overview
article [G50]. Gröbner attributes the idea to Macaulay, e.g., [Ma: p.64ff],
though it is described there in a different language (i.e., in terms of inverse

systems) and there credit for first defining multiplicity correctly is given
to Lasker [La] (who, however, defines it only as a number, namely the
length (i.e., the codimension) of the associated primary ideal).

The space Qv = I⊥v is called the multiplicity space of I at v (or, less
descriptively, the Max Noether space of I at v; see [MT]). Qv is a linear
subspace of Π, of the same dimension as the linear subspace

δvQv(D) := {f 7→ q(D)f(v) : q ∈ Qv}
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of Π′ that it supplies, and, obviously,

δvQv(D) ⊂ I⊥ = (kerP )⊥ = ranP ′.

In other words, any ideal interpolant has interpolation conditions of the
form

δvq(D)

for certain sites v and certain polynomials q. But much more is true.
Since each of the spaces δvQv(D) lies in ranP ′, each must, in particular,
be finite-dimensional. Also, since any finite sum of the form

∑

v

δvQv(D)

is necessarily direct, there can be only finitely many nontrivial Qv here.
But the most important fact is that each Qv is necessarily D-invariant. Is
that obvious?

It can be verified in many ways. Perhaps the simplest is the following
which uses the intriguing formula

q(D)f(0) =
∑

α

Dαq(0)Dαf(0)/α! =: q ∗ f, (5.3)

which, quite rightly, has made its appearance in various papers concerning
multivariate polynomials but under various names (see, e.g., [S05: above
Theorem 6.1]). It is the unique bilinear form on Π× Π for which

(rq) ∗ f = q ∗ (r(D)f), r, q, f ∈ Π. (5.4)

(5.4) follows directly from (5.3) while, for the verification of (5.3), note
that it is linear in q and f , hence can be verified by checking it for

q = [[]]
β

: x 7→ xβ/β!,

the conveniently normalized power function, and f = [[]]
γ
. For these,

Dαq(0) = [[0]]
β−α

= δβ,α, hence

∑

α

Dαq(0)Dαf(0)/α! = δα,βδα,γ/α! = δβ,γ/β!,

while
δ0([[D]]

β
[[]]

γ
) = δ0[[]]

γ−β
/β! = δγ,β/β! .

Note the symmetry, i.e.,

q ∗ f = f ∗ q,
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hence, by symmetry, also

(r(D)q) ∗ f = q ∗ (rf).

Therefore, with
Ev : f 7→ f(·+ v)

the translation by v, we have, for q ∈ Qv, f ∈ I, and r ∈ Π,

(r(D)q)(D)f(v) = r(D)q ∗ Evf

= q ∗ (rEvf)

= q ∗ Ev((E−vr)f)

= q(D)((E−vr)f)(v) = 0,

since E−vr ∈ Π and therefore (E−vr)f ∈ I.
With each Qv now known to be D-invariant, we know that it contains

all constant polynomials if it is nontrivial. Hence, each nontrivial Qv

supplies, in particular, the interpolation condition δv. Correspondingly,

V(I) = {v : Qv 6= {0}}

is the variety of the ideal I, i.e., the set of zeros common to all polynomials
in I. But, in general, we have not just the matching of function values,
but also the matching of some derivative information, with the important
restriction that, if δvq(D) is being matched, then so is δv(D

αq)(D) for all
α.

In the univariate case, there is only one D-invariant polynomial sub-
space of dimension k, namely Π<k, the polynomials of order k. But this
says that, in the univariate case, ideal interpolation is Hermite interpola-
tion. For that reason∗, we also use the term Hermite interpolation for the
projector P in the multivariate case when the interpolation conditions are
of the form

ranP ′ =
∑

z∈Z

δzQz(D) (5.5)

for some finite set Z, with each Qz a D-invariant finite-dimensional poly-
nomial space.

Is any such Hermite interpolation ideal?
If Q is any D-invariant linear subspace of Π, then, for arbitrary z,

Q⊥z is an ideal: For, if q ∈ Q and f ∈ Q⊥z, then, for arbitrary r ∈ Π,

(rf) ∗ Ezq = f ∗ r(D)(Ezq) = f ∗ Ez(r(D)q) = 0,

∗ dec05: not good enough any more
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since then r(D)q ∈ Q, hence also rf ∈ Q⊥z. But this says that

(
∑

z

δzQz(D))⊥ =
⋂

z

(δzQz(D))⊥ = ∩zQz⊥z

is the intersection of ideals, hence an ideal. In other words, Hermite
interpolation is characterized by the fact that it is ideal.

Apparently, the first to use ‘Hermite interpolation’ in this sense in
the multivariate context is H. M. Möller; see [M76], [M77] which predate
[Bi] and, in contrast to [Bi], describe ranP ′.

In [BR90] and, regrettably, not yet aware of Möller’s work, we defined
‘Birkhoff-Hermite interpolation’ to mean a linear projector P on Π satis-
fying (5.5) with each Qz dilation-invariant (i.e., q ∈ Qz and h > 0 implies
q(·h) ∈ Qz or, what is the same, Qz is spanned by homogeneous poly-
nomials), and restricted the term ‘Hermite interpolation’ to such P for
which each Qz is also D-invariant. Note that Hakopian and his colleagues
reserve the term ‘Hermite interpolation’ for P for which ranP = Πk for
some k while ranP ′ is given by (5.5), with Qz = Πkz

, all z; see, e.g., [H],
[BHS]. Earlier, [Lo92] called such interpolation ‘Hermite interpolation of
type total degree’ but also considered ‘Hermite interpolation of type ten-
sor product’, in which each Qz is of the form Π≤α for some z-dependent
α; see [LL] for an early paper and [Lo00] for a recent survey. Further,
[SX95b] use ‘Hermite interpolation’ to mean P with ranP ′ of the form
(5.5) with each Qz spanned by polynomials of the form

〈·, Y 〉 :=
∏

y∈Y

〈·, y〉,

and containing, with each such 〈·, (y1, . . . , yr)〉, also 〈·, (y1, . . . , yr−1)〉.
Here,

〈x, y〉 :=
∑

i

x(i)y(i).

Such a Qz may fail to be D-invariant unless it contains, with each 〈·, Y 〉,
also 〈·, Y \y〉 for every y ∈ Y . [SX95b] call their ‘Hermite interpolation’
regular in case all the Qz are D-invariant (hence the interpolation is ideal).
This raises the question whether any D-invariant space has such a span-
ning set, for only then would such ‘regular Hermite interpolation’ be ex-
actly the same as what we have called here ‘Hermite interpolation’.

The above characterization of ideal interpolation implies that Kergin
interpolation (see, e.g., [K] and [Mi]) is ideal only when it is a Taylor
projector, i.e., when it involves only one site. In the same vein, the var-
ious mean-value interpolation schemes developed by Hakopian (see, e.g.,
[BHS]) fail to be ideal except when the underlying simplex degenerates to
a point.
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§6. When is Hermite Interpolation Lagrange Interpolation?

It is evident that Hermite interpolation is Lagrange interpolation exactly
when there is equality in (5.1), i.e., when

#V(ker P ) = dim ranP,

or, equivalently, when the ideal ker P is radical. There is a pretty char-
acterization of this in terms of the linear maps Mj , j = 1:d, introduced
in (1.5). This characterization is in terms of the eigenstructure of the
Mj . Since the Mj commute, they have a joint set of eigenvectors. The
following lemma is standard (see, e.g., [CLO98: p.54]) but is proved here
for the reader’s convenience.

Lemma 6.1. For any p ∈ Π, the spectrum of p(M) is

spect(p(M)) = p(V).

Proof: We continue to take for granted that [δv : v ∈ V] is 1-1, i.e., that

Π→ CV : p 7→ p V is onto. (6.2)

Take p ∈ Π, µ ∈ C, and consider

p(M)− µid := q(M).

If µ 6∈ p(V), then q does not vanish on V, therefore, by (6.2), for some
polynomial r, ()0 − qr vanishes on V, hence, by Hilbert’s Nullstellensatz,
some power of it, say the kth, lies in ker P = kerM . This says that

0 = (()0 − qr)k(M) = (M0 − q(M)r(M))k = id − q(M)A

for some A ∈ L(ranP ), showing q(M) = p(M)−µid to be invertible (since
ranP is finite-dimensional).

If, on the other hand, µ = p(v) for some v ∈ V, then, for all q ∈ ranP ,

δvMpq = δvP (pq) = δv(pq) = µδvq,

showing δv to be a left eigenvector for Mp for the eigenvalue µ = p(v) (this
is Stetter’s insight; see [AS]).

Proposition 6.3 ([MSt]). The ideal projector P with F := ranP is
Lagrange interpolation (i.e., #V = dimF ) if and only if the Mj are diag-
onalizable.

Proof: If #V = dim F , then, since dim ranP ′ = dim F , [δv : v ∈ V] is an
eigenbasis for M ′

p (for any p). Correspondingly, its dual basis in F , i.e.,
the basis [ℓv : v ∈ V] with

ℓv(w) = δvw, v, w ∈ V,
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is an eigenbasis for Mp (again for any p); it is evidently the Lagrange basis
for interpolation from F at V.

Conversely, let V : Cn → ranP be an eigenbasis for the Mj . Then,
the map

Π→ Cn×n : p 7→ V −1p(M)V

is linear and, by (2.1), has kerP as its kernel. In other words, with λij

the map that carries p ∈ Π to the (i, j)-entry of the matrix V −1p(M)V ,
we have

ker P = ∩i,j kerλij ,

hence (λij : i, j = 1:n) spans ranP ′. But, since V is an eigenbasis for
the Mj, all the matrices V −1p(M)V are diagonal, hence only the λii are
nontrivial and, since there are only n := dim ranP ′ of them, they must
form a basis for ranP ′. In particular, there must exist p ∈ Π for which
#{λiip : i = 1:n} = n. Since {λiip : i = 1:n} = spect(p(M)) = {p(v) : v ∈
V}, this implies that #V = n.

As the simplest example, consider P : p 7→ p(0)()0 + Dp(0)()1. We
compute the matrix representation for M1 with respect to the standard
basis, [()0, ()1], for ranP = Π1 ⊂ (IF→ IF):

M1()
0 = P ()1 = ()1; M1()

1 = P ()2 = 0,

hence

M̂1 = [ε2, 0] =

[
0 0
1 0

]
,

the simplest example of a defective matrix.
It seems that Auzinger and Stetter [AS] were the first to propose to

use the eigenstructure of the Mj for the calculation of V. This requires,

in principle, nothing more than the calculation of a matrix M̂j similar
to Mj , and this can be obtained in many ways, e.g., by computing the
representation of Mj with respect to some basis W of ranP . From this,
one can, in principle, compute a basis U consisting of (generalized) eigen-
vectors for any particular Mj , and, with that in hand, can now compute

M̂j := U−1MjU for every j, hence know, in particular, not only v(j) for
all j, but even the points v themselves, since one then knows the λii at
least on Π1.

However, Auzinger and Stetter go for the eigenvectors of the transpose

of M̂j , as these are necessarily of the form δvU = (u(v) : u ∈ U). Actually,

[AS] focus on the left eigenvector av of the matrix M̂p belonging to the
eigenvalue p(v) since it is necessarily (a scalar multiple of) δvW , hence
has w(v), w ∈ W , as its entries. If now W can be chosen to contain ()j ,
j = 1:d, then av contains the very coordinates of v. If W cannot be so
chosen, still there are then techniques for teasing out v from the vector
av; see [St], [MSt].
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§7. Is Hermite Interpolation the Limit of Lagrange Interpolation?

While one is, of course, free to give names to hitherto unnamed concepts
and constructs, use of an established name in a new or more general con-
text needs justification. Since it is an integral and often used aspect of uni-
variate Hermite interpolation that it is the (pointwise) limit of Lagrange
interpolation, it is fair to ask whether multivariate ideal interpolation is
also the limit of Lagrange interpolation. This question was already raised
in [BR90], within the restricted meaning of ‘Hermite interpolation’ used
there, but has yet to be answered even in that restricted context.

To be sure, pointwise convergence of maps on a linear space depends
on the notion of limit in that space to be employed. On Π, we use uni-
form convergence on compact sets or, what is the same, coefficient-wise
convergence, i.e.,

lim
n→∞

pn = p ⇐⇒ ∀α ∈ ZZd
+ lim

n→∞
p̂n(α) = p̂(α).

Proposition 7.1. The pointwise limit of ideal projectors is ideal.

Proof: Since the property of being ideal can be characterized pointwise
(see Lemma 1.1), it is preserved under pointwise convergence.

Since a linear projector is determined by its range and the range of
its dual, the pointwise convergence of a sequence (Pn : n ∈ IN) of (finite-
rank) linear projectors is equivalent to the convergence of their ranges and
the ranges of their duals. Thus, we are interested in what limits, if any,
can linear spaces, spanned by finitely many point evaluations, have as the
evaluation sites all coalesce at one site, v. The above proposition implies
that, if there is a limiting space, it is necessarily of the form δvQv(D) for
some D-invariant space Qv. But the space Qv will crucially depend on
just how the evaluation sites coalesce. Here is an example, from [BR90].

Proposition 7.2. Let v and T be a point, respectively a finite subset, in
ZZd. Then

lim
h→0

ran[δv+hτ : τ ∈ T] = δvΠT(D),

with

ΠT :=
⋂

p T=0

ker p↑(D).

Proof: Assume without loss that v = 0. Then the general element of
ran[δv+hτ : τ ∈ T] is of the form

λh : p 7→ λp(h·), with λ :=
∑

τ∈T

c(τ)δτ .
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We compute

λhp = λp(h·) =
∑

τ∈T

c(τ)
∑

α

(hτ)αp̂(α)

=
∑

j

hj
∑

|α|=j

∑

τ∈T

c(τ)τα

︸ ︷︷ ︸
λ()α

p̂(α)

=
∑

j≥ord λ

hj
∑

|α|=j

λ()αp̂(α)

with
ordλ := min{|α| : λ()α 6= 0}.

Therefore

lim
h→0

λhp/hord λ =
∑

|α|=ord λ

λ()αp̂(α) =
∑

|α|=ordλ

λ()α 1

α!
Dαp(0)

= q(D)p(0),

with

q :=
∑

|α|=ordλ

∑

τ∈T

c(τ)
τα

α!
()α = ???

a certain polynomial. Note that, in the univariate case, this sum would
only have one term in it and, correspondingly, the limit is just a scalar
multiple of the (ordλ)-th derivative at the origin, just as expected. In the
multivariate case, things are more complicated. Yet, as we look further
into this polynomial q, we’ll also discover real beauty.

What does the term τα/α! remind you of? The exponential function!
In fact, you recall

eτ : x 7→ e〈τ,x〉 =
∑

j

〈τ, x〉j/j! =
∑

α

τα

α!
xα,

the exponential with frequency τ . So, with the definitions

f :=
∑

τ∈T

c(τ)eτ =
∑

j

∑

|α|=j

∑

τ∈T

c(τ)
τα

α!
()α

︸ ︷︷ ︸
=: f [j]

,

we see again q:
q = f [ordλ].
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In other words: if we organize f =
∑

τ c(τ)eτ into its homogeneous terms,

f = f [0] + f [1] + · · · ,

then we find that f [ord λ] is the first such term that is non-zero. For that
reason, we call it the least or initial term of f , and denote it by

f↓.

f↓ is the unique homogeneous polynomial for which

ord(f − f↓) > ord f.

It follows that limh→0 ran[δv+hτ : τ ∈ T] contains δ0(ExpT)↓(D), with

ExpT := ran[eτ : τ ∈ T]

and
F ↓ := span(f↓ : f ∈ F )

for any linear subspace F of

Π′ ∼ P := IF[[x]], (7.3)

the space of formal power series in d variables x(1), . . . , x(d) with coeffi-
cients in IF.

On the other hand, each ran[δv+hτ : τ ∈ T] has dimension equal to
#T, hence its limit as h→ 0 can have dimension at most #T, while (see
[BR90]) dim F ↓ = dim F and dimExpT = #T. Therefore

lim
h→0

ran[δv+hτ : τ ∈ T] = δ0(ExpT)↓(D).

Finally (see [BR92a] and [BR92b]; for a direct proof, see [B92]),

(ExpT)↓ =
⋂

p T=0

ker p↑(D).

The equivalence of Π′ with P claimed in (7.3) can be established in
several ways. For our purposes, it is convenient to do it via the natural
extension of the bilinear form (5.3) to

P ×Π→ IF : (f, p) 7→ f ∗ p =
∑

α

f̂(α)α!p̂(α).
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Note that, for any v ∈ IFd and any p ∈ Π,

ev ∗ p =
∑

α

vαp̂(α) = p(v).

In other words, the exponential function with frequency v represents eval-
uation at v with respect to this pairing. In particular, given that we were
interested in finding limh→0

∑
τ c(τ)δhτ , the appearance of the exponential

function in the above proof is not accidental.
Note further that ΠT is not only D-invariant (as the intersection

of kernels of constant-coefficient differential operators) but also dilation-
invariant (as the span of homogeneous polynomials). In contrast, in gen-
eral, the multiplicity spaces Qv for an ideal projector need only be D-
invariant. Here is a further example, from [BR90], to show how such a
δvQv(D) may, nevertheless, be the limit of spaces spanned by point eval-
uations.

Let Th := {ξ− := (−h, h2), 0, ξ+ := (h, h2)} ⊂ IF2 and set Mh :=
ran[δτ : τ ∈ Th]. Then, with ξ0 := (0, h2), Mh contains

(δξ+
+ δξ− − 2δ0)/h2 = (δξ+

− 2δξ0
+ δξ

−

)/h2 + 2(δξ0
− δ0)/h2,

and this evidently converges to δ0(D
2
1 + 2D2) as h → 0, while certainly

(δξ+
− δξ

−

)/h is in Mh and converges to δ0D1, and δ0 is in Mh for
all h. This shows that the 3-dimensional space δ0Q0(D) with Q0 :=
ran[()0, ()1,0, ()2,0 + 2()0,1] is in limh→0 Mh, hence must coincide with it
since each Mh is only 3-dimensional. Note that Q0 is D-invariant but not
dilation-invariant.

Conjecture. A linear projector on Π ⊂ (Cd → C) is ideal if and only if
it is the (pointwise) limit of Lagrange interpolation.

Some people have told me that this conjecture is obviously true, be-
cause of known results concerning the resolution of singularities. On the
other hand, Geir Ellingsrud has pointed out to me that this conjecture
must fail for d > 2, because of results by Iarrobino (see [I]) concerning
the dimension of the manifold of ideals of codimension k with k points in
their variety as compared with the dimension of the manifold of ideals of
codimension k with variety {0}. But, lacking as yet a sufficiently good
background in Algebraic Geometry, I have not yet understood his reason-
ing. In any case, Ellingsrud’s remark does not contradict the following,
very recent, response, by Boris Shekhtman, to the above conjecture.

Proposition 7.4 ([Sh]). Any ideal projector on Π ⊂ (C2 → C) with
range the polynomials of degree ≤ k (for some k) is the pointwise limit of
Lagrange interpolation projectors.

Proof outline: Let F = Πk be the range of the ideal projector P , and
recall from Proposition 6.3 that P is Lagrange interpolation iff the linear
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maps Mj : F → F : f 7→ P (()jf) are diagonalizable. Since F is finite-
dimensional, the diagonalizable linear maps on F are dense in L(F ). Hence
we are looking for an indication that the set of all ideal projectors with
range F is open in some sense.

From Proposition 1.7, we know that P is characterized by its action
on Π1(F ) = Πk+1, hence by the polynomials

hα := P ()α ⊂ ranP = Πk, |α| = k + 1,

since P ()α = ()α for |α| ≤ k. On the other hand, while any choice of the
hα gives rise to a linear projector N on Π1(F ) with range F = Πk, not
all of them are the restriction to Π1(F ) of an ideal projector with range
F . Since F evidently satisfies Mourrain’s condition (3.1), we know from
Theorem 3.2 that N is the restriction of an ideal projector with range F
if and only if MiMj = MjMi on all relevant ()α, i.e.,

N(()iN(()j()
α)) = N(()jN(()i()

α)), |α| ≤ k, 1 ≤ i < j ≤ d.

This equality holds trivially for |α| < k since then N(()i()
α) = ()i()

α.
Further, for |α| = k, N(()i()

α) = hεi+α, hence, altogether, the condition
is that

()ihεj+α − ()jhεi+α ∈ ker N, |α| = k, i < j.

But (()β − hβ : |β| = k + 1) is evidently linearly independent (since hβ ∈
Πk) and has dim kerN terms and is in ker N , hence is a basis for ker N .
Therefore, the choice (hβ : |β| = k + 1) specifies an ideal projector with
range Πk if and only if there are matrices Cij (necessarily unique) so that

()ihεj+α − ()jhεi+α =
∑

|β|=k+1

Cij(α, β)(()β − hβ), |α| = k, i < j. (7.5)

Now, in the bivariate case actually under discussion, there is just one
choice for (i, j), namely (1, 2), hence (hβ : |β| = k + 1) in Πk gives rise to
an ideal projector with range Πk if and only if there is some matrix C so
that

()1hε2+α − ()2hε1+α =
∑

|β|=k+1

C(α, β)(()β − hβ), |α| = k. (7.6)

It is this equation, Shekhtman derives and looks at. He treats it as an
equation for the vector

h := (hβ : |β| = k + 1),

hence writes it in the form

Ah− C(b− h) = 0, (7.7)
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with
b := (()β : |β| = k + 1)

and
Ah := (()1hε2+α − ()2hε1+α : |α| = k),

hence
Ab = 0,

therefore (7.6) is equivalent to

(A + C)(h− b) = 0. (7.8)

Now, given that A + C has one more column than it has rows, it follows,
by a standard formula, that

h := (()β − (−1)β det(A + C)(:, \β) : |β| = k + 1) (7.9)

solves (7.8), hence (7.6), with (−1)β equal to 1 or −1 depending on the
parity of column β in the columns of A or C. Assume, in particular, the
columns so ordered that, for β =: (j, k + 1− j), j increases as we traverse
the columns from left to right. Then it is immediate that det A(:, \β) =
(−1)β()β, hence this h is in Πk, as required. This shows that each choice
of the scalar matrix C gives rise to an ideal projector. It also shows that
each det A(:, \β) is nonzero almost everywhere, hence A+C is onto almost
everywhere and, therefore, ker(A+C) is 1-dimensional almost everywhere.
In other words, for given C, h uniquely solves (7.6). In particular, (7.9)
provides a parametrization of the set of all ideal projectors with range Πk.
(Appreciate the fact that the number of entries of C equals 2 dim Πk, i.e.,
the degrees of freedom that uniquely pin down any particular bivariate
Lagrange projector with range dim Πk.)

Now notice that (7.9) describes the solution h as a polynomial func-
tion in the entries of the (scalar) matrix C. Hence, with Λ a basis for
ranP ′ and n := dimF = dim ran Λ, the determinant of the Gram matrix

Λt[()j
1 : j < n]

is also a polynomial in the entries of C, and is nonzero for some choice
of C. Hence, every neighborhood of our ideal projector P contains an
ideal projector R with range Πk and such that, for any basis M for ranR′,
the Gram matrix Mt[()j

1 : j < n] is invertible, hence there is a linear

projector S with ranS = ran[()j
1 : j < n] and ranS′ = ranR′, hence an

ideal projector. By perturbing, if necessary, the zeros of the polynomial
()n

1 − S()n
1 (considered as a univariate polynomial), we obtain (see the

example following Proposition 1.7) an interpolating ideal projector T as
close to S as we would like, and, with that, the linear projector U with
range Πk and ranU ′ = ranS′ is well-defined and an interpolating projector
as close to P as we would like.

Actually, Shekhtman’s argument proves the conjecture for an arbi-
trary bivariate ideal projector P , i.e., we have the following.
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Corollary. Any ideal projector on Π ⊂ (C2 → C) is the pointwise limit
of Lagrange interpolation projectors.

Proof outline∗: We know from Proposition 4.3 that the ideal kerP is
complemented by a polynomial space ΠΓ with Γ a lower set (i.e., the
complement of an upper set), hence there is a linear projector R with
ranR = ΠΓ and kerR = ker P , hence R is ideal. Further, for any projector
S close enough to R, ranS′ must be close enough to ran R′ = ranP ′ so
that there is a projector T with ranT = ranP and ranT ′ = ranS′ and T
is close to P . It is therefore sufficient to consider P with F := ranP = ΠΓ

and Γ a lower set. For such P , ranP satisfies Mourrain’s condition (3.1),
hence we may proceed as in Shekhtman’s proof, except for the following
wrinkle. It now may happen for some

α ∈ ∂Γ := {α ∈ Γ : ∃j εj + α 6∈ Γ}

that, e.g., ε1 + α 6∈ Γ while ε2 + α ∈ Γ (something not possible when F =
Πk = Π{α:|α|≤k}). In this case, ()1M2()

α = ()ε1+ε2+α, hence the condition
M1M2 = M2M1 on ()α now reads that ()ε1+ε2+α− ()2hε1+α ∈ kerN . But
this is equivalent to the condition that

hε1+ε2+α − ()2hε1+α ∈ ker N,

since ()ε1+ε2+α−hε1+ε2+α ∈ ker N . This means that the condition for the
projector N on Π1(F ) with range F , specified by the sequence

h := (hβ =: N()β : β ∈ ∂(\Γ))

in F , with
∂(\Γ) := ({ε1, ε2}+ ∂Γ)\Γ,

to be the restriction to Π1(F ) of some ideal projector with range F = ΠΓ

is still (7.7), except that now

A(α, β) =






()1, ε2 + α = β;
1, ε2 + α ∈ Γ and ε1 + ε2 + α = β;
−()2, ε1 + α = β;
−1, ε1 + α ∈ Γ and ε2 + ε1 + α = β;
0, otherwise





,

{
α ∈ ∂Γ,
β ∈ ∂(\Γ)

}
,

with the fact that Γ is a lower set guaranteeing that, for each such (α, β),
exactly one of these cases obtains. In particular, A still has one more
column than it has rows, and all other assertions made in the proof about

∗ dec05: this outline seems not realizable; rather, Shekhtman had to
dig into Algebraic Geometry to prove the corollary.
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A remain valid, including that Ab = 0 and det A(:, \β) = (−1)β()β for
all β ∈ ∂(\Γ), hence the rest of Shekhtman’s proof goes through without
change, – except that, as Shekhtman has pointed out to me, in this more
general situation, his formula (7.9) will not give rise to a sequence h in
F for every choice of the matrix C. Rather, h will be in F if and only if
certain submatrices of C are zero.

Returning to our 0-dimensional polynomial ideal I, it is customary
to refer to the dimension of Qv = I⊥v as the multiplicity of v as a point
in V(I). But it is clear that, in the multivariate context, this provides
too little information. It is the space Qv itself that carries the detailed
information.

[G50] contains a whole section devoted to the pitfalls to be avoided
by anyone wishing to explain the multiplicity of a zero of an ideal in terms
of coalescing point evaluations. Specifically, it is pointed out there that it
is not possible to define multiplicity by the number of point evaluations
that might be coalescing there since that number will surely depend on
the particular sequence chosen. In particular, there are cases of higher-
dimensional ideals (hence their variety is not finite) that can be approxi-
mated in some nice geometric sense by 0-dimensional ideals, perhaps even
with a bound on the cardinality of their varieties. A footnote refers to a
private communication from Burau who states that, nevertheless, he had
been able to arrive in this way at a satisfactory definition of multiplicity
that, not surprisingly, was equivalent to the present, ideal-theoretic one.

§8. The Choice of ranP

A projector’s property of being ideal is entirely determined by its ker-
nel, the ideal I. For a given nontrivial ideal I or, equivalently, a given
‘ideal’ space I⊥ of interpolation conditions, there are infinitely many ideal
projectors, one for each choice of an algebraic complement of I as ran P .

One popular choice for ranP is to ensure that P be degree-reducing,
meaning that

deg Pp ≤ deg p, p ∈ Π.

This is called of least degree in [BR90], and of minimal degree in [BR92a]
and [BR92b], and [S97] is entirely devoted to this notion, with a highlight
the proof that every 0-dimensional ideal has an algebraic complement that
is spanned by monomials and is D-invariant and whose corresponding
projector is degree-reducing.

As is pointed out in [B05a] (thus providing another proof for Propo-
sition 4.3), such an algebraic complement can be obtained by Gauss elim-
ination with partial pivoting, applied to the Gram matrix

ΛtV,
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with Λ a column map into Π′ for which ker Λt is the ideal and

V := [()α : α ∈ ZZd
+]

such that the order < on ZZd
+ corresponding to the order of the columns

of V respects addition, i.e., satisfies (4.1), and respects degree, i.e., |α| <
|β| =⇒ α < β. If β1 < · · · < βn is the sequence of indices of the bound
columns of ΛtV as determined by Gauss elimination, then ran[()βi : i =
1:n] is that desired algebraic complement.

A quite different choice for ranP may result from the wish for a par-
ticularly ‘nice’ error formula. One reason for choosing ideal interpolation
in the first place is the resulting possibility of writing the error in the form

f − Pf =
∑

b∈B

b qb,f

with B a minimal basis for the ideal ker P , and qb,f suitable polynomials
depending on f ∈ Π. (This nice feature of ideal interpolation is also recog-
nized implicitly in [SX95b] where it motivates the restriction to ‘regular’
Hermite interpolation.)

In the univariate case, the standard error formula takes the form

f − Pf = b∆(τ1, . . . , τn, ·)f,

with
b := (· − τ1) · · · (· − τn)

the monic polynomial that vanishes at the interpolation sites to the ap-
propriate multiplicity, i.e., the monic polynomial that generates the ideal
ker P , and ∆(τ1, . . . , τn, x)f the divided difference of f at the sites
τ1, . . . , τn, x, hence a polynomial in x that depends linearly on Dnf . More
precisely,

∆(τ1, . . . , τn, x)f =

∫
K(·|τ1, . . . , τn, x)Dnf

for a certain function K, namely a B-spline with knots τ1, . . . , τn, x. Since
Dn = b↑(D), one may therefore hope, in the multivariate case, for an error
formula of the form

f(x)− Pf(x) =
∑

b∈B

b(x)Ix,b(b↑(D)f) (8.1)

with B a minimal generating set for I and with each Ix,b some linear
integral operator. Since ranP comprises exactly those polynomials for
which f − Pf = 0, this would imply

⋂

p∈ker P

ker p↑(D) =
⋂

b∈B

ker b↑(D) ⊆ ranP,
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the equality holding because B is a basis for the ideal kerP . But since
ranP is complementary to the ideal ker P , this would imply

⋂

p∈ker P

ker p↑(D) = ranP.

But this implies (see [BR92a]) that P is necessarily the least projector for
the given interpolation conditions (kerP )⊥, as introduced in [BR92a] for
arbitrary (finite-dimensional) spaces of interpolation conditions. I resist
the urge to call the linear projector with

ranPI =
⋂

p∈I

ker p↑(D) and ker PI = I

a ‘least ideal projector’, and call it least Hermite interpolation instead.
As a simple example, consider interpolation at Σ×T, with Σ and T

finite subsets of IF. The ideal I of all bivariate polynomials vanishing on
Σ× T is generated by the two polynomials

bσ : x 7→
∏

σ∈Σ

(x(1)− σ), bτ : x 7→
∏

τ∈T

(x(2)− τ).

Correspondingly, with

m := deg bσ, n := deg bτ ,

the least choice for the space from which to interpolate in this case is the
standard one, i.e.,

ranPI = ker(bσ)↑(D) ∩ ker(bτ )↑(D)

= kerDm
1 ∩ ker Dn

2 = ran[()α : α(1) < deg bσ, α(2) < deg bτ ].

However, the standard formula for the error in such tensor-product inter-
polation to f involves not only Dm

1 f and Dn
2 f but also the higher mixed

derivative Dm,nf . Nevertheless, it is possible (see [B97]) to derive an er-
ror formula for this particular, and even for general multivariate, tensor
product interpolation, of the form (8.1), with B the ‘natural’ basis for I.

But (8.1) fails the next test, Chung-Yao interpolation, for which the
error formula, derived in [B97], is of the slightly more complicated form

f(x)− Pf(x) =
∑

b∈B

b(x)Ib,x(b̃↑(D)f), (8.2)

with (b̃ : b ∈ B) also a (minimal) basis for I and such that b̃↑(D)c = δb,c

for b, c ∈ B.
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One may therefore hope for an error formula of the form (8.2) for
arbitrary least Hermite interpolation (a hope first expressed in [B97]).
But, already for general Lagrange interpolation from Πk, this is still only
a hope, as the Sauer-Xu error formula for that case (see [SX95a]) does not
readily convert into the form (8.2).

To be sure, while I have restricted attention to interpolation on Π,
it is easy to extend ideal interpolation to more general functions, namely
to all functions f smooth enough ‘at’ each interpolation site v so that
q(D)f is defined there for all q ∈ Qv, v ∈ V. Given the density of poly-
nomials in various function spaces, also the error formulas (known or yet
to be derived) extend similarly to (smooth enough) functions other than
polynomials. On the other hand, the restriction here to interpolation on
Π makes possible a simple, purely algebraic, treatment of the essential
aspects of the polynomial interpolation discussed.

Acknowledgments. This article has benefited from a critical reading
by Tomas Sauer. Special thanks are due to Boris Shekhtman for making
available his results as soon as he got them and helping me understand
his arguments.
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