Total Positivity of the Spline
Collocation Matrix

CARL de BOOR

0. Definitions. For given positive integers n and k, and a given real non-
decreasing sequence t := (t,),""* with

b < by, alli,

denote by S, . the linear span of the n normalized B-splines N, ., -+ , N...,
given by the rule that, for each ¢,
Ni.k(t) = ([tH—l y T ti+k] - [ti y 7t1i+k—1])(' - t)+k_1~
Here,
[PO) T )Pr]f

denotes the rth divided difference of the function f at the points po, -« , p, .
The elements of S, are called polynomial splines of order k with knot sequence t.

Let = := (7.)," be a strictly increasing real sequence. As is essentially shown

by Schoenberg and Whitney [7], there exists, for given f, exactly one s e S;
such that

.
Ii

S(Ti) = f('ri)y .- ,n,
tf and only f

N,"k(‘l',')¢0, 7:=1,“‘,’n,
z.e., if

t,'<7','<ti+k, 7:=1,"‘,n.

Their proof is an appeal to much more general results in the same paper con-
cerning the positivity of translation determinants. This theorem has been
generalized by Karlin and Ziegler [3] to include the case of repeated or osculatory

collocation, as stated in Theorem 1 below. The proof given here relies only on
Rolle’s Theorem and on the facts that

1) @/dt) 3 aNiy = (k — 1) ZZ"—"—"—"";; Niiors
1 i i+k—1 — Ui
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(2) N, . is positive on (; , t;.,) and zero off [¢; , t,,.];

3) if @, # 0, then «, E; aN; > 0on (t,,x — € t,.:) for some ¢ > 0;

4) if t; < t;s,, then every straight line on [¢; , ¢t;»,] can be written as
a;_1N._1,. + ;N , for appropriate a;_, , «; ;

all of which follow directly from the definition of B-splines.

Karlin [1; Ch. 10, Theorem 4.1] proved that the n X n matrix (N; .(r;)) is
totally positive, 1.e., has all minors nonnegative. His proof applies to Chebyshev
splines and not just polynomial splines but uses machinery which seems readily
available only after reading [1]. In Theorem 2 below, we give a proof of the total
positivity of (N; ,(r;)) based on the proof of Theorem 1 and on Karlin's elegant
proof of the Fekete Lemma [1, Ch. 2, Theorem 3.2] making use of the deter-
minant identity (0.20) of [1]. As a byproduct, we obtain in Theorem 2 the
curious extension of the Schoenberg-Whitney Theorem that even for a sub-
sequence (p, , +++ , p,) of (1, -+ , n) and for strictly increasing =, (N, (7)),
is invertible iff N,, ,(r;) = 0, all <.

1. Collocation. We consider collocation at the points of a given nondecreasing
sequence = := (r,),", repeated points indicating repeated or osculatory inter-
polation in the usual way. Precisely, define

Noi=[7]D" with r:= max {j]|r.-; = 7:}.
Then we say that s agrees with f at (the poinis of) = provided
)\,-S=)\,~f, 7:= 1,"',”.

Ift = (;),""* witht; < t;,.,all ¢, and se S;,¢ , then [7]s*” makes sense as long
as 7 ¢ ran t. If, on the other hand, » = ¢; for some 7, then [7]D" is defined on S,
only if the multiplicity of ¢; does not exceed k — 1 — r. Hence we must assume

(5) Tiv1 = 00 = Ty = big = 200 = by, impliesr + s = k,
if we want to consider collocation at = by elements of S, . .

The n-term sequence (\;)," is linearly independent while the n-term sequence
(N:,0:" generates S, . , by definition. Existence and uniqueness of s e S, ; for
given f for which

s = N, 1=1,-,n,

is therefore equivalent to the invertibility of the Gramian
A= NN iat"

or, equivalent to the statement that s ¢ S, ; vanishes at =, , --- , 7, (repeats
indicating multiplicity in the usual way) iff s vanishes identically. We will use
each of these equivalent formulations in the arguments to follow without
belaboring their equivalence any further.

Theorem 1. Let (N, )," be the sequence of B-splines of order k for the non-
decreasing knot sequence t = (t,),"** with t; < t;i,all 1, and, fori =1, ---  n,
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let
N\ = [7]D" with r := max {j | 1:-; = 7.}

for some given nondecreasing sequence = = (r,)," satisfying (5). Then
A = (\N;,) is invertible ff N, (r)) #02i=1, -, n,
t.e., ;€ (8, tiy) for all 4.

Proof. 1If, for some r, N, ,(r.) = 0, then r, ¢ (i, , t,.+) by (2), hence, without
loss, r, < t, . But then AN, , = 0for1 £ 7 < r £ j £ n, showing columns

r, ---,nof A to be linearly dependent; hence A is then not invertible. Assume
now, conversely, that N, .(r,) & 0 for all r, i.e.,

Tfe(tr;tr-f-k); 7'=1’...,n.

Then, for n = 1 and all k, the 1 X 1 matrix A is trivially invertible. Also, for all n
and k = 1, A is invertible as then 4 = 1. As for the remaining general case
n > 1and k > 1, we assume without loss that both the first superdiagonal and
the first subdiagonal of A is nonzero, i.e.,

(6) t¢+1<1',‘,’l:=1,“',’n'—1, and ‘r.~<t,'+k_1,’i=2,~-,n.

For, if, e.9., t,.; = 7, forsome rthen 7, < r,.;and AN, , =0forl ¢ = r <
j = n, and the invertibility of A is equivalent to the invertibility of the two
smaller matrices (\;N;1):.i=1" and (AN 1);.i=rs1” Of the same form. We may
further assume without loss that k¥ = 2. For, if k¥ > 2 and A is not invertible,
then we can find a nonzero e ¢ R” so that Ae = 0. But then, the function

f:= Z_:,afNi.k

is in C* and vanishes at the n + 2 points
by = 170, T1y "y Tny Tas1 = bosk

(repeats indicating multiplicity in the usual way). Its derivative is therefore
by (1), of the form

n+1

f’ = E BiNi.k—l

i=1
for some nonzero 3 ¢ R"**, and vanishes at certain n + 1 points (+/;),""" with

’ S
b1 S 7 S 7 S T S b, 1=0,---,n,

(the inner two inequalities being strict in case 7; < 7,,). Consequently, the
matrix (\,/N; ;_1);.;-1""" involving splines of order & — 1 is then not invertible
even though the N\, derive from <’ satisfying

T,,‘ € (t, y t,~+k_1), 1= 1, rre, N + 1
and
T’,'.H = o = 1',,'4., = t,‘+1 = o0 = t;,, implies r+s=k— 1.@
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RQ Jia has pointed out that this argument is not complete since the possibility that, e.g., t_1<t_2=\cdots=t_k<t_{k+1} (or t_{n-1}<t_n=\cdots=t_{n+k-1}<t_{n+k}) is not excluded by (6) in which case f is only continuous but not differentiable at t_2. In this case, we cannot count on the zero \tau'_1 for f'. On the other hand, we can drop N_{1,k-1} from the formula for f' since it vanishes at \tau'+i, all i>1.
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This leaves the case k = 2. But then ¢,,, = t,,,-, , hence (6) allows only either
n = 1, already settled above, or n = 2 and

t2<11§1'2<t3,
in which case A is trivially invertible by (4). O

Corollary. The determinant of the Gramian matrix (\;N; ) of the preceding
theorem s nonnegative.

Proof. Assume initially that = is strictly increasing. By the theorem, it is
sufficient to consider the case 7, ¢ (; , t;..), all 7. Since then det (N; .(r.))," is
trivially positive for n = 1, it is sufficient to prove that

a, := det (N;.(r)),""/det (N;2(r:))," > 0 for n > 1.

But, in this case, a, is the n-th B-spline coefficient of the unique f ¢ S;,; which
satisfies

f(T.,‘) = 5,',, y all 'i,
while, by (3), there exists 7 & (. , t,+x) S0 that
sign f(r) = sign «, .

This allows the desired conclusion that sign &, = 1, since otherwise f(r) < 0 while
f(r,) = 1 > 0, hence / would vanish at some point 7,” & (¢, , t,.:) in addition to
its zeroes 7, ¢ (¢, , t;,,) fori = 1, --- ,n — 1, hence would have to vanish identi-
cally by the theorem, a contradiction.

Consider now the general case with £ not necessarily strictly increasing. If, e.g.,

Tr—s—1 < Tr—s =— *°° = Ty < Tr+1
then, for given ¢ > 0, we can pick 7/,., < -+ < 7, allin (7,.,-y , 7,4,) SO that
replacing \,_,N;; = [rJN;.“ by (s — p)! times the (s — p)th divided
difference [7/,_, , -+« , 7. IN;u (p =0, - -+ ,8;j = 1, - -+, n) produces a new

matrix whose determinant differs from that of (\;N; ;) by no more than e.
But, after all coincidences in the 7;’s have been dealt with in this way, we obtain
a matrix with a nonnegative determinant since it is of the form L-(N; .(7':))
for some lower triangular matrix L with positive diagonal entries and for some
strictly increasing sequence «’. This shows det (\;N; ) to be within e of being
nonnegative for arbitrary e. O

2. Total positivity of the collocation matrix. The nonnegativity of the
determinant of the collocation matrix (AN, ), proved in the corollary to
Theorem 1, is an indication of the remarkable and important fact that (N, .(7.))
is totally positive, 1.e., all its minors are nonnegative. This fact can be inferred
from the following generalization of Theorem 1.

Theorem 2. Let (N, .)," be the sequence of B-splines of order k for the non-
decreasing knot sequence t := (t;),""* with t; < t;si ,all i, and, fori =1, .-+, n,
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let
N = [rD" with 7 := max {j| 7.-; = 7}
for some nondecreasing sequence = := (1;)," satisfying
Tis1 = 00 = Tige = by = -+ = tjy, tmplies r+ s =k,
and set
U:= (u;) := (LN o™
If o := (0,)," is a subsequence of (1, - -+ , n) such that %z 0, = 0)

0,1 < 0, — 1 wmplies 71,1 <

then, for every subsequence p := (p:)," of (1, -+, n),
detU(O‘ e """) 20
pl y T pm

with equality iff, for some i, N, (7,;) = 0.

Proof. The restriction on the selection o of rows for the submatrix

U<ol y “ e ’om>
P, " yDPm
is designed to exclude the possibility that a row involving some derivative is
included in the submatrix without also including all rows involving lower
derivatives at the same point. This exclusion is essential, as the theorem is not
true without it. In particular, U need not be totally positive in case of coinci-
dences among the 7,’s.

N, .(:) vanishes if supp (\;) M supp (N;.) = &. But if this happens,
then the underlying geometry implies that

either U(lf’ ,z) =0 orelse U(l’ ,n) = 0.
Jy ey M 1’...’]
Hence, the submatrix
U<0r y " 03)
syttt 9 Ds
is not invertible unless supp (\,,) N supp (N, x) = & fori =7, --+ , 8 A

submatrix satisfying this latter condition will be called “good’” for the duration
of this proof.

We assume that o = (1, --- , m) (by going over to a new nondecreasing se-
quence % which starts 7,, , -+, 7. , - , if necessary). With this, we proceed
to prove that

(7 if U( 1’") is “good”, then detU(l"””")>o
Pis s Pnm ply"'apm
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by induction on m and on
varp := p, — D:,

starting with the case var p = m — 1. In this case, there are no gaps in p, hence
Theorem 1 and its corollary imply (7). Note that this case includes the case
m = 1,

Letnowm > 1,and let varp = m. Fora givenm X (m + 1) matrix A = (a;;),
the matrix

Q1 R A *CUF S LS T

Z . (L et Qo m+1 (/9 S
a; e Q) ms1 0 e 0
Om—1,1 tee Q1 m+1 0 tee 0

is not invertible since all (m + 1)-minors in the first m + 1 columns are zero-
Hence, expanding by m-minors of the first m rows, we get

B _ 1 N m 1,~--,m—1>
O—detZ-—detA<m’m+1’2,'”,m_l)det’A(l’...,m-—l
1y 1 ).t m ) (1,,7”1—1)
Ftdena(] gy, Ty
n 1 , e, m 1’...’ m—].)
+(—1) detA(].’m)2)"')m"'l)detA(zy"'ym_lrm-l-] ’

all other terms in the expansion being trivially zero. On applying this determinant
identity to the m X (m + 1) matrix

A=U<]_’...’ m>,
Piy ) Pmer

we obtain (after appropriate interchanges) the fact that

2y * 0 ypm+1 pl gt )pm—l pl’... )pm—l ’pm+1
‘thU(l,“.,m_1>=detU(-ly"':m)detU<1,--., m—l)
2y "y DPm D1y ** y Pm Doy oy Pty Pmst/

with p,..; an arbitrary index. Now pick p,., different from p, , --- , p, but

lying between p, and p,. , and let q := (¢;),""" be the strictly increasing sequence
obtained from p, , -+, p,, and p,.; . Then


carl de boor
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can be obtained more simply by applying Sylvester's determinant identity to the matrix [1&0,\ldots,0; U(1,\ldots,m;1,\ldots,m+1)] , using U(1,\ldots,m-1;1\ldots,m-1) as the pivot block.
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@®) dm;U( Looeym )detv(l""’"’“'l)
Q2 s *** y Qs Py )y Pm—

paso(1 gl m =)

Qi * sy Qm P2y s Dm

= det U( L ’m)detU<1’ e m= 1)

Piy "y Pm Q5 *° sy Qm

since it takes as many interchanges to order p; , * *+ , D1 , Pm+:1 8 it does to order
D2y ' Pm-1, Pms1 , DUt one less than does the ordering of py, **+ , P , P+t -

If now, for some r,

supp (\,) N supp (N,,,,:) = & or supp (A1) N supp (N, 4) = &,

then, much as in the proof of Theorem 1, 7, < r,,, and

daU(L'”’m)=daU(L”'”)davc+l“”’m)>m
D1y " )y Dm D1,y """ yDr DPr+1y *°* yDPm

since both factors on the right are ‘“good”’, hence positive by induction hypothesis
on m. Otherwise

supp (\,) M supp (N,,,,.x) # &, supp (\,+1) N supp (N, 2) #= &,
r=1,.,m—1,

hence each of the six submatrices in (8) is ‘“‘good’’. This implies by induction
hypothesis on m that each of the three (m — 1) X (m — 1) submatrices in (8)
has positive determinant. Further, since also ¢,..; — ¢, and ¢,, — ¢, are both
less than var p = p,, — p, , we know by induction hypothesis that both m X m
matrices on the left side of (8) have positive determinant. But then, also

detU< Lo m) >0. 0O
Pis " yPm

‘Corollary. With (N, ,)." the sequence of B-splines of order k for some knot
sequence t = (t;),"**, nondecreasing with t; < t;,;, , all 1, and = = (r.)," non-
decreasing, the Gramian matriz (N ; (7.))," is totally positive.

Remark. The proof of Theorem 2 above differs from XKarlin’s proof of
Theorem 3.2 in Chapter 2 of [1] only in that allowance was made here for the
possibility that one of the minors appearing in (8) was actually zero. Karlin
circumvented this possibility in his proof of the corollary to Theorem 2 [1;
Theorem 4.1 of Ch. 10] by applying some smoothing to (N; .(r;)). But such
smoothing made it difficult to determine exactly which minors of (N; .(7.)) are
actually positive.

3. Schoenberg’s variation diminishing spline approximation. The total
positivity of (N; .(r;)) has many ramifications, one of which is the remarkable
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fact that for any nondecreasing sequence = := (7;)," and any f, the spline approx-
imation process

vV :f'—) ,"; f(Ti)Ni.k

to f is vam’at@ diminishing, i.e., V{ has no more sign changes than does f
itself. This follows immediately from the statement that for a totally positive
matrix A and any vector x (of appropriate length), the vector A x has no more
sign changes than does x. This statement is part of Theorem 5.1.4 in Karlin [1].
But its proof there is more involved than is necessary if one only deals with the
specific matrix A = (N, .(r;)), as the arguments below hopefully show.

We say that the function f has at least p strong sign changes if | alternates on
some sequence (7;),", i.e.,

f(re) # 0, and f(r;-)f(r;)) <0, 2=1,---,p

for some nondecreasing sequence (r;),” (in the domain of f). The definition is
phrased so as to allow the cases p < 0 (vacuously satisfied by every real function)
and p = 0 (satisfied by every function which does not vanish identically).
It is customary to denote by

S~(f)
the total number of strong sign changes of f on its domain.

A very simple, but typical connection between total positivity and sign
changes is contained in the following lemma and corollary.

Lemma 1. Letf := ) ;.." a; be a linear combination of certain functions
Vo, *** , U, , and suppose that for some

7o < 00 < Tpa

all (p + 1)-minors of U := (v;(r:)):,;=0""""" are nonnegative. If (v;(r.)):.;-0" 18
1nvertible and

(=1)f@) 20, i=0,--+,p
then
(=1)% (7o) 2 0.
Proof. The matrix

: f(7p+1)

is not invertible since its last column is a linear combination of its first p 4+ 1
columns. Hence, expanding its determinant by elements of its last column,
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we obtain that
0= 3 (—1)(r) det U(g ceim Lt L e, p 1)
=0 e P
+ (_l)pnf("vﬂ) det @;(7:))i.i=0"-

But, by assumption, the sum is nonnegative, while the coefficient of (—1)**'f(r,.1)
is positive. 0O

Corollary. Letf:= D ..o" aw; . If det (v;(r:)):. ;0" = O for all nondecreasing
(1:)0, with strict inequality whenever f alternates on (r,),", then

S8°(f) 2 p implies S™(f) = p.

Theorem 3. Let (N, ,)," be the B-spline sequence of order k for the nondecreasing
knot sequence t:= (t;),"** with t; < t;sr, all 3. If f = Zm" a;N,; ., then
S7(f) = 8 (o).

Proof. With p := S™(a), it suffices to prove that
S™(f) = p implies S (f) = p

which we do by induction on p, it being obviously true for p = 0. Hence, with
p > 0, assume without loss of generality that

a1>0

and let J,, - -+, J, be the partition of (1, - -+ , n) into the p + 1 “intervals”
on which « has constant sign; z.e., for some strictly increasing sequence

0=v,< - <y=nandfori=0,--,p,Ji = (@i +1, - ,»)and
(—=1)" a; = Oforall je J, with at least one strict inequality. Correspondingly, let
V; = .ZJ:Ia,-|N,~,k, 1:=O,"’,p.
1eJ ¢
Then
f=2 (=D

i=0
while, for any nondecreasing sequence (7)o",

det (Uf(‘l'.')).',,'uop = Z z; la,-,,| e |Ol,~,| det (Ni,,k(‘l',')),‘,r=op

S
ioeJo ipedp

is nonnegative by Theorem 2. Hence, by the corollary to Lemma 1, it suffices
to prove that

(9) det (1),‘(1',')).",‘:0” > 0
whenever f alternates on (r,),”. Let (r.),” be such a sequence. Since, by Theorem 2,

det (N,'“k(‘r,')),",goﬁ > 0 iff N,‘,_k(‘r') ?5 0 fOI‘ r = O, DY p,
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assertion (9) is equivalent to the statement that, for r = 0, - - - | p, there exists
j ¢ J, such that o;N; .(r,) # 0, hence equivalent to the statement that
v,(r,) # 0, for r=20,---,p.

For its proof, observe that

(10) v; # 0,7 =0, --- , p; and

(11) »;(s) = 0 but v,(s")v.(s”) # 0 for some s’ < s < §" implies that v;(s) = 0
for all j.

Hence, if v,(r,) = 0 for some r, then, by (10), v,(f) # 0 for some ¢t > 7, (without

loss of generality), hence, by (11), v,(s) = 0 for s < 7, , therefore v,.(r;) = 0 for

1=0,---,7,and r, < t; for some je J, . But then alsov,(r;) = 0for< = 0,---, r

andpu =7+ 1,---, p, hence f := Eu=o'_l (—1)"v, would alternate on (7)o"

while having only r — 1 sign changes in its B-spline coefficients, contradicting

the induction hypothesis. O

The argument can be sharpened slightly to give the
Corollary. Iff:= Y ..." a;N; , alternates on (1.),°, then
fr)ei N w(r:) >0
for some subsequence j of (1, -+ , n).

Proof. Assuming again that «; > 0 and writing

d .
f= 2 (=D,
as in the proof of the theorem, with p = S™ (@), and J,, --- , J, the partition
of (1, - - - , n) into intervals of constant sign for «, etc., the corollary asserts the
existence of some subsequence j of (0, - - -, p) so that

f('ri)vi.'(fi) > 07 1= 0, sy Q.

This we prove by induction on p, it being obviously true for p < 0. Let p > 0.
We can assume that v,(r,) # 0, since f(r,) # 0, hence t;, < 7, while, by (3),

(12) f(Hvo(t) > 0 forall ¢> ¢, and “near”

therefore v,(ro) = 0 would imply that f:= > ,;.,* (—1)'v; alternates on (r.),*
and the induction hypothesis would then furnish the desired subsequence j as
a subsequence of (1, - -+, p). We can further assume that f(r,)v,(ro) > 0, since
the contrary case can always be reduced to it: if not f(ro)ve(re) > 0, then
f(o)vo(70) < 0, hence, by (12), f alternates on some (r_, , - - - , 7,) for some addi-
tional point 7, .

If now f(z;)v;(v;) > O for¢ = 0, --- , g, then we are done. Otherwise,

fx)vi(rs) >0 for 7=0,---,r—1 and v.(r,) =0

for some r ¢ (0, ¢, giving j;, = 4,7 = 0, --- , r — 1. But then, since v, # 0,
etther v,(t) ¥ 0 for some ¢ > 7, , hence, as f(r,) # 0, r, < t, for some se J, ,
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therefore v,(r;) = 0 for 2 = 0,--- ,7rand p = r + 1, ---, ¢, and so
fi= 2.0 (—1)*v, would alternate on 7, , - - - , 7, while having only r — 1
sign changes in its B-spline coefficients, an impossibility; or v,(f) # 0 for some
t < 7, ,hencet, < 7, for some se J, , therefore v,(r;) = 0foru =0, --- ,r —1
andi=r,---,qandso f:= E,‘,,," (—1)*», agrees with fonr, , - -+, 7, hence

alternates there and the induction hypothesis supplies the missing part j, , - - - , 7,
of the subsequence j as a subsequence of (r, --- , p). O

It now follows that, for any nondecreasing sequence (r,),", Vf := >_: f(r: )N .
has no more sign changes than does f. In fact

(13) SVi—9=80—-9 on [&,t.]

for every constant function ¢ since Zi N, .. = 1 on that interval. Further, since
for every straight line £ on [t , t,.1],

n

(= {z(fi) + 1:‘“(7,.)(2 tiv:i — (k — 1)1,.)/(1c — 1)}N,»,k

i=1
(see [4]), we even have (13) whenever ¢ is a straight line provided we choose
(14) T = (ti+1 + -+ ti+k-1)/(k - 1)7 1= 1’ N (2

The resulting approximation is known as Schoenberg's variation diminishing
spline approximation. Schoenberg introduced this scheme in [5], promising to
give a complete proof of its variation diminishing property elsewhere. Marsden
and Schoenberg discuss the scheme further in [4], referring for a proof of Theorem
3 above to [6]. Schoenberg’s scheme was generalized to Chebyshev splines by
Karlin and Karon [2].
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