
MECHANISMS FOR EFFICIENT

SHARED-MEMORY, LOCK-BASED SYNCHRONIZATION

BY

ALAIN KÄGI

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the University of Wisconsin—Madison

1999

© Copyright by Alain Kägi 1999
All Rights Reserved

i

Abstract

Efficient locking synchronization primitives are essential for achieving high

performance in fine-grain, shared-memory parallel programs. One function of

locking primitives is to enable exclusive access to shared data and critical sec-

tions of code. In this dissertation, I make the following six contributions. (1) I pro-

pose a framework, the synchronization period, in which to reason about the

inefficiencies of locking primitives. (2) I identify four previously proposed locking

mechanisms (local spinning, queue-based locking, collocation, and synchronous

prefetch) and uses them to classify existing locking primitives according to which

of these mechanisms they incorporate. (3) With detailed simulations, I show the

extent to which these four mechanisms can improve the performance of shared-

memory programs. I evaluate the space of these mechanisms using sixteen syn-

chronization constructs, which are formed from six base types of locks (test&set,

test&test&set, MCS, LH, M, and QOLB). I show that large performance gains

(speedups of more than 1.5 for three of six benchmarks) can be achieved if at least

three locking mechanisms are used simultaneously. I find that QOLB, which is the

first primitive to incorporate all four mechanisms, outperforms all other primi-

tives in all cases. I also find that test&test&set with the collocation mechanism

and the exponential back-off policy is able to achieve, in most cases, a perfor-

mance comparable to QOLB without collocation. (4) I identify six hardware mecha-

ii
nisms required to support each of the four locking mechanisms (naming, protocol

processing, synchronous cache-to-cache transfer, place holder allocation, non-

blocking instructions, and association of lock and data). For each of these hard-

ware mechanisms I discuss several implementation alternatives. (5) I show that

is it possible to implement on today’s hardware an efficient synchronization prim-

itive that incorporates the four locking mechanisms. To this end, I describe and

evaluate SOFTQOLB, a software implementation of QOLB on a departmental cluster

of unmodified workstations. (6) I propose a new locking primitive, called VAQUM,

that has, with the programmer’s cooperation, the potential to outperform existing

primitives. I describe and evaluate CLEAN, a distributed shared-memory system

that implements VAQUM.

iii
A ma mère,
à mon père

iv

v

Acknowledgments

I have benefited from the help and support of a great many people while com-

pleting this dissertation. I would like to take this opportunity to thank them.

First, I would to like thank my advisor Jim Goodman for years of support and

guidance, and for all that he has taught me, both as an architect and as a

researcher. I would also like to thank Mary Vernon, David Wood, Guri Sohi, and

Parmesh Ramanathan for their time and effort spent reviewing and providing

great advice that helped me improve the presentation of this work. Mark Hill,

Jim Smith, and Michael Ferris also provided invaluable guidance and encourage-

ment.

I am truly grateful to Scott Breach, Doug Burger, Babak Falsafi, and T. N. Vijay-

kumar, who were my closest friends during these years spent in Madison and

made my stay in graduate school more enjoyable. I am also indebted to Todd Aus-

tin, Andy Glew, Stefanos Kaxiras, Alvy Lebeck, Andreas Moshovos, Subbarao

Palacharla, Dionisios Pnevmatikatos, Ravi Rajwar, Steve Reinhardt, and Ioannis

Schoinas. Finally, I owe my deepest gratitude to Tia Newhall and Martha

Townsend, who provided me with a shelter and helped me maintain a semblance

of sanity in the final stretch.

Most of all, I would like to thank my parents Rési and René Kägi, and my sister

Florence Rikly for their love and support.

vi
This work was supported in part by NSF Grants CCR-9207971 and CCR-9509589,

funding from the Apple Computer Advanced Technology Group, an unrestricted

grant from the Intel Research Council, and equipment donations from Sun Micro-

systems. The Thinking Machines CM-5 was purchased through NSF Institutional

Infrastructure Grant No. CDA-9024618, with matching funding from the Univer-

sity of Wisconsin Graduate School.

vii
Contents

Abstract . i

Acknowledgments . v

Contents. .vii

List of figures . xi

List of tables . xiii

1 Introduction . 1

1.1 Problem statement . 2

1.2 Thesis contributions . 7

1.2.1 Synchronization period . 8

1.2.2 Locking mechanisms . 9

1.2.3 Performance of locking primitives . 11

1.2.4 Implementation of locking primitives . 13

1.2.5 VAQUM . 15

1.3 Historical perspective and related work . 17

1.3.1 Synchronization primitives . 17

1.3.2 Framework/formalization . 31

1.3.3 Evaluation . 32

1.3.4 Implementation . 44

1.3.5 CLEAN . 46

1.4 Thesis organization . 50

viii
2 Experimental methodology . 51

2.1 Microbenchmarks . 53

2.1.1 Standard microbenchmark . 53

2.1.2 Extended microbenchmark . 55

2.2 Shared-memory applications . 57

2.2.1 Barnes . 59

2.2.2 Mp3d . 61

2.2.3 Ocean . 63

2.2.4 Pthor . 64

2.2.5 Raytrace . 66

2.2.6 Water-Nsq . 68

2.3 Simulation environment . 70

2.4 Experimental platform: COW . 74

2.5 Application characterization . 76

2.5.1 Working sets . 76

2.5.2 Locking . 81

3 Performance of synchronization primitives. 83

3.1 Introduction . 83

3.2 Synchronization period . 84

3.3 Synchronization inefficiencies . 86

3.4 Locking mechanisms . 89

3.5 Synchronization primitives . 91

3.5.1 Test&set . 92

3.5.2 Test&test&set . 94

3.5.3 MCS locks . 95

3.5.4 Anderson’s lock . 96

3.5.5 Graunke and Thakkar’s lock . 97

3.5.6 LH and M locks . 97

3.5.7 QOLB . 98

ix
3.5.8 Lee and Ramachandran lock . 100

3.5.9 Fine-grain data prefetching and forwarding 100

3.5.10 Reactive synchronization . 101

3.6 Experimental evaluation . 102

3.6.1 Methodology . 102

3.6.2 Microbenchmark results . 105

3.6.3 Macrobenchmark results . 108

3.6.4 Individual mechanisms . 113

3.7 Future technology . 115

3.8 Small caches . 117

3.9 Summary . 120

4 Implementation of synchronization primitives 123

4.1 Introduction . 123

4.2 Hardware mechanisms for synchronization . 125

4.2.1 Naming . 126

4.2.2 Protocol processing . 128

4.2.3 Synchronous cache-to-cache transfer . 130

4.2.4 Placeholder allocation . 132

4.2.5 Non-blocking instructions . 133

4.2.6 Association of a lock and data . 136

4.3 Putting it all together . 137

4.3.1 Proof of concept . 141

4.4 Related work . 148

4.5 Summary . 149

5 A detailed study of collocation . 151

5.1 Introduction . 151

5.2 Known collocation strategies . 154

5.2.1 Prefetching as collocation . 154

5.2.2 Cache lines as collocation enabler . 155

x

5.3 A new collocation strategy: VAQUM . 160

5.4 CLEAN . 162

5.5 Results . 164

5.6 Related work . 165

5.7 Summary . 167

6 Conclusion . 171

6.1 Thesis summary . 171

6.2 Future directions . 175

6.2.1 Synchronization primitives and out-of-order execution 175

6.2.2 Synchronization performance in non-scientific workloads 175

6.2.3 Wait-free synchronization . 176

6.2.4 Unification of speculative execution and wait-free synchronization

176

SOFTQOLB . 179

References . 195

xi
List of figures

1.1 Shared-memory multiprocessor . 3

1.2 Synchronization period . 9

1.3 Relative performance of CPU and memory plotted over time 14

2.1 Experimental structure . 52

2.2 Principal microbenchmark . 54

2.3 Extended microbenchmark . 56

2.4 Total cache misses versus cache size . 80

3.1 Breakdown of one synchronization period . 88

3.2 QOLB code example . 99

3.3 Microbenchmark performance . 107

3.4 Effect on individual locking mechanisms . 115

4.1 Memory and shadow mappings . 134

4.2 Microbenchmark performance . 145

4.3 Applications performance . 147

5.1 Performance of collocation versus line size . 159

xii
5.2 Message latency versus message size . 161

5.3 CLEAN results . 164

A.1 Cache-side state transitions for the Stache cache coherence protocol 184

A.2 Home-side state transitions for the Stache cache coherence protocol 185

A.3 Cache-side state transitions for the QOLB cache coherence protocol . 191

A.4 Home-side state transitions for the QOLB cache coherence protocol . 192

xiii
List of tables

2.1 Benchmarks . 57

2.2 Parameter settings . 72

2.3 Inaccuracies of the constant latency network model 73

2.4 Important working sets and their sizes for each benchmark 79

2.5 Critical section statistics . 81

3.1 Inefficiencies addressed by locking mechanisms 89

3.2 Synchronization primitives . 92

3.3 Number of remote transfers for acquire . 93

3.4 Macrobenchmarks . 105

3.5 Speedups of synchronization primitives . 109

3.6 Experiment pairs . 114

3.7 Speedups of synchronization primitives assuming future technology pa-

rameters . 117

3.8 Speedups of synchronization primitives assuming caches that fit the sec-

ond largest working set of each application . 119

4.1 Summary of implementation alternatives for each hardware mechanism

125

xiv
4.2 Some implementation alternatives . 140

5.1 Summary of the CLEAN interface . 163

A.1 The possible messages sent among nodes to support Stache 183

A.2 The possible messages sent among nodes to support QOLB 188

1

Chapter 1

Introduction

At any given time, the available technology limits the performance achievable

by a single processor. However, a parallel system composed of multiple processors

has the potential to overcome this limitation. Ideally, these processors are all per-

forming useful computation. In other words, processors in conjunction are only

executing instructions that a single-processor system would execute. No proces-

sor is duplicating work and no processor is idle. Unfortunately, parallel systems

seldom realize this ideal execution. One of many factors contributing to inefficien-

cies is the focus of this thesis, namely, inefficiencies in coordinating and synchro-

nizing activities performed on the processors. Other sources of inefficiencies

include, for instance, load imbalance when a node finishes work ahead of the oth-

ers, inter-processor communication delays, and scheduling inefficiencies.

Achieving ideal performance for any program on a parallel system is almost cer-

tainly an utopian goal. However, inefficiencies need not be completely overcome

for such a system to be cost-competitive with single-processor systems [WH95].

2

Thus, even if the perfect execution is not achievable, the goal is to wrest the best

performance possible from a parallel architecture.

1.1 Problem statement

This thesis considers the inefficiencies introduced by synchronization activities.

Specifically, the thesis addresses the questions of how to reduce or even to elimi-

nate said inefficiencies, as well as how to implement efficient synchronization

support on current and future systems. This work focuses on lock-based synchro-

nization in the context of shared-memory multiprocessors running parallel

shared-memory programs.

A multiprocessor is a computing system composed of multiple processors and

memory modules connected together through an interconnection network (see

illustration in Figure 1.1). Each node of the network may attach either a proces-

sor, or a memory module, or both. This network permits the different nodes to

exchange data by sending requests and receiving responses. The purpose of this

configuration is to exceed the computing power achievable by a single-processor

system; this thesis does not consider the use of multiple processors for fault toler-

ance achieved through redundancy.

Multiprocessors typically support either the message passing or the shared-

memory programming paradigm (sometimes both). In the traditional message

passing model, processors communicate with each other by accessing the inter-

connection network directly to send and receive messages. This paradigm allows

the programmer to optimize data movement among the nodes in the system and

3

to use the characteristics of the network optimally (e.g., optimize for delivery

speed or optimize for throughput). However, the message passing model forces

programmers to specify explicitly any communication required among the nodes

in the system. Such specification may be challenging to implement both effi-

ciently and correctly, and may, ultimately, restrict the parallelization strategy.

In contrast, for programmers, the shared-memory model is an attractive pro-

gramming paradigm for multiprocessors. This model provides programmers with

an intuitively appealing programming model as well as affording reasonably effi-

cient implementations. First, a programmer’s intuition developed on single-pro-

cessor systems still holds on shared-memory multiprocessors, since a load from

any node of a (shared-) memory location still returns the value last written in

that location. This model implicitly supports communication among processors in

the multiprocessor through conventional load and store instructions. The under-

lying memory system will satisfy a processor’s request to read or write a remote

memory location by sending and receiving messages to the appropriate memory

Figure 1.1 Shared-memory multiprocessor. A minimal shared-memory multiprocessor
configuration consists of a collection of processors (with caches) and memory modules
connected together by an interconnection network.

Interconnection network

Proc.

Cache

Mem.

Proc.

Cache

Proc.

Cache

Mem. Mem.

...

...

4

module on the processor’s behalf. Second, implementations of the shared-memory

model provide efficiency through replication of data in local caches associated

with each processor in the system. In other words, to remove the necessity of

remote communication on every access, the memory system temporarily keeps

copies of values locally.

A shared-memory multiprocessor executes multiple threads of control; typically

at least one on each processor. Without loss of generality, I will assume that all

threads of control execute the same program, each thread typically working on a

different part of the data set. This execution model is known as the single pro-

gram, multiple data streams (SPMD) paradigm. A related execution model appro-

priate for multiprocessors is the multiple instruction streams, multiple data

streams (MIMD) paradigm, in which each processor executes different instructions

operating on different data. However, MIMD is not inherently more powerful than

SPMD. Indeed, it is easy to simulate behavior of the MIMD model with an SPMD pro-

gram: each processor executes different instructions by running in a distinct sec-

tion of the program.

In the SPMD execution model, each processor of the shared-memory multiproces-

sor executes at least one instance of the parallel program. I will refer to such an

instance as a process. It is conceivable to execute many processes multiplexed on

each processor of the system. Indeed, this possibility has existed for decades on

uniprocessors and is the reason that shared-memory multiprocessors seem “natu-

ral.” The goal of running more than one process per processor is to increase the

utilization of the processors in the system. Multiplexing attempts to enhance pro-

5

cessor utilization by switching to another process whenever the process currently

executing is idle waiting for an event unlikely to occur immediately. Additional

processes can worsen synchronization inefficiencies, since contention to synchro-

nization resources will increase. This thesis does not study the impact of multi-

plexing on the inefficiencies and performance of synchronization activities;

therefore I will assume that a single process executes per processor. However, the

solutions to reduce lock contention studied in this thesis are likely to benefit

these systems also.

The processes of a parallel program running on a shared-memory multiproces-

sor communicate by writing new values in memory that other processes later

read. The correctness of many parallel programs depends on the ability of a pro-

cess to observe new memory values at the “right moment.” A process might start

a sequence of changes that leaves a data structure temporarily inconsistent; as a

result other processes should not attempt to read the data structure until the

sequence has completed. A good example of this concept is the transfer of a sum

of money from a bank account (say Alfred’s) to another (Béatrice’s). This transac-

tion requires two steps: (1) debit Alfred’s account by the sum of money, and (2)

credit Béatrice’s account by the same amount. A snapshot of all account balances

taken after step (1) but before step (2) is inconsistent with the total amount of

money stored at the bank: it is short by the amount of the transfer. In contrast, a

snapshot taken either before or after the execution of the transaction produces a

consistent view of the bank accounts. Accordingly, for correctness, some sequence

6

of modifications or “transaction” must take place atomically: these modifications

must appear completely performed or not yet performed at all.

A popular method to ensure that a set of modifications appears atomic is to cou-

ple them with a lock. Once a process acquires a lock, no other processes will be

able to do so until the current lock holder releases it. By convention, then, pro-

cesses wishing to perform an atomic transaction must acquire a corresponding

lock first, which, once granted, guarantees its current owner that no other pro-

cesses will be attempting to access locations touched by the transaction. When

the lock owner has finished its set of accesses, it grants access to these locations

to other processes by releasing the lock.

The instructions implementing lock acquisition and release are commonly

referred to as synchronization or locking primitives. These primitives may corre-

spond to a single instruction or to a sequence of instructions implementing a

more elaborate algorithm. For instance, if the only atomic memory operations

available are load and store instructions, implementing a locking primitive will

require a non-trivial algorithm such Lamport’s bakery algorithm [Lam74]. On the

other hand, a processor may implement a complete synchronization solution in

its instruction set requiring a single instruction to release or to acquire a lock.

Another popular method to coordinate activities in parallel programs are barri-

ers. Although barriers are important to efficient shared-memory programs, they

are well understood and many efficient implementations have been proposed or

built [AC89, GLR83, KS93, LAD+92, PBG+85, Sco96, UIT94]. In this study, I

focus on providing more efficient mutual exclusion through better locks.

7

It is important that an implementation minimize the delays when accessing

either an uncontested or a contested lock. On one hand, a program should both be

able to acquire and to release an uncontested lock quickly in order to maximize

the serial performance of an individual processor. On the other hand, since the

access to a lock is by definition serialized among processors, large inefficiencies

when accessing a contested lock may degrade both performance and scalability.

To maximize both the performance of parallel programs that use locking and the

potential to scale to larger numbers of processors, a lock implementation must

also minimize the delays associated with the transfer among caches of values

accessed by an atomic transaction.

In the view of the importance of efficient synchronization for parallel programs

that use locking on shared-memory multiprocessors, the goals of this thesis are as

follows:

• Identify the sources of inefficiencies in lock synchronization

• Compare the performance of locking primitives proposed to-date

• Propose and evaluate improved primitives

• Develop implementation alternatives of the new primitives

1.2 Thesis contributions

This thesis makes six distinct contributions. First, it proposes a framework, the

synchronization period, in which to reason about the inefficiencies of locking

primitives. Second, it identifies four previously proposed locking mechanisms

(local spinning, queue-based locking, collocation, and synchronized prefetch) and

8

uses them to classify existing locking primitives according to which of these

mechanisms they incorporate. Third, it presents the first quantitative evaluation

comparing the performance benefits of each individual locking mechanism. It also

presents the first quantitative evaluation of the locking primitive called QOLB

[GVW89] with a microbenchmark and six shared-memory parallel applications

comparing its performance with sixteen previously proposed locking constructs

including test&set, test&test&set [RS84], MCS [MCS91a, MCS91b], and the reac-

tive synchronization algorithm [LA94]. Fourth, it discusses practical issues in

implementing each of the identified locking mechanisms on current and future

shared-memory multiprocessors. Fifth, I show that it is feasible to implement on

today’s hardware an efficient synchronization primitive that incorporates the four

proposed locking mechanisms. Finally, it proposes a new locking primitive, called

VAQUM, that has, with the programmer’s cooperation, the potential to outperform

existing primitives. In the next five subsections, I discuss each contribution in

more detail. A review of related work, and how it contrasts with these contribu-

tions, appears in Section 1.3.

1.2.1 Synchronization period

To understand where the opportunities for optimization lie, I divide the time

associated with a complete locking period into three phases: transfer, load/com-

pute, and release (see illustration in Figure 1.2). Together, these phases form a

synchronization period, which determines an upper bound on the global through-

9

put of synchronization operations achievable and, thus, may play an important

role in determining scalability for programs that rely heavily on locks.

The synchronization period is not a device that can serve to predict a program’s

performance, but rather a framework in which to reason about synchronization

inefficiencies and to evaluate qualitatively the benefits of optimizations. In par-

ticular, I will use the synchronization period to discuss the merits of the four lock-

ing mechanisms described in the next subsection.

1.2.2 Locking mechanisms

I identify a set of four previously proposed mechanisms that locks may incorpo-

rate to reduce the inefficiencies or time spent in the three phases of the synchro-

nization period. They are local spinning, queue-based locking, collocation, and

synchronous prefetch.

one synchronization period

Time

A second processor

Release

Figure 1.2 Synchronization period. The synchronization period consists of three phases:
transfer, load/compute, and release. The depicted scenario assumes a contended lock.

Load/compute ReleaseTransfer

acquires that lock

completion

Transfer

releases a lock
A processor

The second processor
releases that lock

10
Local spinning permits a requesting node to spin on a local copy of the lock

while waiting for it to be released, reducing traffic on the interconnection net-

work. Queue-based locking builds a queue of processors waiting for a lock, reduc-

ing arbitration inefficiency and the time to transfer the lock. With this

mechanism, arbitration is performed fairly and exactly once for each processor

joining the queue. Primitives such as test&set arbitrate among all contending

processors each time the lock is released: when the lock is freed, all the waiting

processors attempt to acquire the lock collectively but only one will succeed.

These failed attempts waste network bandwidth. Furthermore, schemes such as

test&set do not guarantee fairness. Queue-based locking also provides the oppor-

tunity to optimize lock transfer by identifying ahead of time the lock releaser and

the new acquirer. Therefore, the processor releasing the lock can forward it

directly to its new destination. Collocation transfers critical data simultaneously

with the lock, thus reducing the inefficiencies associated with accessing data pro-

tected by the lock. Synchronous prefetch allows a process to issue a request for a

lock in advance of the critical section, hopefully overlapping useful computation

with the lock transfer.

Using the synchronization period, I demonstrate how each mechanism reduces

or even completely eliminates synchronization inefficiencies. This analysis

induces a partial ordering of known synchronization primitives allowing a quali-

tative discussion of the relative merits of these primitives. This ordering is estab-

lished by comparing the mechanisms that each primitive implements.

Unfortunately, this framework is not universal since these mechanisms cannot

11
help reason about certain synchronization primitives such as fetch&add

[GGK+83] and the load-reserve/store-conditional instructions [JHB87]. This

framework successfully incorporates test&set, test&test&set, MCS locks, Ander-

son’s locks [And89, And90], Graunke and Thakkar’s locks [GT90], LH and M locks

[MLH94], Lee and Ramachandran’s scheme [LR90], QOLB, and message based

locks [KCK99]. I classify each of these synchronization primitives according to

which mechanisms they incorporate. An earlier presentation of this framework

and classification scheme appears elsewhere [KBG97].

1.2.3 Performance of locking primitives

Using detailed simulation with both a microbenchmark and six parallel shared-

memory applications, I measure the performance of six locking primitives:

test&set, test&test&set, MCS locks, LH and M locks, and QOLB. Whenever possible

and sensible, I extend these primitives with the mechanisms listed in the previ-

ous subsection, as well as with exponential backoff (a policy regarding actions

taken when a process fails to acquire the lock). I also measure the performance of

reactive synchronization schemes, which attempt to select dynamically the primi-

tive best suited for a given level of contention for a lock. In the implementation

that I study in this dissertation, the reactive synchronization chooses between

test&set with exponential back-off for low contention phases and MCS for high

contention phases.

I evaluate the performance of these different synchronization primitives by

measuring the running time of both a simple microbenchmark and six shared-

12
memory applications. The microbenchmark demonstrate the performance poten-

tial of each locking primitive by measuring the elapsed time as a varying number

of processors access a critical section a fixed number of times evenly distributed

among the contenders. This microbenchmark is similar to the one used by both

Anderson [And89, And90], and Lim and Agarwal [LA94]. In this test program,

each processor repeatedly acquires a lock, waits a constant amount of time,

releases the lock, and waits a bounded random amount of time before attempting

to acquire the lock again. Under low contention, this microbenchmark illustrates

the inefficiencies of acquiring and releasing a lock. With increasing levels of con-

tention, this microbenchmark demonstrates the inefficiencies associated with

transfering the lock from a processor to the next.

I also evaluate the performance of locking primitives by measuring the running

time of six applications drawn from the SPLASH [SWG92] and SPLASH-2 [WOT+95]

benchmark suites. These benchmarks are Barnes, Mp3d, Ocean, Pthor, Raytrace,

and Water-Nsq. A subset of the performance measurements and analyses pre-

sented here appears elsewhere [KABG95, KBG97].

In addition to the evaluation of individual locking primitive, I also estimate the

performance benefits that can be expected from each individual locking mecha-

nism. I also quantify the benefit of exponential back-off.

A qualitative performance evaluation such as the one presented in this thesis

may be highly dependent on assumptions that are valid at the time of this writ-

ing, but that may no longer be realistic in the future. To add to the robustness of

these results, I perform some sensitivity analysis running some key experiments

13
using two different sets of assumptions. One set is representative of the current

state of technology, while the second set is an attempt to model technology as it is

likely to stand five years hence.

The performance of locking primitives is particularly sensitive to memory and

interconnection network latencies. Indeed, synchronization primitive operations

consist mostly of memory accesses to acquire and to release a lock and message

transmissions to transfer the lock from a processor to another. The relative

speeds of processors, memory units, and interconnection networks has changed

dramatically over the years. For example, during the past three decades the

speed at which a processor can initiate instruction execution has improved much

faster than the speed at which a memory system can supply data (as illustrated

in Figure 1.3). This trend has created a gap that reveals the growing importance

of minimizing the number of memory accesses. Similarly, network latencies (deal-

ing with even greater physical distances) are unlikely to match the pace set by

the rate of instruction execution in modern processors. In the same way, this

other trend stresses the importance of minimizing the number of messages sent

on the network. Therefore, the synchronization inefficiencies are likely to grow

worse, lending increasing importance to efficient locking primitives. Indeed, the

results presented in this thesis corroborate this analysis.

1.2.4 Implementation of locking primitives

The synchronization period allows us to understand the inefficiencies associ-

ated with mutual exclusion and to understand the requirements to achieve syn-

14
chronization with minimal impact on performance. However, the full support for

such very efficient synchronization may be prohibitive. I address this issue by

proposing and discussing a range of implementations that represent different dis-

crete points in the performance/cost spectrum. In particular, I identify six hard-

ware mechanisms required to support each of the four locking mechanisms. These

hardware mechanisms are naming, protocol processing, synchronous cache-to-

19
80

19
85

19
90

19
95

20
00

Year

1000

2000

3000
P

er
fo

rm
an

ce

CPU

memory

10000

Figure 1.3 Relative performance of CPU and memory plotted over time. The original
data for this figure appears in the second edition of Computer Architecture: A Quantitative
Approach [HP95]. The memory baseline is 64-KB DRAM in 1980, with three years to the next
generation and a 7% per year performance improvement in latency. The CPU line assumes a
1.35 improvement per year until 1986, and a 1.55 improvement thereafter. Note that the DRAM

improvement is barely noticeable. The vertical axis must be on a logarithmic scale (as shown
in inset) to record a change.

100

1000

19
80

19
85

19
90

19
95

20
00

10

1

0

15
cache transfer, place holder allocation, non-blocking instructions, and association

of lock and data. For each of the six hardware mechanisms I discuss several

implementation alternatives. Some of these alternatives can be implemented

with today’s processors; while other proposed implementations require modifica-

tions to the microprocessor or its external interface. While attempting to evaluate

the actual cost of each proposed alternative is plainly impossible, I still attempt

to evaluate the relative cost of each implementation.

Finally, I demonstrate that it is feasible to support on today’s hardware an effi-

cient synchronization primitive that includes all four locking mechanisms. To this

end, I describe and evaluate SOFTQOLB, a software implementation of QOLB on a

departmental cluster of workstations that consists of unmodified dual processor

Sun SPARCstation 20s, each with two 66-MHz HyperSPARC processors [ROS93].

1.2.5 VAQUM

Implementations of the shared-memory paradigm achieve efficiency through

data replication in caches associated with each processor in the system. A coher-

ence protocol maintains consistency of the contents of these caches. As a rule the

protocol maintains coherency at a granularity of a fixed cache line size. Locking

primitives that support collocation operate on variables stored in these cache

lines. Therefore, the size of the cache line constrains the collocation strategy and

the performance gain expected from collocation. For instance, if the critical data

does not fit in a single cache line, access to the part of the data that does not

reside in the same cache line as the lock may lead to undesirable cache misses.

16
To overcome this limitation, I propose a new locking primitive, VAQUM, where

the user specifies what the critical data are and when their access must be exclu-

sive. VAQUM enforces mutual exclusion and efficiently ships all the critical data to

the next processor, if any. I implement VAQUM as an extension to SOFTQOLB, the

efficient synchronization implementation discussed earlier.

The technique of sending related data as a unit naturally extends to any data

structure in a program, not just those accessed through a critical section. In

essence, this technique allows the user to select the cache coherence granularity

best suited for the access patterns to each data structure allocated in memory

and provides efficient support for synchronization if the program requires exclu-

sive access to any such data structure.

In summary, this extension combines the performance benefit of efficient syn-

chronization with the flexibility of selecting the sharing granularity to match best

the access patterns of different data structures allocated by a program.

I describe and evaluate CLEAN, a distributed shared-memory system that imple-

ments VAQUM and allows the user to specify, for specific regions of memory, the

granularity at which cache consistency should be kept. For ease of implementa-

tion, CLEAN restricts the possible values of grain sizes to be any power of two

between 32 and 2,048 bytes (inclusive). To avoid complications, CLEAN’s memory

allocator handles all allocation requests for shared-memory. In particular, the

allocator rounds each request to the nearest power of two that is larger than the

request. The difference between the request and the actual region of memory

allocated is left unused (but still transferred with the used part of the object).

17
1.3 Historical perspective and related work

This section briefly reviews previous and parallel work related to the contribu-

tions presented in this document. More detailed reviews and comparisons to

related work appear as necessary in each chapter.

1.3.1 Synchronization primitives

Test&set was the only synchronization primitive available on numerous early

systems (such as the IBM 360 series [ABB64]). Originally intended to help coordi-

nate processes running multiplexed on time-shared uniprocessors, test&set was

later also used as a synchronization primitive on multiprocessor systems.

Although it performs adequately in the absence of contention, test&set is very

inefficient in a multiprocessor under heavy load. Indeed, when two or more pro-

cessors are waiting to obtain a lock, test&set can generate an unbounded amount

of traffic on the interconnection network. This observation led Rudolph and Seg-

all to propose test&test&set [RS84], which reduces the load on the network by

having waiting processors spin on a local copy of the lock. Local spinning bounds

the traffic generated to at most messages per locking transaction, where

is the number of processors attempting to get the lock.

Test&test&set still has the potential to generate a lot of unnecessary traffic.

Even worse the destination of all that traffic may be a single node (the “hot spot”)

leading to congestion that can degrade the performance of the entire system

[PN85]. To mitigate the impact of hot spots, Rudolph and Gottlieb first proposed

combining requests in the interconnection network [Rud81]: when two requests

O N() N

18
to the same memory location meet in a switch competing for the same output

port, the switch sends a single combined request in place of the two conflicting

requests; the switch later creates two separate replies based on the reply to the

combined request. The two key benefits of this technique are that it has the

potential to satisfy requests in time and that its effectiveness increases

with network load. Applying this technique to the synchronization primitives

reviewed so far, it is easy to see that test&set is combinable. In addition to

test&set, many other types of requests are combinable [KRS86]. Among them,

the two most widely studied combinable requests are probably fetch&add (add a

constant addend to a memory location and return the old value stored herein)

and fetch&increment (a special case of fetch&add, where the only permitted

addends are ±1) [GK81, GLR83, GGK+83, PBG+85, KRS86, RCCT90, FG91].

Both of these primitives can implement mutual exclusion (they can be seen as

generalizations of test&set) but also form the basis of highly concurrent imple-

mentations of important coordination problems such as the readers-writers prob-

lem and the queue data structure [GLR83].

Fetch&add in conjunction with combining has the potential to reduce the

impact of hot spots and permits highly concurrent data structure implementa-

tions, but this approach suffers also from a number of drawbacks. Obviously,

fetch&add complicates the design of the network switches and the memory mod-

ules, which may slow down traffic. But, perhaps the most serious limitation of

this proposal is that it omits the concept of caching. Although, cache-coherent

shared-memory systems can support an instruction like fetch&add; I am not

N O 1()

19
aware of any proposal that integrates coherent caches and combinable synchro-

nizing instructions successfully. The reason for the lack of a successful integra-

tion, so far, may stem from the conflicting nature of request combining and

caching. On one hand, request combining is inherently a non-local phenomenon:

it is most effective where requests converge, on their way to some destination,

away from their sources. On the other hand, caching is a mechanism that

attempts to eliminate remote communication entirely by keeping copies of fre-

quently accessed data in a fast local memory. An integrated solution requires the

reconciliation of these two conflicting requirements.

While combinable memory requests such as fetch&add attempt to reduce the

impact of (synchronization) traffic in the interconnect, distributed queue-based

locking primitives attempt to minimize the number of network transactions

required to acquire and release a lock to messages. These latter primitives

maintain a queue of waiting processors, in which each node maintains pointers to

adjacent processors in the queue. These primitives minimize network traffic, (1)

by performing arbitration among contending processors as each processor enters

the queue, (2) by allowing each waiting processor to spin locally on a copy of the

lock (as with test&test&set), and (3) by restricting the number of nodes involved

in the lock transfer.

Goodman, Vernon, and Woest first describe such a queue-based locking primi-

tive, which they call QOLB1 [GVW89]. QOLB (pronounced “Colby”) maintains the

queue of waiting processors in hardware storing pointers to adjacent queue

1. Originally called QOSB.

O 1()

20
entries in fields associated with each cache line (thus extending each cache line

state). When a processor requests a lock, it first allocates a cache line (containing

initially stale data) and then sends a request to join the queue. The processor

waits for the lock by spinning locally until the cache line contains valid data sent

from the previous lock owner. When the holder releases the lock, it sends the cor-

responding cache line directly into the next processor’s cache, thus transferring

the lock in exactly one network message.

Since QOLB defers the transfer of the cache line holding the lock until the pro-

cessor explicitly releases it, it is constructive to place data accessed in the critical

section protected by the lock in the same cache line as the corresponding lock. In

effect, this optimization allows useful data to be transferred along with the lock,

thus reducing or possibly eliminating cache misses completely during the execu-

tion of the critical section. Therefore, the collocation of lock and protected data in

the same cache line reduces network traffic and shortens the time a processor

holds a lock, thus decreasing lock contention. Finally, QOLB is a non-blocking

primitive; therefore a program can request access to a lock ahead of time, hope-

fully further decreasing a program’s running time by overlapping lock transfer

time with other useful computation.

Inspired by QOLB, the Stanford DASH multiprocessor prototype implements a

queue-based synchronization primitive [LLG+92]. However, instead of storing the

queue in a distributed manner across the caches in the system, the prototype

stores the queue at the directory. This organization leads to a simpler design, but

also introduces a level of indirection that increases the lock transfer time. Thus,

21
the lock can no longer be transferred directly from the releaser to the subsequent

acquirer; instead the lock must always go through the directory. Also this primi-

tive names synchronization variables in an address space separate from the regu-

lar shared-memory address space. In the current implementation, there is no

possibility to establish a correspondence between a synchronization variable and

associated data precluding collocation.

VAQUM, proposed in this thesis, is an extension of QOLB that improves the han-

dling of protected data associated with a lock. In a single network message, QOLB

can transfer a lock and its associated data by allocating those data and the lock in

the same cache line purposefully. The (usually fixed) size of the cache line limits

the effectiveness of this technique. The size of protected data may be much

smaller than a cache line size leading to messages carrying mostly useless infor-

mation. Alternatively, exclusive data may overflow a single cache line, in which

case additional cache misses caused by references to overflowed data will slow

down the critical section execution. VAQUM optimizes the transfer of the lock and

associated data by selecting the message size most appropriate for a given critical

section. If the amount of data associated with a lock is large, VAQUM will select a

message large enough to accommodate all of the protected data. Thus, VAQUM will

ensure data delivery at that the destination in one logical unit; as a result the

processor will not incur misses while executing in the critical section. On the

other hand, if the program associates little data with the lock, VAQUM will select a

small message, thus speeding up the lock transfer. In the extreme, a program

may not collocate any data with the lock at all, in which case VAQUM degenerates

22
into a primitive resembling message-based locks that I review later in this sec-

tion.

Lee and Ramachandran propose an extension of QOLB that supports read locks

[LR90]. However, their technique only applies to bus-based systems without obvi-

ous ways to extend it to other systems with arbitrary network topologies.

Anderson [And89, And90], and Graunke and Thakkar [GT90], independently

describe queue-based locking algorithms implemented entirely in software. Sub-

sequently, Mellor-Crummey and Scott describe improvements to Anderson’s algo-

rithm in related papers [MCS91a, MCS91b]. These proposals allocate data

structures in shared memory and insert processors in lists or circular arrays

using atomic instructions such as swap or compare&swap to update the concur-

rent data structures correctly. The price of maintaining the queue in software is

somewhat larger inefficiencies. A synchronization period still requires only

messages to complete, but instead of just one message (as is the case for QOLB or

VAQUM), the critical path of a lock transfer requires typically two global shared-

memory operations [MLH94]. Also, since each waiting processor spins on a dis-

tinct memory address, exclusive data cannot be effectively collocated with the

lock. Finally, these approaches cannot easily prefetch accesses to a lock effec-

tively. The difficulty resides in the fact that these algorithms require different

numbers of memory accesses to acquire a lock depending on the state of that lock.

If a lock is busy, at least two memory accesses are required to obtain the lock, the

first of which needs to complete before the second access can be issued definitely.

O 1()

23
While a process could easily prefetch the first access, coordinating the prefetch of

the second memory access is more difficult to accomplish.

Numerous extensions to these basic software queueing algorithms have been

proposed. Magnuson, Landin, and Hagersten [MLH94] and Craig [Cra93] discuss

algorithms that have a slightly better cache behavior under medium contention.

Also, none of the synchronization primitives studied in this thesis are robust in

the presence of failure; in other words a process that fails to release a lock for

some reason (e.g., the user is running an incorrect program or one node of the

multiprocessor system has failed) may prevent the forward progress of other pro-

cesses. Strategies have been developed that aid in isolating the problem or in

recovering from it. Bohannon, Lieuwen, and Silberschatz present a recovery

strategy [BLS+95]. They extend the queue-based algorithm proposed by Mellor-

Crummey and Scott such that it allows a system to recover a lock held by a pro-

cess believed to have failed.

All the queue-based synchronization primitives considered so far assume either

special hardware support for queue-based locking (e.g., QOLB) or implement a

queue in software using a combination of memory accesses (which the underlying

system satisfies transparently by communicating with other nodes using mes-

sages) and hardware synchronization primitives such as test&set. Another solu-

tion is to design synchronization primitives based on top of a message passing

interface directly. This solution does not require any special hardware beyond the

ability to send and receive messages. Message-based synchronization uses lock

managers to control lock ownership. A processor acquires a lock by sending a

24
message to a lock manager. Then, the lock manager either queues the request if

the lock is busy or satisfies the request immediately. To ensure atomicity, a lock

manager processes each request to completion one at a time. Message-based lock-

ing supports local spinning by having synchronization requestors wait for a

granting message from the lock manager without generating additional network

traffic. Message-based locking could also implement synchronous prefetch by

allowing a program to request a lock ahead of time. Message-based synchroniza-

tion does not support collocation unless the underlying messaging system is inte-

grated with the coherence protocol. FLASH [KOH+94] and Tempest [RLW94] are

two systems that support such an integration. The Stanford FLASH Multiproces-

sor is a high-performance, scalable parallel computer designed around a pro-

grammable memory controller to support both message passing and shared

memory efficiently. Tempest is a collection of mechanisms allowing programmers

and compiler writers to develop portable parallel code that can exploit the advan-

tages of shared memory, message passing, and hybrid combinations of the two.

Two organizations for a message-based lock manager are possible: a centralized

solution or a distributed solution. In the centralized solution, all lock requests are

routed to a special node (the manager1), which supervises accesses to the locks. If

a node wants to enter a critical section, it sends a request to the lock manager.

The lock manager then grants the lock to the requestor by sending it a message.

When the node leaves the critical section, it sends another message to the lock

1. To avoid congestion, the system has multiple managers distributed among the nodes in
the system.

25
manager; as soon as the manager receives that message, it can service the next

processor in line, if any. In most cases, this solution requires two messages on the

critical path to transfer the lock. In contrast, the implementation of a distributed

lock manager attempts to reduce this number of messages to one under high con-

tention. It achieves this goal using an implementation that is similar to the orga-

nization of QOLB: each node stores pointers to adjacent nodes in the queue.

However, this improved high-contention behavior comes at a price: access to an

idle lock will require typically three messages.

Requiring fewer messages on the critical path to transfer a lock than other soft-

ware queue-based locking algorithms, message-based synchronization primitives

should perform better. However, this solution may not work in systems where a

message passing abstraction is not available. Such systems may include some

bus-based computers in which inter-processor communication has traditionally

taken place through shared-memory.

To my knowledge the first implementation of a message-based locking primitive

for a distributed shared-memory system appears in TreadMarks [KCDZ94].

TreadMarks is a distributed shared memory system developed at Rice University

[ACD+96]. In two related papers [KCK98, KCK99], Kuo, Carter, and Kuramkote

discuss several message-based lock implementations. They evaluate both user-

level and in-kernel lock managers as well as three lock manager organizations.

They find the inefficiencies of context switches to be significant and therefore sug-

gest using in-kernel managers. The three lock manager organizations the authors

discuss are a centralized solution, a distributed solution, and an adaptive solu-

26
tion that reverts to the centralized solution when there is little contention. Bliz-

zard, an implementation of the Tempest interface that runs on a cluster of Sun

SPARCstation 20s, supports a centralized message-based lock [SFL+94]. In his dis-

sertation [Hei98], Heinlein describes a distributed message-based lock implemen-

tation for the Stanford FLASH multiprocessor.

Lim and Agarwal observe that different locking algorithms are better suited for

different levels of contention. When there is no contention, test&set can quickly

acquire and release a lock, but suffers intolerable latencies when multiple proces-

sors try to acquire a lock concurrently. Alternatively, queue-based software primi-

tives provide a robust solution under contention, but suffers unnecessary delays

in the absence of congestion (even if the cache line that contains the lock is avail-

able locally, the lock acquisition will still require executing ten instructions or

more [MLH94]). Therefore, Lim and Agarwal proposed reactive synchronization,

a policy that tries to select the software primitive best suited for a perceived level

of lock contention [LA94].

In the context of their work on cooperative shared memory, Wood and his col-

leagues [WCF+93] describe cooperative prefetch, a mechanism that is similar to

synchronous prefetch. Cooperative prefetch permits a processor to request data

ahead of time and lets the current owner delay honoring the request until the

current owner no longer needs the data. A processor triggers the data transfer

with a call to a special primitive dubbed check_in. Note, however, that coopera-

tive prefetch is not a synchronization primitive, but rather a hint to help the

hardware decide when and where to transfer data.

27
Another approach to lock-based synchronization taken by Jensen, Hagensen,

and Broughton [JHB87] is to define a set of primitive instructions from which to

build synchronization primitives. Jensen, Hagensen, and Broughton proposed

load-reserve and store-conditional, two instructions that can implement common

read-modify-write operations, such as test&set, swap, and compare&swap. The

ideas behind these instructions is to expose the steps involved in performing

read-modify-write operations (i.e., first read, then modify, and finally write). By

being able to specify the modify step, a program can compose its own atomic

primitive. A program uses this pair of instruction as follows. First, it issues a

load-reserve that loads a value into the processor and sets a reservation bit. Sec-

ond, the program modifies this value as it sees fit. And finally, the program condi-

tionally writes the modified value back to memory. If the reservation bit is still

set the store succeeds, otherwise the processor cancels the write operation. Upon

detecting failure, a program will typically retry the sequence of instructions after

waiting for a while. Events that clear the reservation bit include accesses to the

same memory location by other processors in the system. The cache coherence

protocol can easily detect such concurrent accesses to the same memory location.

Since their introduction, several instruction sets have adopted these instruc-

tions: the MIPS instruction set architecture starting with the second revision

[KH92] (load linked, LL and store conditional, SC), the Alpha processor

architecture [Sit92] (load quadword locked, ldq_l and store quadword con-

ditional, stq_c), and the PowerPC instruction set [MSSW94] (load word and

reserve indexed, lwarx and store word conditional indexed, stwcx.1).

28
Herlihy and Moss [HM93], and Stone and his colleagues [SSHT93] indepen-

dently proposed a generalization of the load-reserve and store-conditional

instructions that handles multiple words instead of just one. They view a critical

section as a transaction that a processor can execute optimistically: read values,

compute, write values and finally commit the new values if no conflict is detected.

A very attractive property of the load-reserve/store-conditional instructions

(and transactional memory) is that they allow programmers to construct wait-free

concurrent data structures [Her91]. A concurrent object is wait-free if any process

can complete any operation in a finite number of steps, regardless of the execu-

tion speeds of the other processes (including failure). Wait-free programs avoid

common problems with conventional techniques such as priority inversion and

convoying.

However, the wait-free property does not hold unless the implementation of the

load-reserve/store-conditional can guarantee that a reservation bit is cleared if

and only if the corresponding memory location is written. Unfortunately, in prac-

tice, events other than shared memory write can nullify a reservation. For

instance, the reservation bits are typically not part of a process state forcing the

operating system to clear them on context switches.

Furthermore, Attiya, Lynch, and Shavit [ALS94] have shown that there exists a

 time gap between the performance of wait-free and conventional algo-

rithms for at least one important problem. They prove time complexity lower

1. The extra period at the end of the instruction mnemonic is not a typographical error.
The dot indicates that the instruction modifies the condition register.

Ω Nlog()

29
bounds for algorithms of a variant of the consensus problem assuming failure-free

execution. In this problem, N processors must all agree on a single value chosen

from an input set. It is trivial to construct a conventional algorithm that solves

this problem in overall time complexity . They prove a lower bound of

on the time complexity of any wait-free algorithm solving this variant of the con-

sensus problem. Using the I/O automata formalism [LT89], they demonstrate

that the synchronized schedules of each process must execute at least steps.

Several of the techniques presented so far (e.g., test&set and load-reserve/store-

conditional) may fail to acquire a lock and thus must retry the unsuccessful oper-

ation. To avoid congestion and lack of forward progress, and to maximize the suc-

cess rate of lock acquisition, it may be beneficial for a processor not to attempt

again acquiring a lock immediately. Agarwal and Cherian first apply back-off

techniques to synchronization primitives [AC89]. They use adaptive back-off

methods to reduce the impact of invalidation traffic generated by software imple-

mentations of barrier synchronization. ALOHA, a radio-based, packet-switched

network, first introduce back-off techniques [Abr70]. ALOHA proposes to perform

fair arbitration and bandwidth allocation stochastically. Specifically, if nodes

detect other transmissions while sending a packet, each of them backs off for a

random interval before attempting a retransmission. Ethernet refines the back-

off techniques by having the collision history influence the length of the random

interval: the more collisions that occurred recently the longer the wait [MB76].

Anderson first applies the exponential back-off techniques to locking primitives

[And90]. He proposes two variants of test&test&set with exponential backoff

O 1() Nlog

Nlog

30
which differ in the way the adaptive delay is applied. In one case the primitive

inserts a delay after each failure to acquire the lock; in the other case the primi-

tive waits between each reference to the lock.

A major concern of synchronization is forward progress or lack thereof. For

instance, it is trivial to construct an example with the load-reserve/store-condi-

tional instructions that fails to make forward progress. For example, some proces-

sors implementing these instructions clear the reservation bit on a TLB refill.

Consider the case of a direct-mapped TLB and assume that a lock and the variable

it protects live in distinct pages yet map into the same TLB entry. The access to

the lock at the beginning of the critical section fills the TLB and sets the reserva-

tion. The subsequent access to the variable in the critical section suffers a TLB

miss forcing a refill and therefore the cancellation of the reservation. The most

amazing part of this example is that it requires only a single processor. Note that

even exponential back-off will not help in this case. Another example of lack of

forward progress involves three processors. In this example, two processors

accessing a lock continuously using test&set may prevent a third processor from

ever getting the lock. But in this case, exponential back-off alleviates this prob-

lem by spreading each processor’s request.

The previous paragraph mentions a serious drawback of the load-reserve/store-

conditional instructions. Yet, in spite of this problem, many modern processors

implement these instructions. These instructions offer versatility and design

advantages that are considered important enough to justify their inclusion in an

implementation. First, these instructions are extremely versatile, being able to

31
emulate many popular atomic operations such as test&set, swap, or com-

pare&swap. Second, these instructions are far easier to implement in hardware

than conventional atomic memory operations. To the microprocessor pipeline,

these instructions look like any other load or store instruction with the simple

addition of a reservation signal informing the memory system of the special

nature of the access. On the other hand, atomic memory operations require a

state machine to sequence through the access to the original value, the computa-

tion of the new value, and the storing of the new value. The addition of the state

machine complicates the pipeline design and may introduce new deadlock situa-

tions.

1.3.2 Framework/formalization

In related papers [KRS86, KRS88], Kruskal, Rudolph, and Snir propose a new

formalism for read-modify-write operations. In this formalism, all read-modify-

write operations take the form RMW(X, f), where X is a shared variable and f is a

mapping. RMW(X, f) atomically computes f(X), stores the result of the computa-

tion at X and returns the value previously stored at X. They then use this formal-

ism to extend fetch&add to arbitrary RMW operations (i.e., arbitrary f).

Herlihy defines a hierarchy of synchronization primitives such that no primitive

at one level has a wait-free implementation based on primitives at lower levels

[Her91]. This hierarchy finds atomic load and store instruction at level 0;

test&set, swap, fetch&add at level 1; and memory-to-memory swap and com-

pare&swap at level ∞. Thus, in the sense defined by this hierarchy, com-

32
pare&swap is a universal primitive that can simulate all the other primitives

using a wait-free algorithm. Based on this hierarchy Herlihy concludes that

fetch&add is not a universal primitive as conjectured by Gottlieb, Lubchevsky,

and Rudolph [GLR83]. Herlihy constructs this hierarchy by reducing the question

“is there a wait-free implementation of synchronization primitive X by primitive

Y” to the question “what is the maximum number N of processors for which the

synchronization primitive can solve the simple consensus problem.”

These previous formalisms pertain to extending or reasoning about the capabil-

ities of synchronization primitives. In this thesis I decompose synchronization

primitives into mechanisms that they implement. This decomposition defines a

framework in which to reason about performance and implementation of synchro-

nization primitives:

• This framework allows for a qualitative performance comparison of two syn-

chronization primitives by contrasting the mechanisms they implement.

• This framework allows the separate estimation of the performance merits of

each mechanisms.

• Finally, keeping in mind the performance merit of each mechanism, this

framework allows the evaluation of implementation cost of each mechanism.

1.3.3 Evaluation

Numerous performance evaluations of synchronization primitives have

appeared in the literature. I restrict this discussion to the most relevant studies.

In almost all cases the experimental setups are different enough that they pre-

33
clude the direct quantitative comparisons between results published in the litera-

ture and results found in this report. Fortunately, in most cases a qualitative

comparison is possible and given.

Using a microbenchmark, Anderson [And89, And90] compares the performance

of test&set, test&test&set, test&test&set with exponential back-off and his

queue-based locking algorithm on a Sequent Symmetry Model B [LT88]. Sequent

Symmetry is a bus-based shared-memory multiprocessor; Model B uses 16MHz

Intel 80386 processors. Anderson finds that test&set and test&test&set perform

well under low contention (up to five processors) but their performance quickly

degenerates for higher levels of contention. He also finds that exponential back-

off helps provide reasonable performance across all levels of contention. Finally,

under high contention, his queue-based locking algorithm outperforms all the

other primitives he considers; however, the additional instructions required to

maintain the queue cause its performance under low contention to be worse than

these other primitives. These results are qualitatively consistent with the results

I report in this thesis. Anderson also studies several variants of test&test&set

with exponential back-off. His study discusses a total of four variants of

test&test&set that represent the combinations spanning two dimensions:

whether the delay is inserted between each reference to the lock or after failure to

acquire the lock, and whether the delay is set statically or is adaptive (exponen-

tial). Among these four alternatives, his results indicate that exponential back-off

with a delay inserted between lock references (the variant used in this thesis) is

the best: it outperforms the other three solutions under low contention and its

34
performance under high contention is only slightly worse than the best of the

other back-off alternatives. I do not measure Anderson’s queueing scheme, but

measure MCS instead. Both algorithms are very similar and I believe that they

would display identical trends across varying levels of contention. Furthermore,

Aboulenein and his colleagues [AGGW94] show analytically that Anderson’s lock

performs no better than MCS, as do Magnusson and his colleagues [MLH94]. Mel-

lor-Crummey and Scott’s measurements [MCS91b] confirm this analysis in one

case, but disprove it in another case. This discrepancy may stem from aspects of a

real system that are not captured by the analytical model such as the ability to

exploit concurrency among operations in these algorithms. However, Mellor-

Crummey and Scott’s results also indicate that their algorithm scales better with

increasing contention and that, empirically, Anderson’s algorithm is at most 15%

faster than their solution.

Using a microbenchmark, Graunke and Thakkar [GT90] compare the perfor-

mance of test&set, test&test&set with exponential back-off, and their queue

based lock on a Sequent Symmetry Model C bus-based multiprocessor, which

uses 20MHz Intel 80386 processors. Graunke and Thakkar’s microbenchmark is

somewhat different than the one Anderson uses: they replace the random delay

after each lock release with a constant delay and they increment a variable inside

the critical section instead of holding the lock for a constant amount of time. In

spite of these small differences, their results are similar to Anderson’s and my

results are consistent with them both. Graunke and Thakkar also study an opti-

mistic version of test&test&set, a variant of test&test&set with exponential back-

35
off, and two implementations of a tournament lock. Optimistic test&test&set

assumes that there is no contention: it attempts a test&set first and, if it fails,

reverts to the traditional test&test&set (check the lock first and, if free, attempt

test&set). Optimistic test&test&set performs as well as test&set under low con-

tention and performs as well as test&test&set under high contention. As Ander-

son does, Graunke and Thakkar study two implementations of test&test&set

with exponential back-off and draw the same conclusion: they find that a delay

inserted between each reference to the lock performs better than a delay intro-

duced after failure to obtain the lock. Finally, they also consider two tournament

lock implementations. While both implementations scale well with increasing

contention, they do not perform as well as test&test&set with exponential back-

off (both variants) and the queue-based algorithm.

Measuring the running time of a simple microbenchmark on a BBN Butterfly 1

and on a Sequent Symmetry Model B, Mellor-Crummey and Scott compare the

performance of their queue-based lock with, among others, test&set,

test&test&set, test&set with exponential back-off and Anderson’s algorithm

[MCS91a, MCS91b]. The BBN Butterfly 1 is a shared-memory multiprocessor

using a multistage interconnection network to connect processors and memory

modules [HP95]. Mellor-Crummey and Scott’s microbenchmark is different than

Anderson’s or Graunke and Thakkar’s: it does not insert any delay at all; each

processor repeatedly acquires and releases a lock without waiting.1 However,

1. In one experiment, they introduce a constant delay in the critical section to be fair with
their implementation of Anderson’s algorithm on the Symmetry; they compensate for
this delay in the presentation of their results [MCS91a].

36
despite these dissimilarities, Mellor-Crummey and Scott’s experiments confirm

the results already obtained by Anderson, and Graunke and Thakkar. Mellor-

Crummey and Scott also show that MCS outperforms Anderson’s algorithm on the

Butterfly and that, under high contention, Anderson’s algorithm is about 15%

faster than MCS on the Symmetry. Mellor-Crummey and Scott also discuss

test&set with linear back-off and several variants of ticket locks (analogous to the

algorithm used in a bakery to ensure fair service with numbered tickets repre-

senting each customer’s position in the queue). Their results show that test&set

with linear back-off is not substantially better than test&set. They also show that

ticket lock is not competitive with other queue-based algorithms unless it is asso-

ciated with a form of adaptive delay (e.g., a delay proportional with the difference

between the customer number and the number currently served). However, even

with the adaptive delay, ticket lock does not perform nearly as well as MCS.

Using NWO, an accurate multiprocessor simulator, Lim and Agarwal [LA94,

Lim95] compare the performance of their reactive synchronization scheme

against test&set and test&test&set (both with exponential back-off), and MCS.

NWO is an accurate cycle-by-cycle simulator of the Alewife multiprocessor

[ABC+95], a shared-memory multiprocessor built at MIT. They analyze the perfor-

mance of these different synchronization primitives measuring the performance

of the same microbenchmark that Anderson uses, and two shared-memory appli-

cations: Mp3d and Cholesky. With the microbenchmark, they confirm the results

already obtained by Anderson, Graunke and Thakkar, and Mellor-Crummey and

Scott. Lim and Agarwal also show that their implementation of reactive synchro-

37
nization tracks well the performance of test&set with exponential back-off under

low contention, and the performance of MCS under high contention. Comparing

their shared-memory application results with mine is more difficult as our sole

common benchmark is Mp3d, and even in that case, we use different input sizes.

Overall, they find that reactive synchronization tracks the performance of the

best performing primitive well. These results are consistent with the results

reported here.

On the BBN GP1000 and TC2000, Zhang, Castañeda, and Chan [ZCC94] compare

the performance of test&set, test&set with exponential back-off, ticket lock with

proportional back-off, and MCS using a microbenchmark similar to the one used

by Mellor-Crummey and Scott. Both the BBN GP1000 and TC2000 are two large-

scale shared-memory multiprocessor systems with multistage interconnection

networks connecting processors and memory modules; both systems are succes-

sors to the BBN Butterfly 1. Their results agree for the most part with those pub-

lished by Mellor-Crummey and Scott, with one exception: the performance of

test&set with exponential back-off on the GP1000 is, for the most part, worse than

test&set. They attribute this behavior to higher network contention in the

GP1000 than in the Butterfly 1.

In his thesis [Hei98], Heinlein compares the performance of his distributed

message-based locking primitive with the performance of MCS and a lock imple-

mented with the load-reserve/store-conditional instructions. To compare these

primitives, he simulates the execution of a microbenchmark that is similar to the

one Anderson uses and two shared-memory applications (Barnes and Water-

38
Nsq1) on a detailed simulator of the Stanford FLASH multiprocessor. His imple-

mentation of the load-reserve/store-conditional lock uses exponential back-off to

reduce the impact of contention. His microbenchmark results show that all three

considered primitives perform equally well under low contention (from two to

four nodes). Past four nodes, however, the load-reserve/store-conditional lock

quickly deteriorates; while MCS and his locking primitive continue to perform

equally well: for these two primitives, the microbenchmark running time

increases only slightly with increasing numbers of contenders. In a separate

experiment, using a microbenchmark similar to the one Mellor-Crummey and

Scott use (i.e., Anderson’s test program without delays), Heinlein shows that,

under high contention, his lock implementation transfers the lock much more

quickly (60% faster) than MCS does. The reason this speedup is not noticeable in

his experiment using Anderson’s test program is that the microbenchmark

spends a large fraction of its time idle inside the critical section. Heinlein’s

results with the two shared-memory applications indicate that his lock primitive

performs best and load-reserve/store-conditional with exponential back-off per-

forms worst. His results also indicate that both applications using any of the

studied locking primitives scale reasonably well up until 64 nodes. Past that

point, only his message-based lock is able to improve the running time of both

applications independently of the input sizes he uses.

1. Heinlein also uses Ocean for his experiments; but with this application he focuses on
the analysis of the performance of barrier synchronization.

39
Using an execution driven simulation, Kuo, Carter, and Kuramkote [KCK98,

KCK99] compare the performance of test&test&set, MCS, and three implementa-

tions of a message-based lock. The three implementations of the message-based

lock are a centralized solution, a distributed solution, and an adaptive solution

that reverts to the centralized scheme when there is little contention. In their

experiments, they simulate the execution of five programs: Mp3d, Barnes, Radi-

osity, Raytrace, and Spark98. The first four benchmarks are drawn from the

SPLASH-2 [WOT+95] and Spark98 is a sparse matrix kernel [OSG98] that com-

putes a sequence of matrix vector products. They run their simulations for multi-

ple system arrangements: they vary the number of processors from 4 to 32 and

they simulate two network configurations. I will focus this discussion on their

largest system with the faster network since I simulate the performance of bench-

marks only on a 32-node system and their fast network seems to model my choice

of parameters more accurately. They find that MCS always outperforms

test&test&set; MCS performs more than 30% faster than test&test&set for Bar-

nes, Mp3d, and Raytrace which agrees with my results. They also find that mes-

sage-based locks outperforms both MCS and test&test&set, and that the

distributed lock performs better than the centralized solution except for Mp3d.

This benchmark has very low lock contention, which favors the centralized solu-

tion. Finally, they find that adaptive or reactive solution tracks the performance

of the best message-based solution well.

Goodman and Woest [WG91] present a comparative evaluation of test&set, MCS,

and QOLB using both qualitative and quantitative techniques. Both techniques

40
rely on an ideal model of a system resembling the Wisconsin Multicube [GW88]

assuming infinite caches and queues, and infinitely fast processors. Using a sim-

ple counting technique, they compare the idealized latency required to execute a

critical section. They perform this comparison with four different sets of assump-

tions representing the combinations spanning two dimensions: (1) whether the

critical section is empty or increments a counter and (2) whether the critical sec-

tion is idle (and the lock is not local nor at memory) or busy. Their results show

that QOLB outperforms all the alternatives in all cases. Also, they show that

test&set outperforms MCS when the critical section is idle, and the opposite when

the critical section is busy. These results are consistent with my results. In addi-

tion, they discuss a variant of test&set that operates at memory (i.e., uncached).

They show that the at-memory test&set primitive performs only slightly worse

than the coherent test&set when the critical section is idle and performs better

than MCS when the critical section is busy. The reason this primitive performs so

well under contention is that it prevents the lock from bouncing among caches

when it is released. Exponential back-off achieves a similar effect stochastically.

In related papers [AGGW92, AGGW94], Aboulenein and his colleagues compare

the performance of Anderson’s algorithm, MCS, and QOLB analytically for the spe-

cific case of the SCI cache coherence protocol [IEE93]. They count the number of

messages and memory operations required on the critical path for two situations

that Goodman and Woest also used in their analysis. The first situation considers

the execution of an idle critical section (assuming the corresponding lock is not

local nor at memory); the second one examines the transfer of a contested lock.

41
For these two scenarios and considering either message count or memory

accesses, they find that QOLB outperforms both MCS and Anderson’s lock; and that

MCS outperforms Anderson’s lock. These results are consistent with the results I

report in this document. In particular, we agree on the number of messages that

it takes for either QOLB or MCS to transfer a lock from a processor to the next.

However, we have a discrepancy in the number of messages necessary to acquire

and release an idle lock. Compared to my results, their message count for MCS is

pessimistic (2 more messages) and their message count for QOLB is optimistic (2

fewer messages).

Herlihy and Moss [HM93] evaluate the transactional memory model using PRO-

TEUS [BDCW91], a high-performance, parallel-architecture execution-driven sim-

ulator developed at MIT by Brewer and his colleagues. Using three simple

benchmarks, Herlihy and Moss compare their proposal against test&test&set

with exponential back-off, MCS, QOLB, and the load-reserve/store-conditional

instructions. They run the same experiments assuming two different types of

machines. On one hand, they assume a bus-based system using Goodman’s

snoopy protocol [Goo83]; on the other hand, they assume an MIT Alewife-like

machine using Chaiken directory protocol [ABC+95]. The three benchmarks were

(1) a counting benchmark, (2) a producer/consumer benchmark, and (3) a doubly-

linked list benchmark. The first benchmark increments a variable a fixed number

of times spread evenly among the nodes executing the program. This benchmark

is somewhat similar to the microbenchmark used by Graunke and Thakkar

except that it does not wait between accesses to the critical section. In the second

42
program, N processors share a bounded buffer, initially empty. Half of the proces-

sors insert items in the buffer, the other half retrieve items from the buffer. The

program finishes when 216 operations have completed. In the last benchmark, N

processors share a doubly-linked list anchored at the head and at the tail. Each

processor dequeues an item from the tail and then enqueues it by threading it

onto the list at the head. The program terminates when 216 operations have com-

pleted. They run the experiments with the load-reserve/store-conditional instruc-

tions differently for each benchmark. In the single word counting benchmark, the

load-reserve/store-conditional instructions are used directly to increment the

variable correctly. In the other benchmarks, which associate more than one mem-

ory word per lock, the load-reserve/store-conditional instructions are used to con-

struct a spin lock. With one exception, their results indicate that transactional

memory has substantially higher throughput than any of the other primitives.

Indeed, transactional memory does not have explicit locks and therefore requires

fewer memory accesses to complete the execution of a critical section. The excep-

tion to the dominating performance of transactional memory is the load-reserve/

store-conditional instructions when they are used to update the counter directly.

Direct use of these instructions requires no separate commit operation, saving an

extra memory access as compared to transactional memory. In contrast, when

these instructions are used to implement a spin lock, their performance drops

considerably, on a par with the performance of MCS and test&test&set with expo-

nential back-off. The performance of QOLB is generally second best, requiring typ-

ically one more memory reference than transactional memory but far fewer than

43
the other alternatives. They also find that test&test&set with exponential back-

off performs in general worse than MCS on the simulated bus-based system, which

is consistent with the results published in literature. On the other hand, their

results indicate that in most cases test&test&set with exponential back-off per-

forms better than MCS on the directory-based machine, which is not consistent

with either Mellor-Crummey and Scott’s or Lim and Agarwal’s results. This dif-

ference may stem from their model of the network connecting the nodes in the

system.

In this thesis, I evaluate the performance of test&set, test&test&set, MCS, LH,

M, QOLB and reactive synchronization schemes on a simulated directory-based

cache-coherent shared-memory multiprocessor. Where possible and sensible I

extend these primitives with the collocation and prefetch mechanisms and the

exponential back-off policy. In all, I evaluate a total of sixteen synchronization

constructs. My results are in general qualitatively consistent with the results

available in the literature with the two notable exceptions. Zhang, Castañeda,

and Chan’s results indicate that test&set with exponential back-off performs for

the most part worse than test&set on the BBN GP1000. Similarly, Herlihy and

Moss find that, under high contention, test&test&set with exponential back-off

can perform better than MCS on their simulated directory-based multiprocessor

system. These two behaviors are uncharacteristic of the results published in the

literature and are inconsistent with my results. Zhang, Castañeda, and Chan

claim that high network contention in the GP1000 interconnection network

causes test&set with exponential back-off to perform poorly. Herlihy and Moss do

44
not give any reason to explain the poor performance of MCS in their simulated

platform. However, our modeled systems are sufficiently different that I cannot

compare our results qualitatively.

I also evaluate the performance of SOFTQOLB, my software implementation of

QOLB, comparing it against test&set, test&test&set, MCS, and a centralized mes-

sage-based lock. I perform this evaluation on a cluster of unmodified SPARCstation

20s. In general, this evaluation confirms results obtained on my simulated sys-

tem and results published in the literature. I note, however, that the inefficiencies

introduced in my software implementation of QOLB cannot realize the perfor-

mance potential promised by an ideal implementation QOLB.

1.3.4 Implementation

Many shared-memory multiprocessor systems include specific special support

for synchronization: compare&swap on the IBM System/370 architecture [CP78];

full/empty bits on the HEP multiprocessor [Smi81], on the Tera computer system

[ACC+90], and the Alewife [ABC+95] multiprocessor; fetch&add on the NYU

Ultracomputer [GGK+83] and the IBM RP3 [PBG+85]; QOLB on the Wisconsin Mul-

ticube [GW88] and the IEEE SCI standard [IEE93]; the primitives for locking and

unlocking cache lines on the KSR1 [KSR91]; and a centralized queue-based lock

and fetch&increment on the Stanford DASH prototype [LLG+92].

Scott describes the support for synchronization provided on the Cray T3E

[Sco96]. This machine supports a shared memory address over distributed mem-

ory, but does not automatically replicate shared data in local caches. T3E supports

45
fetch&increment, fetch&add, compare&swap, and masked-swap. For each bit in

the operand, masked-swap performs a swap only if the corresponding bit in the

mask is set.

Cedar, a machine prototype built at the University of Illinois in Urbana-Cham-

paign [KDL+93], supports special purpose synchronization primitives that are

targeted towards the support of executables produced by an automatically paral-

lelizing compiler. The project focuses on supporting the execution of large scien-

tific programs well. Cedar exploits the parallelism found in loops of these large

scientific applications. Processors execute different loop iterations and synchroni-

zation honors the proper data dependence as defined in the original sequential

code. Zhu and Yew discuss this type synchronization support in details in their

article [ZY87].

The first proposal for a cache coherence protocol with explicit support for syn-

chronization is due to Bitar and Despain [BD86]. Their proposed bus-based proto-

col includes support for efficient spinning, data collocation, and prefetch; but not

queueing. Both the Wisconsin Multicube [GW88] and the IEEE SCI also introduce

special states in their coherence protocols to support QOLB. All these proposals

assume that different coherence policies are required to support normal memory

accesses and synchronization operations well. While additional states may

improve performance, it also adds to the complexity of the coherence protocol.

Michael and Scott study issues in support important synchronization primitives

that are popular on small-scale shared-memory systems but missing on most

larger systems [MS95]. In particular, their work asks three questions. First,

46
where should atomic operations be executed: in the cache controllers, at memory,

or both? Second, which cache coherence policy should be used for atomic accesses:

no caching, write-invalidate, or write-update? Finally, what auxiliary functions, if

any, can be used to enhance performance? The results of their study suggests that

systems implement compare&swap in the cache controllers using a write-invali-

date coherence policy. In addition, they recommend supporting a load-exclusive

instruction. Load-exclusive reads data and acquires exclusive access. This

instruction can be used instead of a conventional load to read data that is then

accessed by compare&swap. This instruction also improves the efficiency of the

coherence protocol when accessing migratory data [GW92].

In contrast to Michael and Scott study, this thesis does not ask which locking

primitive(s) a system should support, but rather which locking mechanism(s).

This thesis, then, goes on to describe what the alternatives are to support each of

the four locking mechanisms in current and future multiprocessor systems. In

particular, I identify six hardware mechanisms that are required to support the

four locking mechanisms.

1.3.5 CLEAN

Work related to CLEAN, the distributed shared memory system that implements

the efficient synchronization primitive called VAQUM, falls into three categories:

(1) systems that support dynamic variable cache line sizes in hardware [DL92,

JMH97, KW98]; (2) software distributed shared-memory systems [BZS93, Nik94,

47
JKW95, SL94a, SL94b, SGZ93]; and (3) software annotations to improve perfor-

mance [LCW94].

Dubnicki and LeBlanc propose a coherent cache architecture that attempts to

select dynamically a line size that suits best a particular region of memory, at a

particular instant of a program’s execution [DL92]. Their technique uses history

information to decide whether to split a cache line (to avoid false sharing), or to

merge two cache lines (to benefit from prefetching through spatial locality), or to

maintain status quo. On average, their technique improves the running time of

an application by 9% over the same application using the static line size that

leads to the best running time.1

Johnson, Merten, and Hwu present a similar scheme for uniprocessors

[JMH97]. Their goal is to optimize the use of the cache and the bus bandwidth.

However, their results show that their scheme outperforms applications using the

best static line size by at most 5%

In contrast to the two works discussed above, CLEAN assigns a block size for a

region of memory statically, at compile time or when a region of memory is allo-

cated. The arguments for this decision are twofold. First, the improvement

reported by the works of Dubnicki and LeBlanc, and Johnson, Merten and Hwu

may perhaps not justify the cost of a dynamic solution. Second, spatial locality

has perhaps a more static, input-independent nature compared to temporal local-

ity. Temporal locality may be very dependent on input size; for a small enough

1. I compute the average speedup by dividing the sum of all running times using the best
static line size over the sum of all running times using the variable line size technique.

48
input size the system will observe good temporal locality as all the data remain

cached. But as the input size grows, data become less and less likely to remain

cached due to conflicts among data references. Blocking algorithms help mitigate

these destructive interferences [LRW91]. In contrast, spatial locality may have a

substantial component that is directly associated with the memory layout of

related data. A memory hierarchy may be able to exploit this locality component

independently of input size. For instance, users often organize code such that

when a function accesses a field of a data structure, that function accesses also

most of the other fields.

Kumar and Wilkerson propose spatial footprint, a technique that dynamically

records usage of data in a cache line while it is present in the cache [KW98]. The

cache keeps that information across cache replacements and uses to fetch data in

a cache line selectively. This technique addresses mainly the bandwidth require-

ments between levels of the memory hierarchy.

Johnson, Kaashoek, and Wallach propose CRL, an all-software DSM system

[JKW95]. Like CLEAN, their system does not require compiler, operating system,

or special hardware support. Unlike CLEAN however, CRL maintains the consis-

tency of shared-data through the concept of regions that the user must specify.

Sandhu, Gamsa, and Zhou proposed a system very similar to CRL [SGZ93]. Pro-

grammers declare “shared regions” the accesses of which must be properly

demarcated with the following primitives: ReadAccess() and ReadDone() or Write-

Access() and WriteDone().

49
The advantage of these approaches is that it improves considerably the porta-

bility of their tools since they do not rely on executable editing, which may not be

available on a target system and is inherently less portable. The drawback of

their approach is that the program correctness is no longer decoupled from its

performance. The programmer must worry both about a program’s correctness

and performance simultaneously. CLEAN, on the other hand, does not require the

programmer to annotate the program for correctness. CLEAN views annotations as

optional to improve the program’s performance.

Cid is a variant of C extended with constructs to specify multithreaded, distrib-

uted shared-memory programs [Nik94]. Programs declare objects; before these

programs can safely access these objects, they must first bring locally with the

proper call to read or write objects that might be remote.

Midway is a distributed shared memory system proposed by Bershad and his

colleagues [BZS93]. Midway is perhaps the system that is the most similar to

CLEAN. Midway supports a memory model called entry consistency which guaran-

tees that shared data becomes consistent at a processor only when the processor

acquires the synchronization object that guards the data. Because this model

offers no guarantee with respect to the consistency of other data not protected by

the synchronization object, Midway can reduce the frequency of global communi-

cation by exploiting synchronization patterns among processors. Like CLEAN,

Midway requires the relationship between data and synchronization object be

made explicit only when the programmer wants to improve a program’s perfor-

mance. Unlike CLEAN, Midway does not support direct transfer of a lock from the

50
releaser to the next acquirer (data must transit through the object’s server

[FBS89]) and Midway does not provide the ability to prefetch synchronization

data.

Wood and his colleagues describe CICO [HLRW92, HLRW93, WCF+93, LCW94],

a framework in which a user can annotate a program to improve its performance

characteristics. As in CLEAN, annotations in CICO are optional; however while

CLEAN is a distributed shared memory system, CICO is only a performance model.

1.4 Thesis organization

The organization of the remainder of this thesis is as follows. Chapter 2

describes the experimental methodology employed throughout this thesis.

Chapter 3 describes the decomposition of a synchronization period, describes a

set of four fundamental optimizing locking mechanisms, and shows how they can

reduce different parts of the synchronization period. Chapter 3 also reviews the

synchronization primitives and discusses how each of them uses a different set of

the four mechanisms; and presents the performance results. Chapter 4 discusses

the six hardware mechanisms required to support the four locking mechanisms

and describes implementation alternatives suitable for current or future systems.

Chapter 4 also compares the relative costs of these implementation alternatives.

Chapter 5 motivates, describes, and measures the implementation of a program-

ming model that makes use of the results on efficient synchronization support

discussed in earlier chapters. Finally, Chapter 6 presents the conclusions and

suggests future directions to explore.

51
Chapter 2

Experimental methodology

This chapter details the experimental methodology, illustrated in Figure 2.1,

that I employ for the all experiments reported in this thesis. These experiments

consist of running parallel programs either on a simulation platform or on an

actual parallel machine, and collecting metrics of interest.

All the parallel programs examined in this dissertation are written in C [KR88],

extended with annotations that add parallel shared-memory semantics to C. In

all cases, the programs use the annotations proposed by Boyle and his colleagues

[BBD+87].1 The parallel programs studied here take one of two forms. Either they

are microbenchmarks used to evaluate a particular aspect of the system under

study; or they are complete applications more representative of programs that a

real environment may run. A detailed description of the two microbenchmarks

used in my experiments appears in Section 2.1; descriptions of the six applica-

tions analyzed in this study appear in Section 2.2.

1. Many publications refer to these annotations as the parmacs macros.

52
As shown in Figure 2.1, a succession of tools transforms parallel programs into

a form suitable for simulation or actual execution. First, a preprocessor (m4)

transforms parallel programs into plain C sources substituting the parallel

shared-memory annotations into C statements or suitable library calls. Next, ver-

sion 2.6 of the GNU C compiler (gcc) produces object files that the GNU linker

(gld) links together to create executables. All the programs are compiled with the

maximum level of optimization (-O3). The resulting executables cannot run

Figure 2.1 Experimental structure. This flowchart illustrates the relationship among the
tools used to produce the results presented in this study. A preprocessor (m4) transforms
parallel programs into C source files replacing shared-memory parallel annotations with
appropriate functions calls. The compiler (gcc) produces objects files that are linked together
(gld) with the necessary libraries. Finally, the executables are edited and run on either the
Wisconsin Wind Tunnel simulator (WWT) or Blizzard, a distributed shared-memory system. A
more detailed description of each step appears in the indicated sections.

libc.a

libparallel.a

libm.a

Section 2.1 & Section 2.2

Chapter 2

Section 2.4BlizzardWWT

eel

edited executable

 executable

gld

gcc

 object files

m4

C sources with annotations

 C sources

Section 2.3

53
directly on the two platforms (a parallel simulator and a cluster of workstations)

that I employ for all my experiments. An additional step, after linkage, rewrites

the executables using a binary editor (eel). To maintain causality among the

nodes in the parallel simulator, the binary editor inserts tests in the executables

and forces synchronization among the nodes, if necessary. To support the shared-

memory abstraction on the cluster of workstations, the binary editor inserts

checks before each load and store instructions in the executables and invokes a

user-supplied cache-coherence protocol if the accessed datum is not available

locally or is not in the proper state.

Once the edited executables are produced, the simulator or the cluster of work-

stations can execute them. Section 2.3 describes the parallel simulator (WWT)

running on a Thinking Machines’ CM-5 [LAD+92] used to study the performance

of synchronization primitives. Section 2.4 describes the distributed shared-mem-

ory system (Blizzard) running on a cluster of SPARC-based workstations used to

evaluate the implementation of various synchronous primitives on an actual

hardware platform. To conclude this chapter I present, in Section 2.5, a brief

characterization of the studied parallel applications.

2.1 Microbenchmarks

2.1.1 Standard microbenchmark

Figure 2.2 shows the principal microbenchmark used in this dissertation. This

microbenchmark models an application that repeatedly accesses a small critical

section in a loop. Once the processor obtains the lock, it waits for a constant

54
amount of time (delay cycles) simulating time spent in the critical section by the

application. After the release, the releasing processor waits for a random amount

of time. The random waiting time is selected from a discrete uniform distribution

over the interval [0, 10×delay] with a mean of 5×delay. This random delay simu-

lates the application’s computation between lock accesses. The statistical nature

of the delay makes it improbable, though not impossible, for a single node to

obtain the lock twice in succession. I typically run this benchmark several times,

each time with a different number of nodes, which varies the contention level to

the lock. I report the completion time of all loop iterations of the slowest node. As

the number of nodes increases, so does the contention for the lock, and eventually

inputs:
P : int [Number of processors.]
N : int [Number of iterations.]
delay : int [Time holding the lock.]

variables:
counter : int
lock : int

counter ← N/P [Assign iterations evenly among processors.]
while (counter > 0)

acquire(lock)
wait(delay) [Wait a fixed amount of time.]
release(lock)
wait(random() mod (10 × delay)) [Wait on average five times delay.]
counter ← counter − 1

end

Figure 2.2 Principal microbenchmark. This microbenchmark models an application that
accesses a critical section repeatedly. This code assumes that the lock is declared in the
regular shared address space and that the lock sits by itself in a cache line (to avoid false
sharing).

55
the reduction in the loop execution time stops (and in some cases reverses) when

the serialized execution of the critical section dominates the loop completion time.

Note that in my experiments, I do not run the microbenchmark long enough to

ensure that the stream of random numbers look “random enough.” Recall, how-

ever, that the purpose of the random delay is merely to prevent a single processor

from being able to acquire and release a lock repeatedly without intervening

remote accesses. I do, however, make sure that the mean waiting time is 5×delay.

This methodology is similar to that used by both Anderson [And90], and Lim

and Agarwal [LA94] to measure synchronization inefficiencies. However, instead

of reporting the microbenchmark completion time directly; they graph the differ-

ence between their measurements and an ideal execution time of the microbench-

mark assuming a perfect synchronization primitive. In effect, this difference

measures the inefficiency of a synchronization primitive for a given contention

level. When there is no contention, the inefficiency corresponds to the time spent

acquiring and release a lock; when there is contention the inefficiency corre-

sponds to the time to transfer the lock from one node to another. They derive the

ideal execution time through simulation from the critical section execution time

and the mean delay between lock accesses.

2.1.2 Extended microbenchmark

I extend the microbenchmark described in the previous section to explore the

impact of collocation on synchronization inefficiencies. Figure 2.3 illustrates the

extension. Instead of waiting a fixed amount of time in the critical section, proces-

56
sors write a globally shared variable modeling accesses to resources protected by

a lock. If the programmer does not collocate lock and variable, the program may

incur the additional delay of having to obtain an exclusive copy of the variable

once in the critical section. Collocation eliminates (in this case) this additional

delay completely.

inputs:
P : int [Number of processors.]
N : int [Number of iterations.]
delay : int [Set to the typical write miss latency.]

variables:
counter : int
monitor : (

lock : int,
pad : int[...], [Remove padding if collocation is desired.]
variable : int)

counter ← N/P [Assign iterations evenly among processors.]
while (counter > 0)

acquire(monitor.lock)
monitor.variable ← 1 [Set variable protected by lock to a value.]
release(monitor.lock)
wait(random() mod (10 × delay)) [Wait on average five times delay.]
counter ← counter − 1

end

Figure 2.3 Extended microbenchmark. This code is an extension of the microbenchmark
that appears in Figure 2.2 to analyze the benefits of collocation. This code assumes that the
lock sits in a cache line by itself, unless collocation of the lock with the associated variable is
desired. In the latter case, the lock and the variable sit in the same cache line by themselves.
In this example, collocation is prevented by introducing enough space between the
declaration of the lock and its associated variable.

57
2.2 Shared-memory applications

The benchmark applications used for all experiments performed in this thesis

are Barnes, Mp3d, Ocean, Pthor, Raytrace, and Water-Nsq. Mp3d and Pthor are

drawn from the SPLASH suite [SWG92], while Raytrace and Water-Nsq are from

the SPLASH-2 suites [WOT+95]. Barnes and Ocean are available both from SPLASH

and the newer SPLASH-2 benchmark suite; I use the SPLASH version of these

benchmarks in Chapter 3, while I use the newer versions in Chapter 4 and

Chapter 5. The main reason I use the newer versions of these benchmarks for the

later chapters is that I benefit from benchmarks already ported to the platform

on which I run experiments. The locking structures are similar in both versions of

these benchmarks, and I do not directly compare the results of Chapter 3 with

the results of Chapter 4 and Chapter 5. I list the problems that the six bench-

marks solve and the inputs that I use in Table 2.1. I pad data in each benchmark,

where necessary, to eliminate false sharing [GW88].

Table 2.1 Benchmarks.

BENCHMARK TYPE OF SIMULATION INPUT SOURCE

Barnes N-body 2,048 bodies, 11 iter. SPLASH/SPLASH-2

Mp3d Hypersonic 24,000 mols, 25 iter. SPLASH

Ocean Hydrodynamic 98x98, 2 days SPLASH/SPLASH-2

Pthor Digital circuit risc, 1,000 timesteps SPLASH

Raytrace 3-D rendering teapot SPLASH-2

Water-Nsq N-body molecular dynamics 512 mols, 3 iter. SPLASH-2

58
Detailed descriptions of all the benchmark applications appear elsewhere

[SWG92, WOT+95]. In this section, I only present a short description of each

benchmark that is sufficient to understand the application’s locking structure

and to understand how I rearrange the data layout to study the benefits of collo-

cation. For convenience, I divide each benchmark’s description into four parts: (1)

sequential algorithm, (2) exploiting parallelism, (3) locking structure and colloca-

tion strategy, and (4) other modifications. In the first part (sequential algorithm),

I give a short description of each application and an overview of the application’s

algorithm. The second part (exploiting parallelism) summarizes the paralleliza-

tion strategy employed in each application. The third part (locking structure and

collocation strategy) describes the locking structure and discusses the data

restructuring applied to each application to take advantage of the collocation

optimization (the original versions of each application do not collocate locks and

data protected by these locks). Finally, in the last part (other modifications), I dis-

cuss, if applicable, changes that improve the base algorithms (and thus benefit all

applications’ runs).

Maintaining the original algorithm and locking structure, I always attempt to

optimize every benchmark such that each performs well for all experiments I run.

In particular, when comparing two locking alternatives, I take care to ensure that

the base case performs well for its given synchronization structure. (In a recent

paper, Jiang, Shan, and Singh show how to restructure the synchronization struc-

ture of certain SPLASH-2 benchmarks to improve their performance [JSS97]; I do

not use these restructured codes in this thesis.)

59
2.2.1 Barnes

Barnes simulates the interaction of a system of bodies. This benchmark appears

in both the original SPLASH benchmark suite [SWG92] and the SPLASH-2 suite

[WOT+95]. I delay the discussion of the differences between these two versions

until after the description of the parallel algorithm.

Sequential algorithm. This benchmark tracks the evolution of an N-body sys-

tem under the influence of gravitational forces. Specifically, Barnes discretizes

time and for each discrete time step (an iteration) computes new positions of the

bodies in the system. To avoid computing all O(N2) interactions among the bodies,

Barnes approximates the force exerted by a sufficiently distant cluster of bodies

by the force resulting from the cluster’s center of mass. This approximation

reduces the number of computed interactions to O(NlogN) or even O(N) depend-

ing on the distribution of bodies in the system. Central to this approximation

technique is the octree data structure. Leaf nodes in the tree represent the actual

bodies; while the other nodes, the cells, represent a portion of the three-dimen-

sional space holding the cells’ children. A cell bisects the parent cell in all three

dimensions. When computing the forces exerted by other bodies, Barnes walks

down the tree in breadth-first-search fashion and stops whenever (1) it reaches a

leaf or (2) the considered node’s center of mass is sufficiently far away, whichever

comes first.

Exploiting parallelism. Two phases in each iteration consume almost all of

Barnes’ execution time. The first phase loads bodies in the tree and the second

phase computes the interactions. The parallelization strategy in Barnes is owner

60
based: each process is responsible for a fraction of the bodies in the system. In the

tree-building phase, each process loads its bodies in the octree using locks to

ensure atomic updates of the cell nodes. In the interaction computation phase,

each process computes the forces exerted by other bodies for each body that they

own; because a process writes only the bodies it owns, this phase does not require

mutual exclusion.

The newer version of Barnes differs from the original version in one important

aspect: it allows multiple bodies per leaf in the tree-structured representation of

physical space. This change does not affect the overall algorithm. However, allow-

ing more bodies per leaf reduces the height of tree, speeding up the tree-building

phase of the algorithm [HS95]. But a shorter tree also slows down the interaction

computation phase of the program since the presence of multiple bodies per leaf

forces more interaction to be considered. Holt and Singh [HS95] observe that 10

bodies per leaf is the optimum between tree building and interaction computa-

tion: the interaction phase slows down; nevertheless the overall execution time

speeds up.

Locking structure and collocation strategy. The original version of Barnes

stores the locks associated with the cells in a separate array. However, to explore

the benefits of collocation, I instead store the locks in the cells directly. The bene-

fits of this new layout are twofold. First, it removes some unnecessary contention

introduced by the fixed size lock array. Since the number of elements in the array

is less than the number of bodies in a typical simulation input, multiple bodies

will map to the same lock in the array creating artificial contention. Second the

61
new layout makes collocation possible. Indeed, each lock is now located near the

data it is protecting. The collocation strategy is as follows. The lock and the point-

ers connecting a cell to its children are placed in the same cache block; the

remaining fields of the cell data structure sit in a separate cache block.

2.2.2 Mp3d

Mp3d is Monte Carlo simulation of rarefied fluid flow, it is a member of the orig-

inal SPLASH benchmark suite [SWG92].

Sequential algorithm. This benchmark simulates the hypersonic flow of par-

ticles at extremely low densities. Succinctly, Mp3d simulates the trajectories of

particles through an active space and adjusts the velocities of the particles based

on collisions with the boundaries (such as the wind tunnel walls) and other parti-

cles. After the system reaches steady-state, statistical analysis of the trajectory

data produces an estimated flow field for the studied configuration. The signifi-

cance of the algorithm implemented in Mp3d is that it reduces the N2 problem of

finding collision partners to order N. Mp3d finds collision partners efficiently by

representing the active space as an array of three-dimensional unit-sized cells.

Only particles present in the same cell at the same time are eligible for collision

consideration. If the application finds an eligible pair, it uses a probabilistic test

to decide whether a collision actually occurs.

Exploiting parallelism. The parallel version of Mp3d allocates work to each

process through a static assignment of the simulated particles. Each simulated

step consists of a move phase and a collide phase for each particle that the pro-

62
cess owns. The move phase computes the particle’s new position based both on its

current position and velocity, and its interaction with boundaries. The collision

phase determines if the particle just moved collides with another particle; and if

so, adjusts the velocities of both particles. Data sharing occurs during collisions

and through accesses to the unit-sized space cells. During a collision, a process

may have to update the position and velocity of a particle owned by another pro-

cess. Also, each space cell maintains a count of the particle population currently

present in that cell. Therefore, each time a process moves a particle, it may have

to update the population count of some space cells if that particle passes from one

cell to another. These data accesses to particles and space cells may lead to race

conditions that optional locks will eliminate at some performance cost. In this

thesis, I study Mp3d compiled with these locks. The presence of locks will typi-

cally slow down the program’s execution but eliminates the data races and allows

repeatability of results.

Locking structure and collocation strategy. Mp3d eliminates race condi-

tions while accessing particles and space cells with optional locks associated with

each space cell. Since processes update particle information owned by other pro-

cessors only during a collision and a collision can only occur if two particles are

present in the same cell, the space cell locks are programmed to ensure mutual

exclusion for both particle and space cell accesses. For experiments with colloca-

tion, I place all of the space cell data structure in the same cache line as the corre-

sponding lock.

63
2.2.3 Ocean

Ocean simulates the eddy currents in an ocean basin and appears both in

SPLASH [SWG92] and SPLASH-2 [WOT+95]. The newer version of Ocean partitions

data differently to improve the communication to computation ratio, improves

data locality by allocating contiguously related data, and uses an improved equa-

tion solver.

Sequential algorithm. This algorithm studies the role of eddy and boundary

current in influencing large-scale ocean movements. Specifically, the algorithm

simulates a cuboidal basin using a discretized circulation model that takes into

account wind stress from atmospheric effects and the friction with ocean floor and

walls. The algorithm performs the simulation for many time-steps until the

eddies and mean ocean flow attain a mutual balance.

The work performed every time-step essentially involves setting up and solving

a set of spatial partial differential equations. For this purpose, the algorithm dis-

cretizes the continuous functions by second-order finite-differencing, sets up the

resulting difference equations on two-dimensional fixed-size grids representing

horizontal cross-sections of the ocean basin, and solves these equations using the

Gauß-Seidel with Successive Over Relaxation (SOR) iterative method (the

SPLASH-2 version uses a red-black Gauß-Seidel multigrid solver).

Exploiting parallelism. Grid-based algorithms afford much parallelism that

applications can easily exploit. The referencing behavior of Ocean is regular and

input independent, which the parallel algorithm takes advantage of by perma-

nently assigning grid tasks to processes. Each task performs the computational

64
steps on the section of the grids that it owns, regularly communicating with other

processes. Communication among processes takes the following forms: (1) barrier

synchronization to preserve dependences between certain computations; (2) near-

neighbor communication while computing the Jacobians and Laplacians (9-point

and 5-point stencils, respectively); and (3) updates of a counter by all processes

for every SOR iteration to determine convergence.

Locking structure and collocation strategy. The program uses locks in two

situations. A first lock ensures that each process updates a global sum correctly

in order to compute a matrix integral. A second lock helps determine when the

SOR iterations have converged. In both cases the algorithm uses a simple lock

rather than a tree of locks to perform the reduction. When appropriate I collocate

the first lock with the global sum and I collocate the second lock with the counter,

which each process increments when it has converged.

Other modifications. I increased the array storage of the SPLASH version of

Ocean (from 128 to 131 elements in each dimension, slightly increasing the size of

the working arrays) to create arrays of prime size, thus reducing cache conflicts

among elements in the arrays [LRW91].

2.2.4 Pthor

Pthor is a parallel digital circuit simulator drawn from SPLASH [SWG92].

Sequential algorithm. This benchmark, an event-driven simulator, simulates

the behavior of a digital circuit over time. A circuit consists of elements attached

together through wires or nodes. Each element takes signals as inputs which

65
combined with the associated internal state determine the values driven on the

output ports. The nodes, then, transmit the values from the output ports of an

element to the input ports of other elements. Elements can be as simple as an

AND-gate and as complex as a complete CPU. The value carried by an intercon-

necting node is one of high, low, undefined, or floating. Each change in a node

value corresponds to an event associated with a time at which the change should

occur. The algorithm chronologically stores these events in a global event queue.

The algorithm takes, then, the oldest event in the queue and drives the inputs

ports attached to the corresponding node according to the new value that this

node is taking on. As the effect of the change propagates in the circuit it gener-

ates new events which are inserted in the queue. The algorithm stops when

either the event queue is empty or the algorithm has simulated the circuit for the

user-specified amount of time-steps.

Exploiting parallelism. Pthor exploits the parallelism available in the pro-

cessing of the events stored in the event queue. Pthor uses a variant of the

Chandy-Misra distributed-time algorithm [CM81] to simulate the circuit effi-

ciently. The program distributes the event processing among the processes by

assigning each of them an event queue. In effect, each process may have a differ-

ent notion of what constitutes the current time (the time of the event at the head

of its queue) that may lead to a deadlock (when no processor has any event left to

process). The algorithm has a provision to resolve the deadlock and resume the

normal distributed processing of events.

66
Locking structure and collocation strategy. The principal locks in Pthor

are the locks associated with the event queues and the locks associated with the

elements of the simulated circuit. The collocation strategy is as follows. Each

event queue has two pointers: one points to the head of the queue, while the other

one points to the tail. To avoid unnecessary synchronization, Pthor checks the

status of the queue without acquiring a lock first. This check is performed by

accessing the head of the queue. Since access to the head is not always performed

within a critical section, I do not collocate it with the queue lock. On the other

hand, tail is always updated within a critical section, therefore I collocate this

variable. Also, I collocate the fields of the element data structure with its corre-

sponding lock.

Other modifications. I improve the spatial locality of the circuit data struc-

ture by rearranging some of its fields. After initialization, the access patterns to

these fields fall into two categories: read-only (e.g., the number of output ports of

an element) or migratory (e.g., the state of the element). By placing read-only

fields together in the same cache line at the exclusion of migratory fields, Pthor

can take full advantage of the automatic replication of read-only data across the

caches of the system. By collocating migratory fields, Pthor can take advantage of

the prefetching property of large cache lines.

2.2.5 Raytrace

Raytrace, a ray tracer, is a member of the SPLASH-2 benchmark suite [WOT+95].

67
Sequential algorithm. This benchmark renders a three-dimensional scene

using ray tracing. It generates primary rays starting from the viewpoint, through

the image plane, to the scene. When a ray encounters an object in the scene, the

algorithm reflects that ray towards each light source to determine if the ray is

shielded from that light source, and if not the algorithm computes the contribu-

tion of the unshielded light source. Objects also spawn new rays as the primary

ray either reflects or refracts (as appropriate) from or through, respectively, the

surface of these objects. The algorithm continues to spawn new rays recursively,

forming a tree of rays, until either a ray leaves the scene or a new ray would

exceed some user-defined threshold (such as the maximum number of levels

allowed in the ray tree).

Exploiting parallelism. The algorithm affords much parallelism across rays.

The parallel version of Raytrace distributes work among the processes through a

distributed task queue. The parallel program ensures the correct operation on the

queue with locks. The program provides efficient access to the scene description

through (1) hierarchical uniform grid to traverse scene data quickly, (2) round-

robin distribution of the scene data across the nodes in the system to balance load

on the network and the memory modules, and (3) replication of data in the caches

(the scene data is read-only).

Locking structure and collocation strategy. Raytrace uses locks in two

important circumstances. In the first one, a lock protects access to a counter used

to assign a unique identifier to each newly spawned ray. The critical section con-

sists only of fetching the counter, adding one to it, and storing it back to memory.

68
Contention to that lock is very high. Another set of locks (one lock per queue)

ensures the correct operation on the distributed task queue (one queue per pro-

cessor). Contention to these locks is typically fairly low, unless the number of par-

ticipating processors approaches the number of rays created. I perform

collocation as follows: I place the unique identifier counter in the same cache line

as its associated lock and I place each queue lock in the same cache line as the

address pointing to the first enqueued task.

2.2.6 Water-Nsq

This N-body molecular dynamics application is a member of the SPLASH-2

benchmark suite [WOT+95].

Sequential algorithm. This benchmark computes the forces and potential of

water molecules in a cubical box to predict a variety of static and dynamic proper-

ties of liquid water. For a user-specified number of time-steps, this program esti-

mates the forces each molecule exerts on all others according to the Newtonian

equations of motion. Water-Nsq avoids computing all N2 interactions by eliminat-

ing from consideration molecules outside of a sphere centered at the examined

molecule and of a radius corresponding to half of the box length.

After some initialization and one-time computations, each time-step consists of

five phases: (1) calculating the predicted values of atomic variables; (2) computing

intra-molecular forces for all atoms; (3) computing the inter-molecular forces; (4)

calculating the corrected values of variables from the predicted values and com-

puted forces; and (5) computing the total kinetic energy of the system. The third

69
task (computing the inter-molecular forces) accounts for the most of the execution

time: its time complexity is O(N2) while all the other tasks have a time complex-

ity of O(N).

Exploiting parallelism. Water-Nsq affords a lot of parallelism, both across

phases and within phases. This parallel version of Water-Nsq exploits mostly the

parallelism available within a phase; it exploits the inter-phase parallelism to a

limited extent to avoid some synchronization between phases. To exploit locality,

Water-Nsq both assigns statically each processor an even fraction of the mole-

cules and stores the molecules assigned to the same processor next to each other.

Communication among processors occurs during the second (intra-molecular

computation) and third (inter-molecular computation) phases. Communication in

the second phase consists only of adding scalars into a global sum; locks ensure

that the processors correctly update that sum. Communication also occurs in the

inter-molecular computation, where processors read positions of the interacting

molecules, compute the forces, and update the forces of both molecules. A lock per

molecule ensures the atomicity of the force updates.

Locking structure and collocation strategy. In the intra-molecular compu-

tation, each processor updates a global sum protected by a lock to ensure correct

operation. For the collocation experiments, I place both the lock and the accumu-

lator in the same cache line. In the original Water-Nsq, a separate array of locks

ensures proper updates of the forces associated with each molecule. To enable col-

location of these locks with each molecule’s forces require a reorganization of the

layout of molecules in memory. Water-Nsq stores the positions of each molecule as

70
well as their first five moments (velocities, accelerations, etc.) and the forces con-

secutively in an array. To enable collocation, I store, instead, all moments associ-

ated with each molecule as fields of a structure. With this new layout, it is

straight-forward to collocate a lock with each field that stores the forces.

2.3 Simulation environment

The main simulation platform is the Wisconsin Wind Tunnel (WWT) [RHL+93],

which uses a 32-processor Thinking Machines CM-5 [LAD+92] as its host

machine. WWT executes SPARC binaries in native mode on the CM-5, only trapping

into the simulator upon a cache miss. WWT assumes fixed execution time for the

instructions (the actual values correspond to the instruction delays listed in the

CY701 SPARC user’s guide [Cyp90]). WWT makes some assumptions about the tar-

get system to simplify simulation—it assumes both a perfect instruction cache

and that stack accesses always hit in the data cache.

The default WWT network model assumes a fully connected point-to-point target

network, in which messages take a constant number of cycles for a one-way net-

work traversal. A large enough constant latency provides sufficient lookahead for

efficient parallel simulation, as host nodes stop and synchronize only once every

C cycles, where C is the constant network latency. Using a small C (or variable-

length messages) reduces the node lookahead, which causes severe increases in

simulation time [BW95].

Although I model contention at the target node interfaces, memory, and mem-

ory directories, using a constant network latency ignores contention in the net-

71
work itself. To account for network contention, I use an analytical model [SGV92]

(which takes the network load as a parameter) to derive a different average net-

work latency for each benchmark. I estimate the aggregate network load from the

traffic statistics of previous simulations and their total execution times. Since the

network latency affects execution time and therefore aggregate load, I iterate this

estimation until the difference between the network latency constant and the

average value produced by the model converge to within one cycle (the final laten-

cies for the benchmarks ranged from 85 to 112 processor cycles for current tech-

nology parameters, and from 165 to 188 processor cycles for future technology

parameters).

To validate this process, I use a detailed, event-driven network simulator (based

on the original WWT network simulator [BW95]) that accurately simulates mes-

sage buffering, message retransmission, and flow control [BG95]. The implemen-

tation serializes the network simulation at a central host node, making

simulation performance suffer by roughly a factor of 15.

The target network used for the validation is an 8×4 mesh of rings. The target

network routes the requests in increasing dimension order and responses in

decreasing order. The internal details of the simulated network correspond

closely to those of the SCI transport layer standard [IEE93]. A message’s delay

through the network includes staging time at the source and target nodes, pars-

ing and wire delay through each intermediate node, and possibly a delay through

an agent queue, if the message switches dimensions. Table 2.2 lists the specific

times for these delays, for both current and future networks.

72
Table 2.3 shows the errors (in terms of target execution time) that the constant

latency network model suffers when compared against the detailed network sim-

ulation. The two columns of network latencies represent the mean message

latency returned by the SCI network simulator and the model, respectively. The

error columns show the error in target execution time that I calculate by compar-

ing the constant latency runs against runs that used the SCI network simulator.

These network validation runs assume sequential consistency and MCS locks, and

the benchmarks use smaller data sets than the other experiments reported in

this thesis.

Table 2.2 Parameter settings. All delays are in CPU

cycles. The network is assumed to have two byte-wide
links. Parsing delay accounts for the time spent on the
routing decision; wire delay accounts for buffering and
multiplexing; agent delay accounts for dimension
switching delays; and staging delay accounts for data
transfers occurring at the source and target nodes.

TECHNOLOGY CURRENT FUTURE

NODE PARAMETERS

Processor speed 200 MHz 500 MHz

Sustained IPC 1 2

Cache access 3 12

Directory access 10 40

NETWORK PARAMETERS

Network bandwidth 500 MB/s 1 GB/s

Parse delay 4 6

Wire delay 3 8

Agent delay 22 28

Staging delay 14 28

73
Unless stated otherwise, the target systems that I simulate consist of a cache-

coherent shared-memory system with 32 nodes. The coherent caches use the Scal-

able Coherent Interface (SCI) [43] as their base cache-coherence protocol. SCI

defines, among other features, an option for efficient support for synchronization

(QOLB). Each node in the target system is workstation-like, containing a proces-

sor, a 1-Mbyte four-way set-associative cache memory with 64-byte lines, a 64-

entry transaction queue, a network interface, and an even fraction of the distrib-

uted, globally-shared memory with the associated directory entries. The transac-

tion queue is similar to a functionally extended write buffer. It supports the

following asynchronous operations: writes, prefetches, sharing-list invalidations,

and cache line flushes caused by replacement.

Table 2.3 Inaccuracies of the constant latency network
model. This table compares the target running time returned
by the detailed network simulator against two runs of the
constant-latency simulator. In the first run, the simulator uses
as the constant network latency the mean computed by the
detailed simulator. In the second run, the simulator uses the
mean produced by the model.

BENCHMARK SIMULATED MODELED

LATENCY % ERROR LATENCY % ERROR

Barnes 93 –1.18 88 2.12

Mp3d 92 0.26 89 1.72

Ocean 93 1.46 93 3.08

Pthor 102 –2.09 88 4.61

Water-Nsq 91 –0.27 87 –0.04

74
A complete description of the system parameters and their associated timings

follows: a 64-byte line size, consistent with the SCI standard, a one cycle hit time

for the caches, and 1 one cycle per 32-bit word fill time. Cache replacements are

selected based on which line least recently missed or write-faulted (this is a con-

straint imposed by WWT). Memory loads always block, and main memory has an

invariant of one cycle per 32-bit word fill time. WWT allocates private target pages

locally, and distributes shared target pages to the target nodes round-robin. The

simulated memory system supports release consistency [GLL+90].

Simulation results for two types of systems are presented in this thesis: target

systems using technology current today and target systems using future technol-

ogy (my estimates are for approximately five years in the future). Table 2.2 lists

the system parameters for both technology levels (current and future). Note that

the future processor is effectively five times as fast in terms of instructions exe-

cuted per unit time.

I perform experiments with different sets of assumptions to explore the impact

of technology advances. In particular, I wish to discover whether system parame-

ters that change due to technological improvement will qualitatively change the

results with respect to the performance benefits of efficient synchronization.

2.4 Experimental platform: COW

COW, a cluster of workstations, consists of 16 unmodified dual processor Sun

SPARCstation 20s, each with two 66-MHz HyperSPARC processors [ROS93] and a

Myricom Myrinet interface [BCF+95], running the manufacturers’ Solaris release

75
5.4 operating system. The network topology is a regular tree of degree six. A tree

depth of two is sufficient to connect up to 36 nodes. The router at the top level

adds about 0.5µs latency to messages that must switch sub-trees [BCF+95].

The workstations use the Blizzard run-time system [SFL+94] to support the

shared memory abstraction. Blizzard is an implementation of the Tempest inter-

face [RLW94].

The detection of message arrival is achieved through polling. A binary rewriting

tool [LS95] automatically inserts polling instructions and checks before each

shared-memory access in the parallel program. By default Blizzard performs poll-

ing through an uncacheable read access to a memory-mapped status register.

This method of polling wastes memory bus bandwidth when the incoming mes-

sage queue is empty. To reduce bus contention Blizzard can exploit the fact that

the memory bus on the Sun SPARCstation supports coherent memory transac-

tions. The polling code in all the experiments performed in this study checks the

status of the network interface through accesses to a cacheable memory-mapped

location. The network interface updates this cacheable location using its DMA

interface [MFHW96]. This optimization lets the polling complete most of the time

without requesting the bus, reducing traffic and bus load. The drawback of this

optimization is that the polling latency when there are messages waiting in the

queue is slightly higher than if it had been performed using the uncacheable

access (an increase of about 1µs).

76
2.5 Application characterization

2.5.1 Working sets

Following the methodology proposed by Rothberg, Singh, and Gupta [RSG93], I

measure the size of the important working sets for each of the benchmarks used

in this study. To illustrate the important working sets of each benchmark, I plot

in Figure 2.4 the total cache misses that a program generates for different cache

sizes. On the horizontal axis, I vary the cache sizes logarithmically in increments

of integral power of twos; on the vertical axis I plot the total cache misses. I count

the total cache misses from simulations that I run on the WWT assuming a

sequentially consistent memory system and QOLB with all the synchronization

mechanisms enabled. I do not expect the memory model or the synchronization

primitive employed for these measurements to have a substantial impact on the

sizes of working sets.

Simulation environments, owing to the constrained speed at which they can

simulate the execution a benchmark, limit the problem sizes that are reasonable

to run. The problem sizes that I employ in this study are much smaller than the

data set that a real system is expected to run. I perform all simulation experi-

ments described in Chapter 3 assuming two sizes of caches. Most of the measure-

ments assume a 1MB cache, which is a reasonable size for current technology. For

the data sets used, a cache of this size enables me to evaluate the performance of

locking mechanisms and synchronization primitives without experiencing finite

cache effects. However, assuming a large cache, benchmarks with small data sets

77
may tend to overemphasize the benefits of locking optimizations. Thus, I rerun

some of the experiments with a smaller cache size that is more realistic for each

input used. To guide my choices of smaller cache sizes I use the working set anal-

yses presented in this section. The initial cache size choice (1MB) is always large

enough to fit the largest working set (WS2) for all applications. I then repeat some

key experiments with the smallest cache size that will fit the second largest

working set (WS1).

Based on the methodology and results by Rothberg, Singh, and Gupta [RSG93]

and the SPLASH reports [SWG92, WOT+95], Table 2.4 summarizes the important

working sets of each of the six analyzed benchmarks. In the following para-

graphs, I give a more detailed description of the important working sets of each

applications.

Barnes. The first important working set (WS1) corresponds to the body and the

portion of the tree that Barnes needs to traverse in order to compute the forces

acting on that body. The size of that sub-tree is proportional to the logarithm of

the number of processors and inversely proportional to the square of a parameter

that controls the accuracy of the simulation. The second working set (WS2) corre-

sponds to the maximum of (1) the amount of data in a processor’s partition and

(2) the amount of data to compute all interactions for the bodies that the proces-

sor owns [RSG93]. For the choice of parameters used here, the size of WS1 and

WS2 are 64KB and 128KB, respectively.

78
Mp3d. This benchmark has an unstructured data access behavior; neverthe-

less, a first knee in the curve is fairly well defined at size 4KB and the curve

reaches an asymptote at size 512KB.

Ocean. The first working set corresponds to the point where an entire column

of data fits in the cache (98 elements). The next working set corresponds to the

partition of the data set assigned to one processor. The sizes of WS1 and WS2 are

2KB and 128KB respectively.

Pthor. The first working set (WS1) corresponds to an element and the nodes

that drives it and are driven by it. The size of the second working set (WS2) corre-

sponds to the amount of data required to compute the behavior of the elements

assigned to a processor. The respective sizes of the working sets are 2KB and

64KB.

Raytrace. The working sets of Raytrace are not well defined due the unstruc-

tured nature of the computation. I select the first working set based on the first

sharp drop in caches misses (2KB) and select the second working set when the

total misses almost reach an asymptote (128KB).

79
Water-Nsq. The first working set (WS1) corresponds to private data. The second

working set (WS2) corresponds to the partition of the data set assigned to one pro-

cessor. The sizes of these working sets are 2KB and 64KB respectively.

Table 2.4 Important working sets and their sizes for each benchmark.

WORKING SET 1 WORKING SET 2

BENCHMARK DESCRIPTION SIZE DESCRIPTION SIZE

Barnes Tree data for 1 body 64KB Partition of DS 128KB

Mp3d Unstructured 4KB Partition of DS 512KB

Ocean A few columns 2KB Partition of DS 128KB

Pthor A circuit element 2KB Unstructured 64KB

Raytrace Unstructured 2KB Unstructured 128KB

Water-Nsq Private Data 2KB Partition of DS 64KB

80
1 2 4 8 16 32 64 12
8

25
6

51
2

12
04

0.0

1.0

2.0

3.0

4.0

5.0

6.0
1 2 4 8 16 32 64 12
8

25
6

51
2

12
04

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

1 2 4 8 16 32 64 12
8

25
6

51
2

12
04

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1 2 4 8 16 32 64 12
8

25
6

51
2

12
04

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

1 2 4 8 16 32 64 12
8

25
6

51
2

12
04

0.0

1.0

2.0

3.0

4.0

1 2 4 8 16 32 64 12
8

25
6

51
2

12
04

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

C
ac

he
 m

is
se

s
(m

ill
io

ns
) Mp3d

Pthor

Raytrace Water-Nsq

Barnes

Ocean

C
ac

he
 m

is
se

s
(m

ill
io

ns
)

C
ac

he
 m

is
se

s
(m

ill
io

ns
)

Cache size (KB) Cache size (KB)

Figure 2.4 Total cache misses versus cache size. The cache misses assumes 32
processors with 64 byte line sizes and 4-way associative caches. WS0, WS1 and WS2 refer to
the observed working sets.

WS1

WS2

WS1 WS1

WS2

WS1
WS1

WS2

WS1

WS2

WS2

WS2

81
2.5.2 Locking

Table 2.5 summarizes some important static and dynamic statistics about the

usage of locks in the six benchmarks. It gives the number of distinct locks that

each benchmark uses during execution, the overall number of times that a bench-

mark accesses these locks, the average number of processor cycles that a bench-

mark holds a lock (i.e., the average length of the critical section), the probability

that a lock access finds a lock busy, and the number of processor cycles that

elapse, on average, between two lock accesses. The latter statistic is computed by

dividing the benchmark execution time (discounting initialization) by the total

number of critical section entries across all 32 processors (the second statistic in

the third column).

All the numbers in Table 2.5 assumes a sequentially consistent memory system

and uses QOLB with all the synchronization mechanisms enabled.

Table 2.5 Critical section statistics.

NUMBER OF LOCKS CRITICAL SECTION AVG # CYCLES
BETWEEN LOCK

ACCESSESBENCHMARK DISTINCT ACCESSES AVG. LENGTH BUSY

Barnes 2,052 46,724 930 13% 1,840

Mp3d 388 1,282,224 470 16% 43

Ocean 4 689 320 96% 17,936

Pthor 5,064 114,412 4,250 27% 674

Raytrace 4 74,413 540 26% 495

Water-Nsq 521 100,931 320 3% 610

82

83
Chapter 3

Performance of synchronization primitives

3.1 Introduction

The performance of a synchronization primitive may contribute to a large

extent to the overall performance of a parallel shared-memory program that uses

fine-grain locking. Also, it may affect the potential for a program to scale to larger

numbers of processors. This chapter characterizes the performance of a number

of important synchronization primitives. Also, using a novel decomposition of

synchronization primitives into mechanisms, this chapter helps determine the

relative merits of those underlying mechanisms.

This chapter begins by defining the synchronization period—a device to reason

about the performance and inefficiencies of synchronization primitives. Then,

with the help of this device, I discuss the inefficiencies that may occur in synchro-

nization primitives and identify four previously proposed mechanisms that can

reduce or eliminate some of these inefficiencies. Next, I discuss a comprehensive

list of synchronization primitives proposed to date and show which of these mech-

84
anisms they incorporate. Finally, using detailed simulations, I evaluate quantita-

tively the performance of key synchronization primitives. Also, I attempt to

evaluate the performance benefits of each of the four proposed locking mecha-

nisms.

Preliminary versions of this chapter appear in the literature [KABG95,

KBG97]. Of my co-authors, Aboulenein provided the compiler infrastructure used

in the first paper, but which I do not use in this thesis. Burger designed and

implemented the detailed network simulator [BG95] that I use to verify some of

my experimental assumptions. Burger and Goodman also helped with the organi-

zation and writing of the papers. I draw upon these papers for some sections that

appear in this chapter.

3.2 Synchronization period

Locks provide individual processors with exclusive access to shared data and a

critical section of code.1 This exclusive access is particularly well-suited to the

fine-grained nature of many shared-memory parallel programs. Fine-grained pro-

grams ideally associate as little data or code as possible with a critical section,

minimizing serialized processing, thus maximizing available parallelism. Since

the access to critical sections is by definition serialized among processors, large

inefficiencies when accessing a contested critical section degrade both parallel

performance and potential scalability. To maximize both the performance of fine-

1. Certain applications, most notably database codes and operating systems, distinguish
between shared and exclusive locks. A shared lock allows multiple processes to read
associated data concurrently; in contrast, an exclusive lock grants a single process the
privilege to modify those data. This work focuses only on exclusive locks.

85
grain parallel applications that use locking and the potential to scale to larger

numbers of processors, we must minimize the delays associated with the transfer

of exclusively accessed resources.

The act of transferring control of a critical section is complex, and may involve

multiple remote transactions. Some complex protocols perform this transfer effi-

ciently, allowing reasonable performance when there is high contention for a lock.

The complexity of these protocols, however, causes unnecessary delays when

accessing a lock that is free. Conversely, simple locking schemes that can access a

free lock quickly may perform poorly in the presence of contention. As a conse-

quence of this trade-off, the literature contains proposals of numerous primitives

[AC89, And90, BD86, Cra93, HM93, FG91, Gle91, GVW89, GT90, JHB87,

KCK99, LA94, LR90, MCS91b, MLH94, RS84, SSHT93].

To understand where the opportunities for optimization lie, I first decompose

the time associated with a complete locking period into three phases: Transfer,

Load/Compute, and Release. Together, these phases form a synchronization

period, which determines the global throughput of synchronization operations

and thus determines scalability for codes that rely heavily on locks. Then, I

describe four previously proposed mechanisms that locks may incorporate to

reduce the time spent in the three phases: (1) local spinning, (2) queue-based lock-

ing, (3) collocation (of a lock and data within the same cache line), and (4) syn-

chronous prefetch.

86
3.3 Synchronization inefficiencies

From the perspective of an individual processor, the time associated with an

access to a critical section consists of the time from which the processor first

requests access to the corresponding lock, to the time at which the processor com-

pletes the release on that lock. This time period does not directly correlate with

global performance, however. Multiple processors contending for entry to the

same critical section may overlap the time from the issue of their requests to the

first release of the lock. A good analogy to this distinction is the difference

between the latency of an individual request to a memory system, and the

throughput achievable by pipelined accesses to that same memory system.

To determine how these critical section accesses limit global performance and

ultimately scalability, I define the notion of a synchronization period. The syn-

chronization period is the length of time between completion of two successive

synchronization operations (e.g., two successive releases) on the same variable for

the case that the lock has been requested before the first release. The successive

synchronization operations may occur on different processors. This synchroniza-

tion period is the service time that the processor incurs once the previous proces-

sor releases the lock. Since access to the critical section is by definition serialized,

the synchronization period will place an upper bound on possible throughput

(codes that do not access critical sections heavily will see upper bounds on perfor-

mance from other sources, of course).

87
I depict the breakdown of a synchronization period in Figure 3.1. The figure

shows events to synchronization variable X. The first event depicted is the com-

pletion of the release of lock X by processor A. Several processors are contending

to gain access to X. I assume that processor B wins the ensuing arbitration. When

the lock acquire completes, processor B enters the critical section. Upon finishing

the work in the critical section, processor B prepares to release X, and eventually

completes this operation. The breakdown of a synchronization period consists of

three phases:

• Transfer: the time at which processor A completes its release of the lock to the

time processor B completes its acquire. The release completes when the

releasing processor atomically writes the “unlocked” value to the lock. The

contending nodes may then re-issue requests (depending on the locking primi-

tive) to obtain the lock. A period of arbitration may ensue. Once the next recip-

ient of the lock is determined, that node must complete its acquire operation,

typically on the free lock sent to it.

• Load/compute: the time at which processor B completes its lock acquire to the

time processor B issues its lock release. Once a processor obtains the lock, it

enters the critical section. The processor will most likely have to read some

protected data, perform some computation, and write some protected data.

Accessing the data to read and write will typically incur some remote accesses.

• Release: the time from processor B issuing the lock release to the completion of

the lock release. When the processor issues a release operation for the lock,

remote accesses may be necessary before that operation can complete. Other

88
processors may have removed the lock from the releasing processor’s cache, for

example, or the releasing processor may have to re-obtain write permission for

the lock’s cache line. If the release operation is implemented with more than

one instruction (e.g., MCS), some aggressive memory models [AH90, GLL+90]

may allow some overlap between the Load/compute and Release phases. In

particular, consider a memory access performed during the Release phase that

does not conflict with any other accesses [GLL+90]; it may be permissible to

overlap this access with accesses initiated in the Load/compute phase.

In addition to illustrating the three phases in Figure 3.1, I also list the compo-

nents of each phase. The components marked with an asterisk are the only ones

that are fundamental, which would be part of a truly minimal synchronization

period. The components marked with a “+” are causes of potential inefficiencies,

the latencies of which may be partially or entirely hidden. Unmarked components

are ripe for elimination through optimization.

PB issues release
of X

Time

lock re-obtainedexclusive data loadedrequests issued +
* *

PB release of

Figure 3.1 Breakdown of one synchronization period.

Load/compute ReleaseTransfer

X completes

arbitration
lock sent to new owner

computation performed
exclusive data written

lock released
*

Transfer

lock X completes
PA release of

PB acquire of
X completes

one synchronization period

owner acquires the lock*
+

89
3.4 Locking mechanisms

I identify a set of four mechanisms that synchronization primitives can incorpo-

rate to avoid inefficiencies. In Table 3.1, I show the inefficiencies (from

Figure 3.1) reduced by each of these mechanisms. The definitions and explana-

tions of each mechanism are as follows:

• Local spinning: allows a requesting node to spin on a local copy of the lock,

eliminating unnecessary requests for a held lock. Although local spinning does

not directly reduce inefficiencies on the critical path of the synchronization

period, it does greatly reduce the load on the network, particularly for longer

critical sections.

• Queue-based locking: eliminates arbitration inefficiencies and reduces lock

transfer time, both in the Transfer phase. This mechanism reduces synchroni-

zation inefficiencies in the following ways: (1) it creates a queue of waiting

requesters, thus performing arbitration when the requests are received and

not when the current holder releases the lock; (2) it reduces lock transfer time

Table 3.1 Inefficiencies addressed by locking mechanisms.

PHASE OF THE SYNCHRONIZATION PERIOD

TRANSFER LOAD/COMPUTE RELEASE

LOCKING MECHANISMS ARBITRATION

LOCK
TRANSFER DATA READ DATA WRITE

RE-OBTAIN
LOCK

Local spinning

Queue-based locking ✓ ✓ ✓

Collocation ✓ ✓

Synchronous prefetch ✓ maybe

90
by restricting communication to be between the releasing node and the acquir-

ing node only (although the number of remote accesses required to perform

this transfer will vary among different primitives); and (3) it eliminates the

inefficiency of re-obtaining the lock in the Release phase, since no other nodes

access the lock directly until the holder releases the lock.

• Collocation:1 lets protected data be transferred with the transfer of the lock

itself. Since the data arrive with the lock, collocation eliminates read and

write inefficiencies in the Load/compute phase. The implementations I study

in this thesis achieve collocation by coupling a lock and critical data together

in the same transfer block (a cache line). If the critical data are larger than

one cache line, collocation will only partly reduce the read and write access

inefficiencies. If the critical data are determined dynamically, effective colloca-

tion is difficult.

• Synchronous prefetch: allows a processor to issue a request for a particular

lock in advance of its critical section. The memory system will effect the trans-

fer of the lock from the holder to the prefetching requester only when the

holder releases the lock. Thus, this mechanism will not impede the current

holder’s progress in the critical section. If a node prefetches the lock and the

holder releases it before the requester reaches its critical section, the

requester may be able to hide the lock transfer latency completely.

1. col.lo.ca.tion (n) \.kal-*-’ka-sh*n\: the act or result of placing or arranging together;
specif: a noticeable arrangement or conjoining of linguistic elements (as words) [Web65]
(words in this context are 4-byte quantities of data).

91
3.5 Synchronization primitives

The basic synchronization primitives I discuss in this chapter are test&set,

test&test&set, MCS locks, Anderson’s locks, Graunke and Thakkar’s locks, LH

locks, M locks, QOLB, and Lee and Ramachandran locks. Table 3.2 shows which of

the mechanisms described in Section 3.4 are incorporated in each of these locks.

In Table 3.3, I show the minimum number of remote transactions required for

acquiring a lock. Each pair of numbers shown represents the number of transac-

tions required for a DASH-like [LLG+92] and SCI-like [IEE93] protocol, respec-

tively. DASH is the first research prototype of a cache-coherent distributed

memory multiprocessor; DASH is a widely studied and well understood system.

SCI is the protocol that I use for many of the simulation-based qualitative perfor-

mance analyses that appear in this thesis. I compute the data that appear in

Table 3.3 based on the following assumptions. In cases where the lock is not held

(columns 1 and 2), the number of transactions is from issue to completion of the

lock acquire. If the lock is held by another node, the number of remote transac-

tions shown is the number from issue of the release by the lock holder to the com-

pletion of the acquire by the requester. In the rest of this section, I describe each

base primitive and describe each in terms of the mechanisms that it incorporates,

as shown in Table 3.2. I also discuss the reactive synchronization schemes [LA94]

and other proposals to improve the performance of synchronization operations.

92
3.5.1 Test&set

Test&set performs an atomic read-modify-write on a memory location. It reads

the value contained therein, and unconditionally sets the value to be non-zero.

Test&set returns the original value read. It may be implemented with an atomic

swap of as little as one bit.

We see in Table 3.3 that the test&set primitive is efficient when a lock is not

held; the primitive can immediately load the lock into the processor’s cache and

lock it. Test&set is less efficient when there is contention for a lock, since the

lock’s line is shifted from requester to requester in “exclusive” state. When the

holder wishes to release the lock, it must re-obtain the lock from the requester

that has moved the line into its cache. Concurrently, all requesters continue to

send requests for writable copies of the lock. Although this scheme technically

Table 3.2 Synchronization primitives. For each synchronization primitive, this table
shows which locking mechanisms it incorporates. I deem collocation to be optional, since the
programmer may choose not to exercise it.

LOCKING MECHANISM

SYNCHRONIZATION PRIMITIVE LOCAL SPINNING

QUEUE-BASED

LOCKING COLLOCATION

SYNCHRONOUS
PREFETCH

Test&set no no optional no

Test&test&set yes no optional no

MCS, Anderson’s, Graunke
and Thakkar’s, LH, M

yes yes partial no

Lee and Ramachandran’sa yes yes optional ?b

QOLB yes yes optional yes

a. The capability of the Lee and Ramachandran’s lock to support read locks is outside the scope of this
study.

b. Lee and Ramachandran’s description of their lock [LR90] does not mention prefetching; however noth-
ing inherent to the design of the lock prevents its supporting such an operation.

93
guarantees that some processor makes forward progress, it does not guarantee

fairness, nor does it prevent starvation. Worse, it generates continuous remote

transactions from the requesters (if there are more than one), even while the lock

is being held. We see from Table 3.2 that the only optimization (of those in the

table) that test&set may implement is collocation. Collocation may be effective if

requesters rarely attempt to obtain the lock while held. When a request for a held

lock occurs, however, the requester and holder will cause the line holding the lock

(and collocated data) to ping-pong between their caches, as the holder accesses

the data and the requester spins on the lock. The ping-ponging of the block will

Table 3.3 Number of remote transfers for acquire. The numbers in the table represent
the minimal number of messages needed to acquire a lock. The counts correspond to
messages on the critical path only. I show numbers for several initial lock states and two
cache-coherence protocols. Each number on the left assumes a DASH-like protocol [LLJ+92],
and each number on the right assumes an SCI-like protocol [IEE93]. I assume that the
acquiring node, the releasing node (if applicable), and the directory node are all distinct. In
cases where the lock is not held (columns one and two), the number of transactions is from
issue to completion of the lock acquire. If another node holds the lock, the number of remote
transactions is from issue of the release by the lock holder to the completion of the acquire by
the requester.

MINIMAL NUMBER OF REMOTE MESSAGES

LOCKING PRIMITIVE

LOCK IDLE IN
MEMORY

UNLOCKED, CACHED
ELSEWHERE

LOCKED, SINGLE
CONTESTANT

LOCKED, N
CONTESTANTS

test&set 2, 2 3, 6 5, 11 5, 11

test&test&set 4, 2 6, 6 8, 11 8, 9+2×N

MCS 2, 2 3, 6 7, 15 5, 9

LH 2, 2 9, 10 5, 11 5, 11

M 2, 2 3, 6 5, 11 5, 11

QOLB 2, 2 3, 4 1, 1 1, 1

94
stall the holder, increasing the length of its critical section and thus increasing

the global synchronization period.

A policy often applied to test&set is exponential backoff, in which after a failure

to obtain the lock a requester waits for successively longer periods of time before

issuing another request for a lock [And90, AC89]. I implement a backoff scheme

closely following the guidelines that appear in the original article. When an

attempt to obtain a lock is unsuccessful, the requestor waits for a random period

selected from a uniform distribution; the algorithm doubles the mean of the dis-

tribution after each failed attempt up to a maximum. At the start of a fresh syn-

chronization period the initial mean corresponds to half of the mean used in the

previous period. The maximum mean is set to 16K cycles, which is roughly the

time required to service a simple write miss (i.e., three network round trips or

approximately 600 cycles) times the number of nodes in the system. I initialize

the mean to one cycle, which corresponds also to the minimum mean.

3.5.2 Test&test&set

Test&test&set is an extension of test&set that performs a read of the lock

before attempting a test&set operation [RS84]. This primitive enables waiting

requesters to spin on shared, read-only copies of the lock (local spinning), waiting

for the holder to release the lock. When the lock holder issues the release, the

read-only copies are invalidated, and having obtained a writable copy of the lock,

the holder releases it. Then, all the requesters issue a request to load a read-only

95
copy of the lock, and finding it released, all attempt a test&set. However, only one

will succeed.

Although test&test&set employs local spinning to reduce interconnect traffic

while the lock is held, the time needed to acquire the lock is longer than test&set

(see Table 3.3), due to the requesters’ initial requests for read-only copies (instead

of an exclusive copy, as with test&set). The contention when the lock is freed can

be substantial, as all requesters attempt to acquire the lock at that point, and

then all attempt to upgrade the lock to a writable state. Exponential backoff may

therefore improve test&test&set as well as test&set. Collocation with

test&test&set may work better than with test&set, since the lock holder can still

read data allocated in the lock’s cache line, as it is shared with the requesters.

Test&test&set collocation is not ideal, however, since the holder will ping-pong

the cache line with requesters whenever it writes to the collocated data.

3.5.3 MCS locks

The MCS scheme [MCS91a, MCS91b] inserts requesters for a held lock into a

software queue at the time of the request, using atomic operations such as swap

and compare&swap to update the list correctly. With queue-based locking, arbi-

tration for the eventual recipient of the lock is therefore performed in advance,

first-come, first-serve. Arbitration for test&set and test&test&set, conversely,

occurs at the time of lock release, increasing the synchronization period.

The price of maintaining the requester queue in software is larger overhead,

especially under contentionless conditions. When a lock is released, however,

96
communication occurs only between the releaser and the requester at the head of

the queue. Network traffic is thus reduced to a constant number of network tra-

versals per synchronization access. In addition, each processor waiting for the

lock spins locally on distinct memory addresses (instead of a single address as

with test&test&set), which further reduces the load on the network. Each proces-

sor in the queue maintains a pointer to the address on which the next processor

in the queue spins. When the current lock holder leaves the critical section, it

simply clears the value pointed to by the address that it maintains.

Since each requester is spinning on a different address, these software queue-

based algorithms cannot easily benefit from collocation. Partial collocation can be

achieved by placing protected data along with the data structure that tracks the

queue insertion point (tail pointer). If there is little contention, partial collocation

may be effective. A more sophisticated approach could better exploit collocation

by placing data either with the insertion pointer when there is no contention, or

with the appropriate queue element when contention exists. However, this

approach requires copying of data which, done carelessly, may sacrifice their

integrity (e.g., in the context of recursive data structures). I do not investigate

this approach. These algorithms are also unable to prefetch data without signifi-

cant changes that greatly add to their complexity.

3.5.4 Anderson’s lock

Anderson’s proposal implements the queue of waiting processors as a circular

array [And89, And90]. This scheme uses fetch&add to assign each processor a

97
unique entry in the array. Aboulenein and his colleagues [AGGW94] show that

Anderson’s solution performs no better than the MCS solution; therefore I will not

discuss Anderson’s primitive any further.

3.5.5 Graunke and Thakkar’s lock

Graunke and Thakkar’s primitive is very similar to Anderson’s lock. Like

Anderson’s, this primitive places each requesting processor in a circular array.

The main difference that Graunke and Thakkar’s scheme uses swap instead of

fetch&add to insert a processor in the array.

3.5.6 LH and M locks

Magnusson, Landin, and Hagersten propose two software queue-based locking

primitives, LH and M [MLH94] (independently, Craig propose also a lock identical

to LH [Cra93]). They claim that their primitives will require one fewer remote

access to transfer a lock than does MCS, enabling their schemes to outperform MCS

when lock contention exists. The LH lock achieves this behavior at the expense of

increased latency to acquire an uncontested lock. The M lock achieves the more

efficient lock transfer without increased uncontested lock access latency, at the

expense of significant additional complexity in the lock algorithm. I implement

both locks according to the description in their paper, which presents the algo-

rithms in detail [MLH94].

98
3.5.7 QOLB

Goodman, Vernon, and Woest discuss the Queue-On-Lock-Bit primitive (QOLB—

originally called QOSB) [GVW89], which is the first proposal for a distributed,

queue-based locking scheme. QOLB maintains a hardware queue of waiting pro-

cessors, in which pointers to adjacent queue entries are held in the cache line.

Waiting processors spin locally on a “shadow” copy of the lock address, preventing

unnecessary network traffic or interference with the lock holder. Because lock

requesters spin on the same address as that of the lock, without evicting or down-

grading the lock holder’s copy, effective collocation is possible (unlike the other

primitives discussed so far). When the holder releases its lock, the lock is sent

directly to the requester at the head of the queue, incurring a total of one network

crossing to transfer the lock (see Table 3.3).

In addition to enabling local spinning, collocation, and efficient hand-offs

through queueing, QOLB is a non-blocking primitive. Therefore QOLB can issue

synchronous lock prefetches, allowing the processor to overlap data and lock

access times with other useful work. If the prefetch is issued sufficiently far in

advance, it is possible for the requester to see no overhead associated with the

99
critical section entry, either for accessing the lock or the data. Figure 3.2 shows

an example of how QOLB is used to access data in a critical section. The first call

to enqolb (a non-blocking operation) allocates a shadow copy of the cache line

and sends a message that inserts the requester into the hardware requester

queue. This early request allows the processor to overlap the fetch time with use-

ful computation. The subsequent calls to enqolb in the loop spin locally until the

owner releases the lock and sends it directly to the waiting node. When enqolb

returns “true,” the processor enters the critical section. The processor relin-

quishes the lock with the call to deqolb, at which point both the lock and any

data in the lock’s cache line are sent directly to the next waiting processor. In this

example, I assume that the critical section data can fit in 60 bytes. This will not

always be the case, of course. Also, QOLB is fair in general, except in the unusual

type monitor = (
lock : int,
data : char[60] [Assumes 64-byte cache lines.]

)

Critical Section(monitor : ref monitor) {
enqolb(monitor→lock) [Prefetch lock & data.]
[Various computation here.]
...
while (¬enqolb(monitor→lock)) {} [Spin if necessary and acquire.]
[Critical section here.]
...
deqolb(monitor→lock); [Release lock.]

}

Figure 3.2 QOLB code example.

100
cases when a processor’s shadow copy of the lock is replaced from its cache, forc-

ing the processor to rejoin the queue at its end.

3.5.8 Lee and Ramachandran lock

Lee and Ramachandran also discuss a hardware queue-based locking primitive

[LR90]. Their primitive is very similar to QOLB, however, its design is restrictive:

the primitive only works on bus-based systems. Indeed, Lee and Ramachandran’s

primitive takes advantage of the broadcast nature of the bus to support read

locks in addition to exclusive locks. The primitives discussed so far only support

exclusive locks, which allow only a single processor at a time in the critical sec-

tion. Read locks, used often in database and operating systems, relax this restric-

tion by permitting multiple processors in a critical section. Programs use this

primitive when a processor needs only read access to the data, but still requests

data consistency with respect to potential writers. Since this thesis focuses

strictly on exclusive locks, I will not measure the performance of Lee and Ram-

achandran locks. When used strictly in the context of exclusive locking, these

locks will perform in a way similar to QOLB.

3.5.9 Fine-grain data prefetching and forwarding

Numerous studies demonstrate the potential benefits of fetching data into the

cache ahead of time (data prefetching) [CB94, FP91, GHG+91] and writing data

directly into a remote cache (data forwarding) [KCPT95, PY94, RSS+95]. Abdel-

Shafi and his colleagues [ASHAA97], and Trancoso and Torrelas [TT96] specifi-

cally consider the use of these two types of primitives to speed up the execution of

101
synchronization operations. The first group of researchers improve the hand-off

behavior of MCS under contention using data forwarding. Under contention, the

current lock holder can generally identify the processor wanting the lock next. In

effect, the lock holder can, upon release, signal directly the next processor. Thus,

this technique can potentially reduce to one the number of messages that MCS

requires to transfer the lock (contrast this figure with the number in the third col-

umn of Table 3.3).

3.5.10 Reactive synchronization

Reactive synchronization [LA94, Lim95] dynamically switches among software

algorithms that perform well under various levels of contention. For instance, it

may combine test&set for low-contention phases of execution with MCS for peri-

ods of high-contention. Reactive synchronization attempts to achieve both low

latency lock access and efficient transfer at low cost (e.g., using only all-software

primitives).

I implement reactive synchronization, closely following the guidelines in the

paper [LA94]. For low-contention phases, I use test&set with exponential backoff.

For high-contention phases, I use MCS (the results presented later show that MCS

is the best-performing software lock under high contention, of the locks that I

measure). My implementation switches to MCS after five consecutive lock acquisi-

tions experienced higher levels of contention than a fixed threshold (a mean delay

of 32 clock cycles). I switch from MCS to the low-contention lock when the queue is

empty upon lock release five consecutive times.

102
3.6 Experimental evaluation

I measure the performance of the six synchronization primitives discussed in

Section 3.5, varying mechanisms from Section 3.2 when possible, except that I do

not simulate collocation in conjunction with the LH and M locks (it will become

obvious later in this chapter that MCS generally performs just as well as LH and

M, which are not inherently more amenable to collocation than MCS). I also mea-

sure the performance of reactive synchronization (also without collocation since

there is no straight forward method to apply this optimization with this primi-

tive). The seven locking schemes (and their corresponding abbreviations) are as

follows: test&set (denoted TS), test&set&set (denoted TTS), MCS locks, LH locks, M

locks, reactive synchronization (denoted R), and QOLB. I use the following abbrevi-

ations for optional mechanisms or policies: collocation (+C), hand-inserted syn-

chronous prefetch (+P), and exponential backoff (+E).

3.6.1 Methodology

Target system. The simulation platform for this study is the Wisconsin Wind

Tunnel (WWT) described in Chapter 2. The target systems that I simulate are

cache-coherent shared-memory systems. For the experiments involving the

microbenchmark, the size of the simulated system ranges from 1 to 64; for all the

other experiments the system always comprises 32 nodes. I typically run each set

of experiments twice; once assuming a sequentially consistent memory system

and a second time assuming an aggressive implementation of release consistency

that attempts to remove inefficiencies associated with writes completely.

103
Microbenchmark. I measure the raw critical section execution time using the

first microbenchmark described in Chapter 2. The benchmark accesses the criti-

cal section a total of 3,200 times. Once in the critical section, a processor waits

800 cycles before releasing the lock (this stall simulates access to, and computa-

tion of, protected data). After release, the releasing processor waits for a random

amount of time selected from a uniform distribution.1 The mean of the distribu-

tion is five times the critical section delay (4,000 cycles) and the minimum is zero

cycle. As the number of nodes increases, the contention for the lock increases, and

eventually the reduction in execution time stops (and in some cases reverses)

owing to the increase in lock contention. For this experiment, I assume a fixed

network latency between any two nodes of 100 cycles and a sequentially consis-

tent memory system. Relaxing the memory ordering constraints may benefit syn-

chronization algorithms that require multiple memory accesses to acquire or

release the lock. Algorithms in this category include most notably the software

queue-based locks such as MCS. However, I do not simulate the execution of this

microbenchmark with a more aggressive memory model. Indeed, the goal of this

experiment is not to compare the precise execution time of the different locking

alternatives quantitatively, but rather to compare their performance in relative

terms and study their trends and behavior under varying contention levels. Mac-

robenchmarks simulations include experiments with more aggressive memory

models and these experiments show that relative performance does not change

substantially.

1. The selected times are pseudo-random and repeatable for all experiments.

104
Macrobenchmarks. The benchmark applications that I use for these experi-

ments are Barnes, Mp3d, Ocean, Pthor, Raytrace and Water-Nsq. Descriptions of

these benchmarks appear in Chapter 2. I list the problems that the benchmarks

solve and the inputs that I use in Table 3.4.

For these macrobenchmarks, I vary the memory model as well as the synchroni-

zation primitive. By using two memory models (sequential consistency and

release consistency), I show that the performance gained by improving the syn-

chronization primitive cannot also be gained solely by making the memory model

more aggressive. The memory models that I simulate are two different implemen-

tations of release consistency: sequential consistency (denoted SEQ), and an

aggressive implementation that attempts to minimize the number of times that

the processor stalls for memory write operations (denoted REL). For the latter

memory model, I label all memory accesses as aggressively as possible according

to the structure proposed by Gharachorloo and his colleagues [GAG+92, GLL+90],

and insert the appropriate memory fences to achieve release consistency on the

simulated hardware platform. Although the system assumes blocking loads, I

implement a merging write buffer of up to 64 non-blocking stores, which allows

multiple stores to be coalesced and loads to be serviced by stores. This large

buffer permits very aggressive relaxation of the consistency model for stores. Spe-

cifically, this buffer allows load and store memory operations to bypass earlier

incomplete stores and allows loads to read the buffer content early (i.e., before the

corresponding pending writes complete). This reordering specification is similar

105
to the Partial Store Ordering (PSO) relaxed memory consistency model [SFC91,

CS99].

I simulate a merging buffer large enough (64 entries) such that results will not

be affected by its size. Undoubtedly, for these applications and for the system sim-

ulated, this buffer is overdesigned: my simulation results indicate that on aver-

age 1 to 4 entries are used (however, there are points in the benchmarks’

executions where more than 60 entries are consumed).

3.6.2 Microbenchmark results

Completion time of the microbenchmark loop is plotted in Figure 3.3. Since

there is no shared data used in the critical section of this benchmark, I do not

explore the benefit of the collocation mechanism here. I measure the completion

time of test&set and test&test&set both with and without exponential backoff,

MCS, LH and M locks, QOLB, and reactive synchronization (using test&set with

exponential back-off for the low-contention case and MCS for the high-contention

case). We see that QOLB performs best in all cases, under both low and high con-

Table 3.4 Macrobenchmarks.

BENCHMARK INPUT

Barnes 2,048 bodies, 11 iter.

Mp3d 24,000 mols, 25 iter.

Ocean 98×98, 2 days

Pthor risc, 1,000 timesteps

Raytrace teapot

Water-Nsq 512 mols, 3 iter.

106
tention. Test&set and test&test&set perform well under low contention (one or

two processors), but their performance quickly degenerates for more than four

processors. Excluding QOLB, all other primitives perform comparably under

medium contention (up to 4 processors).

The general trends for the performance of all the queue-based synchronization

primitives (MCS, LH, M, QOLB) display the behavior that we have come to expect:

gradual performance improvement until the sequential executions of the critical

section dominate the performance of the microbenchmark. Close inspection

reveals that LH and M do not consistently outperform MCS under high contention,

contradicting the claims of their authors. Indeed, Magnuson, Landin and Hager-

sten [MLH94] state that under high contention, MCS generates one extra cache

miss than do LH or M. However, careful collocation of the MCS “next” pointer and

the lock bit, as implied by the original article [MCS91a], can prevent this extra

cache miss. Under high contention, this collocation permits two read accesses to

be satisfied by a single read miss.

Under high contention, MCS slightly outperforms both LH and M. The difference

in performance is attributable to the cache behavior of these primitives and the

cache coherence protocol I simulate. Under MCS, a processor always reuses the

same queue element (or memory address) to insert itself in the queue. Under both

LH and M, queue elements tend to migrate from releasing to acquiring nodes

[MLH94]. In SCI, a write to a migrating cache block requires more network trans-

actions than does a write to a block accessed mostly by one processor (see last col-

umn of Table 3.3). Other cache-coherence protocols may affect the performance of

107
these primitives differently. For instance, in a DASH-like protocol, performing a

write to a block shared by N other processors always takes the same amount of

messages independent of which processor added itself to the sharing list last.

Therefore, in a DASH-like system there would not be any difference between the

performance of MCS and that of the M or LH locks.

Finally, we see that this implementation of reactive synchronization scheme is

successful in that it closely tracks the performance of the best software alterna-

tive under both low- and high-contention conditions.

1 2 4 8 16 32 64
0.0

5.0

10.0

15.0

TS
TTS
TS+E
TTS+E
MCS
LH
M
R
QOLB

igure 3.3 Microbenchmark performance.

Number of processors

E
la

ps
ed

 ti
m

e
(m

ill
io

ns
 o

f p
ro

ce
ss

or
 c

yc
le

s)

108
3.6.3 Macrobenchmark results

I present the results of the macrobenchmark experiments in Table 3.5. Test&set

is the base case for each benchmark and memory model. I list the simulated exe-

cution time of each base experiment (in millions of processor cycles, discounting

initialization) in parentheses in the test&set (TS) row and sequentially consistent

memory system (SEQ) column of Table 3.5. In the last row of this table, I also list

the absolute speedups (with respect to the uniprocessor run) for the QOLB experi-

ment with all optimizations enabled and assuming a sequentially consistent

memory. Note that Pthor scales particularly poorly even with the use of an effi-

cient synchronization primitive (QOLB). The nature of the logic circuit being simu-

lated is such that Pthor often processes very few events (less than 10) before

entering a deadlock, the resolution of which requires a global synchronization

through a barrier. The relatively high frequency of global synchronization pre-

cludes satisfactory scaling behavior for Pthor, at least for the chosen input. The

other numbers in Table 3.5 are all speedups relative to their particular base case.

What is most striking about these results is the fact that test&test&set with

exponential back-off and collocation enabled performs nearly as well as QOLB in

all benchmarks except for Mp3d. Indeed, for these benchmarks, QOLB never out-

performs test&test&set by more than 4% (sequentially consistent Raytrace) and

for one benchmark (Pthor with relaxed consistency) test&test&set is 9% faster

than QOLB. Yet, these two primitives achieve their respective performance with

different means. QOLB achieves its performance with very efficient lock hand-off

and deferred transfer of the lock; while test&test&set achieves its performance

109
with very few instructions combined with collocation to optimize data transfer

and exponential back-off to reduce the impact of lock contention. Note, however,

that, in a production-quality application, collocation should probably not be used

along with a primitive like test&test&set. First of all, performance improvement

Table 3.5 Speedups of synchronization primitives. The numbers in parentheses
represent the execution time (in millions of clock cycles, discounting initialization) for the
particular benchmark running on sequentially consistent hardware. The numbers in brackets
represent the absolute speedups for the QOLB experiment with all optimizations enabled. The
other numbers represent relative speedups, calculated as the ratio of the execution time
(discounting initialization) of the base run to that of the optimized synchronization primitive.

BENCHMARK

Barnes Mp3d Ocean Pthor Raytrace Water-Nsq

EXPERIMENT SEQ REL SEQ REL SEQ REL SEQ REL SEQ REL SEQ REL

TS (175) 0.94 (146) 0.99 (16.3) 1.19 (123) 1.12 (548) 1.36 (65.2) 1.02

TS+C 1.76 1.98 1.05 1.15 1.31 1.70 0.76 1.04 9.61 10.62 1.04 1.06

TS+E 1.55 1.58 1.41 1.71 1.12 1.38 1.15 1.33 4.49 4.88 1.02 1.04

TS+E+C 1.84 1.98 1.60 1.98 1.31 1.70 1.29 1.59 12.29 13.77 1.01 1.04

TTS 1.02 1.11 1.09 1.13 1.02 1.22 1.08 1.23 1.05 1.18 1.00 1.02

TTS+C 1.83 1.99 1.15 1.25 1.33 1.71 0.90 1.46 11.46 11.99 1.04 1.06

TTS+E 1.55 1.59 1.30 1.62 1.11 1.40 1.12 1.31 4.30 4.90 1.02 1.04

TTS+E+C 1.86 1.97 1.48 1.86 1.27 1.71 1.32 1.63 12.53 13.50 1.02 1.04

MCS 1.71 1.73 1.44 1.60 1.24 1.56 1.20 1.32 7.02 6.15 1.02 1.04

MCS+C 1.73 1.76 1.61 1.76 1.26 1.67 1.41 1.57 6.66 6.91 1.02 1.03

LH 1.69 1.72 1.30 1.51 1.25 1.56 1.17 1.36 6.36 6.45 1.00 1.02

M 1.70 1.71 1.09 1.36 1.25 1.56 1.17 1.27 6.34 6.45 1.01 1.03

R 1.70 1.75 1.16 1.48 1.19 1.50 1.19 1.36 6.61 7.10 1.01 1.03

QOLB 1.92 1.95 2.01 2.27 1.31 1.67 1.26 1.49 13.03 13.31 1.04 1.05

QOLB+C 2.04 2.07 2.63 2.81 1.34 1.72 1.56 1.89 14.95 15.41 1.05 1.06

QOLB+C+P 2.04 2.06 2.64 2.79 1.32 1.69 1.59 1.90 14.90 15.50 1.06 1.07

[22.9] [7.16] [16.7] [1.64] [20.7] [27.1]

110
due to collocation cannot be guaranteed with a primitive that does not implement

synchronous lock transfer; moreover, in cases of heavy contention, performance

degradation could be dramatic. The purpose of studying collocation with

test&test&set in this thesis is not to prove such an alternative viable, but rather

to investigate the potential of collocation to reduce synchronization inefficiencies.

Also striking about these results is the range of speedups, considering that the

only two parameters being varied are the synchronization primitive and the

assumed memory model. Three benchmarks record speedups greater than 100%

(Barnes, Mp3d, and Raytrace). The largest and smallest speedups measured,

with all four mechanisms employed, are sequentially consistent Water-Nsq and

Raytrace respectively: QOLB with collocation and prefetch enabled speeds up the

execution of Water-Nsq by 6% and Raytrace by a factor of 15.5.

The large speedups obtained by certain primitives are not necessarily as much

an indication of their worth as evidence of the large inefficiencies that a poor syn-

chronization primitive can introduce. For instance, all but one primitive improve

the performance of Raytrace by at least a factor of 4. Queueing effects on Ray-

trace’s main lock structure and SCI’s deficient support for widely-shared data

combine to lead to test&set and test&test&set’s substantially inferior perfor-

mance compared to the other primitives. Raytrace has one lock that it accesses

much more often than any other locks in the program. Raytrace uses that lock to

assign each new ray that it spawns a unique identifier using a global counter. The

high number of rays required to render a scene with the relatively low number of

instructions executed per ray makes this critical section a highly contested

111
resource. Therefore, the use of a naive synchronization primitive can easily lead

to processors spending an inordinate amount of time queued waiting for the lock.

For instance, without collocation, the critical section execution time augments

substantially. Indeed, since there is contention for the critical section, the local

cache is unlikely to have a copy of the global counter just as a processor obtains

the lock. Therefore, the fetch of a copy of the counter will delay the execution of

the critical section. Since the critical section has only a few instructions (load the

counter into a register, increment it, and store the new value back to memory) the

fetch delay will dominate the execution time of the critical section. The longer the

critical section the more likely a synchronization request will find the lock busy.

On the other hand, collocation decreases the execution time by about two orders

of magnitude, reducing considerably the number of times that a request finds the

lock busy. In the case of test&set, the traffic generated by the processors compet-

ing for the lock further degrades performance. While local spinning helps

test&test&set somewhat with this extra traffic, the release of the lock is substan-

tially slowed down by the fact that SCI must invalidate the sharers one at a time

[Kax98]. Other coherence protocols typically use broadcast to invalidate sharers,

which would improve the release performance of test&test&set, and improve the

performance of test&test&set over test&set somewhat.

Water-Nsq is relatively insensitive to any of the applied optimizations. Water-

Nsq is a compute-intensive benchmark that communicates little. Such programs

do not need optimized synchronization because there is so little communication

involved. The speedups for Ocean are small not because the mechanisms are inef-

112
fective, but because Ocean uses locks less frequently than the other benchmarks

do (see Table 3.4).

For all benchmarks, QOLB with collocation consistently captures the bulk of the

performance improvement to be gained. The implementation of synchronous

prefetching has no impact on speedup. There may be more opportunity for

improvement with synchronous prefetch, if the codes or algorithms are restruc-

tured to exploit the power of the QOLB prefetch operator.

Nearly all benchmarks exhibit similar performance for QOLB and test&set (or

test&test&set) with collocation; this is untrue for Mp3d and Pthor, however.

Using collocation with test&test&set improves the performance of Mp3d little,

and deteriorates the performance of Pthor. The lower performance of Pthor with

collocation results from the relatively long length of Pthor’s critical sections.

These long critical sections give requesters the opportunity to attempt obtaining

the lock, pulling both the lock and critical section data out of the holder’s cache.

This behavior does not occur with QOLB since QOLB defers the lock (and collocated

data) transfer until the current lock holder leaves the critical section.

Partial collocation with MCS improves the performance of all benchmarks,

except for Barnes and the sequentially consistent runs of Ocean and Raytrace. In

these cases collocation either has little impact (Ocean and Barnes) or degrades

performance slightly (Raytrace). Unlike test&set, MCS causes only a fixed number

of memory operations to be issued per synchronization access, thus limiting the

disturbance caused by collocation.

113
Raytrace exhibits much larger speedups than does any other benchmark. The

Raytrace base case (test&set) is extremely slow (as is test&test&set). Adding any

other mechanism besides local spinning improves the performance of Raytrace

substantially. These two primitives perform so poorly because much of the locking

is for very small critical sections, for which there is heavy contention. Collocation

makes the small critical sections extremely fast. Queue-based locking eliminates

the large relative overhead that occurs due to contention when the lock is

released.

Adding exponential backoff improves performance moderately for all bench-

marks but Mp3d and Pthor in the sequentially consistent runs, in which I observe

slowdowns of up to 20%.

Reactive synchronization is generally within 25% of the best performing syn-

chronization primitives (disregarding the collocation mechanism and the QOLB

runs). The exceptions are the sequentially consistent runs of Barnes and Mp3d,

where reactive synchronization is 32% and 53% slower than MCS, respectively.

3.6.4 Individual mechanisms

This section isolates the performance contributions of the individual mecha-

nisms in Section 3.4. Figure 3.1 shows performance differences between eight

pairs of experiments (for each benchmark). Each pair of experiments isolates one

particular mechanism. There is doubtless interaction between an “isolated”

mechanism and the other components of the synchronization primitive. This

decomposition is not intended to quantify the performance contribution of indi-

114
vidual mechanisms definitively, but to aid in understanding of how each of them

affect performance. I also isolate the exponential backoff policy. I list the isolated

mechanisms or policies in Table 3.6, along with their corresponding experiment

pairs.

All runs in Figure 3.4 assume a sequentially consistent memory model. The y-

axis plots speedup. Figure 3.4 shows that local spinning is generally ineffective.

Queue-based locking (using MCS) increases speedup for all benchmarks. Using

collocation with test&set and test&test&set causes very different behavior across

the benchmarks: reducing speedup (Pthor), having a negligible effect (Mp3d),

causing a moderate increase (Ocean), and causing a large increase (Barnes and

Raytrace). This high variance with collocation exists because requesters may

either steal the data from the lock holder, hurting performance, or prevent extra

Table 3.6 Experiment pairs.

EXPERIMENT PAIR

ISOLATED MECHANISM OR POLICY With Without

Local spinning TTS TS

Exponential backoff TTS+E TTS

Queue-based locking MCS TTS

QOLB TTS

Collocation TS+C TS

TTS+C TTS

QOLB+C QOLB

Synchronous prefetch QOLB+C+P QOLB+C

115
remote transfers into a network filled with arbitration traffic, thus mitigating

exceptionally poor performance.

Synchronization prefetching is ineffective, never affecting the running time by

more than 2%. As mentioned before, there is more opportunity for improvement

with synchronous prefetch, as I do not restructure the codes or algorithms to

exploit the power of the QOLB prefetch operator.

3.7 Future technology

In a previous study Mellor-Crummey and Scott conclude [MCS91b] that “spe-

cial-purpose synchronization mechanisms such as the [QOLB] instruction are

-25

0

25

50

%
 s

pe
ed

up

Figure 3.4 Effect on individual locking mechanisms.

Collocation
(TS)

Exp. backoff
(TTS+E vs. TTS)

Local spinning
(TTS vs. TS)

Collocation
(TTS)

Queue-based locking
(MCS vs. TTS)

Queue-based locking
(QOLB vs. TTS)

Collocation
(QOLB)

Prefetch
(QOLB)

Barnes
Mp3d
Ocean
Pthor
Raytrace

67% 147% 106% 69% 146% 53% 124% 76% 150%

116
unlikely to outperform our MCS lock by more than 30%.” This claim does not agree

with the results in Section 3.6, where QOLB improves the performance by 40%.

Furthermore, this claim becomes more suspect as processors become faster, sys-

tem size increases, and the relative delays of interconnect traffic increases. This

is borne out by the results for future technology assumptions, where improve-

ments gained by using QOLB for synchronization are greater than 100%. This per-

formance improvement is likely to increase as processors grow even faster,

suggesting that special synchronization hardware support such as QOLB will be

more important in future shared-memory multiprocessors. I note, however, that

high-performance processor designs that use aggressive prefetching and specula-

tive execution may well be able to capture some of the same latency reduction

achieved by QOLB.

Water-Nsq was relatively insensitive to any of the synchronization primitives,

since it is a compute-intensive benchmark that communicates little. Because

there is so little communication involved, Water-Nsq shows the greatest improve-

ment in performance when run with future technology assumptions, which

speeds up the base run by a factor of 4.44. Speeding up the processor relative to

the network latencies, however, not only increases the execution speed dramati-

cally; it also increases the benefits of optimization. With the future technology

assumptions, the combined speedup from QOLB with collocation, prefetch, and a

sequentially consistent memory system increases from 6% to 13%. The critical

observation is that even computation-bound jobs eventually become communica-

tion-bound, either as improvements in the processing speed outstrip gains in the

117
network or as these programs are scaled to larger systems. Thus, the optimiza-

tions investigated here eventually become effective even for such programs.

3.8 Small caches

Results discussed so far used a 1MB cache, which is a reasonable size for current

technology. Assuming a large cache, benchmarks with small data sets may over-

emphasize the benefits of improvement in the locking efficiency. Thus, this sec-

tion discusses results for runs assuming current technology and smaller cache

sizes that are more reasonable given the input data sets the benchmarks use.

Table 3.7 Speedups of synchronization primitives assuming future technology
parameters. The numbers in parentheses represent the execution time (in millions of clock
cycles) for the particular benchmark running on sequentially consistent hardware. For each
primitive, this table shows its speedup versus TS, calculated as the ratio of the execution time
of the base run to that of the optimized synchronization primitive. The last row shows the
speedup of the future technology, seq/TS simulation to that for the current technology with
SEQ,TS

BENCHMARK

Barnes Mp3d Ocean Pthor Raytrace Water-Nsq

EXPERIMENT SEQ REL SEQ REL SEQ REL SEQ REL SEQ REL SEQ REL

TS (281) 0.96 (303) 1.11 (26.6) 1.22 (227) 1.13 (1130) 1.62 (73.4) 1.05

TTS 1.03 1.27 1.18 1.19 1.03 1.26 1.08 1.25 1.11 1.24 1.03 1.06

MCS 2.04 2.07 1.62 1.76 1.31 1.72 1.23 1.35 7.68 7.78 1.06 1.09

QOLB 2.41 2.46 2.32 2.63 1.40 1.89 1.29 1.52 15.00 15.30 1.09 1.11

QOLB+C 2.64 2.70 3.22 3.36 1.44 1.95 1.61 1.99 20.41 21.92 1.11 1.13

QOLB+C+P 2.64 2.69 3.23 3.38 1.41 1.92 1.65 1.97 20.15 22.59 1.13 1.16

TS: cur/fut 3.12 2.40 3.06 2.70 2.43 4.44

118
Table 3.8 summarizes these results. The selected cache size fits the second larg-

est working set of each benchmark (usually the most important; refer to

Chapter 2 for a discussion of the different working set sizes). The last row of

Table 3.8 lists the chosen cache sizes. Two conflicting behaviors affect the perfor-

mance improvement due to collocation. Placing lock and data in the same cache

line increases the effectiveness of the cache when compared to data organization

imposed by synchronization primitives that do not lend themselves well to collo-

cation (such as MCS). This observation is countered by the opportunities for QOLB

becoming less frequent, because of the longer execution—due to more cache

misses—lessening the potential for performance improvement.

I observe both trends in these experiments. The performance improvements

attributable to QOLB with collocation for Barnes (factor of 2.2 speedup) is larger

than those with the larger cache (factor of 2.0). On the other hand the perfor-

mance improvements attributable to QOLB with collocation for Raytrace (factor of

5.6 speedup) is substantially lower (factor of 14.6 speedup). Part of the reason for

this behavior is that test&set runs better in the smaller cache (speedup of 10%). I

believe that the additional misses induced by the smaller cache force lock

requests to be more spread apart, which in turn lowers the lock contention

improving the performance of test&set. The performance improvements from

using QOLB for the other benchmarks are similar to those with the larger cache.

Relaxing memory ordering shows the same general trends as in the 1MB cache

experiments, but to a smaller degree. The only exceptions occur with Raytrace

and Water-Nsq. For Raytrace, the performance improvements due to QOLB are

119
lower with the more relaxed memory model. This result is perhaps evidence for

the fact QOLB might be able to capture a lot of the benefits of relaxing memory

ordering constraints in applications that use locks frequently. For Water-Nsq the

performance improvements using a sequentially consistent memory system are

comparable for both cache sizes, primarily because the benefits are so small (<7%

speedups).

In general, the conclusions drawn earlier in this chapter remain valid for the

smaller cache size.

Table 3.8 Speedups of synchronization primitives assuming caches that fit the
second largest working set of each application. The numbers in parentheses represent
the execution time (in millions of clock cycles) for the particular benchmark running on
sequentially consistent hardware. For each primitive, this table shows its speedup versus TS,
calculated as the ratio of the execution time of the base run to that of the optimized
synchronization primitive. The last row shows the speedup of the future technology, SEQ/TS

simulation to that for the current technology with SEQ,TS

BENCHMARK

Barnes Mp3d Ocean Pthor Raytrace Water-Nsq

EXPERIMENT SEQ REL SEQ REL SEQ REL SEQ REL SEQ REL SEQ REL

TS (188) 0.94 (146) 0.99 (22.8) 1.10 (143) 1.09 (499) 1.31 (80.1) 1.02

TTS 1.02 1.09 1.10 1.15 1.02 1.12 1.06 1.15 1.09 1.27 1.01 1.02

MCS 1.81 1.83 1.29 1.60 1.17 1.31 1.14 -.-- 4.92 4.96 1.02 1.04

QOLB 1.81 1.83 2.02 2.26 1.21 1.35 1.22 1.37 5.32 5.30 1.04 1.05

QOLB+C 2.16 2.19 2.57 2.76 1.22 1.37 1.33 1.50 5.60 5.35 1.04 1.06

QOLB+C+P 2.16 2.18 2.58 2.77 1.18 1.34 1.33 1.50 5.66 5.46 1.00 1.03

CACHE SIZE 64KB 4KB 2KB 2KB 2KB 2KB

120
3.9 Summary

This chapter focused on providing efficient locking primitives to improve the

performance and scalability of fine-grain shared-memory parallel programs.

Instead of focusing on the individual latencies associated with mutually exclusive

accesses to critical sections, I focused on the global execution time of critical sec-

tion accesses. I defined the notion of a synchronization period: one “cycle” of mul-

tiple serialized accesses to a critical section. I broke this time into three phases

(Transfer, Load/compute, and Release), and classified the components of each of

these phases as either unavoidable latencies or removable inefficiencies. I identi-

fied four optimizing mechanisms (local spinning, queue-based locking, collocation,

and synchronous prefetch) that can assist in eliminating the removable over-

heads of critical section accesses.

I performed a thorough evaluation of this space, simulating the performance of

sixteen locking constructs (formed from six base primitives: test&set,

test&test&set, MCS, LH, M, and QOLB) in detail with both real parallel applica-

tions and the more traditional microbenchmarks.

The results showed that local spinning consistently aids performance but not

very much. Queue-based locking was very effective, except in the cases where the

overhead of MCS, LH, and M locks hurt low-contention critical section access laten-

cies. Collocation of the lock and locked data in the same cache line showed wildly

different effects for test&set and test&test&set; collocation may greatly increase

121
or decrease performance, depending on the benchmark. Synchronous prefetching

was the least effective of any of the mechanisms.

Perhaps the most important result of these experiments is the large improve-

ments due to collocation applied in combination with appropriate synchronization

primitives. Collocation consistently improved the performance of QOLB, and

test&set and test&test&set, both with exponential back-off. In fact,

test&test&set with exponential back-off and collocation performs nearly as well

as QOLB without collocation for all benchmarks except Mp3d. While applying the

collocation with test&set or test&test&set in production-quality applications may

not be necessarily wise; it could be applied successfully to high-performance care-

fully-tuned applications.

Another important result of these experiments is the consistent and large per-

formance gain that QOLB achieves, which is further increased by collocation and

by future technologies. Graunke and Thakkar [GT90] concluded that “... elabo-

rate hardware [synchronization] schemes are unnecessary even when considering

larger non-bus-based [systems].” Mellor-Crummey and Scott stated [MCS91b]

that “special purpose synchronization mechanisms such as the [QOLB] instruction

are unlikely to outperform our MCS lock by more than 30%.” The results in this

chapter contradict these assertions; QOLB outperforms MCS by 40% for Mp3d and

more for future technologies.

Lim and Agarwal claimed [LA94] that reactive synchronization “reduces the

motivation for providing hardware support for queue locks.” Since QOLB outper-

forms the best software locks under either low- or high-contention conditions, it

122
should also outperform reactive synchronization schemes. These results confirm

this hypothesis—QOLB speedups were from 10% to 92% higher than reactive syn-

chronization, and this disparity only increased by adding collocation and synchro-

nous prefetch to QOLB.

The performance improvements gained by more efficient synchronization primi-

tives are even more dramatic when the system parameters are adjusted to reflect

technology trends. Assuming faster processors that are more heavily penalized by

network delays, the benefits to be had from better synchronization primitives

increase, suggesting that efficient synchronization primitive may become an

important feature of future systems.

123
Chapter 4

Implementation of synchronization primitives

4.1 Introduction

The success of hardware support for programming languages or operating sys-

tems may depend critically on the ability of an application or the operating sys-

tem to interact effectively and correctly with the proposed hardware support. In

particular, scalability of codes that synchronize frequently may depend on the

efficacy of a locking primitive implementation. A poor implementation can lead to

an imbalance between useful computation and synchronization overhead. This

imbalance will thwart further performance improvements that could be had from

adding more processing elements or refining the computation grain between syn-

chronization events. Also, an implementation must be correct. For example, a

synchronization protocol should not be able to access another program’s lock vari-

able, and the implementation must ensure forward progress and avoid deadlocks.

This chapter discusses the correctness and performance issues associated with

implementing efficient support for synchronization primitives. Correctness issues

124
include (1) protection, (2) forward progress, and (3) deadlock freedom. If the syn-

chronization state is shared among users of a multiprogrammed system, this sys-

tem must provide methods to enforce protection among untrustworthy programs.

Possible solutions can depend on existing protection support or rely on a special-

purpose design or use a combination of both. In a multiprocessor, locking support

implies a distributed solution among the nodes in the system. Nodes in a multi-

processor cannot necessarily observe events instantly as they occur and do not

necessarily observe these events in the same order. This property, common among

all distributed systems, raises forward progress and deadlock concerns. When

appropriate, I discuss these concerns and review possible solutions. Once a deci-

sion is reached about the set of locking mechanisms desired on a system, the

design team has a choice of implementation strategies for these mechanisms;

each of these strategies has a different cost and each can reach a certain perfor-

mance level. For each mechanisms, I review several implementation alternatives

and discuss their cost/performance trade-offs.

The rest of this chapter is organized as follows. Section 4.2 discusses the hard-

ware mechanisms required to implement primitives incorporating all four syn-

chronization mechanisms introduced in Chapter 3. This section also reviews

alternatives for implementing these mechanisms and discusses their cost/perfor-

mance trade-offs. Section 4.3 puts it all together, and describes and evaluates an

all-software implementation of QOLB on a cluster of unmodified workstations.

Section 4.4 reviews related work and Section 4.5 summarizes.

125
4.2 Hardware mechanisms for synchronization

I identify six hardware mechanisms that a multiprocessor system must imple-

ment to support an efficient synchronization primitive that incorporates all the

four locking mechanisms introduced in Chapter 3. These hardware mechanisms

are: (1) naming, (2) protocol processing, (3) synchronous cache-to-cache transfer,

(4) placeholder (“shadow line”) allocation, (5) non-blocking instructions, and (6)

association of a lock and the data it protects. In the next subsections, I give more

detailed descriptions of these mechanisms and review implementations alterna-

tives. Table 4.1 summarizes the six identified hardware mechanisms along with

Table 4.1 Summary of implementation alternatives for each hardware mechanism.

C
O

S
T

HARDWARE MECHANISM

P
E

R
F

O
R

M
A

N
C

E

naming
protocol pro-

cessing

synchronous
cache-to-

cache transfer
placeholder
allocation

non-blocking
instructions

lock & data
association

hi
gh

er
 ←

→
 lo

w
er

conventional
memory

all-software asynchronous main memory system call spatial
locality

hi
gh

er
 ←

→
 lo

w
er

call into soft-
ware library

special syn-
chronization

memory

variable cache
line size

programmable
protocol pro-

cessor

synchronous off-chip cache dual mapping

new ISA mapping

hard-wired full
custom

on-chip cache

126
the reviewed implementation alternatives. I associate with each alternative a rel-

ative cost (entries nearer the bottom of the table are relatively more costly). Note,

however, that this cost assignment is subjective and that other persons may come

up with orderings different than the one presented in this table. For instance,

some may be of the opinion that additions to a current instruction set architec-

ture (ISA) is not very expensive, while some others may argue that such additions

have hidden costs (such as the cost of having to carry these additions in all future

implementations of the new instruction set).

4.2.1 Naming

Typically, applications access more than one synchronization variable. There-

fore, systems traditionally support a synchronization name space, in which a pro-

gram can allocate many synchronization variables. Synchronization schemes may

choose to store locks in conventional memory or use a special synchronization

memory. Prevalent designs allocate locks in conventional memory. Then, these

locks can be accessed by normal load and store instructions as well as by any

other (possibly atomic) memory instructions that operate on memory (e.g.,

test&set or swap). This approach has the following advantages. First, the name

space is virtually inexhaustible (i.e., there are as many possible locks as there are

memory locations). Second, no special provision is necessary to save or restore the

synchronization state of a process; this state is stored as part of physical memory,

of which the operating system is already aware. Third, protection is ensured by

the mechanisms already in place (e.g., virtual memory support). Finally, in this

127
context, there is an obvious method to achieve collocation (i.e., place lock and data

in the same cache line). However, storing locks in conventional memory has at

least one disadvantage: this approach may complicate the address computation of

elements in certain types of data structures. For instance, if a programmer associ-

ates a lock per row of an array and stores each lock next to its corresponding row,

then the address computation of each array element is going to be more compli-

cated than in the case of a regular array.

Another alternative to naming synchronization variables is to allocate them in

a special memory and provide means to operate on them. This special memory

may take different forms: (1) it may be a distinct name space accessed with spe-

cial instructions (e.g., Sequent’s SLIC gates [BKT87]) or (2) it may be a tag associ-

ated with each conventional memory location accessed with conventional load

and store instructions with atomic side effects (e.g., HEP full/empty bits [Smi81]).

The advantage of this alternative is that locks and data structures may be com-

posed arbitrarily without introducing undue complications in data structure

address computation. However, this approach suffers from several disadvantages.

First, it may restrict the number of locking variables. If a program require more

locks than provided, it must somehow schedule this limited resource. A possible

scheduling policy is to create virtual locks, the access to which is protected by a

subset of the hardware locks. Second, the state of a process is now more elaborate

and must include the locks allocated in the special memory. Third, if this special

memory is shared among users, protection mechanisms must be provided. If the

tagged memory approach is used, protection may be provided through the sup-

128
port available for conventional memory (e.g., virtual memory). On the other hand

if the distinct memory approach is used, specific support may be required. Finally,

the association of a lock and the data it protects to support the collocation locking

mechanism may be more complex to achieve in the case of a distinct synchroniza-

tion name space.

4.2.2 Protocol processing

For any synchronization primitive implementation, the processor and the mem-

ory hierarchy must interact properly and efficiently to achieve both correctness

and a satisfactory performance level. Typically, such interaction is specified using

a protocol. A protocol is a specification that consists of a list of states and events,

a catalog of possible actions, and a set of permissible transitions. The latter set

indicates, for a given event, into what states the protocol can move and what

actions need taking place for each transition. A combination of sound design

methodology, theorem proving, and simulation and verification tools are used to

devise a protocol that is both correct (e.g., deadlock free) and that performs well.

If the components used to build a multiprocessor do not support a given synchro-

nization operation, the system designer must provide the corresponding locking

protocol by different means.

There are two primary alternatives to performing protocol processing: either a

hard-wired state machine or a programmable protocol processing engine can per-

form the task. Note that there are many possibilities for hybrid designs.

129
The first alternative represents the traditional approach: almost all bus-based

systems implement the cache coherence protocol this way. The trade-offs of hard-

wired implementations are well known: potential for high performance and man-

ufacturing cost in exchange for a certain inflexibility. Many manufacturers mar-

ket processors that include an on-chip memory hierarchy and an implementation

of a coherence protocol to maintain the consistency of data stored on-chip. For

such implementations, there is an obvious path to add efficient support for syn-

chronization to their products: extend the existing cache coherence protocol to

include support for locking. Such a design is perfectly feasible as demonstrated by

the IEEE SCI standard [IEE93]. SCI defines a basic directory-based distributed

coherence protocol; SCI also defines optional extensions to the basic protocol to

provide a range of systems with varied cost and performance. One such option is

the support for the QOLB synchronization primitive.

The other alternative—protocol processing using a programmable engine—is

recently strongly advocated by Heinrich and his colleagues [HKO+94], and by

Reinhardt, Larus, and Wood [RLW94]. This approach trades some performance

loss against the flexibility to change or extend the protocol at any time. Rein-

hardt, Larus, and Wood go even further and expose the necessary mechanisms to

allow programmers or compilers to tailor the behavior of shared memory to the

need of applications. Indeed, the user can supply custom protocols that can main-

tain cache coherence differently for distinct regions of memory. In his thesis,

Reinhardt discusses implementation alternatives of this flexible scheme that

range from low cost (but low performance) to high performance (at a higher price)

130
[Rei96]. At one extreme, he describes an all-software system without any special

hardware support beyond the capability to send and receive messages. In this

environment, the (compute) processor itself performs the protocol processing. At

the other extreme, he proposes a tightly integrated system composed of one or

more (compute) processors, a network interface, and a dedicated custom-designed

protocol processor.

4.2.3 Synchronous cache-to-cache transfer

To implement queue-based locking very efficiently, a system must be able to

transfer data directly from a node’s local memory to another’s. In addition, to sup-

port synchronous transfer in general and synchronous prefetch in particular, this

data transfer must occur at a moment of the current data holder’s choosing. This

ability to defer the data transfer introduces supplementary forward progress and

deadlock issues in addition to those already present in conventional data move-

ments: the transfer may occur at an indeterminate time after the initial request

(including never, in case of a programming error). Such unbounded delays on

data transfers must not impede the forward progress of other operations in the

system nor should they lead to a deadlock. In particular, resources at the differ-

ent stages of request and data transfer need to be carefully allocated and deallo-

cated. One solution to prevent deadlock and ensure forward progress is to

decouple the request from the data transfer completely. In this scheme, buffer

resources at the different network interfaces are only allocated for the duration of

the request transfer. A new set of resources is allocated and released for the dura-

131
tion of the data transfer. Consequently, no network resources remain reserved for

more than the duration of a network round-trip (i.e., a network transfer and its

acknowledgement).

From an implementation point of view, the two important aspects of synchro-

nous cache-to-cache transfer are (1) point-to-point message transfer and (2)

deferred transfer. The latter aspect is under the control of the cache coherence

protocol. If synchronous transfer is desired, the protocol must be designed to sup-

port it. Unfortunately, if the protocol is hard-wired and tightly integrated (e.g., on

a processor chip) synchronous transfer may not be easily achievable. The second

aspect (point-to-point decoupled message transfer) must be supported by the

underlying interconnecting network. The two primary means of connecting nodes

in a multiprocessor system are buses and point-to-point networks. Point-to-point

messages are trivially supported by point-to-point networks, however these net-

works are typically more expensive and reserved for large system configurations.

In contrast buses are much less expensive because of a simpler design and large

volumes of production that foster economy of scale. Unfortunately, not all buses

support decoupled operations. For instance, many early buses (e.g., the DEC PDP-

11 Unibus, the IBM PC-AT bus, or Intel’s Multibus) do not support decoupled

requests/responses (also called split transactions). However, with the advent of

aggressively pipelined memory systems, more and more buses support decoupled

operations necessary for the implementation of the synchronous cache-to-cache

transfer mechanism.

132
4.2.4 Placeholder allocation

To support both local spinning and synchronous data transfers (used both for

synchronous prefetch and efficient data transfer in implementations of the

queue-based locking mechanism) a system must provide the capability to allocate

a placeholder in its local memory for the requested data. This allocation serves a

purpose that is very similar to the allocation of a cache line upon a cache miss.

Mostly, this mechanism avoids deadlocks and promotes forward progress. It does

so by allocating buffer space ahead of time to ensure that the message containing

the requested data does not block upon arrival waiting for a location to store its

content. Also, in the context of synchronization, placeholder allocation plays a

unique role. First, it allows the node to spin locally without generating requests.

Finally, it serves as a notification device to inform the waiting node that the lock

has arrived.

The placeholder can be allocated either in a small local memory near the proces-

sor (e.g., a cache) or in main memory (a portion of which can be managed as a

large fully-associative cache). The mechanisms for allocating space in main mem-

ory are inexpensive and exist already through conventional memory storage allo-

cators.

The other alternative to allocating a placeholder in main memory is to reserve

storage in a local memory. This solution may be somewhat more expensive to

implement but affords superior performance. A small local memory near the pro-

cessor has an access time that is faster than main memory. Ideally, the place-

holder should be allocated as close to the processor as possible (i.e., on-chip).

133
However, this implementation may be too costly (it implies a custom designed on-

chip memory hierarchy that supports efficient synchronization primitives).

Instead, a less costly implementation may provide locking support through an off-

chip local memory, in which case placeholder allocation need only be provided for

that local memory.

4.2.5 Non-blocking instructions

An application must be able to issue a synchronization operation that appropri-

ate parts of the hardware platform must recognize as such. In addition, to sup-

port synchronous prefetch, these instructions must not block.

In the absence of proper synchronization instructions in the instruction set

architecture (ISA) it is possible to simulate the behavior of locking primitives in

the operating system through the system call interface. The advantage of this

approach is that it also provides protection for free. Unfortunately, the system

call interface is typically very slow and is unlikely to perform adequately for fine-

grain synchronization operations.

An alternative proposal, described in detail in the works of Blumrich and his

colleagues [BDFL96], and Markatos and Katevenis [MK97], but known long

before these works appeared, consists of creating dual virtual mappings for those

pages in shared-memory that contain synchronization variables. The seed of this

idea comes from the desire to use regular load and store instructions to command

an external device. Performing this task correctly is challenging. For instance, an

access may remain externally invisible in the presence of an on-chip cache. Simi-

134
larly, writing a virtual address on the data bus is of little use if the external

device does not know how to translate a virtual address.

The basic idea of dual mappings is to create two translations for each address

that may refer to a synchronization variable. The first mapping is the conven-

tional mapping tying a virtual page to a physical page. The operating system

maintains a second mapping so that an external observer can distinguish syn-

chronization from conventional memory operations (reading from and writing to

memory). Figure 4.1 illustrates the concept. To any virtual page in which an

application may issue a synchronization operation corresponds a shadow virtual

page. The function µ() maps each actual virtual page to a dual shadow virtual

page. A virtual page and its shadow counterpart map to distinct pages in the

physical space. The operating system assigns backing storage to the actual pages

shadow
virtual
page

actual
virtual
page

shadow
physical

page

actual
physical

page

µ()

virtual space physical space

µ-1()

Figure 4.1 Memory and shadow mappings.

135
but not to the shadow pages, since the latter do not contain any data. While the

content of the actual physical page may be cached, the content of the shadow

physical page remains uncached. Therefore any access performed in the shadow

space will always be visible externally. An external observer can recognize

accesses performed in the shadow space and, given a judicious choice for the func-

tion µ(), can translate any shadow physical address back to the corresponding

actual physical address.

The function µ() must be invertible and µ-1(), the inverse of µ(), should be rela-

tively simple to compute to allow for cheap hardware implementation. A possible

function µ() might employ an unused upper bits of the address space as follows

(assuming addresses no larger than 232):

the inverse of µ() is simply

Given this methodology, QOLB-like instructions could be defined as follows:

This scheme has serious deficiencies. In particular, it bypasses the entire on-

chip memory hierarchy to communicate with an external device. Therefore, the

on-chip memory hierarchy is not used efficiently for these operations: the

requested data will be stored in the off-chip memory hierarchy upon arrival and

µ addr() 1 addr0…30||=

µ 1–
addr() addr0…30=

enqolb addr() load µ addr()()≡

deqolb addr() store µ addr()()≡

136
only when the processor actually accesses the lock will the data move on-chip.

Also, in the worst case, it may double the number of existing mappings and dou-

ble the translation bandwidth, which may burden the virtual memory system in

an unacceptable way.

A third alternative to providing synchronization instructions is to extend an

existing instruction set. This solution provides the best performance alternative;

however, the associated cost can be substantial and the addition of new instruc-

tions may slow down other operations in the microprocessor. Additional cost

include extended decode hardware, more complex control logic, and added testing

requirements.

4.2.6 Association of a lock and data

To benefit from collocation, the application must have some means to inform the

system about the relationship between a lock and the data it protects.

Many of the synchronization primitives discussed so far (e.g., QOLB) achieve col-

location by taking advantage of the “prefetching” capability of cache lines larger

than a word. Indeed, by carefully placing lock and data in the same cache line,

whenever the memory system sends away the lock, it also ships some data with

it. While inexpensive, the limitation of this scheme lies in the fact that all the

data associated with a lock may not fit in a single cache line. Therefore only a por-

tion of the data will benefit from the collocation mechanism.

Variable cache line size and binding are two strategies that can boost the effec-

tiveness of collocation. If the size of a cache line is programmable, an application

137
can select the size that satisfies best the application’s needs. Other reasons have

already motivated the exploration of variable cache line size [DL92, JMH97].

Chapter 5 explores this solution further.

Another alternative to boost the effectiveness of collocation is to provide mecha-

nisms so that an application can inform the memory system of the bond between

a lock and its associated data explicitly. Then lock and data do not need to be

stored near one another anymore. Instead the memory system can store the bind-

ing information in a table that the system consults each time the application

issues a synchronization operation.

4.3 Putting it all together

I decompose overall design alternatives of efficient synchronization support into

four classes representing a varying range of cost and performance. These classes

are: (1) all-software systems, (2) systems based mostly on stock components, (3)

systems with key components (most notably the microprocessor) redesigned to

include special support for efficient synchronization, and (4) fully integrated,

aggressive systems achieving a performance ideal close to the shared-memory

multiprocessor that I simulate in Chapter 3. For each of these alternatives, I dis-

cuss the approach to providing efficient support for synchronization. Then I dis-

cuss different options for implementing the six hardware mechanisms described

in the previous section. Finally, in the next section I put it all together and show,

for each of the four design styles, a possible implementation based on the mecha-

nism implementation options discussed below.

138
The first design class provides the shared-memory abstraction completely in

software, relying only on the underlying hardware’s ability to send and receive

messages. Systems in that class include Blizzard-S, Blizzard-E, and Blizzard-ES

[SFL+94]; CRL [JKW95]; Midway [BZS93]; SAM [SL94a]; Shared Regions [SGZ93];

and Shasta [SGT96]. All-software designs allow for rapid prototyping and may

provide testbeds useful for demonstrating a concept (e.g., testing the feasibility of

an interface). Later in this section, I will discuss how an all-software solution can

implement the four synchronization mechanisms, albeit not very efficiently.

Some academic research groups argue for building computing systems of the

second class, that is, based on as many stock components as possible. Faster time-

to-market, improved reliability and testing, increasing reliance on third-party

software, software and hardware compatibility considerations, and lower manu-

facturing cost lead manufacturers to rely more on stock components rather than

designing components themselves. This view holds particularly for the use of

stock microprocessors to build parallel systems. Most parallel systems built today

rely on commercial microprocessors. Systems in this class includes university

prototypes, for instance Blizzard-T0 [SFL+94] and DASH [LLJ+92, LLG+92] and

commercial systems, for instance Sequent’s Sting [LC96] and HAL’s S1 System

[WGH+97]. In the context of stock component-based systems, building hardware

optimizations can be challenging. To minimize cost, optimizations have to be

implemented either in software within the constraints of an existing and immu-

table design or in hardware at the periphery (off-chip) of the different off-the-

shelf components. Also, these optimizations must not interfere with the perfor-

139
mance of other activities taking place in the system. Later in this section I will

show how to meet the challenges of a low-cost design while still attempting to

provide some reasonable performance.

Many processors are available today ready to be integrated in a multiprocessor

system. These processors include at least one level of on-chip cache and a com-

plete built-in external interface that allows a system designer to connect a few of

these processors together without additional circuitry. These processors maintain

consistency of data stored on-chip either by supporting write-through caches

[Smi82] or by implementing write-back caches with bus- or directory-based coher-

ence protocol. Two examples of multiprocessor-ready microprocessors are the

Intel Pentium Pro [Int96] and the Alpha 21364 [Gwe98]. These processors repre-

sent the latest step in a trend towards a continuous on-chip migration of system

and multiprocessing functionality. Later in this section I discuss what aspects of

these microprocessors need changing to support efficient synchronization.

The last type of system considered corresponds closely to the system that I sim-

ulate in Chapter 3. It is an ideal systems in terms of achieved performance of syn-

chronization operations. This system serves as a gauge against which to compare

the performance of alternative implementations.

Table 4.1 summarizes the implementations alternatives surveyed in the previ-

ous section. I have placed the cheaper solutions towards the top of the table; the

ones that are expected to perform better are towards the bottom of the table. The

actual positions of the solutions in the table are only indicative; comparisons

140
across columns are misleading at best. Also, alternative implementations to two

different hardware mechanisms are not necessarily compatible.

Table 4.2 shows three overall solutions to the problem of supporting an efficient

synchronization primitive incorporating all the four synchronization mechanisms

described in Chapter 3. All these solutions assume that the locks are allocated in

conventional memory, assume that the network fabric supports synchronous

transfer of locks and assume an implementation of collocation that employs the

“prefetching” capability of a cache line.

The all-software scheme is the least expensive implementation. This solution

processes protocol events in software linked with the application; the application

invokes synchronization operations by directly calling the appropriate function in

the protocol. This solution uses existing virtual memory support to provide neces-

sary protection and address translation. It allocates placeholders in main mem-

Table 4.2 Some implementation alternatives. All solutions in this table assume a network
fabric that supports fully decoupled request response messages and assume an
implementation of collocation that employs the “prefetching” capability of a cache line.

DESIGN ALTERNATIVES

HARDWARE MECHANISM

protocol processing
placeholder
allocation

non-blocking instruc-
tions

all software software main memory call in S/W

stock components-based off-the-shelf processors off-chip cache dual mappings

existing processor design
derivative

extension of existing
cache-coherence proto-

col

on-chip cache new ISA

141
ory, a part of which is managed as a large fully-associative cache. Section 4.3.1

describes such an implementation in more detail and evaluates its performance.

A solution based mostly on stock components may use an off-the-shelf processor

to process protocol events. The “compute” processor can communicate with the

protocol processor with the dual mapping technique. Since this solution bypasses

on-chip memory hierarchy, it allocates placeholder in an off-chip cache.

The third solution is based on an existing processor design that already inte-

grates on-chip caches and a cache-coherence protocol to maintain the consistency

of on-chip data. Such a processor may already contain most of the mechanisms

needed to support an efficient synchronization primitive like QOLB. In addition to

extending the existing coherence protocol, this solution requires instructions to

trigger the appropriate protocol actions.

4.3.1 Proof of concept

To prove that efficient synchronization support can be implemented on today’s

hardware I have implemented a synchronization primitive incorporating all four

synchronization mechanisms described in Chapter 3 according to the “all soft-

ware” design described in the first row of Table 4.2. I call this design SOFTQOLB

since it is essentially implementing QOLB-like functionality in software. SOFTQOLB

is an extension of the Blizzard run-time system developed by Schoinas and his

colleagues [SFL+94]. Blizzard uses an executable editing tool [LS95] to support

the shared-memory model in software on a distributed-memory multiprocessor.

The executable editing tool annotates each access to shared variables to provide

142
system-wide shared memory. Annotations check that each memory access can

complete safely (i.e., data is valid for read accesses and data is writable for write

accesses); should a check fail the annotations invoke the appropriate protocol

handler to bring the faulting memory location to a suitable state.

To determine if low-cost implementations of QOLB will still outperform other

primitives, I compared the performance of five base synchronization primitives.

They are test&set, test&test&set, MCS, a message-based centralized queue lock

(CQL), and SOFTQOLB, all implemented on a cluster of commodity workstations.

The workstations use the Blizzard run-time system [SFL+94] to provide the

illusion of shared memory. Blizzard is an implementation of the Tempest inter-

face [RLW94]. MCS and CQL are part of the locally available Blizzard distribution

and are implemented directly on top of the Tempest interface.

I implement SOFTQOLB as an extension of Blizzard’s default cache coherence

protocol (Stache [RLW94]) by adding support for QOLB. When the program does

not invoke synchronization action on a cache line, the protocol defaults to Stache.

When the program invokes synchronization actions (through two functions:

enqolb() and deqolb()) the protocol assumes QOLB-specific state transitions. A

more detailed description of Stache and SOFTQOLB appear in Appendix A.

I evaluate the performance of the five synchronization primitives (test&set,

test&test&set, MCS, CQL, and SOFTQOLB) with the microbenchmark described in

Section 2.1.2. The benchmark accesses the critical section a total of 100,000 times

evenly distributed among the nodes. Once in the critical section, a processor

writes a value into a shared variable, which takes about 80 µs when the variable

143
is not present in the cache [Sch97]. (This write miss latency assumes 128-byte

cache lines.) After the release of the lock, a processor waits for a random amount

of time selected from a uniform distribution, the mean of which is approximately

1,400µs (or on the order of 20 times the latency of a write miss). With this bench-

mark I can evaluate the impact of collocation by modifying the addresses of the

lock and the variable in memory. I run the benchmark with all the synchroniza-

tion primitives without collocating lock and data. Then I rerun test&set,

test&test&set, and SOFTQOLB; this time with lock and variable collocated. I mea-

sure the time it takes for all processors to complete the microbenchmark itera-

tions. I report the best of three measurements in an attempt to reduce the impact

of external perturbation that I have no control over (such as the underlying oper-

ating system scheduling other processes). Reinhardt [Rei96] and Schoinas

[Sch97] use the same methodology for similar experiments.

I plot the completion time (in seconds) of the microbenchmark loop in Figure 4.2

for a number of nodes ranging from 1 to 16.1 I measure the throughput of

test&set (denoted TS), test&test&set (denoted TTS), MCS, CQL, SOFTQOLB; for

test&set, test&test&set, and SOFTQOLB I measure also the throughput with lock

and data collocated (denoted with the suffix +C).

When there is no contention, test&set, test&test&set, and MCS perform better

than either CQL or SOFTQOLB. The difference is in large part due to the fact that

both CQL and SOFTQOLB require invocation of protocol handlers to acquire or

1. Due to a limitation in the Myrinet interface, I could not collect numbers with more than
16 nodes.

144
release a lock, while the other primitives can perform the same operations using

simple SPARC instructions that hit in the cache. Under light contention (two

nodes), the performance of test&set and test&test&set is still very competitive,

but as the contention increases their performance becomes unstable and degener-

ates with contention levels beyond five nodes. Collocation sometimes helps

test&set and test&test&set, but it is not stable for these primitives as demon-

strated by the sudden loss of performance for contention levels of eight and nine

nodes. The reason for this performance loss is the sudden increase in the number

of cache line invalidations occurring at eight and nine nodes. For these experi-

ments, a node frequently acquires the lock but to relinquish the corresponding

cache line immediately to satisfy an invalidation request. After each release, one

node is guaranteed to be able to acquire the lock, but the timing of the invalida-

tion requests is often such that these requests are effected before the node has a

chance to update the counter collocated with the lock. This coincidence of events

increases critical section execution time and the level of contention at the lock

leading to an overall increase of the microbenchmark running time.

The queue-based locking primitives perform as expected: with increased conten-

tion their performance improves until saturation. Under high contention, SOFT-

QOLB performs best, MCS poorest.

Under high contention, CQL and SOFTQOLB perform similarly, with CQL being

about 10% faster than SOFTQOLB (without collocation). Considering message

counts only we could conclude that SOFTQOLB should clearly outperform CQL.

Indeed, under high contention, SOFTQOLB transfers the lock in a single hop, while

145
CQL must transfer the lock in two messages (one message from the releaser to the

central queue manager and another one from the manager to the acquirer). How-

ever, considering message counts only is misleading in this environment because

the message transmission times are substantially different. While CQL uses short

messages (a single word, four bytes) to transfer the lock, SOFTQOLB transfers

entire cache lines (128 bytes). On Blizzard, the short message latency is about

half the latency of a message carrying 128 bytes of data (round trip times of

~39µs versus ~80µs [Sch97]).

2 4 6 8 10 12 14 16
Number of processors

0.0

20.0

40.0

60.0
E

la
ps

ed
 ti

m
e

(s
ec

.)
TS

TS+C

TTS

TTS+C

SOFTQOLB

SOFTQOLB+C

MCS

CQL

Figure 4.2 Microbenchmark performance.

146
I also evaluate the performance of MCS, CQL, and SOFTQOLB with the following

four applications: SPLASH-2’s Barnes, Ocean, Raytrace, and Water-Nsq. A descrip-

tion of these benchmarks and the collocation’s strategy appears in Chapter 2. I

run these benchmarks with the same problem sizes as in Chapter 3, with the

exception of Ocean which I run with a 258×258 grid. I measure the running time

of each application discounting initialization; and I report the best of three mea-

surements.

Figure 4.3 plots the running time of the four application benchmarks relative to

a sequential execution measured without the overhead of the Blizzard runtime

system. I vary the number of processors from one to eight; assuming perfect con-

ditions the relative performance should follow the ideal curve: unit running time

with one processor and the running time halved with each doubling of processors.

As already observed with the microbenchmark, in the absence of contention

(one node runs), MCS performs better than CQL or SOFTQOLB. MCS can acquire and

release a lock with instructions that hit in the cache, while CQL and SOFTQOLB

must communicate with the protocol processor to perform the same functions.

With increased contention CQL and SOFTQOLB typically outperform MCS, with the

exception of Ocean (all system sizes), and Barnes (with two processors). For small

system sizes, Ocean generates a lot of traffic [WOT+95] increasing substantially

the hardware cache miss rate. The lower cache utilization not only affects the

performance of Ocean directly, it also affects the performance of the coherence

protocol since it is less likely to find its working set in the hardware cache. SOFT-

QOLB further aggravates this problem because it is a much larger piece of soft-

147
ware than Stache. When Barnes runs on two processors the contention to the

locks is extremely low. Thus the chances that the same processor accesses the

same lock without an intervening access is high (high temporal locality of lock

access). For MCS that property translates into a processor likely to find the lock it

wants still in its cache; therefore the processor can complete the execution of a

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

1 2 4 8
Number of processors

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

R
el

at
iv

e
ru

nn
in

g
tim

e

1 2 4 80

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 2 4 8
Number of processors

0

R
el

at
iv

e
ru

nn
in

g
tim

e

Barnes

2.7 3.1

R
el

at
iv

e
ru

nn
in

g
tim

e

Number of processors

Raytrace

Figure 4.3 Applications performance.

1 2 4 8
Number of processors

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

R
el

at
iv

e
ru

nn
in

g
tim

e

Ocean
CQL

SOFTQOLB+C

ideal

MCS

Water-Nsq

148
critical section without having to send messages or to communicate with its pro-

tocol processor.

In my measurements, SOFTQOLB displays a wide range of different behaviors. In

one case (Ocean) SOFTQOLB is markedly worse than CQL (25% slowdown), in other

cases, SOFTQOLB is either comparable to CQL (Barnes, 4% slower than CQL) or it is

faster than CQL (Raytrace and Water-Nsq, 117% and 8% speedups respectively).

The speedup achieved by SOFTQOLB over CQL for Raytrace is very impressive;

however, the absolute speedup with respect to the sequential execution is still

only 25% for eight nodes.

4.4 Related work

The idea of dual mappings to communicate with external devices is an old idea

that was doubtlessly “rediscovered” several times. To my knowledge, the first use

of dual mappings appears in the Stanford DASH [LLG+92], which uses them to

provide a mean to distinguish between regular reads and reads-with-intent-to-

modify. Other implementations of dual mappings appear also in the Thinking

Machines’ CM-5 [TMC91] to send commands to the vector units, in the AP1000

multicomputer to initiate data transfer, in the Stanford FLASH multiprocessor

[HGDG94] to initiate user-level DMA transfers, and in the Wisconsin’s Typhoon-0

prototype [RPW96] to modify the fine-grain access control bits.

The first careful description and study is due to the members of the Princeton

SHRIMP project [BDFL96, BLA+94]. They use these ideas to support very efficient

user-level DMA transfers. The SHRIMP system uses user-level DMA transfers to let

149
applications send and receive messages with minimal operating system interven-

tion. Markatos and Katevenis extend the Princeton work by removing the need to

modify the operating system [MK97].

Bitar and Despain first proposed a special cache coherence protocol to support

efficient synchronization [BD86]. Their bus-based protocol supports efficient

busy-wait (i.e., local spinning), collocation, and synchronous prefetch. Their pro-

tocol also supports queue-based locking. However, instead of storing the queue

information in the caches, the protocol just records the fact that one or more lock

requests have been seen. Then upon lock release, the waiting processors arbitrate

to decide which one acquires the lock next. This technique will work as well as

the queue-based locking implementations reviewed so far as long as two condi-

tions hold: (1) arbitration is fair and (2) arbitration can be performed out of the

critical path.

4.5 Summary

This section focused on the implementation challenges and alternatives to sup-

porting efficient synchronization on current and future hardware platforms. I dis-

cussed in detail the six hardware mechanisms (naming, protocol processing,

synchronous cache-to-cache transfer, placeholder allocation, non-blocking instruc-

tions, and lock and data association) that a multiprocessor must implement in

order to support an efficient synchronization primitive that incorporates all the

four synchronization mechanisms introduced in Chapter 3. For each of these

hardware mechanisms I discussed implementation alternatives. Based on these

150
implementation alternatives, I also described four classes of designs that range

over varying cost and performance. These design points are: all-software, stock

component-based, derived from an existing processor design, and an ideal system

resembling the multiprocessor that I simulated in Chapter 3.

I believe that the inherent cost requirements of a synchronization primitive like

QOLB are not prohibitive. Hardware queue-based locking is not prohibitively

expensive, as DASH implemented one such synchronization scheme [LLG+92] (it

differs from QOLB in that the centralized memory directory keeps track of queued

requesters). QOLB is an integral part of the SCI standard [IEE93], and uses many

of the same mechanisms needed to implement the coherence protocol. I showed

that already today many processors are multiprocessor ready and already imple-

ment most of the hardware support needed to implement efficient synchroniza-

tion primitives (i.e., synchronous cache-to-cache transfer, placeholder allocation,

and lock and data association); and that two other mechanisms could easily be

introduced (non-blocking instructions) or could be extended from an existing

design with little effort (protocol processing).

Finally, I described and evaluated an all-software implementation of QOLB on a

cluster of workstations. This design demonstrated the feasibility of providing the

functionality of QOLB on unmodified hardware, however because of its inefficien-

cies this design failed to realize the performance potential of the four synchroni-

zation mechanisms introduced in Chapter 3.

151
Chapter 5

A detailed study of collocation

5.1 Introduction

Collocation, one of the four synchronization mechanisms introduced in

Chapter 3, provides the opportunity to transfer a lock and the data it protects as

a single unit. With perfect collocation, when the current owner releases the lock,

the releaser sends not only the lock but also all1 the protected data to the next

requester, if any. Upon receiving the lock, the new owner can start useful compu-

tation immediately, avoiding delays associated with misses when accessing pro-

tected data. Indeed accesses to these data will be satisfied locally, since the data

arrived with the lock. This scenario approaches the ideal of a minimal synchroni-

zation period: the locking throughput becomes completely determined by two fun-

damental components of synchronization: lock transfer and critical section

computation; all the other components, including read and write misses incurred

1. I assume that a critical section accesses most of the data that are protected by the cor-
responding lock. If a lock protects a large region of memory and only a small subset of
that data is accessed each time the lock is acquired, then collocation may not be a good
idea.

152
while executing a critical section are eliminated. Note that most studies do not

consider these misses as part of synchronization inefficiencies. This thesis makes

a strong case that (1) synchronization inefficiencies should include misses

incurred while executing in a critical section and that (2) collocation permits

elimination of this source of inefficiency.

In my opinion, collocation has not received yet an adequate treatment in the lit-

erature. This study constitutes an initial step towards a better understanding of

the advantages and limitations of collocation. I believe that the first persons to

recognize the value of collocation are Bitar and Despain with their paper describ-

ing a cache coherence protocol that supports synchronization operations explicitly

[BD86], and later, Goodman, Vernon, and Woest with their proposal discussing

QOLB [GVW89]. Indeed, both proposals embody the observation that lock and

data have two distinct access patterns. On one hand, processes access locks asyn-

chronously, that is independently of the status of these locks. On the other hand,

a process accesses protected data synchronously, that is only after acquiring the

lock successfully. Therefore, unless a synchronization primitive takes into

account these two types of access patterns, collocation will not lead to consistent

performance improvements.

For instance, it is possible, but not necessarily wise, to collocate lock and data in

conjunction with test&set. If there is absolutely no lock contention among proces-

sors, test&set will consistently benefit from collocation. However, if there is con-

tention, collocation may degrade the performance of test&set. By repeated but

futile applications of test&set to a lock already owned, a process may impede the

153
progress of the lock owner in the critical section. Indeed, each synchronization

request not only steals the lock from the owner’s cache, it also takes protected

data away, the access of which is unnecessarily delayed.

On the other hand, a primitive like QOLB encourages the collocation of lock and

data. Because QOLB takes note of synchronization requests but defer acting upon

these requests until the lock is released, collocation will consistently improve syn-

chronization and hopefully overall performance. Specifically, when a process suc-

cessfully enters a critical section, the corresponding lock will remain available

locally until the process releases the lock. Therefore any data collocated with the

lock will also remain accessible locally without requiring global communication.

If, concurrently, QOLB receives a synchronization request, QOLB enqueues the

request for later consideration by notifying the current lock holder. The latter will

forward lock and data as soon as it releases the lock.

I believe that collocation is an important optimization that merits careful study.

In fact, because collocation helps eliminate unnecessary global communication,

collocation is likely to become even more important as the gap between the per-

formance of processors, on one hand, and the performance of memory and inter-

connection network, on the other hand, is growing.

The organization of the rest of this chapter is as follows. Section 5.2 reviews

known collocation strategies and describe their shortcomings. Section 5.3 pro-

poses VAQUM, a new synchronization primitive that incorporates a new colloca-

tion strategy that overcomes some these shortcomings. Section 5.4 describes

CLEAN, an implementation of VAQUM, and Section 5.5 provides an evaluation of

154
this implementation. Finally, Section 5.6 reviews related work and Section 5.7

summarizes the contributions of this chapter.

5.2 Known collocation strategies

To my knowledge, existing collocation strategies fall into two categories. The

first strategy consists of prefetching critical data at the beginning of a critical sec-

tion execution. The other strategy consists of taking advantage of the “prefetch-

ing” capacity of a cache line.

5.2.1 Prefetching as collocation

Trancoso and Torrellas propose to insert prefetching instructions at the begin-

ning of a critical section; these instructions send early requests for critical data

[TT96]. A compiler can place these prefetching instructions automatically. This

strategy works as follows. Processes execute these instructions immediately after

successfully obtaining a lock. Hopefully requesting data early helps overlap fetch

latencies with the execution of critical section instructions that do not require

access to shared data. This strategy also helps with critical data spanning across

multiple cache lines since processes send requests for these lines concurrently.

Note that a dynamically-scheduled processor with a non-blocking memory hierar-

chy subsumes this strategy, although care must be taken to assure that data is

not fetched before the lock is obtained. Indeed, by being able to issue multiple

instructions concurrently, out-of-order processors essentially achieve the

prefetching prescribed by Trancoso and Torrellas.

155
The main drawback of Trancoso and Torrellas’ method is that there is not nec-

essarily enough work in the critical section to hide completely the latencies asso-

ciated with fetching critical data. In fact, delay is almost inevitable, because good

programming practice virtually guarantees that an operation that could have

been performed without accessing the protected data will not be performed at the

beginning of the critical section. Programs could prefetch critical data even before

obtaining the lock; however this method would only work if there is seldom con-

tention to the locks.

5.2.2 Cache lines as collocation enabler

Goodman, Vernon, and Woest describe QOLB, an efficient synchronization primi-

tive [GVW89]. They suggest implementing QOLB as an extension of a cache coher-

ence protocol. Cache coherence protocols maintain data consistency at a fixed

granularity of a cache line that is typically larger than the machine word. To put

it another way, any action by a coherence protocol involving data movement does

not affect just a single word but an entire cache line. Taking advantage of this

fact, cache-coherence-based implementations of QOLB can achieve collocation by

judiciously placing data in the same cache line as the lock. In that way, whenever

QOLB transfers a lock into the cache of a requesting processor, QOLB also conve-

niently stores useful data there. Thus, when a program enters the critical section

it will find the collocated data locally avoiding global delays associated with fetch-

ing the data from a remote location.

156
The drawback of this strategy is that the benefit of collocation will be sensitive

to the size of the cache line used in a particular system. Specifically, if the pro-

tected data does not all fit in the same cache line as the lock, the data located out-

side the line containing the lock will not benefit from collocation. Prefetching can

help overcome this limitation. The user or a compiler can identify the parts of the

critical data that do not fit in the same cache line as the lock and insert instruc-

tions to prefetch these data parts at the beginning of the critical section.

In the rest of this section, I quantify the impact of the cache line size on the per-

formance of collocation. Using WWT, I measure the performance of collocation for

the five benchmarks (Mp3d, Ocean, Pthor, Raytrace, and Water-Nsq) described in

Chapter 2 using three different choices of line sizes: 32, 64, and 128 bytes.1 Reus-

ing the same methodology that I applied in Section 3.6.4, I isolate the contribu-

tion of collocation to synchronization performance by measuring the speedup of a

run with collocation enabled over a run without collocation. Specifically I com-

pare QOLB runs with and without collocation. I measure these speedups for each

of the three chosen cache line sizes (32, 64, and 128 bytes).

I recompile each application to eliminate false sharing for a given line size. I do

not apply the prefetching scheme described earlier that helps request early data

items that cannot benefit from collocation. The simulation models data movement

and resource contention accurately up to the point where messages are injected

into or retrieved from the network. Using the methodology described in

1. WWT cannot simulate systems with a choice of the cache line size greater than 128
bytes.

157
Section 2.3 I determine the constant network latency based on runs assuming 64-

byte lines (different values for experiments with and without collocation). I then

use the same constant value for each simulation with a different cache line size.

This assumption is likely to underestimate the performance of runs assuming 32-

byte lines and overestimate the performance of runs assuming 128-byte lines.

However, the goal of these experiments is not to quantify the impact of line size

on the performance of collocation absolutely, but to aid in understanding how

their combination affects performance.

For each application, Figure 5.1 shows three pairs of bars, the heights of which

are proportional to the running time of each program’s parallel section, and are

normalized to the run of the corresponding application with 64-byte lines and col-

location disabled. From left to right, the three pairs corresponds to the 32-byte,

64-byte, and 128-byte cache line runs, respectively. I measure the speedup

afforded by the collocation mechanism and display- that number expressed as a

percentage on top of the right bar of each bar pair.

Three applications (Ocean, Pthor, Water-Nsq) show little impact of the choice of

line size on the performance of collocation. As noted earlier, Ocean associates lit-

tle data with each lock (at most a floating point accumulator of eight bytes) which

always fit in a cache line along the lock. Moreover I assume the same constant

network latency for each of the experiments with a different cache line size.

Using different network latencies would likely benefit smaller cache line sizes;

however the difference in performance is unlikely to be substantial since Ocean

uses locks infrequently. Pthor uses locks for two purposes. One type of lock

158
guards accesses to global queues; collocation places a lock along with the pointer

to the first enqueued element. In this case, the choice of line size has limited

impact on the benefit of collocation. Pthor also uses locks to protect data associ-

ated with each element being simulated. An element data structure occupies

approximately 64 bytes. For this data structure, using 32-byte cache lines should

lead to an increase in the execution time of the critical section accessing the cir-

cuit elements. However, the length of that critical section is already very long,

thus relatively insensitive to additional misses. Water-Nsq associates a lock per

molecule and a molecule data structure is about 512 bytes. Accordingly, the per-

formance of collocation improves with larger line sizes; however the improvement

is marginal in part due to the fact that Water-Nsq communicates little.

The other benchmarks (Mp3d and Raytrace) appear more sensitive to the selec-

tion of the cache line size. In Mp3d, the data associated with each lock will not fit

in a single cache line until its size reaches at least 64 bytes; hence the perfor-

mance of collocation improves markedly relative to 32-byte lines when the cache

line size is either 64 or 128 bytes. Raytrace displays a strange behavior: without

collocation it performs best with a 64-byte cache line, with collocation it performs

best with a 128-byte cache line. The reason is that the dynamic behavior of the

different data structures under varying line sizes is bimodal. Raytrace associates

little data (one word) with the important lock, therefore that data structure

favors smaller line sizes. On the other hand, the scene and ray data structures

are larger favoring larger lines. The combination of collocation and a 128-byte

159
cache line produces the best result by efficiently transferring protected data and

exploiting the spatial locality of the scene and ray data structures.

32 64 1280

0.5

1

1.5

32 64 1280

0.5

1

1.5
Ocean Pthor

Q
O

LB
+

C
Q

O
LB

Q
O

LB

Q
O

LB

Q
O

LB
+

C

Q
O

LB
+

C

32 64 1280

0.5

1

1.5

Q
O

LB
+

C
Q

O
LB

Q
O

LB

Q
O

LB

Q
O

LB
+

C

Q
O

LB
+

C

Q
O

LB
+

C
Q

O
LB

Q
O

LB

Q
O

LB

Q
O

LB
+

C

Q
O

LB
+

C

Q
O

LB
+

C
Q

O
LB

Q
O

LB

Q
O

LB

Q
O

LB
+

C

Q
O

LB
+

C

Q
O

LB
+

C
Q

O
LB

Q
O

LB

Q
O

LB

Q
O

LB
+

C

Q
O

LB
+

C

Mp3d

32 64 1280

0.5

1

1.5

32 64 1280

0.5

1

1.5
Water-NsqRaytrace

N
or

m
al

iz
ed

 r
un

ni
ng

 ti
m

e
N

or
m

al
iz

ed
 r

un
ni

ng
 ti

m
e

N
or

m
al

iz
ed

 r
un

ni
ng

 ti
m

e

line size (bytes)/experiment line size (bytes)/experiment

25
%

31
% 32

%

2%

2%

2%

24
%

24
%

22
%

8%

15
%

30
% 1% 1% 3%

Figure 5.1 Performance of collocation versus line size. This figure shows the running
time of each application’s parallel section for three different line sizes (32, 64, and 128 bytes)
and two experiments (QOLB and QOLB with the collocation mechanism enabled). For each
application, the running time shown is normalized to that of the run with 64-byte line using
QOLB without collocation. The percentage displayed on top of the right bar of each bar pair
shows the speedup achieved by collocation for that particular run.

160
These results show that for at least some benchmarks, the choice of the block

size can have an impact on the performance of collocation.

5.3 A new collocation strategy: VAQUM

The collocation strategies proposed so far suffer from either not bringing locally

critical data early enough (prefetching scheme) or not being able to handle arbi-

trarily sized critical data (cache-coherence-based scheme). Ideally, collocation

should handle all the critical data and transfer these data directly with the lock. I

propose a new synchronization primitive, dubbed VAQUM, that attempts to over-

come the limitations of previous schemes and to approach the ideal of collocation.

VAQUM is an extension to QOLB; it implements all the four synchronization

mechanisms (local spinning, queue-based locking, collocation, and synchronous

prefetch) that are described in Chapter 3; therefore, VAQUM will perform at least

as well as QOLB. The novel aspect of VAQUM is that it has the ability, based on

input from the user, to optimize the transfer of the lock and data. The optimiza-

tion takes two forms. First, VAQUM transfers all the data that the user has speci-

fied as belonging to a particular lock. Second, VAQUM selects the type of message

most appropriate to transfer the data as rapidly as possible. Typically, the net-

work fabric transports smaller messages faster than larger ones, as illustrated by

Figure 5.2, which plots message round-trip time as a function of message size for

the cluster of workstations described in Chapter 2. Note, however, that while a

smaller message minimizes network latency, it typically cannot achieve peak

bandwidth at the same time. Achieving peak bandwidth usually requires large

161
messages. Choosing a message type most appropriate to transfer lock and associ-

ated data may improve synchronization performance. For instance, consider a

lock that protects only one word. Using QOLB and assuming a cache line size of

128 bytes, the lock transfer time would be related to the round-trip time of a 128-

byte message (74µs). On the other hand VAQUM would select the smallest message

that fit the lock and the single word; for instance a 32-byte message, the round-

trip delay of which is 59µs, or an improvement of 25% over the 128-byte message.

4 32 64 12
8

25
6

51
2

10
24

Message size (bytes)

0

100

200

R
ou

nd
-t

rip
 ti

m
e

(µ
s)

Figure 5.2 Message latency versus message size. This figure plots the round-trip
time for messages of different size. This graph is a reproduction of data that appear
originally in Figures 3-13 and 3-14 of Schoinas’ thesis [Sch97]. Schoinas measured these
latencies on the same cluster of workstations as the one used in this thesis and for which
a description appears in Chapter 2. To generate this data, Schoinas measured the round-
trip latency of messages injected into and retrieved from the network using the Berkeley
active message library [vECGS92].

150

250

50

162
Of course, VAQUM cannot optimize the data transfer unless the programmer

explicitly describes the location of all the critical data. If the programmer does

not give any information, VAQUM will behave exactly as QOLB, benefiting from col-

location if data happens to reside in the same cache line as the lock.

Another alternative to improving the performance of collocation consists of an

hybrid solution that collocates as much data as possible in a cache line of fixed

size and prefetches the rest at the beginning of a critical section. This strategy is

easier to implement than VAQUM; however, it may not perform as well because (1)

transfer of lock and data may not be optimized as well as in the case of VAQUM,

and (2) the fraction of data that does not fit may not arrive early enough to avoid

stalls inside the critical section. I do not study this technique further.

5.4 CLEAN

CLEAN is an extension of SOFTQOLB, the implementation of QOLB described in

the previous chapter. CLEAN extends SOFTQOLB by allowing the user to specify for

a given region of memory the granularity at which data consistency is main-

tained. This flexibility allows the user to select the coherence grain size most

appropriate for the amount of spatial locality that a given data structure pos-

sesses. If a data structure has little spatial locality, the user should allocate the

structure in a region of memory using a smaller coherence grain size. Alterna-

tively, if a data structure displays more spatial locality, the program should

choose a larger grain size. This user-selectable coherence grain size, coupled with

CLEAN’s coherence protocol that supports the QOLB synchronization primitive,

163
suggests a possible implementation of VAQUM. In summary, CLEAN combines the

fine-grain replication of shared data with the efficient access to exclusively held

data. Table 5.1 summarizes the interface of the CLEAN system. The pointer

returned by v_allocate is a pointer that conventional load and store instruc-

tions can use. For orthogonality’s sake, the interface should also define

v_enter_shared and v_exit_shared; however, in CLEAN, these functions

would be null functions, since objects can be accessed directly through conven-

tional load and store instructions to shared memory. Yet, a program can prefetch

a shared object that it plans on accessing with v_prefetch_shared.

CLEAN runs on the cluster of dual-processor Sun SPARCstation 20s described in

Chapter 2. By default, CLEAN allocates data in the region of memory managed at

a granularity of 128 bytes. If otherwise specified, CLEAN chooses the region of

memory with the smallest cache line size that can contain the amount of data

that the program wants to allocate. Possible cache line sizes are all powers of two

ranging from 32 to 2048 bytes.

Table 5.1 Summary of the CLEAN interface.

FUNCTION DESCRIPTION ARGUMENT

v_allocate Allocate an object Size of object in bytes

v_deallocate Deallocate an object Pointer returned by v_allocate

v_enter_exclusive Start exclusive object access Pointer returned by v_allocate

v_exit_exclusive End exclusive object access Pointer returned by v_allocate

v_prefetch_exclusive Prefetch object for exclusive access Pointer returned by v_allocate

v_prefetch_shared Prefetch object for exclusive access Pointer returned by v_allocate

v_flush Flush object from cache Pointer returned by v_allocate

164
5.5 Results

I measure the performance of CLEAN, an implementation of VAQUM, for two

benchmarks (Raytrace and Water-Nsq) and compare its performance with SOFT-

QOLB (with a constant coherence grain size of 128 bytes), and the centralized

queued-lock (CQL) with coherence maintained at varying grain sizes (from 32 to

1,024 bytes).

Raytrace Water-Nsq

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
S

pe
ed

up

32
 b

yt
es

SOFTQOLB+C (128-byte line)

CLEAN+C (128-byte line default)

CQL

64
 b

yt
es

12
8

by
te

s
25

6
by

te
s

51
2

by
te

s
10

24
 b

yt
es

32
 b

yt
es

64
 b

yt
es

12
8

by
te

s
25

6
by

te
s

51
2

by
te

s
10

24
 b

yt
es

Figure 5.3 CLEAN results.

165
The choices of coherence grain sizes are as follows. For Raytrace, I allocate all

the locks and associated data in the memory region managed with 32-byte cache

lines. I make Raytrace’s own memory allocator allocate data in memory managed

with 256-byte cache lines. Raytrace uses this allocator to allocate memory for the

scene and ray data structures. All the other data is allocated in default memory.

For Water-Nsq, I allocate the molecule data structure in 512-byte memory and

the other locks in 32-byte memory. The remaining data is allocated in default

memory.

Figure 5.3 plots speedups over the base case of CQL with a coherence grain size

of 128 bytes. All runs use eight nodes. First, it is interesting to note that for these

two benchmarks, the grain size of 128 bytes is a good choice since no other choice

exceeds the base case performance by more than 1%. This result corroborates

results stated elsewhere [Sch97]. Also, SOFTQOLB and VAQUM always outperform

CQL no matter the grain size at which the protocol maintains coherence. Finally,

VAQUM outperforms SOFTQOLB by 5% for Raytrace and 18% for Water-Nsq.

5.6 Related work

Bitar and Despain first discuss a cache coherence protocol that implements col-

location [BD86]. In their scheme, collocation is achieved by storing data in the

same cache line that stores the lock. Goodman, Vernon, and Woest discuss a simi-

lar collocation strategy in a synchronization primitive called QOLB [GVW89]. Both

of these proposals are limited in the amount of data that can be successfully collo-

166
cated; these proposals are constrained by the cache line size of their underlying

coherence protocols.

Trancoso and Torrellas propose to use prefetch to simulate the behavior of collo-

cation. Their technique inserts instructions at the beginning of each critical sec-

tion to prefetch the data that are going to be accessed. Their technique is not

constrained by the cache line size used by the system. However, this technique

may not be able to issue prefetches soon enough to avoid altogether stalls due to

accesses performed inside a critical section.

Many other systems share CLEAN’s shared-memory interface centered around

the declaration of objects that an application reads or accesses exclusively. These

systems include CRL [JKW95], Shared Regions [SGZ93], and Cid [Nik94]. These

systems have in common that program annotations are required before accesses

to objects can take place correctly. In contrast, CLEAN does not enforce the use of

the annotations it defines;1 instead it views these annotations as hints to achieve

higher performance through cooperation between the program and the underly-

ing system. The Midway distributed shared-memory system [BZS93] is perhaps

most similar to CLEAN. Both share the optional program annotations to improve

the program’s performance. However, CLEAN supports a more efficient synchroni-

zation primitive that can transfer a lock in one network transaction and prefetch

protected data ahead of time. Wood and his colleagues also propose a cooperative

framework with CICO [HLRW92, HLRW93, WCF+93, LCW94], a performance

1. However, delineating the critical sections is still required.

167
model to help users understand the delays associated with different events that

may occur in a distributed shared-memory system.

For each region of memory, CLEAN lets the programmer specify the best granu-

larity to use by the underlying cache coherence protocol. This specification is per-

formed at compile time or when memory allocation is performed and is typically

set for the duration of the application’s execution. In contrast, Dubnicki and LeB-

lanc [DL92] discuss a coherence scheme that selects the best grain size dynami-

cally. The advantage of their approach is that their scheme can adapt with

changing program behavior; however this flexibility comes at the cost of a more

complex protocol.

5.7 Summary

This section focused on studying more carefully the performance implications of

alternative implementations of collocation. The purpose of collocation is to elimi-

nate the read and write misses associated with accesses to critical data while exe-

cuting a critical section. I argued that read or write misses caused by accesses to

protected data while executing in a critical section are an integral part of ineffi-

ciencies of synchronization. Therefore, collocation has the potential to reduce syn-

chronization inefficiencies dramatically, thereby shortening the synchronization

period, increasing locking throughput, and decreasing lock contention (the lock

not being held as long).

168
Collocation will become even more important since it helps reduce or even elim-

inate global communication, which is becoming relatively slower with respect to

ever faster processors.

I discussed two known methods to approach the ideal of collocation. The first

scheme, due to Trancoso and Torrellas [TT96], inserts instructions at the critical

section beginning to prefetch protected data. The other scheme uses the

“prefetching” ability of a cache line. Both of these schemes suffer from drawbacks.

The first scheme may not bring data where it is needed soon enough; while the

second scheme cannot handle protected data of arbitrary size.

I proposed VAQUM, an extension to QOLB, that can handle critical data of arbi-

trary size. VAQUM performs at least as well as QOLB; and VAQUM has the potential

to outperform QOLB if the programmer provides information about the nature of

the protected data. With the appropriate information, VAQUM will attempt to opti-

mize the transfer of lock and all associated data.

I described and evaluated CLEAN an implementation of VAQUM on a cluster of

workstations. CLEAN is implemented as an extension to the SOFTQOLB primitive

described in the previous chapter. CLEAN allows the user to specify the granular-

ity at which data consistency is maintained in a given region of memory. This

flexibility coupled with SOFTQOLB, the efficient synchronization primitive, demon-

strated a possible implementation of VAQUM. For a couple of benchmarks I com-

pared the performance of CLEAN to the performance of CQL with varying cache

line sizes and to the performance of SOFTQOLB with a cache line size of 128 bytes.

169
For these particular cases, CLEAN always outperformed the alternatives, however

not by much.

170

171
Chapter 6

Conclusion

6.1 Thesis summary

Efficient synchronization primitives are essential for achieving high perfor-

mance in fine-grain, shared-memory parallel programs. One function of synchro-

nization primitives is to enable exclusive access to shared data and critical

sections of code.

Instead of focusing on the individual latencies associated with mutually exclu-

sive accesses to critical section, I focused on the global throughput of critical sec-

tion accesses. I defined the notion of a synchronization period: one “cycle” of

multiple serialized accesses to critical section. I broke this period into three

phases (Transfer, Load/compute, and Release), and classified the components of

each of these phases as either unavoidable latencies or removable inefficiencies.

I identified four optimizing mechanisms (local spinning, queue-based locking,

collocation, and synchronous prefetch) that can assist in eliminating the ineffi-

ciencies of critical section accesses. Helped with the synchronization period

172
framework, I discussed how each mechanism contributes to improve the perfor-

mance of synchronization.

I performed a thorough evaluation of this space, simulating the performance of

16 locking constructs (formed from six base primitives: test&set, test&test&set,

MCS, LH, M, and QOLB) in detail with both real parallel applications and the more

traditional microbenchmarks.

The results showed that local spinning consistently aids performance, but not

by very much. Queue-based locking is the most effective synchronization mecha-

nism, except in the cases where the overhead of MCS, LH, or M locks hurt low-con-

tention critical section access latencies. With test&set and test&test&set,

collocation of the lock and protected data in the same cache line showed wildly

different effects depending on the benchmark analyzed; collocation may greatly

increase or decrease performance. Collocation can hurt performance when there

is heavy lock contention or when a lock is held a long period of time giving other

processors a chance to steal data from the processor in the critical section. How-

ever, with exponential back-off added, test&test&set with collocation performed

as well as QOLB in nearly all cases. Exponential back-off helped overcome the

impact of lock contention very well. Collocation consistently improved the perfor-

mance of QOLB. Synchronous prefetching is the least effective of any of the mech-

anisms, although unexplored compiler techniques might show greater promise.

I discussed how to implement efficient synchronization that incorporates all the

four synchronization mechanism. I identified six hardware mechanisms (naming,

protocol processing, synchronous cache-to-cache data transfer, placeholder alloca-

173
tion, non-blocking instructions, and association of a lock and data) required to

support efficient synchronization in a shared-memory multiprocessor. I described

several alternatives to implement each of these hardware mechanisms and

described two complete systems that represent two extremes in the cost/perfor-

mance spectrum. A high-end system represents an ideal implementation of com-

parable performance to the system that my detailed simulator models. It requires

extension of the instruction set architecture (ISA) and integrated large on-chip

coherent cache with a hard-wired protocol that implements a QOLB-like locking

primitive. At the other extreme, there is an all-software system that manages

parts of local memory as a large fully associative cache. I described an implemen-

tation of such a solution on a cluster of 16 workstations. This implementation

supports the efficient QOLB protocol and I evaluated its performance.

The results showed that a low-cost implementation of an efficient synchroniza-

tion primitive is possible; however the all-software implementation of the hard-

ware mechanisms required to support QOLB introduces inefficiencies that prevent

QOLB from reaching its full potential. In a limited set of experiments, I demon-

strated that this low-cost implementation of QOLB is never slower than 25% com-

pared to the other alternatives, and for some benchmark this implementation is

substantially better than the alternatives.

Finally, I discussed the limitation of a typical implementation of collocation

which takes advantage of the fixed grain size at which coherence is maintained. I

proposed a new synchronization primitive, VAQUM, that overcomes this limita-

tion. It is a primitive that uses, but does not require, user annotations to transfer

174
all the data associated with a lock as efficiently as allowed by the underlying mes-

saging layer. I described a new distributed shared-memory system called CLEAN

that implements VAQUM. CLEAN defines the notion of objects of arbitrary size that

live in shared memory. Thus, programs can access these objects using conven-

tional load and store instructions, which, if they miss in local memory, trigger the

proper coherence actions. In addition, CLEAN supports VAQUM providing programs

with very efficient exclusive access to these objects. In effect, for each data struc-

ture defined in a program, the user can specify the best suited grain size at which

to maintain coherence. CLEAN runs on a cluster of workstations and I evaluated

its performance.

The results showed that CLEAN is at least as fast as SOFTQOLB and that CLEAN

achieves speedups that are reasonable even for challenging applications and

small problem sizes.

An important result of this thesis is the consistent large performance gain that

QOLB achieves if implemented in hardware. Collocation increases this gain even

further. Graunke and Thakkar [GT90] concluded that “... elaborate hardware

[synchronization] schemes are unnecessary even when considering larger non-

bus-based [systems].” Mellor-Crummey and Scott stated [MCS91b] that “special

purpose synchronization mechanisms, such as QOLB, are unlikely to outperform

our MCS lock by more than 30%.” The results presented here refute these asser-

tions; QOLB outperforms MCS by 40% for Mp3d.

Lim and Agarwal claimed [LA94] that reactive synchronization “reduces the

motivation for providing hardware support for queue locks.” Since QOLB outper-

175
forms the best software locks under either low- or high-contention conditions, it

should also outperform reactive synchronization schemes. The results presented

here confirm this hypothesis—QOLB speedups are from 6% to 97% higher than

reactive synchronization, and this disparity only increases by adding collocation

and synchronous prefetch to QOLB.

6.2 Future directions

6.2.1 Synchronization primitives and out-of-order execution

I have analyzed the impact of some out-of-order execution techniques on the

performance of synchronization primitives. Due to limitations of my simulation

environment, I have analyzed the performance of synchronization primitive with

the presence of very aggressive write buffers, but I have not studied the impact

that non-blocking load instructions and speculative execution might have on syn-

chronization performance. Tools [PRA97, RHWG95] have recently appeared that

would make such an evaluation possible.

6.2.2 Synchronization performance in non-scientific workloads

This thesis used only benchmarks from Stanford’s SPLASH and SPLASH-2 bench-

mark suites containing mostly scientific applications. Two application domains

that have emerged as the most important users of parallel shared-memory plat-

forms are commercial and transactional workloads. The performance of synchro-

nization primitives needs analysis in the context of these popular application

domains. Also, to my knowledge there is no existing study that investigates the

176
impact of efficient synchronization support on the performance of operating sys-

tems managing resources in a parallel system.

6.2.3 Wait-free synchronization

Jensen, Hagensen, and Broughton proposed load-reserve and store-conditional

instructions as a new solution to provide ISA support for synchronization

[JHB87]. So far the application of these instructions has been restricted to simu-

lating other well-known synchronization primitives such as test&set, swap, and

compare&swap, the usefulness and performance of which are well understood.

However, much less understood is the performance behavior of wait-free objects

[Her91], the construction of which is possible with an ideal implementation of

these instructions. With the advent of more interesting use of these instructions

(see for instance the interesting work by Moir [MA95, Moi98, Moi97]), it would be

interesting to compare wait-free algorithm implementations with their more con-

ventional counterparts. Theory suggests that there might be a gap between these

two types of implementations [ALS94].

6.2.4 Unification of speculative execution and wait-free synchronization

Herlihy and Moss [HM93], and Stone and her colleagues [SSHT93] indepen-

dently proposed an extension, called transactional memory, to the load-reserve

and store-conditional instructions that support multiple reservations instead of a

single one. This extension essentially treats a critical section as a transaction the

execution of which can succeed or fail; if a processor detects failure, it typically

restarts the atomic sequence. Support for this extension requires special hard-

177
ware that may prove to be prohibitive. However, considering that aggressive pro-

cessor implementations are already supporting speculative write operations,

speculative state might soon encompass the entire first level cache. With such

support for extremely aggressive speculative execution in place, I believe a trivial

extension to the speculative first level cache would provide the desired function-

ality of transactional memory described earlier. Updates performed inside the

critical section would remain “speculative” until the program finishes executing

the critical section, at which point the program would check for violation of atom-

icity. If there is no violation, the program commits the speculative state; the pro-

gram can restart the atomic sequence otherwise. Speculative first level caches

would improve both single thread performance through extremely aggressive

speculation and parallel program performance through non-blocking, opportunis-

tic execution of critical sections.

178

179
Appendix A

SOFTQOLB

SOFTQOLB is a cache coherence protocol that combines a novel replication policy

proposed by Reinhardt, Larus, and Wood in Stache [RLW94] with QOLB, an effi-

cient synchronization primitive proposed by Goodman, Vernon, and Woest

[GVW89]. Stache is an implementation of user-level transparent shared-memory

defined with Tempest [RLW94], an interface that exposes low-level communica-

tion and memory-system mechanisms so programmers and compilers can cus-

tomize policies for a given parallel application. Specifically, Stache manages part

of a processor’s local memory as a large, fully-associative cache for remote data.

With such an unusually large and flexible cache, Stache eliminates the capacity

and conflict misses caused by applications’ working sets that are too large to fit in

smaller hardware caches with limited associativity. Furthermore, Stache has the

advantage over conventional directory-based cache coherence protocol not to have

to return a cache line to the home node upon cache replacement. Stache shares

this characteristic with COMA memory systems [Hag92] but without the draw-

180
backs of their implementation costs and complexity. QOLB is an efficient synchro-

nization primitive that implements all the four locking mechanisms listed in

Chapter 3. These mechanisms are local spinning, queue-based locking, colloca-

tion, and synchronous prefetch.

I have designed, verified with an automatic protocol verifier [DDHY92], and

implemented SOFTQOLB, a cache coherence protocol that combines the fine-grain

replication support offered by Stache with the efficient support for synchroniza-

tion afforded by QOLB. In what follows, I describe SOFTQOLB following closely the

style adopted by Hennessy and Patterson to describe a directory protocol in Chap-

ter 8 of the second edition of their book “Computer Architecture: A Quantitative

Approach” [HP95]. First, I present the part of SOFTQOLB that implements Stache,

followed by its QOLB component, and, finally, I conclude with a description of the

interaction between these two modes of operations.

The basic principle that guided the design of Stache is that whenever possible

local memory should satisfy local accesses to shield the processor from the long

network latencies. Stache fulfills this principle in one of two ways. Either local

memory stores the memory location, or Stache arranges to store a copy of that

location in the portion of local memory that Stache manages as a cache.

Stache associates a directory with each memory module that stores shared

data. The directory keeps track of the remote nodes that store a copy of a memory

location and the states in which the remote nodes store these copies. The direc-

tory entry associated with a memory location is in one of the following states:

181
• Idle—No remote node has a copy of the memory location and the local proces-

sor has read and write access to that memory location.

• Shared—One or more remote nodes have a read-only copy of the memory loca-

tion, the value at the memory is up to date, and the local processor has read-

only access to that memory location.

• Exclusive—Exactly one remote node has a read/write copy of the memory loca-

tion, the value at the memory is not up to date, and the local processor has no

access privilege to that memory location.

In addition to states, the directory keeps a list of the remote nodes that have a

copy of the memory location. In this particular implementation, the directory

stores that information as explicit pointers when the sharing set contains four or

less elements, or as a bit vector otherwise.

The state of a memory location at a remote node is one of the following:

• Invalid—The remote node does not possess a copy of that memory location.

• Shared—The remote node has a read-only copy of that memory location.

• Exclusive—The remote node has the only valid copy of that memory location

and the node has read and write access to the copy.

Stache assumes that the processors block on a memory access that misses until

it completes. Furthermore, Stache (and SOFTQOLB) assumes a memory model that

satisfies the constraints of sequential consistency.

Table A.1 shows the message types that the protocol sends among the caches

and the directories. Local node is the node where the request originates. Home

node is the node where the memory location and associated directory information

182
of an address reside. The remote node is a node which has a copy of a memory

location, shared or exclusive.

Figure A.1 depicts the Stache cache coherence protocol for state transitions

occurring on the cache side; while Figure A.2 depicts the transitions occurring on

the home side. These state diagrams do not represent all the details of Stache,

but they give enough information to understand the workings of this protocol and

to estimate its implementation complexity.

Figure A.1 (a) and Figure A.2 (a) represent state transitions caused by local

requests; while Figure A.1 (b) and Figure A.2 (b) represent transitions caused by

remote requests. Next to the arcs, the figures show in regular type the stimuli

that cause the transitions; the figures show the actions taken on the transitions

in bold.

On the cache side, one of two local events (read or write miss) causes Stache to

send a request (read miss, write miss, or upgrade) to the directory and to wait for

a reply (data value or upgrade reply). Stache processes a remote request (invali-

date or write-back which always originate from home) sent to a cache immedi-

ately and sends the appropriate reply back home.

On the directory side, Stache handles local requests (read or write miss) in a

manner similar to the cache-side protocol. In contrast, remote requests to the

directory may require more processing than the protocol transitions we have seen

so far. Indeed, Stache may need, upon receiving a remote request (read miss,

write miss, or upgrade), not only to change state but also to send additional mes-

183
sages. In that case, Stache must then wait until the responses come back to reply

to the original requester. Also Stache must take great care to handle the case

where two remote nodes request an upgrade simultaneously.

Table A.1 The possible messages sent among nodes to support Stache. The first
three messages are miss requests sent by the local cache to home. The fourth and fifth
messages are requests sent to a remote cache by home when home needs to satisfy a read
miss, or write miss, or upgrade request. Stache uses data value replies to send a value from
the home node back to the requesting node. Data value write-backs occur when replying to
write-back messages from home. Writing back the data value whenever the line becomes
shared simplifies the number of states in the protocol since any dirty line must be exclusive
and any shared line is available at the home memory. The last two messages are replies to
upgrade and invalidate requests respectively.

MESSAGE TYPE SOURCE DESTINATION

MESSAGE
CONTENTS MESSAGE FUNCTION

Read miss Local cache Home directory P, A Cache does not have a readable copy of
memory location A to satisfy processor
P’s read access; request data and make
P a read sharer.

Write miss Local cache Home directory P, A Cache does not have a writable copy of
memory location A to satisfy processor
P’s write access; request data and make
P the exclusive owner.

Upgrade Local cache Home directory P, A Cache has a readable, but not writable,
copy of memory location A and cannot
satisfy processor P’s write access;
request upgrade to exclusive state.

Invalidate Home directory Remote caches A Invalidate a shared copy of data at
address A.

Write-back Home directory Remote cache A Send cache line at address A back to its
home; invalidate the line in the cache.

Data value Home directory Local cache Data Return a data value from the home mem-
ory.

Data write-back Remote cache Home directory Data Write back a data value to its home.

Upgrade reply Home directory Local cache Inform the local cache that Stache has
processed the upgrade request.

Invalidate reply Local cache Home directory A Inform home that the local cache has
invalidated the cache line at address A.

184
Shared

(a) State transitions based on requests from CPU

(b) State transitions based on remote requests

Figure A.1 Cache-side state transitions for the Stache cache coherence protocol.
The top diagram shows transitions based on requests issued by the local processor and the
bottom diagram shows transitions based on remote requests. A circle represents a state with,
displayed inside, the name of the state and, in parenthesis, the types of local accesses
permitted without a state change. An arrow connecting two states represents a valid state
transition. Shown next to each arc in regular type is the stimulus that causes the transition;

CPU read miss

(read only)

Exclusive
(read/write)

Send read miss message,

CPU write miss
Send write miss message, CPU write miss

Send upgrade message,

CPU read hit

CPU read hit

CPU write hit

Shared
(read only)

Exclusive
(read/write)

Invalidate

Data write-back

Data value reply

Data value reply
Upgrade reply

Send invalidate reply

Send data write-back reply

Invalid
(no access)

Invalid
(no access)

185
Figure A.2 Home-side state transitions for the Stache cache coherence protocol.
This figure uses the same conventions as those described in Figure A.1. P is a field in the
message that identifies the requester.

Shared

(a) State transitions based on requests from CPU

(b) State transitions based on remote requests

CPU read miss

(read only)
Exclusive

Idle
(read/write)

Send data write-back message,

CPU write miss
Send invalidate messages,

CPU read hit

CPU read hit

CPU write hit

Shared
(read only)

Idle
(read/write)

(no access)

Exclusive
(no access)

CPU write miss
Send data write-back message,

W
rit

e
m

is
s

S
en

d
 d

at
a

w
ri

te
-b

ac
k

m
es

sa
g

e,
D

at
a

w
ri

te
-b

ac
k

re
p

ly
,

S
en

d
 d

at
a

va
lu

e
re

p
ly

Read miss
Send data value reply,
Sharers=Sharers+{P}

Write miss
Send data value reply

Read miss
Send data value reply,
Sharers={P}

Read miss
Send data write-back message,
Data write-back reply,
Send data value reply,
Sharers={P}

Write miss
Send invalidate messages,
Invalidate replies,

Invalidate replies

Data write-back reply

Data write-back reply

Send data value reply

(†)

(†)

186
QOLB builds a queue of processors waiting to acquire a lock. A processor releases

a lock by issuing a deqolb instruction with the address of the lock. This instruc-

tion causes QOLB to ship the corresponding cache line to the next processor in

line, if any. A processor requests a lock by issuing an enqolb instruction. Both of

these instructions are non-blocking; in other words, the processor can issue other

instructions while the QOLB processing occurs concurrently. A processor will know

that it is safe to proceed with the execution of the critical section, when the

enqolb instruction returns with a status indicating that the corresponding cache

line is currently available locally in locked state.

SOFTQOLB implements the QOLB queue as a linked list where each node main-

tains a pointer to the next node in line. In addition, the directory maintains a

pointer to the current insertion point (i.e., the tail of the queue). A node wishing

to enter the queue, first requests the identity of the tail node, then becomes the

tail node itself, and, finally, updates the old tail node’s next pointer by sending it a

queueing message.

During QOLB operations, a directory entry is in one of the following states:

• Idle—There is no queue, the memory location is at home, and the local proces-

sor has read and write access to that memory location.

• Locked—The queue is non-empty, the home node is not in the queue, and the

local processor has no access privilege to that memory location.

• Owned—The home node has the only copy of the memory location, that copy is

locked, home has read and write access to that memory location, and home

187
will not give away that memory location until the local processor issues a

deqolb instruction.

• Needed—Same as owned, except that the queue contains at least two ele-

ments.

• Tail—The home node is the last one (possibly temporarily) to have requested

to receive the memory location locked, home has allocated space to store a

copy of that memory location (shadow cache line), and home has no access

privilege to that memory location.

• Middle—Same as tail, except that at least one other node has requested the

line after the local processor did.

The states for the cache side are very similar:

• Invalid—The remote node does not have a copy of the memory location and

has no access privilege to it.

• Owned—The remote node has the memory location locked, the queue is other-

wise empty, and the remote node has read and write access to that memory

location.

• Needed—Same as owned, except that the queue contains at least two ele-

ments.

• Tail—The remote node has requested a copy of the memory location and has

no access privilege to it.

• Middle—Same as tail, but at least one other node has requested the line after

the local processor did.

188
Table A.2 shows the message types required to support QOLB in the SOFTQOLB

protocol. In addition to fields identifying the requester (P) and the address being

accessed (A), messages may contain a field identifying the current insertion of

point in the queue. Note also, that, unlike Stache, some messages in Table A.2 are

no longer confined to be exchanged exactly between a home node and a cache

Table A.2 The possible messages sent among nodes to support QOLB. The first
message is a request sent by the local cache to home. The second message is a message
sent by home to indicate a cache requester the current queue insertion point. The third
message allows the recipient to update its next pointer correctly. The fourth message sends
the data value to the next processor in line. The last three messages are replies to QOLB,
queue, and data value messages, respectively.

MESSAGE TYPE SOURCE DESTINATION

MESSAGE
CONTENTS MESSAGE FUNCTION

QOLB Local cache Home directory P, A Processor P issued an enqolb instruc-
tion at address A; request identity of cur-
rent tail.

Tail Home directory Local cache T, A Send current tail identity; make requester
(P) new tail.

Queue Any node Remote cache P, A Insert processor P into queue behind cur-
rent tail; make P old tail’s next node.

Data value Any node Any node A, Data Current owner issued a deqolb instruc-
tion; send data value to next processor in
queue; invalidate local copy; make recipi-
ent new owner.

QOLB reply Home directory Local cache T, A Send current tail identity; make requester
(P) new tail; insert P into queue behind
home; make P home’s next node.

Queue reply Remote cache Any node A Acknowledge new tail.

Data value replyAny node Any node A Acknowledge data value transfer.

189
node. For instance, the source and destination of a data value message can be any

node.

The act of joining the queue upon executing the enqolb instruction consists of

two steps: send home a QOLB message to determine the current location of the tail

of the queue (the response comes in the tail reply) and, then, send tail a queue

message to update the linked list correctly (SOFTQOLB has committed this opera-

tion when the requester has received the queue reply). An optimization not

described in detail here can perform these operations in one step if home and tail

happen to be the same node.

Figure A.3 and Figure A.4 depict the part of the SOFTQOLB coherence protocol

that supports efficient synchronization (i.e., QOLB). Again, these state diagrams

do not represent all the details of the protocol. In particular, these diagrams

assume that the processor does not issue deqolb instructions while the memory

location is in state tail or middle. I address this particular issue later when I

describe the interaction between Stache and the synchronization support in SOFT-

QOLB.

Figure A.3 shows the cache-side state transitions; while Figure A.4 shows the

home-side transitions. Figure A.3 (a) and Figure A.4 (a) represent state transi-

tions caused by local requests (enqolb and deqolb instructions); while

Figure A.3 (b) and Figure A.4 (b) represent transitions caused by remote

requests.

190
A node joins a queue by sending a QOLB message first, then a queue message.

While waiting to obtain the cache line exclusively, the node may receive a queue

request, which it honors by updating its next pointer and sending a queue reply.

A home node, in addition to supporting the operations just described, is also

responsible to keep track of the current tail node, which represent the queue

insertion point.

SOFTQOLB must expect enqolb and deqolb instructions at any time (recall that

these instructions are non-blocking). Figure A.3 and Figure A.4 only show the

basic transitions caused by enqolb or deqolb and disregard (for now) the ques-

tion of dealing with deqolb instructions issued to states tail and middle. All

other executions of enqolb of deqolb instructions not shown in Figure A.3 and

Figure A.4 do not cause state transitions; SOFTQOLB ignores them.

191
Send QOLB message,

Invalid
(no access)

Exclusive
(read/write)

(a) State transitions based on requests from CPU

(b) State transitions based on remote requests

Figure A.3 Cache-side state transitions for the QOLB cache coherence protocol. This
figure uses the same conventions as those described in Figure A.1 and Figure A.2.

CPU deqolb

CPU enqolb

Tail
(no access)

Middle
(no access)

CPU enqolb (queue non-empty)

Owned
(read/write)

Tail reply,

Needed
(read/write)

Exclusive
(read/write)

Tail
(no access)

Middle
(no access)

Queue
Send queue reply,

Owned
(read/write)

Needed
(read/write)

Queue
Send queue reply, D

at
a

va
lu

e
S

en
d

 d
at

a
va

lu
e

re
p

ly

D
at

a
va

lu
e

S
en

d
 d

at
a

va
lu

e
re

p
ly

Send queue message,

Next={P}

Next={P}

CPU deqolb
Send data value message,

Data value reply

Queue reply

CPU enqolb (queue em
pty)

Send QOLB m
essage,

Data value reply

Invalid
(no access)

Q
ue

ue
S

en
d

 d
at

a
va

lu
e

m
es

sa
g

e

192
(b) State transitions based on remote requests

Figure A.4 Home-side state transitions for the QOLB cache coherence protocol. This
figure uses the same conventions as those described in Figure A.1 and Figure A.2. Self
denotes the node executing the enqolb instruction.

CPU deqolb

CPU enqolb

Locked
(no access)

Tail
(no access)

Middle
(no access)

Idle
(read/write)

Owned
(read/write)

Needed
(read/write)

Locked
(no access)

Idle
(read/write)

Tail
(no access)

Middle
(no access)

Owned
(read/write)

Needed
(read/write)

QOLB
Send QOLB reply,

D
at

a
va

lu
e

S
en

d
 d

at
a

va
lu

e
re

p
ly

D
at

a
va

lu
e

S
en

d
 d

at
a

va
lu

e
re

p
ly

Q
O

LB
S

en
d

 d
at

a
va

lu
e

m
es

sa
g

e,

QOLB
Send Tail Message,

Tail={P}, Next={P}

QOLB
Send Tail Message,

T
ai

l=
{P

}

CPU enqolb (queue non-empty)
Tail={self},
Send queue message,

CPU deqolb
Send data value message,

Data value reply

CPU enqolb (queue em
pty)

Tail={self},

Send queue m
essage,

(a) State transitions based on requests from CPU

Tail={P}Tail={P}

Q
O

LB
S

en
d

 T
ai

l M
es

sa
g

e,
T

ai
l=

{P
}

Queue reply

Data value reply

QOLB
Send QOLB reply,
Tail={P}, Next={P}

193
The descriptions so far have not considered the possibility of one or several

nodes reading (or writing) a memory location concurrently with other nodes issu-

ing QOLB instructions to the same location. Also, the SOFTQOLB description has

not considered the possibility that a node might wish to undo the effect of an

enqolb instruction.1

When a QOLB request finds the state at the directory to be either shared or

exclusive, SOFTQOLB must first send invalidate messages or write-back request

(as appropriate) to force the state at the directory back to idle. Then, the QOLB

request proceeds as described earlier.

When a read or write miss finds that a QOLB queue has formed, it must first

destroy the queue forcing the memory location back home. Then, the read or

write request proceeds as described earlier. The home node collapses the queue

on the behalf of the requester one node at a time starting from the tail. This oper-

ation is sequential in the number of nodes that have joined the queue: its empha-

sis is on correctness, not on efficiency. Note also, that this operation requires a

doubly linked list. Hence, every node must keep track of its predecessor in the

queue in addition to its successor.

Finally, to support speculative execution, SOFTQOLB must be able to undo the

effect of the enqolb instruction. With a doubly linked list, the undoing of enqolb

is trivial: send both neighbors each other’s addresses.

With the possibility of many outstanding protocol transitions taking place con-

currently arises the possibility of deadlocks. One invariant that SOFTQOLB

1. For instance, a processor could have issued an enqolb instruction misspeculatively.

194
observes to prevent deadlocks is to avoid storing and then forwarding a QOLB

request. However, Stache does not follow this convention entirely, therefore the

protocol must take great care when reserving resources.

195
References

[ABB64] G. M. Amdahl, G. A. Blaauw, and F. P. Brooks, Jr. Architecture of the
IBM System/360. IBM Journal of Research and Development, 8(2):87–101, April
1964.

[ABC+95] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk L. Johnson,
David Kranz, John Kubiatowicz, Beng-Hong Lim, Kenneth Mackenzie, and
Donald Yeung. The MIT Alewife machine: Architecture and performance. In Pro-
ceedings of the 22nd Annual International Symposium on Computer Architecture,
pages 2–13, June 1995.

[Abr70] Norman Abramson. The ALOHA system—another alternative for com-
puter communications. In Proceedings of the AFIPS Fall Joint Computer Confer-
ence, volume 37, pages 281–285, November 1970.

[AC89] Anant Agarwal and Mathews Cherian. Adaptive backoff synchroniza-
tion techniques. In Proceedings of the 16th Annual International Symposium on
Computer Architecture, pages 396–406, May 1989.

[ACC+90] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz,
Allan Porterfield, and Burton J. Smith. The Tera computer system. In Proceed-
ings of the 1990 International Conference on Supercomputing, pages 1–6, June
1990.

[ACD+96] Cristiana Amza, Alan L. Cox, Sandhya Dwarkadas, Pete Keleher,
Honghui Lu, Ramakrishnan Rajamony, Weimin Yu, and Willy Zwaenepoel.
TreadMarks: Shared memory computing on networks of workstations. IEEE
Computer, 29(2):18–28, February 1996.

[AGGW92] Nagi M. Aboulenein, James R. Goodman, Stein Gjessing, and
Philip J. Woest. Hardware support for synchronization in the Scalable Coherent
Interface (SCI). Technical Report CS-TR-92-1117, Computer Sciences Depart-
ment, University of Wisconsin, Madison, WI, November 1992.

[AGGW94] Nagi M. Aboulenein, James R. Goodman, Stein Gjessing, and
Philip J. Woest. Hardware support for synchronization in the Scalable Coherent
Interface (SCI). In Proceedings of the Eighth International Parallel Processing
Symposium, pages 141–150, April 1994.

196
[AH90] Sarita V. Adve and Mark D. Hill. Weak ordering—a new definition. In
Proceedings of the 17th Annual International Symposium on Computer Architec-
ture, pages 2–14, May 1990.

[ALS94] Hagit Attiya, Nancy Lynch, and Nir Shavit. Are wait-free algorithms
fast? Journal of the Association for Computing Machinery, 41(4):725–763, July
1994.

[And89] Thomas E. Anderson. The performance implications of spin-waiting
alternatives for shared-memory multiprocessors. In Proceedings of the 1989 Inter-
national Conference on Parallel Processing, volume II (software), pages 170–174,
August 1989.

[And90] Thomas E. Anderson. The performance of spin lock alternatives for
shared-memory multiprocessors. IEEE Transactions on Parallel and Distributed
Systems, 1(1):6–16, January 1990.

[ASHAA97] Hazim Abdel-Shafi, Jonathan Hall, Sarita V. Adve, and Vikram S.
Adve. An evaluation of fine-grain producer-initiated communication in cache-
coherent multiprocessors. In Proceedings of the Third International Symposium
on High-Performance Computer Architecture, pages 204–215, February 1997.

[BBD+87] James Boyle, Ralph Butler, Terrence Disz, Barnett Glickfield, Ewing
Lusk, Ross Overbeek, James Patterson, and Rick Stevens. Portable Programs for
Parallel Processors. Holt, Rinehart and Winston, New York, NY, 1987.

[BCF+95] Nanette J. Boden, Danny Cohen, Robert E. Feldermann, Alan E.
Kulawik, Charles L. Seitz, Jakov N. Seizovic, and Wen-King Su. Myrinet: A giga-
bit-per-second local area network. IEEE Micro, 15(1):29–36, February 1995.

[BD86] Philip Bitar and Alvin M. Despain. Multiprocessor cache synchroniza-
tion: Issues, innovations, evolution. In Proceedings of the 13th Annual Interna-
tional Symposium on Computer Architecture, pages 424–433, June 1986.

[BDCW91] Eric A. Brewer, Chrysanthos N. Dellarocas, Adrian Colbrook, and
William E. Weihl. PROTEUS: A high-performance parallel-architecture simula-
tor. Technical Report MIT-LCS-TR-516, Laboratory for Computer Science, Massa-
chusetts Institute of Technology, Cambridge, MA, September 1991.

[BDFL96] Matthias A. Blumrich, Cezary Dubnicki, Edward W. Felten, and Kai
Li. Protected, user-level DMA for the SHRIMP network interface. In Proceedings
of the Second International Symposium on High-Performance Computer Architec-
ture, pages 154–165, February 1996.

197
[BG95] Doug Burger and James R. Goodman. Simulation of the SCI transport
layer on the Wisconsin Wind Tunnel. Technical Report CS-TR-95-1265, Computer
Sciences Department, University of Wisconsin, Madison, WI, March 1995.

[BKT87] Bob Beck, Bob Kasten, and Shreekant Thakkar. VLSI assist for a mul-
tiprocessor. In Proceedings of the Second Symposium on Architectural Support for
Programming Languages and Operating Systems, pages 10–20, October 1987.

[BLA+94] Matthias A. Blumrich, Kai Li, Richard Alpert, Cezary Dubnicki,
Edward W. Felten, and Jonathan Sandberg. Virtual memory mapped network
interface for the SHRIMP multicomputer. In Proceedings of the 21st Annual
International Symposium on Computer Architecture, pages 142–153, April 1994.

[BLS+95] Philip Bohannon, Daniel Lieuwen, Avi Silberschatz, S. Sudarshan,
and Jacques Gava. Recoverable user-level mutual exclusion. In Proceedings of the
seventh IEEE Symposium on Parallel and Distributed Processing, pages 293–301,
October 1995.

[BW95] Doug Burger and David A. Wood. Accuracy vs. performance in parallel
simulation of interconnection networks. In Proceedings of the Ninth International
Parallel Processing Symposium, pages 22–31, April 1995.

[BZS93] Brian N. Bershad, Matthew J. Zekauskas, and Wayne A. Sawdon. The
Midway distributed shared memory system. In Proceedings of the 38th IEEE
Computer Society International Conference (COMPCON), pages 528–537, Febru-
ary 1993.

[CB94] Tien-Fu Chen and Jean-Loup Baer. A performance study of software
and hardware data prefetching schemes. In Proceedings of the 21st Annual Inter-
national Symposium on Computer Architecture, pages 223–232, April 1994.

[CM81] K. M. Chandy and J. Misra. Asynchronous distributed simulation via a
sequence of parallel computations. Communications of the ACM, 24(4):198–206,
April 1981.

[CP78] Richard P. Case and Andris Padegs. Architecture of the IBM System/
370. Communications of the ACM, 21(1):73–96, January 1978.

[Cra93] Travis S. Craig. Building FIFO and priority-queueing spin locks from
atomic swap. Technical Report UW-CSE-93-02-02, Department of Computer Sci-
ence and Engineering, University of Washington, Seattle, WA, February 1993.

[CS99] David E. Culler and Jaswinder Pal Singh. Parallel Computer Architec-
ture: A Hardware/Software Approach. Morgan Kaufmann Publishers, San Fran-
cisco, CA, 1999.

198
[Cyp90] Cypress Semiconductor, San Jose, CA. CY7C601 SPARC RISC User’s
Guide, second edition, 1990.

[DDHY92] David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang. Pro-
tocol verification as a hardware design aid. In Proceedings of the 1992 IEEE Inter-
national Conference on Computer Design, pages 522–525, October 1992.

[DL92] Cezary Dubnicki and Thomas J. LeBlanc. Adjustable block size coherent
caches. In Proceedings of the 19th Annual International Symposium on Computer
Architecture, pages 170–180, May 1992.

[FBS89] Alessandro Forin, Joseph Barrera, and Richard Sanzi. The shared
memory server. In Proceedings of the Winter 1989 USENIX Conference, pages
229–243, January 1989.

[FG91] Eric Freudenthal and Allan Gottlieb. Process coordination with fetch-
and-increment. In Proceedings of the Fourth Symposium on Architectural Support
for Programming Languages and Operating Systems, pages 260–268, April 1991.

[FP91] John W. C. Fu and Janak H. Patel. Data prefetching in multiprocessor
vector cache memories. In Proceedings of the 18th Annual International Sympo-
sium on Computer Architecture, pages 54–63, May 1991.

[GAG+92] Kourosh Gharachorloo, Sarita V. Adve, Anoop Gupta, John L. Hen-
nessy, and Mark D. Hill. Programming for different memory consistency models.
Journal of Parallel and Distributed Computing, 15(4):399–407, August 1992.

[GGK+83] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAu-
liffe, Larry Rudolph, and Marc Snir. The NYU ultracomputer—designing an
MIMD shared memory parallel computer. IEEE Transactions on Computers, C-
32(2):175–189, February 1983.

[GHG+91] Anoop Gupta, John L. Hennessy, Kourosh Gharachorloo, Todd
Mowry, and Wolf-Dietrich Weber. Comparative evaluation of latency reducing and
tolerating techniques. In Proceedings of the 18th Annual International Sympo-
sium on Computer Architecture, pages 254–263, May 1991.

[GK81] Allan Gottlieb and Clyde P. Kruskal. Coordinating parallel processors:
A partial unification. Computer Architecture News, 9(6):16–24, October 1981.

[Gle91] Andrew Glew. Synchronization primitive implementation including the
bus abandonment lock. Master’s thesis, University of Illinois at Urbana-Cham-
paign, Urbana, IL, 1991.

199
[GLL+90] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gib-
bons, Anoop Gupta, and John L. Hennessy. Memory consistency and event order-
ing in scalable shared-memory multiprocessors. In Proceedings of the 17th
Annual International Symposium on Computer Architecture, pages 15–26, May
1990.

[GLR83] Allan Gottlieb, Boris D. Lubachevsky, and Larry Rudolph. Basic tech-
niques for the efficient coordination of very large numbers of cooperating sequen-
tial processors. ACM Transactions on Programming Languages and Systems,
5(2):164–189, April 1983.

[Goo83] James R. Goodman. Using cache memory to reduce processor-memory
traffic. In Proceedings of the 10th Annual International Symposium on Computer
Architecture, pages 124–131, June 1983.

[GT90] Gary Graunke and Shreekant Thakkar. Synchronization algorithms for
shared-memory multiprocessors. IEEE Computer, 23(6):60–69, June 1990.

[GVW89] James R. Goodman, Mary K. Vernon, and Philip J. Woest. Efficient
synchronization primitives for large-scale cache-coherent shared-memory multi-
processors. In Proceedings of the Third Symposium on Architectural Support for
Programming Languages and Operating Systems, pages 64–75, April 1989.

[GW88] James R. Goodman and Philip J. Woest. The Wisconsin Multicube: A
new large-scale cache-coherent multiprocessor. In Proceedings of the 15th Annual
International Symposium on Computer Architecture, pages 422–431, May 1988.

[GW92] Anoop Gupta and Wolf-Dietrich Weber. Cache invalidation patterns in
shared-memory multiprocessors. IEEE Transactions on Computers, 41(7):794–
810, July 1992.

[Gwe98] Linley Gwennap. Alpha 21364 to ease memory bottleneck. Micropro-
cessor Report, 12(14):12–15, October 1998.

[Hag92] Erik Hagersten. Toward Scalable Cache Only Memory Architectures.
PhD thesis, The Royal Institute of Technology (KTH), Stockhom, Sweden, Octo-
ber 1992. Also appears as Technical Report SICS Dissertation Series 08, Swedish
Institute of Computer Science, Kista, Sweden, October 1992.

[Hei98] John Heinlein. Optimized Multiprocessor Communication and Synchro-
nization Using a Programmable Protocol Engine. PhD thesis, Stanford Univer-
sity, Stanford, CA, March 1998.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Pro-
gramming Languages and Systems, 11(1):124–149, January 1991.

200
[HGDG94] John Heinlein, Kourosh Gharachorloo, Scott Dresser, and Anoop
Gupta. Integration of message passing and shared memory in the Stanford
FLASH multiprocessor. In Proceedings of the Sixth Symposium on Architectural
Support for Programming Languages and Operating Systems, pages 38–50, Octo-
ber 1994.

[HKO+94] Mark Heinrich, Jeffrey Kuskin, David Ofelt, John Heinlein, Joel
Baxter, Jaswinder Pal Singh, Richard Simoni, Kourosh Gharachorloo, David
Nakahira, Mark Horowitz, Anoop Gupta, Mendel Rosenblum, and John L. Hen-
nessy. The performance impact of flexibility in the Stanford FLASH multiproces-
sor. In Proceedings of the Sixth Symposium on Architectural Support for
Programming Languages and Operating Systems, pages 274–285, October 1994.

[HLRW92] Mark D. Hill, James R. Larus, Steven K. Reinhardt, and David A.
Wood. Cooperative shared memory: Software and hardware for scalable multipro-
cessors. In Proceedings of the Fifth Symposium on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 262–273, October 1992.

[HLRW93] Mark D. Hill, James R. Larus, Steven K. Reinhardt, and David A.
Wood. Cooperative shared memory: Software and hardware for scalable multipro-
cessors. ACM Transactions on Computer Systems, 11(4):300–318, November
1993.

[HM93] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architec-
tural support for lock-free data structures. In Proceedings of the 20th Annual
International Symposium on Computer Architecture, pages 289–300, May 1993.

[HP95] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers, San Francisco, CA, sec-
ond edition, 1995.

[HS95] Chris Holt and Jaswinder Pal Singh. Hierarchical N-body methods on
shared address space multiprocessors. In David H. Bailey, Petter E. Bjørstad,
John R. Gilbert, Michael V. Mascagni, Robert S. Schreiber, Horst D. Simon,
Virginia J. Torczon, and Layne T. Watson, editors, Proceedings of the Seventh
SIAM Conference on Parallel Processing for Scientific Computing, pages 313–318,
February 1995.

[IEE93] Institute of Electrical and Electronics Engineers, New York, NY. IEEE
Standard for the Scalable Coherent Interface (SCI), August 1993. ANSI/IEEE Std
1596-1992.

[Int96] Intel Corporation. Pentium Pro Family Developer’s Manual, Volume 1:
Specifications, January 1996.

201
[JHB87] Eric H. Jensen, Gary W. Hagensen, and Jeffrey M. Broughton. A new
approach to exclusive data access in shared memory multiprocessors. Technical
Report UCRL-97663, Lawrence Livermore National Laboratory, Livermore, CA,
November 1987.

[JKW95] Kirk L. Johnson, M. Frans Kaashoek, and Deborah A. Wallach. CRL:
High-performance all-software distributed shared memory. In Proceedings of the
15th ACM Symposium on Operating Systems Principles, pages 213–228, Decem-
ber 1995. Also appears as Technical Memorandum MIT-LCS-TM-517, MIT Labo-
ratory for Computer Science, Massachusetts Institute of Technology, Cambridge,
MA, March 1995.

[JMH97] Teresa L. Johnson, Matthew C. Merten, and Wen-mei W. Hwu. Run-
time spatial locality detection and optimization. In Proceedings of the 30th Inter-
national Symposium on Microarchitecture, pages 57–64, December 1997.

[JSS97] Dongming Jiang, Hongzhang Shan, and Jaswinder Pal Singh. Applica-
tion restructuring and performance portability on shared virtual memory and
hardware-coherent multiprocessors. In Proceedings of the Sixth Symposium on
Principles and Practice of Parallel Programming, pages 217–229, June 1997.

[KABG95] Alain Kägi, Nagi Aboulenein, Doug Burger, and James R. Goodman.
Techniques for reducing the overheads of shared-memory multiprocessing. In
Proceedings of the 1995 International Conference on Supercomputing, pages 11–
20, July 1995.

[Kax98] Stefanos Kaxiras. Identification and Optimization of Sharing Patterns
for Scalable Shared-Memory Multiprocessors. PhD thesis, University of Wiscon-
sin, Madison, WI, 1998.

[KBG97] Alain Kägi, Doug Burger, and James R. Goodman. Efficient synchroni-
zation: Let them eat QOLB. In Proceedings of the 24th Annual International Sym-
posium on Computer Architecture, pages 170–180, June 1997.

[KCDZ94] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and Willy Zwaenep-
oel. TreadMarks: Distributed shared memory on standard workstations and oper-
ating systems. In Proceedings of the Winter 1994 USENIX Conference, pages 115–
131, January 1994.

[KCK98] Chen-Chi Kuo, John Carter, and Ravindra Kuramkote. MP-LOCKs:
Replacing hardware synchronization primitives with message passing. Technical
Report UUCS-98-021, Department of Computer Science, University of Utah, Salt
Lake City, UT, 1998.

202
[KCK99] Chen-Chi Kuo, John Carter, and Ravindra Kuramkote. MP-LOCKs:
Replacing h/w synchronization primitives with message passing. In Proceedings
of the Fifth International Symposium on High-Performance Computer Architec-
ture, pages 284–288, January 1999.

[KCPT95] D. A. Koufaty, X. Chen, David K. Poulsen, and Josep Torrellas. Data
forwarding in scalable shared-memory multiprocessors. In Proceedings of the
1995 International Conference on Supercomputing, pages 255–264, July 1995.

[KDL+93] David J. Kuck, Edward S. Davidson, Duncan H. Lawrie, Ahmed
Sameh, Chuan-Qi Zhu, Alexander V. Veidenbaum, J. Konicek, Pen-Chung Yew,
Kyle Gallivan, William Jalby, Harry A. G. Wijshoff, R. Bramley, U. M. Yang,
P. Emrath, David A. Padua, Rudolf Eigenmann, J. Hoeflinger, G. Jaxon, Z. Li,
T. Murphy, J. Andrews, and S. Turner. The Cedar system and an initial perfor-
mance study. In Proceedings of the 20th Annual International Symposium on
Computer Architecture, pages 213–223, May 1993.

[KH92] Gerry Kane and Joe Heinrich. MIPS RISC Architecture. Prentice Hall,
Upper Saddle River, NJ, 1992.

[KOH+94] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard
Simoni, Kourosh Gharachorloo, John Chapin, David Nakahira, Joel Baxter, Mark
Horowitz, Anoop Gupta, Mendel Rosenblum, and John L. Hennessy. The Stanford
FLASH multiprocessor. In Proceedings of the 21st Annual International Sympo-
sium on Computer Architecture, pages 302–313, April 1994.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Lan-
guage. Prentice Hall, Englewood Cliffs, NJ, second edition, 1988.

[KRS86] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. Efficient synchroni-
zation on multiprocessors with shared memory. In Proceedings of the Fifth ACM
Symposium on Principles of Distributed Computing, pages 218–228, August
1986.

[KRS88] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. Efficient synchroni-
zation on multiprocessors with shared memory. ACM Transactions on Program-
ming Languages and Systems, 10(4):579–601, October 1988.

[KS93] R. E. Kessler and J. L. Schwarzmeier. Cray T3D: A new dimension for
Cray Research. In Proceedings of the 38th IEEE Computer Society International
Conference (COMPCON), pages 176–182, February 1993.

[KSR91] Kendall Square Research Corporation, Cambridge, Massachusetts.
KSR1 Principles of Operation, 1991.

203
[KW98] Sanjeev Kumar and Christopher Wilkerson. Exploiting spatial locality
in data caches using spatial footprints. In Proceedings of the 25th Annual Inter-
national Symposium on Computer Architecture, pages 357–368, July 1998.

[LA94] Beng-Hong Lim and Anant Agarwal. Reactive synchronization algo-
rithms for multiprocessors. In Proceedings of the Sixth Symposium on Architec-
tural Support for Programming Languages and Operating Systems, pages 25–35,
October 1994.

[LAD+92] Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R.
Feynman, Mahesh N. Ganmukhi, Jeffrey V. Hill, W. Daniel Hillis, Bradley C.
Kuszmaul, Margaret A. St. Pierre, David S. Wells, Monica C. Wong, Shaw-Wen
Yang, and Robert Zak. The network architecture of the Connection Machine CM-
5. In Proceedings of the Fourth Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 272–285, June 1992.

[Lam74] L. Lamport. A new solution of Dijkstra’s concurrent programming
problem. Communications of the ACM, 17(8):453–455, August 1974.

[LC96] Tom Lovett and Russell Clapp. STiNG: A CC-NUMA computer system
for the commercial marketplace. In Proceedings of the 23rd Annual International
Symposium on Computer Architecture, pages 308–317, May 1996.

[LCW94] James R. Larus, Satish Chandra, and David A. Wood. CICO: A practi-
cal shared-memory programming performance model. In Tony Hey and Jeanne
Ferrante, editors, Portability and Performance for Parallel Processing, chapter 5,
pages 99–119. John Wiley & Sons, Chichester, United Kingdom, 1994.

[Lim95] Beng-Hong Lim. Reactive Synchronization Algorithms for Multiproces-
sors. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, Febru-
ary 1995.

[LLG+92] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich
Weber, Anoop Gupta, John L. Hennessy, Mark Horowitz, and Monica Lam. The
Stanford DASH multiprocessor. IEEE Computer, 25(3):63–79, March 1992.

[LLJ+92] Daniel Lenoski, James Laudon, Truman Joe, David Nakahira, Luis
Stevens, Anoop Gupta, and John L. Hennessy. The DASH prototype: Implemen-
tation and performance. In Proceedings of the 19th Annual International Sympo-
sium on Computer Architecture, pages 92–103, May 1992.

[LR90] Joonwon Lee and Umakishore Ramachandran. Synchronization with
multiprocessor caches. In Proceedings of the 17th Annual International Sympo-
sium on Computer Architecture, pages 27–37, May 1990.

204
[LRW91] Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf. The cache
performance and optimizations of blocked algorithms. In Proceedings of the
Fourth Symposium on Architectural Support for Programming Languages and
Operating Systems, pages 63–74, April 1991.

[LS95] James R. Larus and Eric Schnarr. EEL: Machine-independent execut-
able editing. In Proceedings of the 1995 Conference on Programming Language
Design and Implementation (PLDI), pages 291–300, June 1995.

[LT88] Tom Lovett and Shreekant Thakkar. The Symmetry multiprocessor sys-
tem. In Proceedings of the 1988 International Conference on Parallel Processing,
volume II (architecture), pages 303–310, August 1988.

[LT89] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output
automata. CWI Quarterly, 2(3):219–246, September 1989. Centrum voor
Wiskunde en Informatica, Amsterdam, The Netherlands.

[MA95] Mark Moir and James H. Anderson. Wait-free algorithms for fast, long-
lived renaming. Science of Computer Programming, 25(1):1–39, October 1995.

[MB76] Robert M. Metcalfe and David R. Boggs. Ethernet: Distributed packet
switching for local computer networks. Communications of the ACM, 19(7):395–
404, July 1976.

[MCS91a] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scal-
able synchronization on shared-memory multiprocessors. ACM Transactions on
Computer Systems, 9(1):21–65, February 1991.

[MCS91b] John M. Mellor-Crummey and Michael L. Scott. Synchronization
without contention. In Proceedings of the Fourth Symposium on Architectural
Support for Programming Languages and Operating Systems, pages 269–278,
April 1991.

[MFHW96] Shubhendu S. Mukherjee, Babak Falsafi, Mark D. Hill, and
David A. Wood. Coherent network interfaces for fine-grain communication. In
Proceedings of the 23rd Annual International Symposium on Computer Architec-
ture, pages 247–258, May 1996.

[MK97] Evangelos P. Markatos and Manolis G. H. Katevenis. User-level DMA
without operating system kernel modification. In Proceedings of the Third Inter-
national Symposium on High-Performance Computer Architecture, pages 322–
331, February 1997.

205
[MLH94] Peter Magnusson, Anders Landin, and Erik Hagersten. Efficient soft-
ware synchronization on large cache coherent multiprocessors. Technical Report
T94:07, Swedish Institute of Computer Science, Kista, Sweden, February 1994.

[Moi97] Mark Moir. Transparent support for wait-free transactions. In Proceed-
ings of the 11th International Workshop on Distributed Algorithms, pages 305–
319, September 1997.

[Moi98] Mark Moir. Fast, long-lived renaming improved and simplified. Science
of Computer Programming, 30(3):287–308, March 1998.

[MS95] Maged M. Michael and Michael L. Scott. Implementation of atomic
primitives on distributed shared memory multiprocessors. In Proceedings of the
First International Symposium on High-Performance Computer Architecture,
pages 222–231, January 1995.

[MSSW94] Cathy May, Ed Silha, Rick Simpson, and Hank Warren, editors. The
PowerPC Architecture: A Specification for a New Family of RISC Processors. Mor-
gan Kaufmann Publishers, San Francisco, CA, second edition, May 1994.

[Nik94] Rishiyur S. Nikhil. Cid: A parallel, “shared-memory” C for distributed-
memory machines. In Keshav Pingali, Utpal Banerjee, David Gelernter, Alex
Nicolau, and David A. Padua, editors, Proceedings of the Seventh International
Workshop on Languages and Compilers for Parallel Computing, pages 376–390,
August 1994.

[OSG98] David R. O’Hallaron, Jonathan Richard Shewchuk, and Thomas
Gross. Architectural implications of a family of irregular applications. In Proceed-
ings of the Fourth International Symposium on High-Performance Computer
Architecture, pages 80–89, February 1998.

[PBG+85] Gregory F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J.
Kleinfelder, Kevin P. McAuliffe, E. A. Melton, V. Alan Norton, and J. Weiss. The
IBM research parallel processor prototype (RP3): Introduction and architecture.
In Proceedings of the 1985 International Conference on Parallel Processing, pages
764–771, August 1985.

[PN85] Gregory F. Pfister and V. Alan Norton. “Hot spot” contention and com-
bining in multistage interconnection networks. IEEE Transactions on Computers,
C-34(10):943–948, October 1985.

[PRA97] Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V. Adve. RSIM
reference manual version 1.0. Technical Report 9705, Department of Electrical
and Computer Engineering, Rice University, Houston, TX, August 1997.

206
[PY94] David K. Poulsen and Pen-Chung Yew. Data prefetching and data for-
warding in shared memory multiprocessors. In Proceedings of the 1994 Interna-
tional Conference on Parallel Processing, volume II (software), pages 276–280,
August 1994.

[RCCT90] Randall D. Rettberg, William R. Crowther, Philip P. Carvey, and
Raymond S. Tomlinson. The Monarch parallel processor hardware design. IEEE
Computer, 23(4):18–30, April 1990.

[Rei96] Steven K. Reinhardt. Mechanisms for Distributed Shared Memory. PhD
thesis, University of Wisconsin, Madison, WI, 1996.

[RHL+93] Steven K. Reinhardt, Mark D. Hill, James R. Larus, Alvin R. Lebeck,
James C. Lewis, and David A. Wood. The Wisconsin Wind Tunnel: Virtual proto-
typing of parallel computers. In Proceedings of the 1993 ACM Sigmetrics Confer-
ence on Measurements and Modeling of Computer Systems, pages 48–60, May
1993.

[RHWG95] Mendel Rosenblum, Stephen A. Herrod, Emmett Witchel, and
Anoop Gupta. Complete computer system simulation: The SimOS approach.
IEEE Parallel & Distributed Technology, 3(4):34–43, winter 1995. This journal
has since been renamed IEEE Concurrency.

[RLW94] Steven K. Reinhardt, James R. Larus, and David A. Wood. Tempest
and Typhoon: User-level shared memory. In Proceedings of the 21st Annual Inter-
national Symposium on Computer Architecture, pages 325–336, April 1994.

[ROS93] ROSS Technology, Austin, TX. SPARC RISC User’s Guide: Hyper-
SPARC Edition, third edition, September 1993.

[RPW96] Steven K. Reinhardt, Robert W. Pfile, and David A. Wood. Decoupled
hardware support for distributed shared memory. In Proceedings of the 23rd
Annual International Symposium on Computer Architecture, pages 34–43, May
1996.

[RS84] Larry Rudolph and Zary Segall. Dynamic decentralized cache schemes
for MIMD parallel processors. In Proceedings of the 11th Annual International
Symposium on Computer Architecture, pages 340–347, June 1984.

[RSG93] Edward Rothberg, Jaswinder Pal Singh, and Anoop Gupta. Working
sets, cache sizes, and node granularity issues for large-scale multiprocessors. In
Proceedings of the 20th Annual International Symposium on Computer Architec-
ture, pages 14–25, May 1993.

207
[RSS+95] Umakishore Ramachandran, Gautam Shah, Anand Sivasubrama-
niam, Aman Singla, and Ivan Yanasak. Architectural mechanisms for explicit
communication in shared memory multiprocessors. In Proceedings of the Super-
computing ’95, pages 1737–1775, December 1995.

[Rud81] Larry S. Rudolph. Software Structures for Ultraparallel Computing.
PhD thesis, New York University, New York, NY, December 1981.

[Sch97] Ioannis T. Schoinas. Fine Grain Distributed Shared Memory on Clusters
of Workstations. PhD thesis, University of Wisconsin, Madison, WI, 1997.

[Sco96] Steven L. Scott. Synchronization and communication in the T3E multi-
processor. In Proceedings of the Seventh Symposium on Architectural Support for
Programming Languages and Operating Systems, pages 26–36, October 1996.

[SFC91] Pradeep S. Sindhu, Jean-Marc Frailong, and Michel Cekleov. Formal
specification of memory models. Technical Report CSL-91-11, Xerox Corporation,
Palo Alto Research Center, Palo Alto, CA, December 1991.

[SFL+94] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck, Steven K. Rein-
hardt, James R. Larus, and David A. Wood. Fine-grain control for distributed
shared memory. In Proceedings of the Sixth Symposium on Architectural Support
for Programming Languages and Operating Systems, pages 297–306, October
1994.

[SGT96] Daniel J. Scales, Kourosh Gharachorloo, and Chandramohan A. Thek-
kath. Shasta: A low overhead, software-only approach for supporting fine-grain
shared memory. In Proceedings of the Seventh Symposium on Architectural Sup-
port for Programming Languages and Operating Systems, pages 174–185, Octo-
ber 1996.

[SGV92] Steven L. Scott, James R. Goodman, and Mary K. Vernon. Perfor-
mance of the SCI ring. In Proceedings of the 19th Annual International Sympo-
sium on Computer Architecture, pages 403–414, May 1992.

[SGZ93] Harjinder S. Sandhu, Benjamin Gamsa, and Songnian Zhou. The
shared regions approach to software cache coherence on multiprocessors. In Pro-
ceedings of the Fourth Symposium on Principles and Practice of Parallel Pro-
gramming, pages 229–238, May 1993. Also appears as Technical Report 277,
Computer Systems Research Institute, University of Toronto, Canada, October
1992.

[Sit92] Richard L. Sites. Alpha AXP architecture. Digital Technical Journal,
4(4):19–34, 1992.

208
[SL94a] Daniel J. Scales and Monica S. Lam. The design and evaluation of a
shared object system for distributed memory machines. In Proceedings of the
First USENIX Symposium on Operating Systems Design and Implementation,
pages 101–114, November 1994.

[SL94b] Daniel J. Scales and Monica S. Lam. An efficient shared memory layer
for distributed memory machines. Technical Report CSL-TR-94-627, Computer
Systems Laboratory, Stanford University, Stanford, CA, July 1994.

[Smi81] Burton J. Smith. Architecture and applications of the HEP multipro-
cessor computer system. In Tien F. Tao, editor, Proceedings of the SPIE (Real-
Time Signal Processing IV), volume 298, pages 241–248, August 1981.

[Smi82] Alan Jay Smith. Cache memories. ACM Computing Surveys, 14(3):473–
530, September 1982.

[SSHT93] Janice M. Stone, Harold S. Stone, Philip Heidelberger, and John
Turek. Multiple reservations and the Oklahoma update. IEEE Parallel & Distrib-
uted Technology, 1(4):58–71, November 1993. This journal has since been
renamed IEEE Concurrency.

[SWG92] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta.
SPLASH: Stanford parallel applications for shared memory. Computer Architec-
ture News, 20(1):5–44, March 1992.

[TMC91] Thinking Machines Corporation. CM-5 Technical Summary, 1991.

[TT96] Pedro Trancoso and Josep Torrellas. The impact of speeding up critical
sections with data prefetching and forwarding. In Proceedings of the 1996 Inter-
national Conference on Parallel Processing, volume III (software), pages 79–86,
August 1996.

[UIT94] Teruo Utsumi, Masayuki Ikeda, and Moriyuki Takamura. Architecture
of the VPP500 parallel supercomputer. In Proceedings of the Supercomputing ’94,
pages 478–487, November 1994.

[vECGS92] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and
Klaus Erik Schauser. Active Messages: A mechanism for integrated communica-
tion and computation. In Proceedings of the 19th Annual International Sympo-
sium on Computer Architecture, pages 256–266, May 1992.

[WCF+93] David A. Wood, Satish Chandra, Babak Falsafi, Mark D. Hill,
James R. Larus, Alvin R. Lebeck, James C. Lewis, Shubhendu S. Mukherjee,
Subbarao Palacharla, and Steven K. Reinhardt. Mechanisms for cooperative

209
shared memory. In Proceedings of the 20th Annual International Symposium on
Computer Architecture, pages 156–167, May 1993.

[Web65] Webster. Webster’s Seventh Dictionary. G. & C. Merriam Company,
Springfield, MA, 1965.

[WG91] Philip J. Woest and James R. Goodman. An analysis of synchronization
mechanisms in shared-memory multiprocessors. In Proceedings of the Interna-
tional Symposium on Shared Memory Multiprocessing, pages 152–165, April
1991.

[WGH+97] Wolf-Dietrich Weber, Stephen Gold, Pat Helland, Takeshi Shimizu,
Thomas Wicki, and Winfried Wilcke. The Mercury interconnect architecture: A
cost-effective infrastructure for high-performance servers. In Proceedings of the
24th Annual International Symposium on Computer Architecture, pages 98–107,
June 1997.

[WH95] David A. Wood and Mark D. Hill. Cost-effective parallel computing.
IEEE Computer, 28(2):69–72, February 1995.

[WOT+95] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal
Singh, and Anoop Gupta. The SPLASH-2 programs: Characterization and meth-
odological considerations. In Proceedings of the 22nd Annual International Sym-
posium on Computer Architecture, pages 24–36, June 1995.

[ZCC94] Xiaodong Zhang, Robert Castañeda, and Elisa W. Chan. Spin-lock syn-
chronization on the Butterfly and KSR1. IEEE Parallel & Distributed Technology,
2(1):51–63, spring 1994. This journal has since been renamed IEEE Concurrency.

[ZY87] Chuan-Qi Zhu and Pen-Chung Yew. A scheme to enforce data depen-
dence on large multiprocessor systems. IEEE Transactions on Software Engineer-
ing, 13(6):726–739, June 1987.

210

	Abstract
	Acknowledgments
	Contents
	List of figures
	List of tables
	Introduction
	1.1 Problem statement
	1.2 Thesis contributions
	1.2.1 Synchronization period
	1.2.2 Locking mechanisms
	1.2.3 Performance of locking primitives
	1.2.4 Implementation of locking primitives
	1.2.5 vaqum

	1.3 Historical perspective and related work
	1.3.1 Synchronization primitives
	1.3.2 Framework/formalization
	1.3.3 Evaluation
	1.3.4 Implementation
	1.3.5 clean

	1.4 Thesis organization

	Experimental methodology
	2.1 Microbenchmarks
	2.1.1 Standard microbenchmark
	2.1.2 Extended microbenchmark

	2.2 Shared-memory applications
	2.2.1 Barnes
	2.2.2 Mp3d
	2.2.3 Ocean
	2.2.4 Pthor
	2.2.5 Raytrace
	2.2.6 Water-Nsq

	2.3 Simulation environment
	2.4 Experimental platform: cow
	2.5 Application characterization
	2.5.1 Working sets
	2.5.2 Locking

	Performance of synchronization primitives
	3.1 Introduction
	3.2 Synchronization period
	3.3 Synchronization inefficiencies
	3.4 Locking mechanisms
	3.5 Synchronization primitives
	3.5.1 Test&set
	3.5.2 Test&test&set
	3.5.3 mcs locks
	3.5.4 Anderson’s lock
	3.5.5 Graunke and Thakkar’s lock
	3.5.6 lh and m locks
	3.5.7 qolb
	3.5.8 Lee and Ramachandran lock
	3.5.9 Fine-grain data prefetching and forwarding
	3.5.10 Reactive synchronization

	3.6 Experimental evaluation
	3.6.1 Methodology
	3.6.2 Microbenchmark results
	3.6.3 Macrobenchmark results
	3.6.4 Individual mechanisms

	3.7 Future technology
	3.8 Small caches
	3.9 Summary

	Implementation of synchronization primitives
	4.1 Introduction
	4.2 Hardware mechanisms for synchronization
	4.2.1 Naming
	4.2.2 Protocol processing
	4.2.3 Synchronous cache-to-cache transfer
	4.2.4 Placeholder allocation
	4.2.5 Non-blocking instructions
	4.2.6 Association of a lock and data

	4.3 Putting it all together
	4.3.1 Proof of concept

	4.4 Related work
	4.5 Summary

	A detailed study of collocation
	5.1 Introduction
	5.2 Known collocation strategies
	5.2.1 Prefetching as collocation
	5.2.2 Cache lines as collocation enabler

	5.3 A new collocation strategy: vaqum
	5.4 clean
	5.5 Results
	5.6 Related work
	5.7 Summary

	Conclusion
	6.1 Thesis summary
	6.2 Future directions
	6.2.1 Synchronization primitives and out-of-order execution
	6.2.2 Synchronization performance in non-scientific workloads
	6.2.3 Wait-free synchronization
	6.2.4 Unification of speculative execution and wait-free synchronization

	softqolb
	References

